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Abstract
We consider the problem of constructing small
coresets for k-MEDIAN in Euclidean spaces.
Given a large set of data points P ⊂ Rd, a
coreset is a much smaller set S ⊂ Rd, so that
the k-MEDIAN costs of any k centers w.r.t. P
and S are close. Existing literature mainly fo-
cuses on the high-dimension case and there has
been a great success in obtaining dimension-
independent bounds, whereas the case for small
d is largely unexplored. Considering many appli-
cations of Euclidean clustering algorithms are in
small dimensions and the lack of systematic stud-
ies in the current literature, this paper investigates
coresets for k-MEDIAN in small dimensions. For
small d, a natural question is whether existing
near-optimal dimension-independent bounds can
be significantly improved. We provide affirma-
tive answers to this question for a range of pa-
rameters. Moreover, new lower bound results are
also proved, which are the highest for small d. In
particular, we completely settle the coreset size
bound for 1-d k-MEDIAN (up to log factors). In-
terestingly, our results imply a strong separation
between 1-d 1-MEDIAN and 1-d 2-MEDIAN. As
far as we know, this is the first such separation
between k = 1 and k = 2 in any dimension.

1. Introduction
Processing huge datasets is always computationally chal-
lenging. In this paper, we consider the coreset paradigm,
which is an effective data-reduction tool to alleviate the
computation burden on big data. Roughly speaking, given
a large dataset, the goal is to construct a much smaller
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dataset, called coreset, so that vital properties of the orig-
inal dataset are preserved. Coresets for various problems
have been extensively studied (Har-Peled & Mazumdar,
2004; Feldman & Langberg, 2011; Feldman et al., 2013;
Cohen-Addad et al., 2022; Braverman et al., 2022). In this
paper, we investigate coreset construction for k-MEDIAN
in Euclidean spaces.

Coreset construction for Euclidean k-MEDIAN has been
studied for nearly two decades (Har-Peled & Mazumdar,
2004; Feldman & Langberg, 2011; Huang et al., 2018;
Cohen-Addad et al., 2021; 2022). For this particular prob-
lem, an ε-coreset is a (weighted) point set in the same Eu-
clidean space that satisfies: given any set of k centers, the
k-MEDIAN costs of the centers w.r.t. the original point set
and the coreset are within a factor of 1 + ε. The most im-
portant task in theoretical research here is to characterize
the minimum size of ε-coresets. Recently, there has been
great progress in closing the gap between upper and lower
bounds in high-dimensional spaces. However, researches
on the coreset size in small dimensional spaces are rare.
There are still large gaps between upper and lower bounds
even for 1-d 1-MEDIAN.

Clustering in small dimensional Euclidean spaces is of
both theoretical and practical importance. In practice,
many applications involve clustering points in small di-
mensional spaces. A typical example is clustering objects
in R2 or R3 based on their spatial coordinates (Wheeler,
2007; Fonseca-Rodrı́guez et al., 2021). Another example
is spectral clustering for graph and social network analy-
sis (Von Luxburg, 2007; Kunegis et al., 2010; Zhang et al.,
2014; Narantsatsralt & Kang, 2017). In spectral cluster-
ing, nodes are first embedded into a small dimensional Eu-
clidean space using spectral methods and then Euclidean
clustering algorithms are applied in the embedding space.
Even the simplest 1-d k-MEDIAN has numerous practical
applications (Arnaboldi et al., 2012; Jeske et al., 2013;
Pennacchioli et al., 2014).

On the theory side, existing techniques for coresets in high
dimensions may not be sufficient to obtain optimal core-
sets in small dimensions. For example, much smaller size
is achievable in R1 by using geometric methods, while
the sampling methods for strong coresets in high dimen-
sion (Langberg & Schulman, 2010; Cohen-Addad et al.,
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2021; Huang et al., 2022) seem not viable to obtain such
bounds in low dimensions. This suggests that optimal core-
set construction in small dimensions may require new tech-
niques, which provides a partial explanation of why 1-d 1-
MEDIAN is still open after two decades of research. That
being said, the coreset problem for clustering in small di-
mensional spaces is of great theoretical interest and practi-
cal value. Yet it is largely unexplored in the literature. This
paper aims to fill the gap and study the following question:
Question 1. What is the tight coreset size for Euclidean
k-MEDIAN problem in Rd for small d?

1.1. Problem Definitions and Previous Results

Euclidean k-MEDIAN. In the Euclidean k-MEDIAN
problem, we are given a dataset P ⊂ Rd (d ≥ 1) of n
points and an integer k ≥ 1; and the goal is to find a k-
center set C ⊂ Rd that minimizes the objective function

cost(P,C) :=
∑
p∈P

d(p, C) =
∑
p∈P

min
c∈C

d(p, c), (1)

where d(p, c) represents the Euclidean distance between p
and c. It has many application domains including approx-
imation algorithms, unsupervised learning, and computa-
tional geometry (Lloyd, 1982; Tan et al., 2006; Arthur &
Vassilvitskii, 2007; Coates & Ng, 2012).

Coresets. Let C denote the collection of all k-center sets,
i.e., C := {C ⊂ Rd : |C| = k}.
Definition 1.1 (ε-Coreset for Euclidean
k-MEDIAN (Har-Peled & Mazumdar, 2004)). Given
a dataset P ⊂ Rd of n points, an integer k ≥ 1 and
ε ∈ (0, 1), an ε-coreset for Euclidean k-MEDIAN is a
subset S ⊆ P with weight w : S → R≥0, such that

∀C ∈ C,
∑
p∈S

w(p) · d(p, C) ∈ (1± ε) · cost(P,C).

For Euclidean k-MEDIAN, the best known upper bound on
ε-coreset size is Õ(min

{
k4/3

ε2 , k
ε3

}
) (Huang et al., 2022;

Cohen-Addad et al., 2022) and Ω( k
ε2 ) is the best exist-

ing lower bound (Cohen-Addad et al., 2022). The upper
bound is dimension-independent, since using dimension-
ality reduction techniques such as Johnson–Lindenstrauss
transform, the dimension can be reduced to Θ̃( 1

ε2 ). Thus,
most previous work essentially only focus on d = Θ̃( 1

ε2 ),
whereas the case for d < 1

ε2 is largely unexplored. The
lower bound requires d = Ω( k

ε2 ), as the hard instance for
the lower bound is an orthonormal basis of size Ω( k

ε2 ). For
constant k and large enough d, the upper and lower bounds
match up to a polylog factor.

On the contrary, for d ≪ Θ( 1
ε2 ), tight coreset sizes for k-

MEDIAN are far from well-understood, even when k = 1.

Specifically, for constant d, the current best upper bound
is Õ( k

ε3 ,
kd
ε2 ) (Feldman & Langberg, 2011; Cohen-Addad

et al., 2022), and the best lower bound is Ω( k√
ε
) (Baker

et al., 2020). Thus, there is a still large gap between the
upper and lower bounds for small d. Perhaps surprisingly,
this is the case even for d = 1: Har-Peled & Kushal (2005)
present a coreset of size Õ(kε ) in R while the best known
lower bound is Ω( k√

ε
).

1.2. Our Results

We provide a complete characterization of the coreset size
(up to a logarithm factor) for d = 1 and partially answer
Question 1 for 1 < d < Θ( 1

ε2 ). Our results are summarized
in Table 1.

For d = 1, we construct coresets with size Õ( 1√
ε
) for

1-MEDIAN (Theorem 2.1) and prove that the coreset size
lower bound is Ω(kε ) for k ≥ 2 (Theorem 2.10). Previ-
ous work has shown coresets with size Õ(kε ) exist for k-
MEDIAN (Har-Peled & Kushal, 2005) in 1-d, and thus our
lower bound nearly matches this upper bound. On the other
hand, it was proved that the coreset size of 1-MEDIAN in
1-d is Ω( 1√

ε
) (Baker et al., 2020), which shows our upper

bound result for 1-MEDIAN is nearly tight.

For d > 1, we provide a discrepancy-based method that
constructs deterministic coresets of size Õ(

√
d
ε ) for 1-

MEDIAN (Theorem 3.2). Our result improves over the
existing Õ( 1

ε2 ) upper bound (Cohen-Addad et al., 2021)
for 1 < d < Θ( 1

ε2 ) and matches the Ω( 1
ε2 ) lower

bound (Cohen-Addad et al., 2022) for d = Θ( 1
ε2 ). We

further prove a lower bound of Ω(kd) for k-MEDIAN in
Rd (Theorem D.3). Combining with our 1-d lower bound
Ω(kε ), this improves over the existing Ω( k√

ε
+ d) lower

bound (Baker et al., 2020; Cohen-Addad et al., 2022).

1.3. Technical Overview

We first discuss the 1-d k-MEDIAN problem and show that
the framework of (Har-Peled & Kushal, 2005) is optimal
with significant improvement for k = 1. Then we briefly
summarize our approaches for 2 ≤ d ≤ ε−2.

The Bucket-Partitioning Framework for 1-d k-
MEDIAN in (Har-Peled & Kushal, 2005). Our main
results in 1-d are based on the classic bucket-partitioning
framework, developed in (Har-Peled & Kushal, 2005),
which we briefly review now. They greedily partition a
dataset P ⊂ R into O(kε−1) consecutive buckets B’s and
collect the mean point µ(B) together with weight |B| as
their coreset S. Their construction requires that the cumu-
lative error δ(B) =

∑
p∈B |p− µ(B)| ≤ ε · OPT/k holds

for every bucket B, where OPT is the optimal k-MEDIAN
cost of P . Their important geometric observation is that
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Table 1. Comparison of coreset sizes for k-MEDIAN in Rd. We use following abbreviations: [1] for (Har-Peled & Kushal, 2005), [2] for
(Feldman & Langberg, 2011), [3] for (Baker et al., 2020), [4] for (Cohen-Addad et al., 2021), [5] for (Cohen-Addad et al., 2022) and [6]
for (Huang et al., 2022). The symbol † represents that the results can be generalized to (k, z)-CLUSTERING (Definition 3.1).

Paremeters d, k Best Known Upper Bound Best Known Lower Bound Our Results

d = 1
k = 1 Õ(ε−1) [1] Ω(ε−1/2) [3] Õ(ε−1/2) (Thm. 2.1)
k > 1 O(kε−1) [1] Ω(kε−1/2) [3] Ω(kε−1) (Thm. 2.10)

1 < d < Θ(ε−2)
k = 1 Õ(ε−2) [4] Ω(ε−1/2) [3] Õ(

√
dε−1)† (Thm. 3.2)

k > 1 Õ(min
{

kd
ε2 ,

k
ε3 ,

k4/3

ε2

}
) [2,5, 6] Ω(kε−1/2) [3] Ω(kd+ kε−1)† (Thm. D.3)

d = Ω(ε−2) k ≥ 1 Õ(min
{

k
ε3 ,

k4/3

ε2

}
) [5, 6] Ω(kε−2) [5]

/

the induced error |cost(B,C)− |B| · d(µ(B), C)| of every
bucket B is at most δ(B), and even is 0 when all points
in B assign to the same center. Consequently, only O(k)
buckets induce a non-zero error for every center set C and
the total induced error is at most ε ·OPT, which concludes
that S is a coreset of size O(kε−1).

Reducing the Number of Buckets for 1-d 1-MEDIAN
via Adaptive Cumulative Errors. In the case of k = 1
where there is only one center c ∈ R, we improve the re-
sult in (Har-Peled & Kushal, 2005) (Theorem 2.1) through
the following observation: cost(P, c) can be much larger
than OPT when center c is close to either of the endpoints
of P , and consequently, can allow a larger induced error of
coreset than ε·OPT. This observation motivates us to adap-
tively select cumulative errors for different buckets accord-
ing to their locations. Inspired by this motivation, our al-
gorithm (Algorithm 1) first partitions dataset P into blocks
Bi according to clustering cost, i.e., cost(P, c) ≈ 2i ·OPT
for all c ∈ Bi, and then further partition each block Bi

into buckets Bi,j with a carefully selected cumulative error
bound δ(Bi,j) ≤ ε · 2i · OPT. Intuitively, our selection of
cumulative errors is proportional to the minimum cluster-
ing cost of buckets, which results in a coreset.

