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Abstract

Machine learning models for tabular data often encounter distribution shifts after
deployment, yet target OOD samples are frequently unavailable at evaluation time.
We propose a principled protocol that leverages aggregate dataset meta-features
(MFs) to construct useful proxy OOD tests from in-distribution data. Our ap-
proach has two complementary branches: (1) an MFs based splitting procedure
that searches for train/test partitions which maximize differences in selected meta-
features, and (2) an MFs based synthetic data generator that uses multi-objective
evolutionary optimization to produce datasets whose meta-characteristics match
a (possibly unavailable) target. Evaluations on real-world source/target pairs of
datasets and a diverse set of learners show that MFs based splits create substantially
larger distributional differences than random splits and often yield more realistic
stress tests; when splits fail to predict true OOD performance, targeted synthetic
generation closes the gap. Our results indicate that selected meta-features - espe-
cially mutual information, class concentration, and joint entropy - are effective
signals of concept shifts and can be used to construct practical pre-deployment
OOD evaluations for tabular models.

1 Introduction

Machine learning systems deployed in the wild routinely face data that differ from the distributions
seen during training. Measuring how model performance degrades under such distribution shift - and
doing so before the shifted data are observed - is a central obstacle to building reliable ML systems.
In many real-world settings the true out-of-distribution (OOD) target is unavailable at evaluation
time; instead, practitioners often have only partial information about the target, for example aggregate
statistics or meta-characteristics (meta-features) [24] of the target dataset. This paper asks a practical
question that sits at the intersection of robustness and trustworthy evaluation: can we use meta-
features (MFs) to construct test data that meaningfully predict a model’s performance on an unseen
OO0D target?

Given the prevalence of tabular data in many high-stakes domains, models trained on such data
require systematic and rigorous evaluation procedures. OOD evaluation for tabular models exhibits
distinct challenges: shifts may affect heterogeneous feature types (continuous, ordinal, categorical)
and are often difficult to interpret semantically compared to visual modalities. Consequently, widely
used tabular repositories and benchmarks (e.g., UCI[13]], OpenML[1]], TabArena[4]) typically lack
mechanisms for constructing or separating datasets according to well-defined distributional shifts.
Specialized resources - such as Tableshift[6], Wild-Tab[14], and TabRed[25] - partially address this
gap, but remain scarce and are often limited in the range of tasks they support or in the kinds of
shift they represent. These limitations motivate a principled, reproducible OOD evaluation protocol
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that enables controlled manipulation of dataset characteristics. Meta-characteristics of tabular data
offer an effective solution: they are compact descriptors capturing multiple distributional axes and
are sensitive to shifts affecting model behavior [15]], [3]. Building on these facts, we study two
complementary strategies to turn meta-features information into practical OOD evaluations. The
first strategy searches for train/test splits of the available in-distribution (ID) data that maximize
differences in meta-features, yielding a meta-feature split that acts as a proxy OOD test. The
second strategy goes beyond re-splitting and uses an evolutionary algorithm to synthesize datasets
whose meta-characteristics match those reported for a target - a path we call OOD intrinsic property
characterization.

Contributions. (1) We formalize a principled, reproducible protocol that uses meta-characteristics
to construct proxy OOD evaluations from ID data, covering both split-based and synthesis-based
approaches. (2) We provide a comprehensive empirical study across datasets, models, and competing
splitting methods that identifies which meta-features and combinations are most predictive of OOD
model performance. (3) We show that - when splits fail - targeted synthetic data generation can close
the gap between proxy and true target performance, offering a practical tool for pre-deployment
evaluation when only aggregate target information is available.

The code and data can be found in the repository https://github.com/ITMO-NSS-team/00D_
Tab_Evaluation!|

2 Related works

Motivated by distribution shifts that degrade performance in high-stakes tabular applications, this
section reviews methods that assess robustness through standardized evaluation, split design, and
synthetic stress testing. Yu et al. [27] systematize the field into three strands: (i) testing OOD
performance when labeled OOD data are available, (ii) predicting OOD performance from unlabeled
data, and (iii) characterizing model-intrinsic properties without access to test data. Following this
classification, in this work we focus on the third setting as the most realistic. In such cases, the option
exists to either rely on existing ID data or to use synthetic data to generate OOD data.

For assessing robustness under OOD, several pillars have emerged. Initially, it is possible to emphasise
the notion of employing non-random splittings as a methodology for the evaluation of the quality
of machine learning models in conditions of data shift. For example, researchers partition tabular
datasets along time or geography (e.g. house prices by year, taxi trips by state) or along demographic
attributes to create pseudo-domains. DomainBed-style protocols also use leave-one-domain-out splits
(training on all but one environment) [27]], [9]. However, these approaches require prior knowledge
of domain divisions or shift variables, which is often unattainable in real-world scenarios. A number
of works formulate the task of data splitting as a clustering task [22], [26]; however, this formulation
lack interpretability regarding why performance varies. A similar idea is considered in approaches
where the subpopulation with the poorest model quality is sought in the test dataset [[16]].