For the coreset size, we first observe that there are only
O(log ε−1) non-empty blocks Bi (Lemma 2.8) since we
can “safely ignore” the leftmost and the rightmost εn points
and the remaining points p ∈ P satisfy cost(P, p) ≤
ε−1OPT. The most technical part is that we show the
number m of buckets in each Bi is at most O(ε−1/2)
(Lemma 2.9), which results in our improved coreset size
Õ(ε−1/2). The basic idea is surprisingly simple: the clus-
tering cost of a bucket is proportional to its distance to cen-
ter c, and hence, the clustering cost of m consecutive buck-
ets is proportional to m2 instead of m. According to this
idea, we find that m2 · δ(Bi,j) ≤ 2i · OPT for every Bi,
which implies a desired bound m = O(ε−1/2) by our se-
lection of δ(Bi,j) ≈ ε · 2i · OPT.

Hardness Result for 1-d 2-MEDIAN: Cumulative Error
is Unavoidable. We take k = 2 as an example here and
show the tightness of the O(ε−1) bound by (Har-Peled &
Mazumdar, 2004). The extension to k > 2 is standard via
an idea of (Baker et al., 2020).

We construct the following worst-case instance P ⊂ R
of size ε−1: We construct m = ε−1 consecutive buckets
B1, B2, . . . , Bm such that the length of buckets exponen-
tially increases while the number of points in buckets expo-
nentially decreases. We fix a center at the leftmost point of
P (assuming to be 0 w. l. o. g.) and move the other center
c along the axis. Such dataset P satisfies the following:

• the clustering cost is stable: for all c, fP (c) :=
cost(P, {0, c}) ≈ ε−1 up to a constant factor;

• the cumulative error for every bucketBi is δ(Bi) ≈ 1;

• for every Bi, cost(Bi, {0, c}) is a quadratic function
that first decreases and then increases as cmoves from
left to right within Bi, and the gap between the maxi-
mum and the minimum values is Ω(δ(Bi)).

Suppose S ⊆ P is of size o(ε−1). Then there must exist
a bucket B such that S ∩ B = ∅. We find that function
fS(c) := cost(S, {0, c}) is an affine linear function when
c is located within Bi (Lemma 2.12). Consequently, the
maximum induced error maxc∈Bi

|fP (c)−fS(c)| is at least
Ω(δ(Bi)) since the estimation error of an affine linear func-
tion fS to a quadratic function fP is up to certain “cumu-
lative curvature” of fP (Lemma 2.11), which is Ω(δ(Bi))
due to our construction. Hence, S is not a coreset since
fP (c) ≈ ε−1 always holds.

We remind the readers that the above cost function fP is
actually a piecewise quadratic function withO(ε−1) pieces
instead of a quadratic one, which ensures the stability of
fP . This is the main difference from k = 1, which leads
to a gap of ε−1/2 on the coreset size between k = 1 and
k = 2. As far as we know, this is the first such separation
in any dimension.
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Our Approaches when 2 ≤ d ≤ ε−2. For 1-MEDIAN,
our upper bound result (Theorem 3.2) combines a recent
hierarchical decomposition coreset framework in (Braver-
man et al., 2022), that reduces the instance to a hierarchi-
cal ring structure (Theorem A.2), and the discrepancy ap-
proaches (Theorem A.4) developed by (Karnin & Liberty,
2019). The main idea is to extend the analytic analysis
of (Karnin & Liberty, 2019) to handle multiplicative errors
in a scalable way.

For k-MEDIAN, our lower bound result (Theorem D.3)
extends recently developed approaches in (Cohen-Addad
et al., 2022). Their hard instance is an orthonormal basis in
Rd, the size of which is at most d, and hence cannot obtain
a lower bound higher than Ω(d). We improve the results
by embedding Θ(k) copies of their hard instance in Rd,
each of which lies in a different affine subspace. We ar-
gue that the errors from all subspaces add up. However, the
error analysis from (Cohen-Addad et al., 2022) cannot be
directly used; we need to overcome several technical chal-
lenges. For instance, points in the coreset are not necessary
in any affine subspace, so the error in each subspace is not
a corollary of their result. Moreover, errors from different
subspaces may cancel each other.

1.4. Other Related Work

Coresets for Clustering in Metric Spaces Recent
works (Cohen-Addad et al., 2022; Cohen-Addad et al.,
2022; Huang et al., 2023a) show that Euclidean
(k, z)-CLUSTERING admits ε-coresets of size Õ(kε−2 ·
min{ε−z, k

z
z+2 }) and a nearly tight bound Õ(ε−2) is

known when k = 1 (Cohen-Addad et al., 2021). Apart
from the Euclidean metric, the research community also
studies coresets for clustering in general metric spaces a
lot. For example, Feldman & Langberg (2011) construct
coresets of size Õ(kε−2 log n) for general discrete metric.
Baker et al. (2020) show that the previous log n factor is un-
avoidable. There are also works on other specific metrics
spaces: doubling metrics (Huang et al., 2018) and graphs
with shortest path metrics (Baker et al., 2020; Braverman
et al., 2021; Cohen-Addad et al., 2021), to name a few.

Coresets for Variants of Clustering Coresets for vari-
ants of clustering problems are also of great interest. For
example, Braverman et al. (2022) construct coresets of size
Õ(k3ε−6) for capacitated k-MEDIAN, which is improved
to Õ(k3ε−5) by (Huang et al., 2023a). Other important
variants of clustering include ordered clustering (Braver-
man et al., 2019), robust clustering (Huang et al., 2023b),
and time-series clustering (Huang et al., 2021).

2. Tight Coreset Sizes for 1-d k-MEDIAN

2.1. Near Optimal Coreset for 1-d 1-MEDIAN

We have the following theorem.

Theorem 2.1 (Improved Coreset for one-dimensional
1-MEDIAN). There is a polynomial time algorithm, such
that given an input data set P ⊂ R, it outputs an ε-coreset
of P for 1-MEDIAN with size Õ(ε−

1
2 ).

Remark 2.2 (Discussion of our coreset result). We note
that there are fast algorithms for 1-MEDIAN and 1-d k-
MEDIAN (Cohen et al., 2016; Grønlund et al., 2018) and
PTAS for general k-MEDIAN (Har-Peled & Kushal, 2005).
Even with these algorithms, coresets are also of great
importance because coreset constructions have numerous
uses beyond computing the optimal solution of a problem.
For example, one can answer any query by computing on
the coreset rather than computing on the full dataset, which
greatly reduces the time complexity of answering queries.
Furthermore, for any problem that admits a coreset con-
struction, we can convert an arbitrary offline algorithm to
a simultaneously parallel and streaming algorithm via a
black-box reduction (Munteanu & Schwiegelshohn, 2018).
Moreover, a small coreset can automatically accelerate a
PTAS by replacing the original dataset with the coreset
and running the PTAS on the coreset (Har-Peled & Kushal,
2005).

In the case of d = 1, the black-box reduction converts
any off-line algorithm to a single-pass streaming algorithm
with only O(m polylog(n)) spaces, where n is the stream
length and m is the coreset size. Specifically, for the 1-d
1-MEDIAN problem (computing the median) our paper im-
mediately provides an ε-approximated streaming algorithm
with O(ε−1/2polylog(n)) spaces. Furthermore, as a core-
set maintains the answer to all queries, we can compute the
sum of the distance to a set of centers in time independent
of the point numbers.

Useful Notations and Facts. Throughout this section,
we use P = {p1, · · · , pn} ⊂ R with p1 < p2 < · · · < pn.
Let c⋆ = p⌊n

2 ⌋, we have the following simple observations
for cost(P, c).

Observation 2.3. cost(P, c) is a convex piecewise affine
linear function of c and OPT = cost(P, c⋆) is the optimal
1-MEDIAN cost on P .

The following notions, proposed by (Har-Peled & Mazum-
dar, 2004), are useful for our coreset construction.

Definition 2.4 (Bucket). A bucketB is a continuous subset
{pl, pl+1 . . . , pr} of P for some 1 ≤ l ≤ r ≤ n.

Definition 2.5 (Mean and cumulative error (Har-Peled
& Kushal, 2005)). Given a bucket B = {pl, . . . , pr} for
some 1 ≤ l ≤ r ≤ n, denote N(B) := r − l + 1 to be
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the number of points within B and L(B) := pr − pl to be
the length of B. We define the mean of B to be µ(B) :=

1
N(B)

∑
p∈B p, and define the cumulative error of B to be

δ(B) :=
∑

p∈B |p− µ(B)|.

Note that µ(B) ∈ [pl, pr] always holds, which implies the
following fact.

Fact 2.6. δ(B) ≤ N(B) · L(B).

The following lemma shows that for each bucket B, the
coreset error on B is no more than δ(B).

Lemma 2.7 (Cumulative error controls core-
set error (Har-Peled & Kushal, 2005)). Let
B = {pl, . . . , pr} ⊆ P for 1 ≤ l ≤ r ≤ n be a
bucket and c ∈ R be a center. We have

1. if c ∈ (pl, pr), |cost(B, c) − N(B)d(µ(B), c)| ≤
δ(B);

2. if c /∈ (pl, pr), |cost(B, c)−N(B)d(µ(B), c)| = 0.

Algorithm for Theorem 2.1. Our algorithm is summa-
rized in Algorithm 1. We improve the framework in (Har-
Peled & Kushal, 2005), which partitions P into multiple
buckets so that the cumulative errors in different buckets
are the same and collects their means as a coreset. Our
main idea is to carefully select an adaptive cumulative error
for different buckets. In Lines 2-3, we take the leftmost εn
points and the rightmost εn points, and add their weighted
means to our coreset S. In Lines 4 (and 7), we divide the
remaining points into disjoint blocks Bi (B′

i) such that for
every p ∈ Bi, cost(P, p) ≈ 2i · OPT, and then greedily
divide each Bi into disjoint buckets Bi,j with a cumulative
error roughly ε · 2i ·OPT in Line 5. We remind the readers
that the cumulative error in (Har-Peled & Kushal, 2005) is
always ε · OPT.

We define function fP : R → R≥0 such that fP (c) =
cost(P, c) for every c ∈ R and define fS : R → R≥0

such that fS(c) = cost(S, c) for every c ∈ R. By Observa-
tion 2.3, fP (c) is decreasing on (−∞, c∗] and increasing on
[c∗,∞). As a result, each Bi(B

′
i) consists of consecutive

points in P . The following lemma shows that the number
of blocks Bi(B′

i) is O(log 1
ε ).

Lemma 2.8 (Number of blocks). There are at most
O(log( 1ε )) non-empty blocks Bi or B′

i.

Proof: We prove Algorithm 1 divides {pL+1, . . . , p⌊n
2 ⌋}

into at most O(log( 1ε )) non-empty blocks Bi. Argument
for {p⌊n

2 ⌋+1, . . . , pR} is entirely symmetric.

If Bi is non-empty for some i ≥ 0, we must have fP (p) ≥
2i ·OPT for p ∈ Bi. We also have p > pL since p ∈ Bi ⊂
{pL+1, . . . , p⌊n

2 ⌋}. Since fP is convex, we have 2i ·OPT ≤

Algorithm 1 Coreset1d(P, ε)

Input: Dataset P = {p1, · · · , pn} ⊂ R with p1 < · · · <
pn, and ε ∈ (0, 1).

Output: An ε-coreset S of P for 1-d 1-MEDIAN
1: Set S ← ∅.
2: Set L ← ⌊εn⌋ and R ← n − ⌊εn⌋. Set B− ←
{p1, . . . , pL} and B+ ← {pR+1, . . . , pn}.