When it comes to testing models under data shift conditions using synthetic data, the concept of
held-out data augmentation is worth considering [21]. This has resulted in the emergence of a new
field of research focused on the synthetic transformation of test data, encompassing visual corruptions
and perturbations [[10]], stylization [8]], the addition of spurious cues [17]. In semantic segmentation,
Loiseau et al. [20]] show that diffusion-based generation after fine-tuning on ID data and inpainting
of OOD objects yield useful test scenarios; metrics on synthetic data correlate with those on real
OOD inputs, supporting the validity of such “virtual testing”. Generative approaches (VAEs, GANSs,
diffusion models) create new data distributions or stress-test models on controlled shifts. For instance,
the Bank Account Fraud (BAF) dataset was synthetically generated to introduce temporal shifts and
class imbalance challenging for tabular models [[11]. More recently, Puranik et al. [23] proposed
TabOOD, which leverages a latent-diffusion model to generate synthetic tabular samples “at the
boundaries” of the data manifold. TabOOD creates OOD-like examples (as well as minority/majority
samples) to augment training, and reports large improvements in robustness under novel shifts.

It is evident from an analysis of the extant literature that the subject of evaluating the behaviour of
machine learning (ML) models in the context of data shift conditions is a matter of considerable
pertinence. However, it is noteworthy that there is a paucity of studies that focus specifically on the
tabular domain or that seek to investigate this behaviour in an interpretable manner. The present study
aims to address these two gaps.
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3 Meta-features based shifts

3.1 Meta-features based splitting

Let a labeled dataset D = {(=z;, ;) }Y, is ID dataset. Fix test size k = |test_size - N |. The goal is
to choose a subset T' C {1, ..., N} with |T'| = k (the test indices) so that the meta-characteristics of
the training set S = {1,..., N} \ T and test set T' differ according to user-specified criteria. Define a
meta-feature extractor M (-) that maps a sample A to a vector of meta-features values:

M(A) = (m1(A),m2(A),...,mp(A4)). )
For each meta-feature m; we define a directed distance:
m;(S) .
, ifm;(S) # 0and m;(T) # 0,
d;(S,T) = < m;(T) ! ! )
0, otherwise.

The selection of this ratio was driven by the objective of enhancing the manageability of the splitting
process (for instance, it is desirable for the meta-characteristic to invariably exceed its value on the
train in comparison to that on the test). We also define a scalar imbalance measure for a sample A to
obtain approximately balanced splits by class:

. min.n.(A
imb(A) = ma:vcnc((A))’ 3)
where n.(A) is the class count of label ¢ in A. The imbalance objective will be then:
0impb(S, T) = [imb(S) — imb(T) + A(1 — min(imb(S), imb(T))), @
with A > 0 to penalize very imbalanced splits. We therefore obtain a multi-objective fitness vector:
S ={1,...,N}\T, £(T) = (di(S,T), d2(S,T), ..., dp(S,T), 0imp(S,T)).  (5)

The search seeks Pareto-optimal 7" that maximize the first p objectives and minimize the last objective.
The decision was taken to employ evolutionary algorithms as the optimisation algorithm, primarily
due to the fact that not all meta-characteristics can be differentiated. The evolutionary algorithm
considers the indices of the test dataset as a population individual. We employ NSGA-II for selection,
which maintains a Pareto-optimal front of solutions [2]. The algorithm’s overall structure corresponds
to the standard steps of an evolutionary algorithm (see pseudocode(I)). The mutation function replaces
selected indices with unused indices from the dataset, while the crossover function exchanges unique
indices between parents while preserving duplicates (see details in Appendix [A] pseudocode[3). In
addition to the utilisation of random generation algorithms, algorithms based on an ordered dataset
were incorporated as population generation algorithms (see details in Appendix [A] pseudocode [2).
This modification resulted in enhanced outcomes for specific meta-characteristics. For instance, it
is evident that in order to divide the sample into two parts that differ significantly in terms of their
mean, it is necessary to first sort the data and then divide it. This is the reason why sorting exerts a
beneficial effect on the performance of the algorithm.

3.2 Meta-features based generation

The second strategy involves the generation of a synthetic OOD dataset, in which the meta-features
will approximate the actual values of the meta-features in the real OOD dataset. Define target
meta-values m; € R% (some meta-features are vectors). For a candidate synthetic dataset S’

M(S") = (m1(8), m2(5"), ..., mp(8")), 1;(S) = [Im; (S") — mj||2. (©6)
Multi-objective fitness (to minimize) will be then:
£(S") = (Li(57),12(S"), . 1p(S7)). @)

Evolutionary algorithms were also selected for the purpose of generating synthetic data that would
minimise such fitness (Eq. [7). In the context of literature, evolutionary algorithms have not been
widely employed for the generation of synthetic tabular data. However, there are notable exceptions,
particularly within the domain of obtaining synthteic data with a specified level of differential privacy
[L9]. In this particular instance, the individual population will constitute the dataset of size N itself.
The general generation algorithm can be delineated as follows:



Algorithm 1 Main: MFs based splitting

Require: Dataset D = {(x;, yi)}i]\il, test size k, meta-features M, population size P, generations

Ensure: Pareto front of candidate splits

1: Population < {)

2: fori < 1to Pdo

3: Population[i] <~ CREATEINDIVIDUALBYORDERING(D, k)
4: Population[i].fitness +— EVALUATE(Population[i], D, M)

5: end for

6: HallOfFame < 0)

7: for g < 1to G do

8: Offspring < VARAND(Population) > apply crossover+mutation
9: for all child € Offspring do
10: if not child.fitness.valid then
11: child.fitness «+— EVALUATE(child, D, M)
12: end if
13: end for
14: Population <~ SELNSGA2 (Population U Offspring, P) [3]
15: HallOfFame.UPDATE(Population)
16: record statistics (avg/min/max per objective)
17: end for

18: ParetoFront <— extract non-dominated solutions from Population
return {ParetoFront, HallOfFame, Population}

1. Population generation / initialization: sample a batch from a generative prior G, where
S’ + G(batch = N). The SOTA model for tabular data, the Forest Diffusion model [12]],
was selected as the generative model.