3: Add µ(B−) with weight N(B−) and µ(B+) with
weight N(B+) into S.

4: Divide {pL+1, . . . , p⌊n
2 ⌋} into disjoint blocks {Bi}i≥0

where Bi :=
{
p ∈ {pL+1, . . . p⌊n

2 ⌋} : 2i · OPT ≤
cost(P, p) < 2i+1 · OPT

}
.

5: For each non-empty block Bi (i ≥ 0), consider the
points within Bi from left to right and group them into
buckets {Bi,j}j≥0 in a greedy way: each bucket Bi,j

is a maximal set with δ(Bi,j) ≤ ε · 2i · OPT.
6: For every bucket Bi,j , add µ(Bi,j) with weight
N(Bi,j) into S.

7: Symmetrically divide {p⌊n
2 ⌋+1, . . . , pR} into disjoint

buckets {B′
i,j}i,j≥0 and add µ(B′

i,j) with weight
N(B′

i,j) into S for every bucket B′
i,j .

8: Return S.

fP (p) ≤ fP (pL). If we show that fP (pL) ≤ (1 + ε−1) ·
OPT = (1 + ε−1) · fP (c⋆) then we have 2i ≤ (1 + ε−1)
thus i ≤ O(log( 1ε )).

To prove fP (pL) ≤ (1 + ε−1) · fP (c⋆), we use triangle
inequality to obtain that

fP (pL) =

n∑
i=1

|pi − pL|

≤
n∑

i=1

(|pi − c⋆|+ |c⋆ − pL|)

= fP (c
⋆) + n · |c⋆ − pL|.

Moreover, we note that by the choice of pL, |c⋆ − pL| ≤
1
L ·
∑L

i=1 |c⋆ − pi| ≤
fP (c⋆)

εn . Thus we have,

fP (pL) ≤ fP (c⋆) + n · fP (c
⋆)

εn
= (1 + ε−1) · fP (c⋆).

□

We next give a key lemma that we use to obtain an im-
proved coreset size.

Lemma 2.9 (Number of buckets). Each non-empty block
Bi or B′

i is divided into O(ε−1/2) buckets.

Proof: We prove that each block Bi ⊂
{pL+1, . . . , p⌊n

2 ⌋} is divided into at most O(ε−1/2)
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buckets Bi,j . Argument for B′
i ⊂ {p⌊n

2 ⌋+1, . . . , pR} is
entirely symmetric.

SupposeBi = {pli , . . . , pri} and we divideBi into t buck-
ets {Bi,j}t−1

j=0. Since each Bi,j is the maximal bucket with
δ(Bi,j) ≤ ε · 2i · OPT, we have δ(Bi,2j ∪ Bi,2j+1) >
ε · 2i ·OPT for 2j + 1 < t. Denote Bi,2j ∪Bi,2j+1 by Cj

for j ∈ {0, . . . , ⌊ t−2
2 ⌋}, we have

4 · 2i · OPT ≥ fP (pli) + fP (pri)

≥
∑
p∈Bi

(|p− pli |+ |p− pri |)

= N(Bi)(pri − pli)

≥ (

⌊ t−2
2 ⌋∑

j=1

N(Cj)) · (
⌊ t−2

2 ⌋∑
j=1

L(Cj))

≥
( ⌊ t−2

2 ⌋∑
j=1

N(Cj)
1
2L(Cj)

1
2

)2
(2)

≥
( ⌊ t−2

2 ⌋∑
j=1

δ(Cj)
1
2

)2
by Fact 2.6

> (⌊ t− 2

2
⌋)2 · ε · 2i · OPT.

Here (2) is from Cauchy-Schwarz inequality. So we have
(⌊ t−2

2 ⌋)
2 · ε · 2i · OPT < 4 · 2i · OPT, which implies

t ≤ O(ε−
1
2 ). □

Now we are ready to prove Theorem 2.1.

Proof: [of Theorem 2.1] We first verify that the set S is
an O(ε)-coreset. Our goal is to prove that for every c ∈ R,
fS(c) ∈ (1±ε)·fP (c). We prove this for any c ∈ (−∞, c⋆].
The argument for c ∈ (c⋆,+∞) is entirely symmetric.

For any c ∈ (−∞, c⋆], we have

fP (c)− fS(c) =
∑
B

cost(B, c)−N(B) · d(µ(B), c)

whereB takes over all buckets. We then separately analyze
the c ∈ (−∞, pL] case and the c ∈ (pL, c

∗] case.

When c ∈ (−∞, pL], we note that fP (pL) =

fS(pL)(Lemma 2.7). By elementary calculus, both dfP (c)
dc

and dfS(c)
dc are within [−n,−(1 − 2ε)n]; hence differ by

at most a multiplicative factor of 1 + ε. Thus, |fP (c) −
fS(c)| ≤ O(ε) · fP (c).

When c ∈ (pL, c
∗], there is at most one bucket B =

{pl, . . . , pr} such that c ∈ (pl, pr) since these buckets
are disjoint. If such a bucket B does not exist, we have
fP (c) = fS(c). Now suppose such a bucket B exists.

Since c > pL, we have B ⊂ Bi for some block Bi. Thus,
by Lemma 2.7 and the construction of buckets:

|fP (c)− fS(c)| ≤ δ(B) ≤ ε · 2i · OPT.

We have fP (pl) ≥ 2i · OPT and fP (pr) ≥ 2i · OPT.
Since fP is convex (thus decreasing on (−∞, c∗]) and c ∈
(pl, pr), we also have fP (c) ≥ 2i · OPT. This implies
|fP (c)− fS(c)| ≤ ε · fP (c).

It remains to show that the size of S, which is the total
number of buckets, is Õ(ε−1/2). However, by Lemma 2.8,
there are O(log(1/ε)) blocks, and by Lemma 2.9, each
block contains O(ε−1/2) buckets. Thus, there are at most
Õ(ε−1/2) buckets. □

2.2. Tight Lower Bound on Coreset Size for 1-d
k-MEDIAN when k ≥ 2

In this subsection, we prove that the size lower bound of ε-
coreset for k-MEDIAN problem in R1 is Ω(kε ). This lower
bound matches the upper bound in (Har-Peled & Kushal,
2005).
Theorem 2.10 (Coreset lower bound for 1-d k-MEDIAN
when k ≥ 2). For a given integer k ≥ 2 and ε ∈ (0, 1),
there exists a dataset P ⊂ R such that any ε-coreset S must
have size |S| ≥ Ω(kε−1).

For ease of exposition, we only prove the lower bound
for 2-MEDIAN here. The generalization to k-MEDIAN is
straightforward and can be found in Appendix B.

We first prove a technical lemma, which shows that a
quadratic function cannot be approximated well by an
affine linear function in a long enough interval. We note
that similar technical lemmas appear in coresets lower
bound of other related clustering problems (Braverman
et al., 2019) (Baker et al., 2020). The lemma in (Braverman
et al., 2019) shows that the function

√
x cannot be approx-

imated well by an affine linear function while our lemma
is about approximating a quadratic function. The lemma
in (Baker et al., 2020) shows that a quadratic function can-
not be approximated well by an affine linear function on a
bounded interval, a situation slightly different from ours.
Lemma 2.11 (Quadratic function cannot be approxi-
mated well by affine linear functions). Let [a, b] be an in-
terval, f(c) be a quadratic function on interval [a, b], α >
0 and β > 0 be two constants, and 0 ≤ ε < 1

32
β
α be a non-

negative real number. If |f(c)| ≤ α and (b−a)2f ′′(c) ≥ β
for all c ∈ [a, b], then there is no affine linear function g
such that |g(c)− f(c)| ≤ εf(c) for all c ∈ [a, b].

Proof: Assume there is an affine linear function g(c) that
satisfies |g(c)− f(c)| ≤ εf(c) for all c ∈ [a, b]. We denote

6
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the error function by r(c) = f(c) − g(c), which has two
properties. First, its l∞ norm ∥r∥∞ = supc∈[a,b] |r(c)| ≤
εα. Second, it is quadratic and satisfies r′′(c) = f ′′(c),
thus (b− a)2r′′(c) ≥ β for all c ∈ [a, b].

Define L = b − a. By the mean value theorem, there is a
point c1/4 ∈ [a, a+b

2 ] such that |r′(c1/4)| = | 1
L/2 [r(

a+b
2 )−

r(a)]| ≤ 4
L∥r∥∞. Similarly there is a point c3/4 ∈ [a+b

2 , b]

such that |r′(c3/4)| ≤ 4
L∥r∥∞. Since r is a quadratic

function, its derivative is monotonic and |r′(a+b
2 )| ≤

max(|r′(c1/4)|, |r′(c3/4)|) ≤ 4
L∥r∥∞. Thus we have

r(b)− r(a+ b

2
) =

∫ b

a+b
2

r′(c)dc

=

∫ b

a+b
2

r′(
a+ b

2
) +

∫ c

a+b
2

r′′(t)dtdc

=
L

2
r′(
a+ b

2
) +

∫ b

a+b
2

∫ c

a+b
2

r′′(t)dtdc

≥ −L
2

4

L
∥r∥∞ +

1

8
(b− a)2r′′(c)

≥ −2εα+
1

8
β.

On the other hand r(b) − r(a+b
2 ) ≤ 2∥r∥∞ ≤ 2εα. We

have 2εα ≥ −2εα+ 1
8β. Thus ε ≥ 1

32
β
α . □

For any dataset P , with a slight abuse of notations, we
denote the cost function for 2-MEDIAN with one query
point fixed in 0 by fP (c) = cost(P, {0, c}). The following
lemma shows that fP (c) is a piecewise affine linear func-
tion and all the transition points are P ∪ {2p | p ∈ P}.
Lemma 2.12 (The function fP (c) is piecewise affine lin-
ear). Let P ⊂ R be a weighted dataset. The function
fP (c) is a piecewise affine linear function. All the transi-
tion points between two affine pieces are P ∪{2p | p ∈ P}.

Proof: We denote the weight of point p by w(p) and de-
note the midpoint between any point c and 0 by mid = c

2 .
Now assume c ≥ 0 and both c and c

2 are not in the dataset
P . The clustering cost of a single point p is

cost(p, {0, c}) =


w(p)p for p ∈ [0,mid],
w(p)(c− p) for p ∈ [mid, c],
w(p)(p− c) for p ∈ [c,+∞).

If c changes to c+ dc we have

cost(p, {0, c+ dc})− cost(p, {0, c})

=


0 for p ∈ [0,mid],
w(p)dc for p ∈ [mid + 1

2dc, c],

−w(p)dc for p ∈ [c+ dc,+∞).

Assume |dc| is small enough, then there are no data points
in [mid,mid + 1

2dc] and [c, c+ dc]. We have

fP (c+ dc)− fP (c)

=
∑

p∈P∩[mid,c]

w(p)dc−
∑

p∈P∩[c,+∞)

w(p)dc,

thus

f ′P (c) =
∑

p∈P∩[mid,c]

w(p)−
∑

p∈P∩[c,+∞)

w(p).

Consider c moves in R from left to right, the derivative
f ′P (c) changes only when c or mid = c

2 pass a data point
in P . The same conclusion also holds for c < 0 by a
symmetric argument. This is exactly what we want. □

Proof: [2-MEDIAN case of Theorem 2.10] We first con-
struct the dataset P . The dataset P is a union of 1

ε disjoint

intervals {Ii}
1
ε
i=1. Denote the left endpoint and right end-

point of Ii by li and ri respectively. We recursively define
li = ri−1 for i ≥ 2, ri = li + 4i−1 for i ≥ 1, and l1 = 0.
Thus ri = li+1 = 1

3 (4
i − 1). The weight of points is spec-

ified by a measure λ on P . The measure is absolutely con-
tinuous with respect to Lebesgue measure m such that its
density on the ith interval is dλ

dm = ( 1
16 )

i−1. We denote the
density on the ith interval by µi and the density at point p
by µ(p). Note that P is a hard case with an infinite number
of points. We can derive hard cases with a finite number of
points by discretizing P , see the end of this proof.