2. Crossover: with probability row_mode_prob choose row-mode or column-mode; exchange
~ 30% randomly chosen rows (row-mode) or columns (column-mode) between parents (see
details in Appendix [A] pseudocode[7).

3. Mutations:

* Add Gaussian noise to selected rows and continuous columns; scale noise per-feature
(see details in Appendix[A] pseudocode [).

* Replace selected rows by sampling continuous values from a fitted Gaussian Mixture
Model and categorical by empirical category probabilities (see details in Appendix [A]
pseudocode|[3).

* Draw new continuous rows from multivariate normal with empirical covariance; pre-
serve categorical by resampling (see details in Appendix [A] pseudocode [6).

4. Selection: multi-objective selection selNSGA3WithMemory [3].

3.3 Proposed meta-features

The present study puts forward a series of five meta-features, selected via systematic sensitivity
analysis to distributional shifts (see details in Appendix [B]), validated across synthetic scenarios (see
Appendix [B] Figure [3) showing consistent sensitivity to covariate and concept shifts. The Python
meta-feature extractor (PyMFE) library is utilized [24], which provides standardized implementations
of meta-learning features. It is important to note that ordinal characteristics (minimum, maximum)
were not included in the final list of meta-characteristics, despite demonstrating a higher degree of
responsiveness to shifts in the data compared to other characteristics. These characteristics were
found to be too sensitive to changes in the data, which rendered optimization a challenging process.

Information-theoretic meta-features:

¢ Mutual Information (mut_inf) measures statistical dependence between features and the
target variable. The mutual information vector is computed as

I=[I(X1;Y), [(X2;Y), ... . I(Xq;Y)],



where I(X;;Y) = Z Zp(l‘i,y) logm

s e p(zi)p(y)’
where p(z;,y) is the joint probability distribution and p(x;), p(y) are marginal distributions.
For continuous variables, kernel density estimation is used to estimate probability densities.

* Joint Entropy (joint_ent) measures the joint entropy between features and the target
variable. The joint entropy vector is computed as

Hj()int - [H(X17 Y)7 H(X27 Y)a ey H(Xda Y)L
where H(le Y) = Zp(xm y) logp('ria y)7
Tiy
where p(z;,y) is the joint probability distribution of feature X; and target Y.

* Attribute Entropy (attr_ent) measures the uncertainty of individual features. The entropy
vector is computed as

Huur = [H(Xl)v H(XQ)v s vH(Xd)]v
where H(X;) = — Zp(l‘i) log p(i),

where p(z;) is the probability of feature X; taking value x;.

¢ Class Concentration (class_conc) measures the concentration coefficient for features with
respect to class separation. The concentration vector is computed as

C = [conc(X7,Y),conc(X3,Y), ..., conc(Xy,Y)],
DL S
1-3p 7

where p;; is the joint probability of feature value 7 and class j, p.; = >, p;; is the marginal
probability of class j, and p;. = ) ; Dij is the marginal probability of feature value .

where conc(X;,Y) =

Statistical meta-features:

* Interquartile Range (iq_range) measures distributional spread robustness for features. The
IQR vector is computed as

IQR = [Q%5 - Q%5a Q?Eﬁ - Q%{Sa ey Q?Eﬁ - Q(215]7

where Q% and Q% are the 25th and 75th percentiles of feature X, respectively.

Summarized meta-features are employed in this work, computed as the means of the individual feature
vectors described above. This summarization approach reduces dimensionality while preserving the
essential distributional characteristics captured by each meta-feature type.

4 Experimental setup

Datasets. We run the experiments on five source/target tabular datasets provided in our repository:
electricity, taxi, income, california, and acs_accidents. The taxi and acs_accidents
datasets originally belong to the WHYSHIFT benchmark [[18]], so their ID and OOD subsamples are
known. The remaining three datasets were obtained from the OpenML open source repository [1]],
and their data shifts were modelled by dividing them according to a specific variable (for example, for
income, this is the "gender" variable). Table[I]summarizes the key characteristics of our evaluation
datasets.

Table 1: Dataset characteristics

Dataset Features  Source samples Target samples Classes
electricity 7 9,987 10,015 2
taxi 8 10,001 10,001 2
income 13 20,381 9,783 2
california 8 10,316 10,320 2
acs_accidents 46 22,654 3,956 2




MFs based splits (mfs_split). We run multi-objective evolutionary optimization over test-index
sets (test fraction 0.2) to find train/test splits maximizing meta-feature differences while maintaining
class balance. Each experimental configuration repeated 5 times with different random seeds for
statistical reliability. We use population size 50, 200 generations, and se1NSGA2 selection. Crossover
(probability 0.7) exchanges up to 1/4 of unique indices between parents; mutation (probability 0.2)
replaces indices with unused ones (Appendix [A] pseudocode [3). The optimizer yields multiple solu-
tions saved as train/test files. Models are trained on MFs based splits and evaluated on corresponding
test sets using F1-score. Random splits serve as baseline.

MFs based synthetic OOD (mfs_synthetic). Given a source/target pair, we compute target meta-
feature values and generate synthetic datasets matching these targets via multi-objective optimization
(selNSGA3WithMemory). We employ population size 100, 200 generations, crossover (probability
0.5), and mutation (probability 0.16). The mutation strategy combines distribution-based sampling,
Gaussian noise addition, and covariance-based generation. Experiments are repeated 5 times to
account for stochastic variation. Synthetic datasets test models trained on source data, enabling OOD
evaluation without target access.

Models and evaluation. @ We validate the protocol across standard learners (Logistic
Regression, XGBoost) and robustness-oriented architectures (IRM, AdversarialDRO) with
fixed hyperparameters and unified training/evaluation, without tuning. Logistic Regression:
max_iter=1000, class_weight=’balanced’, n_jobs=-1. XGBoost: n_estimators=100,
eval_metric=’logloss’, random_state=42. IRM trains a two-layer MLP (hidden_size=256,
dropout=0.1) for 1000 iterations with invariance penalty A = 1.0, 100 annealing iterations, Adam
(Ir = 10~?), and adaptive batch size min (128, dataset_size). AdversarialDRO: MLP trained for 10
epochs, hidden=32, batch_size=64, Adam (Ir = 0.01), adversarial updates over label groups with
n_m=0.1,r=0.1, clip_max=2.0, ¢ = 0.001, S = 0.999 (dropout=0.0, weight_decay=0.0).
Models are trained on MFs based splits or source data and evaluated on MF-split tests, real targets, or
synthetic OOD datasets. Primary metric: F1-score; we report mean and variability across runs, using
random splits as baseline.

5 Experimental results

5.1 Effectiveness of MFs based splits

Our primary research question asks whether meta-feature optimization can create more meaningful
OOD tests than random splits. Table 2| provides direct evidence that MF_split consistently produces
stronger distributional differences than random_split across most datasets and meta-feature dimen-
sions. The bold entries in Table 2] highlight the most diverse meta-feature ratios from the neutral 1.0.
By constructing a compressed representation of the data using PCA, a clear comparison was made of
how the train and test sets were distributed for different splitting (figure[I). The findings unequivocally
demonstrate that, in contrast to mfs_split splitting approach, the data exhibits minimal variation
when subjected to random split.

Table 2: Ratios of meta-features between train and test

Meta-feature

Dataset Split type
attr_ent class_conc mut_inf iq_range joint_ent

electricit MF_split 1.600+0.00 1.909+0.53 2.743+0.74 1.754+0.09 1.400+0.00
y random_split  1.090£0.03 0.730£0.01 0.990+£0.00 1.000+£0.01 1.070+0.02
income MF_split 1.367+0.04 2.134+0.36 2.147+0.39 1.872+0.10 1.233+0.02
random_split  1.050£0.00 0.940+£0.00 1.010+£0.00 1.000+0.01 1.030+0.01
taxi MF_split 1.291+0.01 1.300+£0.53 1.160+£0.08 1.612+0.04 1.213+0.01
random_split  1.090£0.00 0.710£0.00 0.980+£0.00 1.000+£0.01 1.070+0.00
california MF_split 1.256+0.02 1.264+0.21 1.583+0.55 1.803+0.00 1.200-+0.00
random_split  0.900£0.00  0.730+£0.00 1.010£0.00 0.990+0.00 1.100+0.00
acs accidents MF_split 1.369+0.12 1.359+0.29 1.004+0.03 1.923+0.04 1.291+0.06
- random_split  1.080£0.01 0.980£0.00 1.000+£0.00 0.980+0.02 1.060+0.01




Random Split attr_ent class_conc mut_inf iq_range joint_ent

Figure 1: Comparison of training and test sets for the electricity dataset under random split and MF-split
across different meta-features. The blue dots are the train, the red dots are the test.

Table 3] presents comprehensive F1-scores across all datasets, models, and meta-feature splitting
criteria. For in-distribution (ID) evaluation, both training and test subsets are sampled from the source
distribution using various splitting strategies. For out-of-distribution (OOD) evaluation, models are
trained on the source distribution and tested on the target distribution. The colored percentages in
parentheses indicate the performance difference between each model’s result and the corresponding
target value (on real OOD). Green values denote cases where the model performance exceeded
the target (positive difference), while red values indicate performance below the target (negative
difference). Bold black values show worst degradations per model-dataset pair; colored bold values
indicate closest matches to target performance. The results demonstrate systematic patterns of
performance degradation under MFs based splits compared to random baselines, validating our
hypothesis that evolutionary optimization of meta-feature differences creates more challenging and
realistic OOD test conditions.

Table 3: F1-scores by models across datasets and split criteria

Metric Dataset LR XGB IRM DRO
Random Split (ID) electricity 0.798 + 0.00 (20%)  0.832 £+ 0.00 (20%) 0.813 +0.01 (16%) 0.814 £ 0.02 (17%)
taxi 0.752 £ 0.01 (6%) 0.778 £ 0.01 (12%)  0.790 + 0.02 (15%) 0.712 £ 0.02 (6%)
income 0.678 + 0.00 (38%) 0.716 = 0.01 (23%) 0.618 +0.02 (38%)  0.514 £ 0.04 (10%)
california 0.823 £ 0.01 (8%) 0.869 £+ 0.01 (13%)  0.693 + 0.08 (10%)  0.821 £ 0.01 (12%)

acs_accidents

0.719 + 0.00 (16%)

0.863 % 0.00 (13%)

0.867 £ 0.01 (45%)

0.702 £ 0.07 (22%)