The cost function fP (c) has following two features:

1. the function value fP (c) ∈ [0, 2ε ] for any c ∈ R,

2. the function is quadratic on the interval [li + 1
3 (ri −

li), ri] and satisfies [ 23 (ri − li)]
2f ′′P (c) =

2
3 for each i.

We show how to prove theorem 2.10 from these features
and defer verification of these features later. Note that fea-
ture 2 does not contradict lemma 2.12 since the dataset con-
tains infinite points.

Assume that S is an ε
300 -coreset of P . We prove |S| ≥ 1

2ε
by contradiction. If |S| < 1

2ε , then there is an interval Ii =
[li, ri] such that (li, ri)∩S = ∅ by the pigeonhole’s princi-
ple. Consider function fS(c) on interval [li+ 1

3 (ri−li), ri].
When c ∈ [li +

1
3 (ri − li), ri], we have c

2 ∈ [li, ri]. Thus
both c and c

2 do not pass points in S when c moves from
li+

1
3 (ri−li) to ri. By lemma 2.12, function fS(c) is affine

linear on interval [li + 1
3 (ri − li), ri]. Since S is an ε

300 -
coreset of P , we have |fS(c)−fP (c)| ≤ ε

300fP (c) on inter-
val [li + 1

3 (ri − li), ri]. However, by applying lemma 2.11
to fP (c) and fS(c) on interval [l+ 1

3 (ri−li), ri] with α = 2
ε

7
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and β = 2
3 , we obtain that ε

300 ≥
1
32 ×

2
3 ×

ε
2 >

ε
300 . This

is a contradiction.

We now verify the two features of fP (c). We verify fea-
ture 1 by direct computations. For any point c, the function
satisfies

0 ≤ fP (c) ≤ cost(P, {0, 0}) =
∫
P

pµ(p)dp

≤
1
ε∑

i=1

λ(Ii)ri ≤
1
ε∑

i=1

(
1

4
)i−1 × 2× 4i−1

=
2

ε
.

To verify feature 2, we compute the first order derivative by
computing the change of the function value fP (c + dc) −
fP (c) up to the first order term when c increases an in-
finitesimal number dc. The unweighted clustering cost of a
single point p is

cost(p, {0, c}) =


p for p ∈ [0,mid],
c− p for p ∈ [mid, c],
p− c for p ∈ [c,+∞).

As c increases to c+dc, the clustering cost of a single point
changes

cost(p, {0, c+ dc})− cost(p, {0, c})]

=



0 for p ∈ [0,mid],
O(dc) for p ∈ [mid,mid + 1

2dc],

dc for p ∈ [mid + 1
2dc, c],

O(dc) for p ∈ [c, c+ dc],

−dc for p ∈ [c+ dc,+∞).

The cumulative clustering cost changes

fP (c+ dc)− fP (c)

=

∫ +∞

0

cost(p, {0, c+ dc})− cost(p, {0, c})dλ

=

∫ mid

0

0dλ+

∫ mid+ 1
2dc

mid
O(dc)dλ+

∫ c

mid+ 1
2dc

dcdλ

+

∫ c+dc

c

O(dc)dλ+

∫ +∞

c+dc

−dcdλ

=λ([mid, c])dc− λ([c,+∞))dc +O(dc)2.

Thus the first order derivative f ′P (c) = λ([ c2 , c]) −
λ([c,+∞)) and the second order derivative

f ′′P (c) =
d

dc

(
λ([

c

2
, c])− λ([c,+∞))

)
,

= 2µ(c)− 1

2
µ(
c

2
).

For c ∈ [li +
1
3 (ri − li), ri], the two points c and c

2 both
lie in interval [li, ri]. We have µ(c) = µ( c2 ) = µi and
f ′′P (c) = 3

2µi. Thus the function fP (c) is quadratic on
[li +

1
3 (ri − li), ri] and [ 23 (ri − li)]

2f ′′P (c) =
2
3 .

The only remaining part is constructing hard cases with a fi-
nite number of points from P . We construct Pn from P for
each n by creating a bucket Bi of ( 14 )

i−1n equally spaced
points in each interval Ii and assigning weight 1

n to every
point. We show that Pn is a hard case for n large enough.
We assume that each Pn has a 300ε-coreset of size less than
1
4ε and prove that it leads to a contradiction. The key is the
following proposition: limn→+∞ ∥fPn − fP ∥∞ = 0.

To see this, denote the point li + j
(1/4)i−1n (ri − li) by

pi,j for j ∈ {0, . . . , (1/4)i−1n − 1}. We have Ii =∐(1/4)i−1n
j=0 [pi,j , pi,j+1) and Bi = ∪(1/4)

i−1n
j=0 pi,j . For any

center c ∈ R, we have

fP (c)− fPn
(c) =

1
ε∑

i=1

( 1
4 )

i−1n∑
j=1

cost([pi,j−1, pi,j), {0, c})

−
1
ε∑

i=1

( 1
4 )

i−1n∑
j=1

cost(pi,j−1, {0, c}).

Since λ([pi,j−1, pi,j)) = 1/n = w(pi,j−1), we have

|cost([pi,j−1, pi,j), {0, c})− cost(pi,j−1, {0, c})

≤ 1

n

ri − li
(1/4)i−1n

.

Thus we have

sup
c
|fP (c)− fPn

(c)|

≤
1
ε∑

i=1

( 1
4 )

i−1n∑
j=1

1

n

ri − li
(1/4)i−1n

=
1

n

1
ε∑

i=1

(ri − li).

The proposition then follows from limn→∞
1
n

∑ 1
ε
i=1(ri −

li) = 0.

Now, for each Pn, denote its 300ε-coreset of size less
than 1

4ε by Sn. By the definition of coreset, we have
supc[|fPn

(c) − fSn
(c)| − 300εfPn

(c)] ≤ 0. Using
the proposition we have limsupn→+∞ supc[|fP (c) −
fSn(c)| − 300εfP (c)] ≤ 0. Take a large enough n, we
have |fP (c) − fSn

(c)| ≤ 301εfP (c) for any c and Sn is a
301ε-coreset of P . However, the set Sn contains less than
1
4ε points, which is impossible since we have proved that
any 300ε-coreset of P contains at least 1

2ε points. This
leads to a contradiction. □

8
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3. Improve Coreset Sizes when 2 ≤ d ≤ ε−2

In this section, we consider the case of constant d, 2 ≤
d ≤ ε−2, and provide several improved coreset bounds
for a general problem of Euclidean k-MEDIAN, called Eu-
clidean (k, z)-CLUSTERING. The only difference from k-
MEDIAN is that the goal is to find a k-center set C ⊂ Rd

that minimizes the objective function

costz(P,C) :=
∑
p∈P

dz(p, C) =
∑
p∈P

min
c∈C

dz(p, c), (3)

where dz represents the z-th power of the Euclidean dis-
tance. The coreset notion is as follows.

Definition 3.1 (ε-Coreset for Euclidean
(k, z)-CLUSTERING (Har-Peled & Mazumdar, 2004)).
Given a dataset P ⊂ Rd of n points, an integer k ≥ 1,
constant z ≥ 1 and ε ∈ (0, 1), an ε-coreset for Euclidean
(k, z)-CLUSTERING is a subset S ⊆ P with weight
w : S → R≥0, such that

∀C ∈ C,
∑
p∈S

w(p) · dz(p, C) ∈ (1± ε) · costz(P,C).

3.1. Improved Coreset Size in Rd when k = 1

We prove the following main theorem for k = 1 whose
center is a point c ∈ Rd.

Theorem 3.2 (Coreset for Euclidean
(1, z)-CLUSTERING). Let integer d ≥ 1, constant
z ≥ 1 and ε ∈ (0, 1). There exists a randomized polyno-
mial time algorithm that given a dataset P ⊂ Rd, outputs
an ε-coreset for Euclidean (1, z)-CLUSTERING of size at
most zO(z)

√
dε−1 log ε−1.

The proof can be found in Appendix A. The above theorem
is powerful and leads to the following results for z = O(1).

1. By dimension reduction as in (Huang & Vishnoi,
2020; Cohen-Addad et al., 2021; 2022), we can as-
sume d = O(ε−2 log ε−1). Consequently, our coreset
size is upper bounded by Õ(ε−2), which matches the
nearly tight bound in (Cohen-Addad et al., 2022).

2. For d = O(1), our coreset size is O(ε−1), which
is the first known result in small dimensional space.
Specifically, the prior known coreset size in R2 is
Õ(ε−3/2) (Braverman et al., 2022), and our result im-
proves it by a factor of ε−1/2.

3. All results previously stated in Remark 2.2 hold. We
can still convert an off-line algorithm to a stream-
ing algorithm in a black-box manner. We can also
answer any query in time independent of the point

numbers. We further emphasize that a small core-
set can automatically accelerate a PTAS. Suppose the
time complexity of the PTAS is O(f(n)g(ε)), re-
placing the original dataset with our coreset imme-
diately improves the time complexity of the PTAS
to O(f(Õ(

√
dε−1))g(ε)). The time required for the

coreset construction is usually negligible compared to
the running time of the PTAS.

We conjecture that our coreset size is almost tight, i.e.,
there exists a coreset lower bound Ω(

√
dε−1) for constant

2 ≤ d ≤ ε−2, which leaves as an interesting open problem.

3.2. Improved Coreset Lower Bound in Rd when k ≥ 2

We present a lower bound for the coreset size in small di-
mensional spaces.

Theorem 3.3 (Coreset lower bound in small dimensional
spaces). Given an integer k ≥ 1, constant z ≥ 1 and a
real number ε ∈ (0, 1), for any integer d ≤ 1

100ε2 , there
is a dataset P ⊂ Rd+1 such that its ε-coreset for (k, z)-
CLUSTERING must contain at least dk

10z4 points.

When d = Θ( 1
ε2 ), Theorem 3.3 gives the well known lower

bound k
ε2 . When d≪ Θ( 1

ε2 ), the theorem is non-trivial.

4. Conclusion
This work studies coresets for k-MEDIAN problem in small
dimensional Euclidean spaces. We give tight size bounds
for k-MEDIAN in R and show that the framework in (Har-
Peled & Kushal, 2005), with significant improvement, is
optimal. For d ≥ 2, we improve existing coreset upper
bounds for 1-MEDIAN and prove new lower bounds.

Our work leaves several interesting problems for future re-
search. One of which is to close the gap between upper
bounds and lower bounds for d ≥ 2. Another one is to
generalize our results to (k, z)-CLUSTERING for general
z. Note that the generalization is non-trivial even for d = 1
since the cost function is piece-wise linear for k-MEDIAN
while piece-wise polynomial of order z for general (k, z)-
CLUSTERING.
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A. Proof of Theorem 3.2
A.1. Useful Notations and Facts

For preparation, we first propose a notion of mixed coreset (Definition A.1), and then introduce some known discrepancy
results.

Reduction to mixed coreset. Let B(a, r) denote the ℓ2-ball in Rd that centers at a ∈ Rd with radius r ≥ 0. Specifically,
B(0, 1) is the unit ball centered at the original point.

Definition A.1 (Mixed coreset for Euclidean (1, z)-CLUSTERING). Given a dataset P ⊂ B(0, 1) and ε ∈ (0, 1), an
ε-mixed-coreset for Euclidean (1, z)-CLUSTERING is a subset S ⊆ P with weight w : S → R≥0, such that ∀c ∈ Rd,∑

p∈S

w(p) · dz(p, c) ∈ costz(P, c)± εmax {1, ∥c∥2}z · |P |. (4)

Actually, prior work (Cohen-Addad et al., 2021; 2022; Braverman et al., 2022) usually consider the following form: ∀c ∈
Rd, ∑

p∈S

w(p) · dz(p, c) ∈ (1± ε) · costz(P, c)± ε|P |. (5)

Compared to Definition 1.1, the above inequality allows both a multiplicative error ε ·costz(P, c) and an additional additive
error ε|P |. Note that for a small r = O(1), the additive error ε|P | dominates the total error; while for a large r ≫ Ω(1), the
multiplicative error ε · costz(P, c) ≈ ε∥c∥2 · |P | dominates the total error. Hence, it is not hard to check that Inequality (5)
is an equivalent form of Inequality (4) (up to an 2O(z)-scale). This is also the reason that we call Definition A.1 mixed
coreset. We have the following useful reduction.