Attr_ent (ID) electricity 0.813 +0.00 (22%)  0.830 £ 0.00 (20%)  0.824 + 0.01 (17%)  0.811 £ 0.00 (16%)
taxi 0.746 £ 0.00 (6%) 0.763 £ 0.00 (11%)  0.894 + 0.01 (26%) 0.724 £ 0.01 (7%)
income 0.628 +0.00 (33%)  0.612 £0.02 (12%)  0.588 & 0.06 (35%) 0.381 + 0.04 (4%)
california 0.834 £0.02 (9%) 0.880 £ 0.01 (14%)  0.953 +0.01 (16%) 0.857 £ 0.03 (15%)

acs_accidents

0.542 £+ 0.10 (2%)

0.749 £ 0.05 (2%)

0.805 + 0.12 (39%)

0.680 £ 0.01 (20%)

Joint_ent (ID) electricity 0.828 +0.01 (23%) 0.841 £0.00 (21%) 0.901 + 0.01 (25%)  0.832 £ 0.00 (19%)
taxi 0.751 £0.01 (6%) 0.772 £ 0.01 (12%)  0.851 £ 0.04 (21%) 0.729 £ 0.01 (8%)
income 0.626 + 0.01 (33%)  0.605 £ 0.03 (12%) 0.535 £ 0.08 (30%) 0.392 £ 0.01 3%)
california 0.877 £ 0.01 (13%) 0.891 £0.01 (15%) 0.973 +0.01 (18%)  0.879 £ 0.01 (17%)

acs_accidents

0.461 = 0.05 (10%)

0.725 + 0.03 (0%)

0.716 + 0.07 (30%)

0.630 + 0.05 (15%)

Mut_inf (ID) electricity 0.735 £ 0.02 (14%) 0.749 = 0.01 (12%) 0.795 £ 0.02 (14%) 0.766 + 0.01 (12%)
taxi 0.723 £ 0.01 4%) 0.754 £0.01 (10%) 0.899 £+ 0.01 (26%)  0.696 £ 0.01 (4%)
income 0.600 £ 0.02 (30%) 0.617 £0.02 (13%) 0.687 & 0.03 (45%) 0.405 £ 0.02 (1%)
california 0.789 £0.02 (5%) 0.866 = 0.04 (13%)  0.837 £0.05 (4%)  0.786 & 0.02 (8%)

acs_accidents

0.718 + 0.01 (16%)

0.863 £ 0.00 (13%)

0.893 + 0.01 (48%)

0.714 £ 0.01 (23%)

Class_conc (ID) electricity 0.736 £ 0.01 (14%) 0.772£0.01 (14%) 0.842 £ 0.03 (19%) 0.783 = 0.01 (14%)
taxi 0.526 £ 0.10 (16%)  0.592 £ 0.07 (6%) 0.773+£0.10 (14%)  0.505 = 0.10 (15%)
income 0.622 £ 0.01 (32%)  0.638 £0.00 (15%) 0.670 £ 0.01 (43%)  0.427 £ 0.01 (1%)
california 0.776 £ 0.01 3%)  0.831 £0.01 9%) 0.927 £0.03 (13%) 0.815 + 0.01 (11%)

acs_accidents

0.565 + 0.06 (0%)

0.785 =+ 0.03 (6%)

0.787 = 0.06 (37%)

0.719 = 0.04 (24%)

1Q_range (ID) electricity 0.783 + 0.01 (19%) 0.806 + 0.01 (17%) 0.861 + 0.02 (21%)  0.807 + 0.01 (16%)
taxi 0.741 £ 0.01 (5%) 0.771 £0.00 (12%) 0.948 £ 0.10 31%)  0.721 £ 0.01 (7%)
income 0.653 + 0.00 (36%)  0.685 + 0.02 (20%) 0.698 + 0.02 (46%)  0.474 + 0.02 (6%)
california 0.853 +0.00 (11%) 0.875+0.00(14%)  0.876 +0.01 (8%) 0.871 + 0.01 (17%)

acs_accidents

0.671 + 0.00 (11%)

0.844 + 0.00 (11%)

0.872 £ 0.00 (46%)

0.766 £ 0.03 (29%)

Target (real OOD)  electricity 0.596 0.633 0.655 0.646
taxi 0.687 0.655 0.637 0.654
income 0.2974 0.488 0.240 0.418
california 0.742 0.738 0.795 0.705
acs_accidents 0.563 0.730 0.413 0.479

The initial observation is that the splitting of data according to characteristics such as mut_info,
class_conc, and joint_ent frequently results in alterations in the quality of machine learning models.



This phenomenon can be attributed to the fact that these meta-features are indicative of concept
shift, which is a more prevalent cause of alterations in the quality of machine learning models than
covariance shift. That is why splitting by ig_range and attr_ent does not significantly change the
quality of machine learning models. It is evident that all machine learning models are susceptible to
the effects of splitting, even those that are considered robust. This assertion is corroborated by the
conclusions drawn by the authors [7]], which posit that robust models exhibit a comparable degree
of quality to ERM models in the context of substantial shifts in data. It is noteworthy that although
mfs_split generates complex splitting for machine learning models and typically compromises
their quality, under certain circumstances it can be employed to enhance the quality of machine
learning models in comparison to random_split. This phenomenon occurs when splitting by
attr_ent meta-feature. This discrepancy may be attributed to the observation that the training sample
encompasses a greater variety of observation features, characterised by higher entropy, while the test
sample exhibits a higher degree of homogeneity, that is, simplicity. However, it is challenging to
ascertain this with certainty, as the entropy of each predictor in the dataset differs between the train
and test sets (due to the aggregation of the meta-feature vector we can’t see it, see the section [3.3|for
further details). This deficiency can be identified as a method’s inherent shortcoming.

To contextualize the effectiveness of our MFs based split, Table ] compares it against the MMD
based clustering method proposed by Napoli and White [22]]. For the Best MF row, we report the
worst-case performance across all meta-features from Table [3] (indicated by bold values in that table).
The percentages in parentheses show the closest gap to real OOD performance achieved by any
meta-feature for each model-dataset combination. For the MMD row, we run the algorithm 5 times
with different random seeds, each producing an 80%-20% train-test split. We report mean =+ std
across runs, with target gaps in parentheses.

Table 4: Performance comparison: MFs based vs. MMD based split

Split Method ~ Dataset LR XGB IRM DRO
Best MF electricity 0.735 +£0.02 (14%) 0.749 £0.01 12%) 0.795 +0.02 (14%) 0.766 £ 0.01 (12%)
taxi 0.526 +0.10 (4%)  0.592+0.07 (6%) 0.773 £0.10 (14%)  0.505 = 0.10 (4%)
income 0.600 & 0.02 (30%) 0.605 +0.03 (12%) 0.535+0.08 30%)  0.381 £ 0.04 (1%)
california 0.776 = 0.01 (3%) 0.831 £0.01 9%) 0.837 £0.05 (4%)  0.786 + 0.02 (8%)

acs_accidents

0.461 £ 0.05 (0%)

0.725 + 0.03 (0%)

0.716 + 0.07 (30%)

0.630 & 0.05 (15%)

MMD electricity 0.419 +0.00 (18%)  0.335 £0.02 30%) 0.435 + 0.06 (22%)  0.355 £ 0.07 (29%)
taxi 0.703 £ 0.00 (2%) 0.564 £ 0.02 (9%)  0.690 £+ 0.01 (5%) 0.448 £ 0.09 (21%)
income 0.629 +0.00 (33%) 0.622 £0.01 (13%)  0.644 = 0.02 (40%) 0.650 £ 0.01 (23%)
california 0.828 £0.00 (9%)  0.829 +0.02 (9%) 0.890 £0.02 (10%) 0.855 £ 0.01 (15%)
acs_accidents  0.459 % 0.00 (10%) 0.673 + 0.01 (6%) 0.583 £0.11 17%)  0.468 +0.12 (1%)

This evaluation demonstrates dataset-specific behavior for both methods. For electricity, MFs based
split achieves gaps of 12-14% from target values, while MMD based split shows deviations of
18-30%. On taxi, MMD based split achieves tighter approximations (2-5% gaps) for most models.
Both methods show substantial deviations on income (30-40%), indicating severe real-world shift.
A key distinction is interpretability: MFs based split provides explicit control over distributional
characteristics, while MMD uses an aggregate kernel-based distance.

5.2 Synthetic OOD generation effectiveness

In light of the findings from the preceding experiment, it is possible to determine certain datasets
for which mfs_split has a significant impact on the quality of machine learning models, yet does
not result in a substantial advancement in the evaluation of the actual target. The present experiment
was established with the specific objective of generating synthetic OOD data for such datasets. The
table [3| presents the evaluation results on synthetic OOD data for two such datasets (more detailed
information on the results of synthetic OOD data generation is provided in the Appendix [C). It is
evident that these evaluations demonstrate a strong correlation with the actual quality of the OOD
dataset. In this experiment, the number of meta-features utilised for generation was restricted, as an
excessive number of meta-features resulted in suboptimal convergence. This example demonstrates
the applicability of synthetic data as OOD test data. However, it may be beneficial to explore more
advanced generative models for future data generation.



Table 5: Fl-scores for models trained on original data and tested on synthetic data

Dataset Meta-features LR XGB DRO IRM
electricit mut_inf, class_conc, iq_range 0.613 £0.08 0.641 £0.09 0.587 £0.08 0.613 +0.08
y mut_inf, class_conc 0.611 +£0.01 0.6254+0.01 0.589 +0.01 0.632 +0.02
california mut_inf, class_conc, iq_range 0.636 £0.05 0.692 £0.02 0.661 +0.02 0.561 + 0.11
mut_inf, class_conc 0.679 £ 0.07 0.713 £0.03 0.628 =0.10 0.682 4 0.05

6 Conclusion and Discussion

We introduced a practical protocol that turns dataset-level meta-features into actionable proxy OOD
evaluations for tabular data, via two complementary strategies: evolutionary meta-features based
splitting and meta-features based synthetic data generation. Across five real-world datasets and a set of
standard and robustness-oriented learners, MFs based splits produce consistently larger distributional
differences than random splits and often generate more challenging - and more realistic-stress tests
for model performance. When splitting alone does not align with the true target degradation, targeted
synthetic generation can close the gap, demonstrating that meta-features are useful signals for
constructing pre-deployment OOD tests. Our empirical analysis identifies a small set of meta-features
(notably mutual information, class concentration and joint entropy) that are particularly indicative of
concept shifts and predictive of model degradation; other meta-features (e.g., simple attribute entropy
or IQR) are less consistently informative for the kinds of concept shifts studied. We also highlight
several limitations. First, optimization and generation are sensitive to the number and choice of
meta-features: using too many objectives degrades convergence, and aggregating meta-feature vectors
can hide per-predictor effects. Second, our synthetic generation relies on a set of relatively simple
mutation/crossover operators and a specific generative prior; more powerful generative models (e.g.,
diffusion-based or conditional tabular generators) may improve fidelity. Looking forward, promising
directions include: (i) integrating stronger conditional generative models to improve synthetic OOD
fidelity; (ii) devising automated meta-feature selection strategies that balance informativeness and
optimization tractability; (iii) extending the protocol to richer shift taxonomies (e.g., subtle covariate
shifts, label noise, or compound shifts) and multi-class problems; and (iv) exploring light-weight
approximations of the evolutionary search to reduce computational cost for practitioners.
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A Implementation details of the proposed algorithms

A.1 MFs based splitting

The following pseudocodes provide a comprehensive overview of the algorithmic components
employed for the purpose of data segmentation based on meta-characteristics.