Theorem A.2 (Reduction from coreset to mixed coreset (Braverman et al., 2022)). Let ε ∈ (0, 1). Suppose there exists
a polynomial time algorithm A that constructs an ε-mixed coreset for Euclidean (1, z)-CLUSTERING of size Γ. Then there
exists a polynomial time algorithmA′ that constructs an ε-coreset for Euclidean (1, z)-CLUSTERING of sizeO(Γ log ε−1).

Thus, it suffices to prove that an ε-mixed coreset is of size zO(z)
√
dε−1, which implies Theorem 3.2.

Class discrepancy. For preparation, we introduce the notion of class discrepancy introduced by (Karnin & Liberty,
2019). The idea of combining discrepancy and coreset construction has been studied in the literature, specifically for kernel
density estimation (Phillips & Tai, 2018a;b; Karnin & Liberty, 2019; Tai, 2022). We propose the following definition.

Definition A.3 (Class discrepancy (Karnin & Liberty, 2019)). Let m ≥ 1 be an integer. Let f : X , C → R and P ⊆ X
with |P | = m. The class discrepancy of of P w.r.t. (f, C) is

D
(C)
P (f) := min

σ∈{−1,1}P
D

(C)
P (f, σ)

= min
σ∈{−1,1}P

max
c∈C

1

m

∣∣∣∣∣∣
∑
p∈P

σp · f(p, c)

∣∣∣∣∣∣ .
Moreover, we define D(X ,C)

m (f) := maxP⊆X :|P |=mD
(C)
P (f) to be the class discrepancy w.r.t. (f,X , C).

Here, X is the instance space and C is the parameter space. Specifically, for Euclidean (1, z)-CLUSTERING, we let
X , C ⊆ Rd and f be the Euclidean distance. The class discrepancy D(X ,C)

m (f) measures the capacity of C. Intuitively, if
the capacity of C is large and leads to a complicated geometric structure of vector (f(p, c))p∈P for c ∈ C, D(X ,C)

m (f) tends
to be large.

Useful discrepancy results. For a vector p ∈ Rd and integer l ≥ 1, let p⊗l present the l-dimensional tensor obtained
from the outer product of p with itself l times. For a l-dimensional tensor X with dl entries, we consider the measure
∥X∥Tl

:= maxc∈Rd:∥q∥=1 |⟨X, q⊗l⟩|. Next, we provide some known results about the class discrepancy.
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Theorem A.4 (An upper bound for class discrepancy (restatement of Theorem 18 of Karnin & Liberty (2019))). Let
X = B(0, 1) in Rd. Let f : R→ R be analytic satisfying that for any integer l ≥ 1, |d

lf
dxl (x)| ≤ γ1C

ll! for some constant
γ1, C > 0. Let C = B(0, 1

2C ) and m ≥ 1 be an integer. The class discrepancy w.r.t. (f = f(⟨p, c⟩),X , C) is at most
D

(X ,C)
m (f) ≤ γ2γ1

√
d/m for some constant γ2 > 0.

· Moreover, for any dataset P ⊂ X of size m, there exists a randomized polynomial time algorithm that constructs
σ ∈ {−1, 1}P satisfying that for any integer l ≥ 1, we have

∥
∑
p∈P

σp · p⊗l∥Tl
= O(

√
dl log3 l).

This σ satisfies D(C)
P (f, σ) ≤ γ2γ1

√
d/m.

Note that the above theorem is a constructive result instead of an existential result in Theorem 18 of (Karnin & Liberty,
2019). This is because Theorem 18 of (Karnin & Liberty, 2019) applies the existential version of Banaszczyk’s theo-
rem (Banaszczyk, 1998), which has been proven to be constructive recently (Bansal et al., 2019). Also, note that the
construction of σ only depends on P and does not depend on the selection of C. This observation is important for the
construction of mixed coresets via discrepancy.

A.2. Proof of Theorem 3.2

We are ready to prove Theorem 3.2. The main lemma is as follows.

Lemma A.5 (Class discrepancy for Euclidean (1, z)-CLUSTERING). Let m ≥ 1 be an integer. Let f = dz and
X = B(0, 1). For a given dataset P ⊂ X of size m, there exists a vector σ ∈ {−1, 1}P such that for any r > 0,

D
(B(0,r))
P (f, σ) ≤ zO(z) max {1, r}z ·

√
d/m.

The above lemma indicates that the class discrepancy for Euclidean (1, z)-CLUSTERING linearly depends on the radius r
of the parameter space C. Note that the lemma finds a vector σ that satisfies all levels of parameter spaces C = B(0, r)
simultaneously. This requirement is slightly different from Definition A.3 that considers a fixed parameter space. Observe
that the term max {1, r} is similar to max {1, ∥c∥2} in Definition A.1, which is the key of reduction from Lemma A.5 to
Theorem 3.2. The proof idea is similar to that of Fact 6 of (Karnin & Liberty, 2019).

Proof: [of Theorem 3.2] Let P ⊂ B(0, 1) be a dataset of size n and Λ = zO(z)
√
dε−1. By the same argument as in Fact

6 of (Karnin & Liberty, 2019), we can iteratively applying Lemma A.5 to construct a subset S ⊆ P of size m = Θ(Λ)

together with weights w(p) = n
|S| for p ∈ S and a vector σ ∈ {−1, 1}S , and (S, σ) satisfies that for any c ∈ Rd,∣∣∣∣∣∣

∑
p∈S

w(p) · d(p, c)− costz(P, c)

∣∣∣∣∣∣
≤ n ·D(B(0,∥c∥2))

S (f, σ)

≤ εmax {1, ∥c∥2} · n.

This implies that S is an O(ε)-mixed coreset for Euclidean (1, z)-CLUSTERING of size at most Λ = zO(z)
√
dε−1, which

completes the proof of Theorem 3.2. □

It remains to prove Lemma A.5.

Proof: [of Lemma A.5] Let P ⊂ B(0, 1) be a dataset of size m. We first construct a vector σ ∈ {−1, 1}P by the
following way:

1. For each p ∈ P , construct a point ϕ(p) = (12∥p∥
2
2,

√
2
2 p,

1
2 ) ∈ Rd+2.
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2. By Theorem A.4, construct σ ∈ {−1, 1}P such that for any integer l ≥ 1,

∥
∑
p∈P

σp · ϕ(p)⊗l∥Tl
= O(

√
(d+ 2)l log3 l).

Let ϕ(P ) be the collection of all ϕ(p)s. Note that ∥ϕ(p)∥2 ≤ 1 by construction, which implies that ϕ(P ) ⊂ B(0, 1) ⊂
Rd+2. In the following, we show that σ satisfies Lemma A.5.

Fix r ≥ 1 and let C = B(0, r). We construct another dataset P ′ =
{
p′ = p

4r : p ∈ P
}

. For any c ∈ C = B(0, r), we let
c′ = c

4r ∈ B(0, 14 ). By definition, we have for any p ∈ X and c ∈ C,

1

m

∣∣∣∣∣∣
∑
p∈P

σp · f(p, c)

∣∣∣∣∣∣ = (4r)z

m

∣∣∣∣∣∣
∑
p′∈P ′

σp · f(p′, c′)

∣∣∣∣∣∣ ,
which implies that

D
(C)
P (f, σ) = (4r)z ·D(B(0, 14 ))

P ′ (f, σ).

Thus, it suffices to prove that

D
(B(0, 14 ))

P ′ (f, σ) ≤ zO(z)
√
d/m, (6)

which implies the lemma. The proof idea of Inequality (6) is similar to that of Theorem 22 of (Karnin & Liberty, 2019).1

For each p′ ∈ P ′ and c′ ∈ B(0, 14 ), let ψ(c′) = ( 1
8r2 ,−

√
2

2r c
′, 2∥c′∥22) ∈ Rd+2 and we can rewrite f(p′, c′) as follows:

f(p′, c′) = ∥p′ − c′∥z2 = (⟨ϕ(p), ψ(c′)⟩)z/2.

We note that ϕ(p) ∈ B(0, 1) and ψ(c′) ∈ B(0, 13 ) since c′ ∈ B(0, 14 ). Construct another function g : P × B(0, 13 ) as
follows: for each p ∈ P and c ∈ B(0, 13 ),

1. If for any p′ ∈ P , ⟨p′, c⟩ ≥ 0, let g(p, c) = g(⟨p, c⟩) = (⟨p, c⟩)z/2;

2. Otherwise, let g(p, c) = 0.

We have | d
lg

dxl (x)| ≤ zO(z)l! for any integer l ≥ 1. By the construction of σ and Theorem A.4, we have that

D
(B(0, 13 ))

ϕ(P ) (g, σ) ≤ zO(z)
√
d/m,

which implies Inequality (6) since D(B(0, 14 ))

P ′ (f, σ) ≤ D(B(0, 13 ))

ϕ(P ) (g, σ) due to the fact that ψ(c′) ∈ B(0, 13 ).

Overall, we complete the proof. □

B. Coreset Lower Bound for General k-MEDIAN in R
We prove the general case of Theorem 2.10 here.

Proof: [the general case of Theorem 2.10]

We first construct the hard instance P . Let P1 denote the hard instance we have constructed in the proof of Theorem 2.10.

We take a large enough constant L > 0, take Pi = (i − 1)L + P1, and take P = ∪
k
2
i=1Pi. Here (i − 1)L + P1 means

{(i− 1)L+ p|p ∈ P1}.
1Note that the proof of Theorem 22 of (Karnin & Liberty, 2019) is actually incorrect. Applying Theorem 18 of (Karnin & Liberty,

2019) may lead to an upper bound ∥q̃∥2 < 1, which makes R in Theorem 22 of (Karnin & Liberty, 2019) not exist.
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The dataset P is a unification of k
2 copies of P1. These copies are far from each other. Thus k-MEDIAN problem on P can

be decomposed to 2-MEDIAN problem on each copy. We prove the k-MEDIAN lower bound by applying the argument for
the 2-MEDIAN lower bound on every single copy and combining them together.

We denote P1 = ∪
1
ε
j=1I1,j , where I1,j is the j-th interval we constructed in the proof of the 2-MEDIAN case of Theo-

rem 2.10. We denote Ii,j = (i− 1)L+ I1,j , denote the left endpoint and right endpoint of Ii,j by li,j and ri,j respectively.

We have Pi = ∪
1
ε
j=1Ii,j .

Now, assume that S is an ε
300 coreset of P such that |S| < k

4ε . We prove that there must be a contradiction. Since |S| < k
4ε ,

there must be at least half of i such that (li,ji , ri,ji) ∩ S = ∅ for some ji. We assume that these indexes are 1, 2, . . . , k4 ,

without loss of generality. We define a parametrized query family as Q(t) = ∪
k
2
i=1Qi(t), where t ∈ [ 13 , 1] and

Qi(t) =

{
{li,1, li,ji + t(ri,ji − li,ji), ri,ji} for i ≤ k

4 ,

{li,1} otherwise.

Consider cost(P,Q(t)), a function of t. Since L is large enough, we have cost(P,Q(t)) =
∑ k

2
i=1 cost(Pi, Qi(t)). The

computation we have done in the proof of the 2-MEDIAN case of Theorem 2.10 implies that cost(Pi, Qi(t)) ≤ 2
ε for each

i and

(1− 1

3
)2

d2

dt2
cost(Pi, Qi(t)) =

{
4
9 for i ≤ k

4 ,

0 otherwise.