Algorithm 2 Create Individual By Ordering

Require: Dataset D (feature matrix X), test size k
Ensure: Individual: list of k distinct indices (test set)

1: n < number of samples in X

2: choose random column index j ~ Uniform{1,...,d}

3: Ssorted < argsort(X[:, j]) > indices sorted by feature j
4: choose pattern € {first_k, last_k, contiguous, every_other, random}

5: if pattern = first_k then

6: test_indices < Ssortea[1.-%]

7: else if pattern = last_k then

8: test_indices < Ssored[n — k + 1..7]

9: else if pattern = contiguous then
10 start «— random integer in [1,n — k + 1]
11: test_indices <— Ssortea[start..start + k — 1]
12: else if pattern = every_other then
13: choose start € {1, 2}, candidate <— Ssorea[start :: 2]
14: test_indices < first k£ of candidate (fallback to random if too short)
15: else
16: test_indices +— uniform random sample of & distinct indices from {1,...,n}
17: end if

18: return Individual(test_indices)

Algorithm 3 Crossover and Mutation Operators (variation)

1: function CROSSOVER(parent, , parent,)

2: A < set(parent, ); B < set(parent,)

only_1+ A\ B;only 2+ B\ A

if only_1 # () and only_2 # () then
m < min(jonly_1|, |only_2|, ||parent|/4])
r < uniform integer in [1, m)
pick 7 indices from only_1 and r from only_2
swap selected indices between parents preserving position uniqueness

9: end if

10: return childl, child2

11: end function

12: function MUTATE(individual, indpb)

13: available <— {1,..., N} \ set(individual)

14: if available = () or rand() > indpb then

AN AN

15: return individual

16: end if

17: Nmye — random integer in [1, min(3, |individual|)]
18: select Ny random positions in individual

19: select ny, indices from available

20: for each selected position p and new index 7 do
21: individual[p] « 4

22: end for

23: return individual

24: end function

11



A.2 MFs based generation

The following pseudocodes detail the mutation and crossover operators for generating synthetic
tabular data with specified meta-characteristics. The implementation of these operators has the
following characteristics:

All mutation functions operate on a row-wise basis, considering each data point (row)
independently;

The functions handle both continuous and categorical features appropriately;

Continuous features are modified using Gaussian noise or distribution sampling (@ 3);
Categorical features are modified by sampling from probability distributions (6));

The crossover function can operate on either rows or columns with configurable probabilities

(7D;
All functions ensure data validity by handling NaN values and clipping categorical values to
valid ranges.

Algorithm 4 Mutate Noise

1: function MUTATE_NOISE(individual, mutation_prob, noise_scale, categorical_idx, continu-
ous_idx, cat_probs, n_features)

A A

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

individual_data < reshape individual to 2D array with n_features columns
mutated <— copy of individual_data
for each row i in individual_data do
if random value < mutation_prob then
if continuous_idx exists then
noise_scale_adjusted < noise_scale x |mutated|¢][continuous_idx]|
noise <— sample from A (0, noise_scale_adjusted)
mutated[¢|[continuous_idx]| +— mutated|[¢][continuous_idx] + noise
end if
if categorical_idx and cat_probs exist then
for each categorical index j do
if random value < mutation_prob then
mutated[i, cat_idx] < sample from categorical distribution with probabilities cat_probs|[j]
end if
end for
end if
end if
end for
mutated <— replace NaN values with 0
round and clip categorical values to valid range
return flatten mutated array to 1D list

23: end function
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Algorithm 5 Mutate Distribution

1: function MUTATE_DIST(individual, mutation_prob, gmm, categorical_idx, continuous_idx,
cat_probs, n_features)
individual_data <+ reshape individual to 2D array with n_features columns
mutated <— copy of individual_data
for each row 7 in individual_data do
if random value < mutation_prob then

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

new_categorical <— empty list
new_continuous <— empty list
if categorical_idx and cat_probs exist then
for each probability distribution p in cat_probs do
append sample from categorical distribution with probabilities p to new_categorical
end for
end if
if continuous_idx and gmm exists then
new_continuous < sample from GMM
end if
new_row <— create new row with appropriate values at categorical and continuous indices
mutated[i] < new_row

end if
end for
mutated <— replace NaN values with 0
round and clip categorical values to valid range
return flatten mutated array to 1D list
23: end function

Algorithm 6 Mutate Covariance

1: function MUTATE_CoV(individual, mutation_prob, categorical_idx, continuous_idx, cat_probs,
n_features)
individual_data < reshape individual to 2D array with n_features columns
mutated <— copy of individual_data
if continuous_idx exists then
continuous_data <+ individual_datal[:, continuous_idx|
current_cov <— covariance matrix of continuous_data
ensure current_cov is positive definite
mean_vector <— mean of continuous_data
for each row ¢ in individual_data do

AN A

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:

if random value < mutation_prob then
new_continuous <— sample from multivariate normal with mean_vector and current_cov
mutated[¢, continuous_idx] <— new_continuous

end if

end for

end if

if categorical_idx and cat_probs exist then
for each row 7 in individual_data do

if random value < mutation_prob then
for each categorical index j do

mutated[i, cat_idx] < sample from categorical distribution with probabilities cat_probs|j]

end for
end if

end for

end if

mutated <— replace NaN values with 0

round and clip categorical values to valid range
return flatten mutated array to 1D list

28: end function
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Algorithm 7 Crossover

1: function CROSSOVER(ind1, ind2, cxpb, row_mode_prob, n_features)
2 if random value > cxpb then
3 return ind1, ind2 > No crossover performed
4: end if
5: matrix1 < reshape ind1 to 2D array with n_features columns
6 matrix2 <— reshape ind2 to 2D array with n_ features columns
7 n_samples <— number of rows in matrix1
8: if random value < row_mode_prob then
9: perform row-wise crossover

10: n_rows < |0.3 X n_samples|

11: select n_rows random row indices

12: swap selected rows between matrix1 and matrix2

13: else

14: perform column-wise crossover

15: n_cols + |0.3 x n_features|

16: select n_cols random column indices

17: swap selected columns between matrix1 and matrix2

18: end if

19: matrix1 < replace NaN values with 0

20: matrix2 < replace NaN values with 0

21: ind1 < flatten matrix1 to 1D list

22: ind2 < flatten matrix2 to 1D list
23: return ind1, ind2
24: end function
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B Selection of meta-features

The following experiment was conducted with the objective of selecting the most informative meta-
features for the purpose of OOD evaluation. Such meta-features, which exhibit changes in their
values that would accurately indicate a shift in the data, are of particular interest. The generation of
toy-data with different types of shifts (synthetic) was undertaken, and then the changes in the values
of meta-features (absolute differences) were measured on subsamples within the domain and between
domains. Subsequently, a range of methodologies for meta-feature selection ([3l]) were employed,
and the frequency with which each meta-feature was selected was calculated (see Figure[2). The
data with shifts were modeled synthetically; for example, the distribution p(y|x) (concept shift) was
explicitly altered, or the distributions of predictors (covariance shift) were explicitly changed.

X shifted X

Compute in domains Compute between
MFs difference domains MFs difference

L Value 1 Value 2 0

N
4 Value3 | Value4 0
Value 3 Value 4 1

Meta-features

selection methods

Figure 2: General outline of the experiment to determine the meta-features that respond best to the shift.

The selection of statistical and information-theoretical meta-characteristics as the primary groups was
made on the basis of their relative simplicity in terms of interpretation. Furthermore, an investigation
was conducted into various summarizing functions. Further information regarding meta-features
and summarizing functions can be found in the following source ([24]]). The figure [3] presents the
concluding outcomes of the investigation into the variability of meta-characteristics across diverse
groups under varying shifts.
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Figure 3: Results of the analysis of meta-feature variability under different shifts. Here, the meta-feature
is named according to the principle meta_feature_name.summarizing_function. The number on the
diagram indicates how many meta-feature selection methods chose this meta-feature as significant for a given
shift type.
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C Generation of synthetic OOD data

The following graphs compare the values of meta-features on real data and synthetic data (figure 4]
for california dataset and figure[5]for electricity dataset). It is important to note that a decision was
taken not to aggregate the meta-feature vector in the generation task, as this resulted in substantial
quality degradation. Consequently, each meta-feature is represented by a vector in this study.

(a) class_conc (b) iq_range

(¢) mut_info

Figure 4: Comparison of meta-feature values on real and synthetic data for the dataset california.
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Figure 5: Comparison of meta-feature values on real and synthetic data for the dataset electricity.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The Abstract and the "Contributions" paragraph explicitly state the two com-
plementary protocols (MF-based splitting and synthetic generation) and claim empirical
validation across datasets and learners, which matches the experiments and conclusions
presented.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The Conclusion contains an explicit limitations paragraph noting sensitivity to
number/choice of meta-features, aggregation hiding per-predictor effects, and reliance on
the chosen generative prior and operators.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors

should reflect on how these assumptions might be violated in practice and what the

implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper is empirical/algorithmic and does not present formal theorems or
proofs, so the question is not applicable.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 4 and Appendix A provide dataset descriptions, split procedures,
evolutionary optimizer settings, hyperparameters, repetition counts (5 seeds), and model
training details; a code/data repository link is also given to enable reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The manuscript includes an anonymized repository URL for code and datasets
and refers to implementation details in Appendix A, indicating provision of materials for
reproduction.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4 and the Models and evaluation subsection list data splits, detailed
optimizer and model hyperparameters (LR, XGBoost, IRM, DRO), evolutionary parameters,
and run counts.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Tables report mean + variability and the text states experiments are repeated
five times to capture stochastic variation; error bars/variability are reported alongside the
metrics supporting main claims.

Guidelines:
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: The paper specifies algorithmic and experimental parameters (populations,
generations, model hyperparameters) but does not report hardware (CPU/GPU types),
memory, or runtime estimates required to reproduce the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [NA]

Justification: The manuscript does not include an explicit statement addressing adherence to
the NeurIPS Code of Ethics or an ethics review, so an explicit confirmation is not present in
the paper.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All resources used are correctly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The authors state that source/target splits, synthetic datasets, and code are
available in the linked repository and provide implementation details and pseudocode in
Appendix A, B, which documents the assets and how they were produced.

Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The work uses tabular datasets and synthetic data generation and does not
involve crowdsourcing or human-participant data collection.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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16.

Answer: [NA]

Justification: The research does not involve human subjects or crowdsourcing; IRB consid-
erations are not applicable.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not use large language models as part of the methods or
experiments, so this item is not applicable.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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