Thus we have cost(P,Q(t)) ≤ k
ε and (1− 1

3 )
2 d2

dt2 cost(P,Q(t)) = k
9 .

It’s easy to see that cost(S,Q(t)) is affine linear since (li,ji , ri,ji) ∩ S = ∅ for i ≤ k
4 . Since S is an ε

300 coreset, we have
|cost(S,Q(t))− cost(P,Q(t))| ≤ ε

300cost(P,Q(t)). By Lemma 2.11, we must have ε
300 ≥

1
32

ε
k
k
9 >

ε
300 , which leads to

a contradiction. □

C. Proof of Theorem 3.3 for k-MEANS

Theorem C.1 (Restatement of Theorem 3.3). Given an integer k ≥ 1, constant z ≥ 1 and a real number ε ∈ (0, 1), for
any integer d ≤ 1

100ε2 , there is a dataset P ⊂ Rd+1 such that its ε-coreset for (k, z)-CLUSTERING must contain at least
dk

10z4 points.

We first prove Theorem C.1 for z = 2, and then show how to extend to general z ≥ 1 in Section E

Proof: [of Theorem C.1 for z = 2] We work on Rd+1 instead of working on Rd for technical reasons. We will construct
k d-dimensional affine subspaces in Rd+1, each of them is far away from others. Then we consider the standard basis in
each subspace and show that a coreset of the data set must contain at least Ω(kd) points.

Denote the standard basis in Rd+1 by e0, . . . , ed. For each j ∈ [k], we consider the data set Pj ≜ jLe0 + {e1, e2, . . . , ed}
where L is a positive number large enough. We take the full data set P as P = ∪j∈[k]Pj . Each Pj lies in a d-dimensional
affine subspace jLe0 + span ⟨e1, . . . , ed⟩. These affine subspaces are far away from each other since L is large enough,
and this seperation property assures that we can analyze these affine subspaces independently.

Denote the coreset of P as C. For each j ∈ [k], denote Cj ≜ C ∩ Pj . If jLe0 + ei ∈ Cj , we denote i ∈ Cj for the
sake of convenience, we also denote its coreset weight as wi. Denote vj ≜

∑
i∈Cj

wiei −
∑d

i=1 ei, we consider the query

Q = {q1, . . . , qk} where qj ≜
vj

∥vj∥2
+ jLe0.

Note that each p ∈ Pj has qj as its closet query point since L is large enough, thus cost(P,Q) =
∑k

j=1 cost(Pj , Q) =∑k
j=1 cost(Pj , qj) and cost(C,Q) =

∑k
j=1 cost(Cj , qj). We compute cost(P,Q) and cost(C,Q) by computing

cost(Pj , qj) and cost(Cj , qj)
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We compute cost(Pj , qj) first, that is

cost(Pj , qj) =

d∑
i=1

∥jLe0 + ei − qj∥2 =

d∑
i=1

∥ei −
vj
|vj |
∥2 = 2d− 2

d∑
i=1

〈
ei,

vj
|vj |

〉
.

Similarly we have cost(Cj , qj) = 2
∑

i∈Cj
wi − 2

∑
i∈Cj

wi

〈
ei,

vj
|vj |

〉
.

Combining them all, we have

cost(P,Q)− cost(C,Q) = 2kd− 2

k∑
j=1

∑
i∈Cj

wi + 2

k∑
j=1

〈∑
i∈Cj

wiei −
d∑

i=1

ei,
vj
|vj |

〉

= 2kd− 2

k∑
j=1

∑
i∈Cj

wi + 2

k∑
j=1

∥vj∥.

The coreset property implies that |cost(P,Q)− cost(C,Q)| ≤ εcost(P,Q) ≤ 4εkd, thus we have

2kd− 2

k∑
j=1

∑
i∈Cj

wi + 2

k∑
j=1

∥vj∥ ≤ 4εkd. (7)

Taking Q̃ = {Le0, 2Le0, 3Le0, . . . , kLe0}, we have cost(P, Q̃) = kd and cost(C, Q̃) =
∑K

j=1

∑
i∈Cj

wi, the coreset

property then gives that |kd−
∑K

j=1

∑
i∈Cj

wi| ≤ εkd. Substitute this inequality to inequality 7, we get

k∑
j=1

∥vj∥ ≤ 3εkd. (8)

For each j ∈ [k], we have that ∥vj∥ = ∥
∑

i∈Cj
wiei −

∑d
i=1 ei∥ ≥ ∥

∑
i ̸∈Cj

ei∥ =
√
|Pj | − |Cj |. Substitute this

inequality to inequality 8, we have
k∑

j=1

√
|Pj | − |Cj | ≤ 3εkd. (9)

Our goal is to show that |C| ≥ 1
10kd = 1

10 |P |, we prove it by contradiction. We will show that if |C| ≥ 1
10 |P | then the

dimension d is larger than 1
45

1
ε2 , which contradicts to the assumption on d.

Assume that |C| ≤ 1
10 |P | =

1
10kd, then for at least half of Pj we have |Cj | ≤ 1

5 |Pj | and thus |Pj | − |Cj | ≥ 4
5 |Pj | = 4

5d.

Summing over these Pj we have
∑k

j=1

√
|Pj | − |Cj | ≥ k

2

√
4
5d = k

√
1
5d. By inequality 9 we have k

√
1
5d ≤ 3εkd, thus

1
45

1
ε2 ≤ d. This leads to a contradiction. □

Remark C.2. The proof assumes that the coreset is a subset of the original data set, and the proof holds for coreset with
offset.

D. Generalized lower bound for k-MEANS clustering with general S.
The lower bound proved above relies on the assumption that the coreset S is a subset of the original dataset. Next we
generalize the result by allowing arbitrary S in Rd+1.

D.1. Preparation

Additional notation Let e0, · · · , ed be the standard basis vectors of Rd+1, and H1, · · · , Hk/2 be k/2 d-dimensional
affine subspaces, where Hj := jLe0 + span {e1, . . . , ed} for a sufficiently large constant L. For any p ∈ Rd+1, we use p̃
to denote the d-dimensional vector p1:d (i.e., discard the 0-th coordinate of p).
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Hard instance The hard instance is the same as in Section C, except that now there are k/2 affine subspaces and in each
affine subspace Hj , we only put d/2 points, which are jLe0 + e1, · · · , jLe0 + ed/2. Similarly, we use Pj to denote the
data points in Hj (j = 1, · · · , k/2) and let P be the union of all Pj . Thus, |P | = kd/4. In our proof, we always put two
centers in each Hj ; for large enough L, all p ∈ Pj must be assigned to centers in Hj .

We will use the following two technical lemmas from (Cohen-Addad et al., 2022).

Lemma D.1. For any k ≥ 1, let {c1, · · · , ck} be arbitrary k unit vectors in Rd, we have

d/2∑
i=1

k
min
ℓ=1
∥ei − cℓ∥2 ≥ d−

√
dk/2.

Lemma D.2. Let S be a set of points in Rd of size t and w : S → R+ be their weights. There exist 2 unit vectors v1, v2,
such that

∑
p∈S

w(p) min
ℓ=1,2

∥p− vℓ∥2 ≤
∑
s∈P

w(p)(∥p∥2 + 1)−
2
∑

p∈S w(p)∥p∥√
t

.

D.2. Proof of the Lower Bound

Next, we present the lower bound result and its proof.

Theorem D.3 (Same coreset lower bound when S can be arbitrary). Given an integer k, a real number ε ∈ (0, 1), and
integer d ≤ 1

100ε2 , let P ⊂ Rd+1 be the point set described above. For any S ⊂ Rd+1, if it is a ε-coreset of P , then we
must have |S| = Ω(dk).

Proof: Note that points in S might not be in any Hj . We first map each point p ∈ S to an index jp ∈ [k/2] such that Hjp

is the nearest subspace of p. The mapping is quite simple:

jp = arg min
j∈[k/2]

|p0 − jL|,

where p0 is the 0-th coordinate of p. Let ∆p = p0 − jpL, which is the distance of p to the closest affine subspace. Let
Sj := {p ∈ S : jp = j} be the set of points in P , whose closest affine subspace is Hj . Define I := {j ∈ [k/2] : |Sj | ≤
d/4}. Consider any k-center set C such that Hj

⋂
C ̸= ∅. Then cost(P,C)≪ 0.1L for sufficiently large L. On the other

hand, cost(S,C) ≥
∑

p∈S ∆2
p. Since S is a coreset, ∆2

p ≪ L for all p ∈ S. 2 Therefore each p ∈ S must be very close to
its closest affine subspace; in particular, we can assume that p must be assigned to some center in Hjp (if there exists one).

In the proof follows, we consider three different set of k centers C1, C2 and C3 and compare the costs cost(P,Ci) and
cost(S,Ci) for i = 1, 2, 3. In each Ci, there are two centers in each Hj . As we have discussed above, for large enough L,
the total cost for both P and S can be decomposed into the sum of costs over all affine subspaces.

For each j ∈ Ī , the corresponding centers in Hj are the same across C1, C2, C3. Let cj be any point in Hj such that
cj−jLe0 has unit norm and is orthogonal to e1, · · · , ed/2; in other words, ∥c̃j∥ = 1 and the first d/2 coordinates of c̃j = 1
are all zero. Specifically, we set cj = jLe0 + ed/2+1 and the two centers in Hj are two copies of cj for j ∈ Ī .

We first consider the following k centers denoted by C1. As we have specified the centers for j ∈ Ī , we only describe
the centers for each j ∈ I . Since by definition, |Sj | ≤ d/4, we can find a vector cj ∈ Rd+1 in Hj such that cj − jLe0
has unit norm and is orthogonal to e1, · · · , ed/2 and all vectors in Sj . Let C1 be the set of k points with each point in
{c1, · · · , ck/2} copied twice. We evaluate the cost of C1 with respect to P and S.

Lemma D.4. For C1 constructed above, we have cost(P,C1) =
kd
2 and

cost(S,C1) =
∑
p∈S

w(p)(∆2
p + ∥p̃∥2 + 1)− 2

∑
j∈Ī

∑
p∈Sj

w(p)⟨p− jLe0, jLe0 − cj⟩.

2Here we do not allow offsets to simplify the proof, but our technique can be extended to handle offsets.
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Proof: Since ei is orthogonal to cj − jLe0 and cj − jLe0 has unit norm for all i, j, it follows that

cost(P,C1) =

k/2∑
j=1

d/2∑
i=1

min
c∈C1

∥jLe0 + ei − c∥2 =

k/2∑
j=1

d/2∑
i=1

∥jLe0 + ei − cj∥2

=

k/2∑
j=1

d/2∑
i=1

(∥ei∥2 + ∥cj − jLe0∥2 − 2⟨ei, cj − jLe0⟩)

=
kd

2
. (10)

On the other hand, the cost of C w.r.t. Sj is∑
p∈Sj

min
c∈C1

w(p)∥p− c∥2 =
∑
p∈Sj

w(p)∥p− cj∥2 =
∑
p∈Sj

w(p)∥p− jLe0 + jLe0 − cj∥2

=
∑
p∈Sj

w(p)
(
∥p− jLe0∥2 + 1− 2⟨p− jLe0, jLe0 − cj⟩

)
=
∑
p∈Sj

w(p)(∆2
p + ∥p̃∥2 + 1)− 2w(p)⟨p− jLe0, jLe0 − cj⟩. (11)

Recall p̃ ∈ Rd is p1:d. For j ∈ I , the inner product is 0, and thus the total cost w.r.t. S is

cost(S,C1) =
∑
p∈S

w(p)(∆2
p + ∥p̃∥2 + 1)− 2

∑
j∈Ī

∑
p∈Sj

w(p)⟨p− jLe0, jLe0 − cj⟩,

which finishes the proof. □

For notational convenience, we define κ := 2
∑

j∈Ī

∑
p∈Sj

w(p)⟨p− jLe0, jLe0 − cj⟩. Since S is an ε-coreset of P , we
have

dk/2− εdk/2 ≤
∑
p∈S

w(p)(∆2
p + ∥p′∥2 + 1)− κ ≤ dk/2 + εdk/2. (12)

Next we consider a different set of k centers denoted by C2. By Lemma D.2, there exists unit vectors vj1, v
j
2 ∈ Rd such that∑

p∈Sj

w(p)(min
ℓ=1,2

∥p̃− vjℓ∥
2 +∆2

p) ≤
∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p)−

2
∑

p∈Sj
w(p)∥p̃∥√
|Sj |

. (13)

Applying this to all j ∈ I and get corresponding vj1, v
j
2 for all j ∈ I . Let C2 = {u11, u22, · · · , u

k/2
1 , u

k/2
2 } be a set of k

centers in Rd+1 defined as follows: if j ∈ I , ujℓ is vjℓ with an additional 0th coordinate with value jL, making them lie in
Hj ; for j ∈ Ī , we use the same centers as in C1, i.e., uj1 = uj2 = cj .
Lemma D.5. For C2 constructed above, we have

cost(P,C2) ≥
kd

2
−
√
d|I| and

cost(S,C2) ≤
∑
p∈S

w(p)(∥p̃∥2 + 1 +∆2
p)−

∑
j∈I

2
∑

p∈Sj
w(p)∥p̃∥√
|Sj |

− κ.

Proof: By (13),

cost(S,C2) =

k/2∑
j=1

∑
p∈Sj

w(p) min
c∈C2

∥p− c∥2 =
∑
j∈I

∑
p∈Sj

w(p) min
ℓ=1,2

(∥p̃− vjℓ∥
2 +∆2

p) +
∑
j∈Ī

∑
p∈Sj

w(p)∥p− cj∥2

≤
∑
p∈S

w(p)(∥p̃∥2 + 1 +∆2
p)−

∑
j∈I

2
∑

p∈Sj
w(p)∥p̃∥√
|Sj |

− κ.
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By Lemma D.1 (with k = 2), we have

d/2∑
i=1

min
ℓ=1,2

∥ei − vjℓ∥
2 ≥ d−

√
d.

It follows that

cost(P,C2) =

k/2∑
j=1

d/2∑
i=1

min
c∈C2

∥jLe0 + ei − c∥2 =
∑
j∈I

d/2∑
i=1

min
ℓ=1,2

∥ei − vjℓ∥
2 +

∑
j∈Ī

d/2∑
i=1

∥jLe0 + ei − c∥2

≥ kd

2
−
√
d|I|,

where in the inequality, we also used the orthogonality between ei and cj − jLe0. □

Since S is an ε-coreset of P , we have

dk

2
− |I|

√
d− εdk

2
≤ (

dk

2
− |I|

√
d)(1− ε) ≤

∑
p∈S

w(p)(∥p̃∥2 + 1 +∆2
p)−

∑
j∈I

2
∑

p∈Sj
w(p)∥p̃∥√
|Sj |

− κ,

which implies

∑
j∈I

2
∑

p∈Sj
w(p)∥p̃∥√
|Sj |

≤
∑
p∈S

w(p)(∥p̃∥2 + 1 +∆2
p)−

dk − 2|I|
√
d− εkd

2
− κ

≤ dk + εdk

2
− dk − 2|I|

√
d− εkd

2
by (12)

= |I|
√
d+ εkd.

By definition, |Sj | ≤ d/4, so

∑
j∈I

2
∑

p∈Sj
w(p)∥p̃∥√
d/4

≤
∑
j∈I

2
∑

p∈Sj
w(p)∥p̃∥√
|Sj |

,

and it follows that ∑
j∈I

∑
p∈Sj

w(p)∥p̃∥
√
d

≤ |I|
√
d+ εkd

4
. (14)

Finally we consider a third set of k centers C3. Similarly, there are two centers per group. We set m be a power of
2 in [d/2, d]. Let h1, · · · , hm be the m-dimensional Hadamard basis vectors. So all hℓ’s are {− 1√

m
, 1√

m
} vectors and

h1 = ( 1√
m
, · · · , 1√

m
). We slightly abuse notation and treat each hℓ as a d-dimensional vector by concatenating zeros in

the end. For each hℓ construct a set of k centers as follows. For each j ∈ Ī , we still use two copies of cj . For j ∈ I , the
0th coordinate of the two centers is jL, then we concatenate hℓ and −hℓ respectively to the first and the second centers.

Lemma D.6. Suppose C3 is constructed based on hℓ. Then for all ℓ ∈ [m], we have

cost(P,C3) =
kd

2
− d|I|√

m
and

cost(S,C3) =
∑
p∈S

w(p)(∥p̃∥2 + 1 +∆2
p)− 2

∑
j∈I

∑
p∈Sj

⟨w(p)p̃, hpℓ ⟩ − κ.
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Proof: For j ∈ I , the cost of the two centers w.r.t. Pj is

cost(Pj , C3) =

d/2∑
i=1

min
s=−1,+1

∥ei − s · hℓ∥2 =

d/2∑
i=1

(2− 2 max
s=−1,+1

⟨hℓ, ei⟩) =
d/2∑
i=1

(2− 2√
m
) = d− d√

m
.

For j ∈ Ī , the cost w.r.t. Pj is d by (10). Thus, the total cost over all subspaces is

cost(P,C3) = (d− d√
m
)|I|+

(
k

2
− |I|

)
d =

kd

2
− d|I|√

m
.

On the other hand, for j ∈ I , the cost w.r.t. Sj is∑
p∈Sj

w(p)(∆2
p + min

s={−1,+1}
∥p̃− s · hℓ∥2) =

∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p − 2 max

s={−1,+1}
⟨p̃, s · hℓ⟩)

=
∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p − 2⟨p̃, hpℓ ⟩).

Here hpℓ = sp · hℓ, where sp = argmaxs={−1,+1}⟨p̃, s · hℓ⟩. For j ∈ Ī , the cost w.r.t. Sj is
∑

p∈Sj
w(p)(∆2

p + ∥p̃∥2 +
1)− 2⟨p− jLe0, jLe0 − cj⟩) by (11). Thus, the total cost w.r.t. S is

cost(S,C3) =
∑
p∈S

w(p)(∥p̃∥2 + 1 +∆2
p)− 2

∑
j∈I

∑
p∈Sj

⟨w(p)p̃, hpℓ ⟩ − κ.

This finishes the proof. □

Corollary D.7. Let S be a ε-coreset of P , and I = {j : |Sj | ≤ d/4}. Then

∑
j∈I

∑
p∈Sj

w(p)∥p̃∥ ≥ d|I| − εkd
√
d

2
.

Proof: Since S is an ε-coreset, we have by Lemma D.6

2
∑
j∈I

∑
p∈Sj

⟨w(p)p̃, hpℓ ⟩ ≥
∑
p∈S

w(p)(∥p̃∥2 + 1 +∆2
p)− κ− (

kd

2
− d|I|√

m
)(1 + ε)

≥
∑
p∈S

w(p)(∥p̃∥2 + 1 +∆2
p)− κ−

kd

2
+
d|I|√
m
− εkd

2

≥ dk − εdk
2

− kd

2
+
d|I|√
m
− εkd

2
by (12)

=
d|I|√
m
− εkd.

Note that the above inequality holds for all ℓ ∈ [m], then

2

m∑
ℓ=1

∑
j∈I

∑
p∈Sj

⟨w(p)p̃, hpℓ ⟩ ≥ d|I|
√
m− εkdm.

By the Cauchy-Schwartz inequality,

m∑
ℓ=1

∑
j∈I

∑
p∈Sj

⟨w(p)p̃, hpℓ ⟩ =
∑
j∈I

∑
p∈Sj

⟨w(p)p̃,
m∑
ℓ=1

hpℓ ⟩ ≤
∑
j∈I

∑
p∈Sj

w(p)∥p̃∥∥
m∑
ℓ=1

hpℓ∥ =
√
m
∑
j∈I

∑
p∈Sj

w(p)∥p̃∥.
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Therefore, we have ∑
j∈I

∑
p∈Sj

w(p)∥p̃∥ ≥ d|I| − εkd
√
m

2
≥ d|I| − εkd

√
d

2
.

□

Combining the above corollary with (14), we have
√
d|I| − εkd

2
≤ |I|

√
d+ εkd

4
=⇒ |I| ≤ 3εk

√
d.

By the assumption d ≤ 1
100ε2 , it holds that |I| ≤ 3k

10 or |Ī| ≥ k
2 −

3k
10 = k

5 . Moreover, since |Sj | > d
4 for each j ∈ Ī , we

have |S| > d
4 ·

k
5 = kd

20 . □

E. Proof of Theorem 3.3 for general z ≥ 1

Using similar ideas from (Cohen-Addad et al., 2022), our proof of the lower bound for z = 2 can be extended to arbitrary z.
First, we provide two lemmas analogous to Lemma D.1 and D.2 for general z ≥ 1. Their proofs can be found in Appendix
A in (Cohen-Addad et al., 2022).

Lemma E.1. For any even number k ≥ 1, let {c1, · · · , ck} be arbitrary k unit vectors in Rd such that for each i there
exist some j satisfying ci = −cj . We have

d/2∑
i=1

k
min
ℓ=1
∥ei − cℓ∥z ≥ 2z/2−1d− 2z/2 max{1, z/2}

√
kd

2
.

Lemma E.2. Let S be a set of points in Rd of size t and w : S → R+ be their weights. For arbitrary ∆p for each p, there
exist 2 unit vectors v1, v2 satisfying v1 = −v2, such that∑

p∈S

w(p) min
ℓ=1,2

(
∥p− vℓ∥2 +∆2

p

)z/2 ≤∑
s∈P

w(p)(∥p∥2 + 1 +∆2
p)

z/2

−min{1, z/2} ·
2
∑

p∈S w(p)(∥p∥2 + 1 +∆2
p)

z/2−1∥p∥
√
t

.

In this proof, the original point set P and three sets of k-centers, namely C1, C2, C3, are the same as for the case z = 2.
The difference is that now I = {j : |Sj | ≤ d

2z } and when constructing C2, we use Lemma E.2 in place of Lemma D.2.
Again, we compare the cost of P and S w.r.t. C1, C2, C3 and get the following lemmas.

Lemma E.3. For C1 constructed above, we have cost(P,C1) =
kd
4 · 2

z/2 and

cost(S,C1) =
∑
j∈I

∑
p∈Sj

w(p)(∆2
p + ∥p̃∥2 + 1)z/2 +

∑
j∈Ī

∑
p∈Sj

w(p)∥p− cj∥z.

Proof: Since ei is orthogonal to cj − jLe0 and cj − jLe0 has unit norm for all i, j, it follows that

cost(P,C1) =

k/2∑
j=1

d/2∑
i=1

min
c∈C1

∥jLe0 + ei − c∥2·z/2 =

k/2∑
j=1

d/2∑
i=1

∥jLe0 + ei − cj∥2·z/2

=

k/2∑
j=1

d/2∑
i=1

(∥ei∥2 + ∥cj − jLe0∥2 − 2⟨ei, cj − jLe0⟩)z/2

=
kd

4
· 2z/2. (15)
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On the other hand, the cost of C1 w.r.t. Sj is∑
p∈Sj

min
c∈C1

w(p)∥p− c∥2·z/2 =
∑
p∈Sj

w(p)∥p− cj∥2·z/2 =
∑
p∈Sj

w(p)∥p− jLe0 + jLe0 − cj∥2·z/2

=
∑
p∈Sj

w(p)
(
∥p− jLe0∥2 + 1− 2⟨p− jLe0, jLe0 − cj⟩

)z/2
. (16)

For j ∈ I , the inner product is 0, and thus the total cost w.r.t. S is

cost(S,C1) =
∑
j∈I

∑
p∈Sj

w(p)(∆2
p + ∥p̃∥2 + 1)z/2 +

∑
j∈Ī

∑
p∈Sj

w(p)∥p− cj∥z,

which finishes the proof. □
For notational convenience, we define κ :=

∑
j∈Ī

∑
p∈Sj

w(p)∥p− cj∥z . Since S is an ε-coreset of P , we have

kd

4
· 2z/2 − εkd

4
· 2z/2 ≤

∑
j∈I

∑
p∈Sj

w(p)(∆2
p + ∥p̃∥2 + 1)z/2 + κ ≤ kd

4
· 2z/2 + εkd

4
2z/2. (17)

Next we consider a different set of k centers denoted byC2. By Lemma E.2, there exists unit vectors vj1, v
j
2 ∈ Rd satisfying

vj1 = −vj2 such that

∑
p∈Sj

w(p)(min
ℓ=1,2

(
∥p̃− vjℓ∥

2 +∆2
p

)z/2
) ≤

∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p)

z/2

−min{1, z/2}
2
∑

p∈Sj
w(p)(∥p̃∥2 + 1 +∆2

p)
z/2−1∥p̃∥√

|Sj |
. (18)

Applying this to all j ∈ I and get corresponding vj1, v
j
2 for all j ∈ I . Let C2 = {u11, u22, · · · , u

k/2
1 , u

k/2
2 } be a set of k

centers in Rd+1 defined as follows: if j ∈ I , ujℓ is vjℓ with an additional 0th coordinate with value jL, making them lie in
Hj ; for j ∈ Ī , we use the same centers as in C1, i.e., uj1 = uj2 = cj .

Lemma E.4. For C2 constructed above, we have

cost(P,C2) ≥ 2z/2
(
kd

4
−max{1, z/2}

√
d|I|

)
, and

cost(S,C2) ≤
∑
j∈I

∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p)

z/2

−min{1, z/2}
∑
j∈I

2
∑

p∈Sj
w(p)(∥p̃∥2 + 1 +∆2

p)
z/2−1∥p̃∥√

|Sj |
+ κ.

Proof: By (18),

cost(S,C2) =

k/2∑
j=1

∑
p∈Sj

w(p) min
c∈C2

∥p− c∥2·z/2 =
∑
j∈I

∑
p∈Sj

w(p) min
ℓ=1,2

(∥p̃− vjℓ∥
2 +∆2

p)
z/2 + κ

≤
∑
j∈I

∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p)

z/2

−min{1, z/2}
∑
j∈I

2
∑

p∈Sj
w(p)(∥p̃∥2 + 1 +∆2

p)
z/2−1∥p̃∥√

|Sj |
+ κ.
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By Lemma E.1 (with k = 2), we have

d/2∑
i=1

min
ℓ=1,2

∥ei − vjℓ∥
z ≥ 2z/2−1d− 2z/2 max{1, z/2}

√
d.

It follows that

cost(P,C2) =

k/2∑
j=1

d/2∑
i=1

min
c∈C2

∥jLe0 + ei − c∥z =
∑
j∈I

d/2∑
i=1

min
ℓ=1,2

∥ei − vjℓ∥
2·z/2 +

∑
j∈Ī

d/2∑
i=1

∥jLe0 + ei − cj∥2·z/2

≥
(
2z/2−1d− 2z/2 max{1, z/2}

√
d
)
|I|+ |Ī|d

2
· 2z/2 =

kd

4
2z/2 − 2z/2 max{1, z/2}

√
d|I|,

where in the inequality, we also used the orthogonality between ei and cj − jLe0. □

Since S is an ε-coreset of P , we have

2z/2
(
dk

4
−max{1, z/2}|I|

√
d− εdk

4

)
≤ 2z/2

(
kd

4
−max{1, z/2}

√
d|I|

)
(1− ε)

≤
∑
j∈I

∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p)

z/2 −min{1, z/2}
∑
j∈I

2
∑

p∈Sj
w(p)(∥p̃∥2 + 1 +∆2

p)
z/2−1∥p̃∥√

|Sj |
+ κ,

which implies

min{1, z/2}
∑
j∈I

2
∑

p∈Sj
w(p)(∥p̃∥2 + 1 +∆2

p)
z/2−1∥p̃∥√

|Sj |

≤
∑
j∈I

∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p)

z/2 − 2z/2
(
dk

4
−max{1, z/2}|I|

√
d− εdk

4

)
+ κ

≤ kd

4
· 2z/2 + εkd

4
2z/2 − 2z/2

(
dk

4
−max{1, z/2}|I|

√
d− εdk

4

)
by (17)

= max{1, z/2}|I|
√
d2z/2 +

εkd

2
2z/2.

By definition, |Sj | ≤ d/t2, so

min{1, z
2
}
∑
j∈I

2
∑

p∈Sj
w(p)(∥p̃∥2 + 1 +∆2

p)
z/2−1∥p̃∥√

d/t2
≤ min{1, z

2
}
∑
j∈I

2
∑

p∈Sj
w(p)(∥p̃∥2 + 1 +∆2

p)
z/2−1∥p̃∥√

|Sj |
,

and it follows that

min{1, z
2
}
∑
j∈I

∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p)

z/2−1∥p̃∥
√
d

≤
max{1, z/2}|I|

√
d2z/2 + εkd

2 2z/2

2t
. (19)

Finally we consider a third set of k centers C3. Similarly, there are two centers per group. We set m be a power of
2 in [d/2, d]. Let h1, · · · , hm be the m-dimensional Hadamard basis vectors. So all hℓ’s are {− 1√

m
, 1√

m
} vectors and

h1 = ( 1√
m
, · · · , 1√

m
). We slightly abuse notation and treat each hℓ as a d-dimensional vector by concatenating zeros in

the end. For each hℓ construct a set of k centers as follows. For each j ∈ Ī , we still use two copies of cj . For j ∈ I , the
0th coordinate of the two centers is jL, then we concatenate hℓ and −hℓ respectively to the first and the second centers.
Lemma E.5. Suppose C3 is constructed based on hℓ. Then for all ℓ ∈ [m], we have

cost(P,C3) ≤ 2z/2
(
kd

4
− d|I|

2
· min{1, z/2}√

m

)
, and

cost(S,C3) ≥
∑
j∈I

∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p)

z
2 − 2max{1, z

2
}
∑
j∈I

∑
p∈Sj

w(p)⟨p̃, hpℓ ⟩(∥p̃∥
2 + 1 +∆2

p)
z
2−1 + κ.
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Proof: For j ∈ I , the cost of the two centers w.r.t. Pj is

cost(Pj , C3) =

d/2∑
i=1

min
s=−1,+1

∥ei − s · hℓ∥z =

d/2∑
i=1

(2− 2 max
s=−1,+1

⟨hℓ, ei⟩)z/2 =
d

2
(2− 2√

m
)z/2

≤ d

2
· 2z/2

(
1− min{1, z/2}√

m

)
.

For j ∈ Ī , the cost w.r.t. Pj is d
2 · 2

z/2 by (15). Thus, the total cost over all subspaces is

cost(P,C3) ≤
d

2
· 2z/2

(
1− min{1, z/2}√

m

)
|I|+

(
k

2
− |I|

)
d

2
· 2z/2 = 2z/2

(
kd

4
− d|I|

2
· min{1, z/2}√

m

)
.

On the other hand, for j ∈ I , the cost w.r.t. Sj is∑
p∈Sj

w(p)(∆2
p + min

s={−1,+1}
∥p̃− s · hℓ∥2)z/2 =

∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p − 2 max

s={−1,+1}
⟨p̃, s · hℓ⟩)z/2

=
∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p − 2⟨p̃, hpℓ ⟩)

z/2

≥
∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p)

z
2 − 2max{1, z

2
}
∑
p∈Sj

w(p)⟨p̃, hpℓ ⟩(∥p̃∥
2 + 1 +∆2

p)
z
2−1.

Here hpℓ = sp · hℓ, where sp = argmaxs={−1,+1}⟨p̃, s · hℓ⟩. For j ∈ Ī , the total cost w.r.t. Sj is κ. Thus, the total cost
w.r.t. S is

cost(S,C3) ≥
∑
j∈I

∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p)

z
2 − 2max{1, z

2
}
∑
j∈I

∑
p∈Sj

w(p)⟨p̃, hpℓ ⟩(∥p̃∥
2 + 1 +∆2

p)
z
2−1 + κ.

This finishes the proof. □

Corollary E.6. Let S be a ε-coreset of P , and I = {j : |Sj | ≤ d/4}. Then

2max{1, z
2
}
∑
j∈I

∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p)

z
2−1∥p̃∥ ≥ 2z/2 ·

(
d|I|
2
·min{1, z/2} − εkd

√
d

2

)
.

Proof: Since S is an ε-coreset, we have by Lemma E.5

2max{1, z
2
}
∑
j∈I

∑
p∈Sj

w(p)⟨p̃, hpℓ ⟩(∥p̃∥
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p)
z
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j∈I

∑
p∈Sj
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z
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− 2z/2
(
kd

4
− d|I|

2
· min{1, z/2}√

m

)
(1 + ε)

≥ kd

4
· 2z/2 − εkd

4
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(
kd

4
− d|I|

2
· min{1, z/2}√

m
+
εkd

4

)
by (17)

= 2z/2 · d|I|
2
· min{1, z/2}√

m
− εkd

2
· 2z/2.

Note that the above inequality holds for all ℓ ∈ [m], then

2max{1, z
2
}

m∑
ℓ=1

∑
j∈I

∑
p∈Sj

w(p)⟨p̃, hpℓ ⟩(∥p̃∥
2 + 1 +∆2

p)
z
2−1 ≥ 2z/2 ·

(
d|I|
√
m

2
·min{1, z/2} − εkdm

2

)
.

24



On Coresets for Clustering in Small Dimensional Euclidean spaces

By the Cauchy-Schwartz inequality,

m∑
ℓ=1

∑
j∈I

∑
p∈Sj

w(p)⟨p̃, hpℓ ⟩(∥p̃∥
2 + 1 +∆2

p)
z
2−1 =

∑
j∈I

∑
p∈Sj
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2 + 1 +∆2

p)
z
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≤
∑
j∈I

∑
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z
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m∑
ℓ=1

hpℓ∥

=
√
m
∑
j∈I

∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p)

z
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Therefore, we have

2max{1, z
2
}
∑
j∈I

∑
p∈Sj

w(p)(∥p̃∥2 + 1 +∆2
p)

z
2−1∥p̃∥ ≥ 2z/2 ·

(
d|I|
2
·min{1, z/2} − εkd

√
m

2

)

≥ 2z/2 ·

(
d|I|
2
·min{1, z/2} − εkd

√
d

2

)
.

□

Combining the above corollary with (19), we have

min{1, z/2}
2max{1, z/2}

2z/2 ·

(√
d|I|
2
·min{1, z/2} − εkd

2

)
≤

(
max{1, z/2}|I|

√
d+ εkd

2

)
2z/2

2t
,

which implies that (
min{1, (z/2)2}
4max{1, (z/2)}

− max{1, z/2}
2t

)
|I| ≤ min{1, (z/2)}εkd

4max{1, (z/2)}
+
εk
√
d

4t
.

So if we set t = 4max{1,(z/2)2}
min{1,(z/2)2} , then

min{1, (z/2)2}
8max{1, (z/2)}

|I| ≤ min{1, (z/2)}εk
√
d

2max{1, (z/2)}
=⇒ |I| ≤ 4εk

√
d

min{1, z/2}
.

By the assumption d ≤ min{1,(z/2)2}
100ε2 , it holds that |I| ≤ 2k

5 or |Ī| ≥ k
2 −

2k
5 = k

10 . Moreover, since |Sj | > d
t2 for each

j ∈ Ī , we have |S| > d
t2 ·

k
5 = kdmin{1,(z/2)4}

max{1,(z/2)4} .
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