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Abstract

Skull-base tumor segmentation is a critical yet challenging task due to the rarity of such
tumors and the complexity of the anatomical region. This work focuses on developing an
automated segmentation and classification framework for central skull base tumors using
multimodal 3D imaging data, including CT and MRI scans. By leveraging state-of-the-art
deep learning architectures tailored for 3D medical imaging, we aim to accurately delineate
tumor boundaries while preserving anatomical context. Our approach incorporates ad-
vanced data augmentation techniques and loss functions optimized for handling imbalanced
datasets. Initial experiments demonstrate the framework’s capability to achieve precise tu-
mor segmentation, highlighting its potential to assist clinicians in diagnosis and treatment
planning. Future work will focus on expanding the dataset and integrating interpretability
mechanisms to further enhance clinical adoption.
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1. Introduction

Skull base tumors, located at the interface of critical neurovascular and bony structures, are
among the most challenging types of tumors to diagnose and treat. Their rarity, combined
with the high variability in shape, size, and location, necessitates precise imaging and
computational tools for effective management. Traditional manual segmentation is time-
consuming, error-prone, and dependent on expert radiologists, highlighting the need for
automated solutions.

Deep learning has emerged as a transformative tool in medical imaging, particularly in
segmentation tasks. Convolutional Neural Networks (CNNs) (Cun et al., 1990) and their
derivatives have shown remarkable performance in processing 3D volumetric data, making
them well-suited for medical image analysis. However, the intricate anatomy of the skull
base and the limited availability of annotated datasets present significant challenges. In
this work, we aim to address these challenges through a tailored approach leveraging multi-
channel imaging modalities, data augmentation, and transfer learning.
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2. Methodology

2.1. Dataset and Preprocessing

We developed our own dataset from scratch, comprising MRI and CT scans of skull base tu-
mors. This dataset includes T1-weighted, T2-weighted, T1-contrast-enhanced, and FLAIR
sequences, all meticulously annotated by expert radiologists. To ensure consistency and
quality, we standardized the data through intensity normalization, resampling to a uniform
voxel size, and spatial alignment using rigid and affine transformations. Additionally, data
augmentation techniques, such as rotation, flipping, and elastic deformations, were applied
to improve model generalization and robustness.

2.2. Model Architecture

The segmentation model is based on the 3D UNet architecture (Ronneberger et al., 2015),
which has been adapted to the specific requirements of skull base tumor segmentation.
The model accepts both single-channel and multi-channel input configurations (e.g., T1-
T2, T1-T1FS, and T2-T1-T1FS combinations) and outputs a binary segmentation mask.
Transfer learning was implemented by initializing the model with pre-trained weights from
a BRATS (Menze and et al, 2015; Bakas et al., 2017; Bakas and et al, 2019) brain tumor
segmentation model, ensuring a better starting point for fine-tuning. Key architectural
modifications include:

• Incorporating DiceCELoss, a composite loss function combining Dice loss and Cross-
Entropy loss, optimized for class imbalance.

• Employing the sliding window inference method to handle large 3D volumes effectively.

2.3. Training and Optimization

The training pipeline involved the AdamW optimizer (Loshchilov and Hutter, 2019) with
a learning rate scheduler based on cosine annealing. The model was trained for 5000 iter-
ations with periodic validation. Dice similarity coefficient (DSC) was used as the primary
evaluation metric. The training process was monitored and logged using WandB for detailed
analysis and visualization. To ensure effective learning, we adopted a phased approach:

1. Initial fine-tuning of the pre-trained model on the skull base dataset.

2. Enabling gradient updates for all layers to refine the network for the target domain.

2.4. Classification Pipeline

In addition to segmentation, we developed a classification pipeline to determine tumor sub-
types as primary or secondary tumors using features extracted from the fine-tuned 3D UNet
model. Following the training of the segmentation model, the same UNet was repurposed to
extract deep, case-specific feature representations. These extracted features served as input
for a linear classifier, specifically designed to predict tumor subtypes. By leveraging the
spatial and contextual information captured during segmentation, the classifier was trained
using a cross-entropy loss function, enabling it to effectively complement the segmentation
model and enhance overall diagnostic utility.
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3. Results

We experimented with various input configurations, including single-channel inputs (T1,
T2, T1FS, and FLAIR) and multi-channel inputs (T1-T2, T1-T1FS, T2-T1-T1FS). Table
1 presents the results of these configurations, showcasing the segmentation performance
across different modalities. Despite leveraging advanced deep learning techniques and multi-
channel input configurations, the model’s performance, as indicated by the Dice scores, was
relatively modest. The limited amount of training data, consisting of less than 90 annotated
cases, is likely a significant factor contributing to these results.

The highest performance was observed for the T2 input configuration, achieving a Dice
score of 0.56, while FLAIR had the lowest performance at 0.47. Multi-channel configura-
tions, such as T1-T2 and T2-T1-T1FS, did not significantly improve performance compared
to single-channel inputs, with Dice scores of 0.48 and 0.49, respectively. These results un-
derscore the challenges posed by the limited dataset size and the complex nature of skull
base tumors.

We also evaluated the classification pipeline using different input configurations, re-
porting validation performance metrics such as F1-score and accuracy for predicting tumor
subtypes as primary or secondary. Among the single-channel inputs, the T2 configuration
demonstrated the best performance, achieving a validation F1-score of 0.89 and accuracy of
0.80, highlighting its superior discriminatory capability. The T1FS input yielded a valida-
tion F1-score of 0.71 and accuracy of 0.55, while T1 resulted in a validation F1-score of 0.63
and accuracy of 0.45. These results indicate that T2 imaging provides the most reliable
features for tumor subtype classification, significantly outperforming the other modalities.

Input Configuration Dice Score

T1 0.53
T2 0.56

T1FS 0.52
FLAIR 0.47
T1-T2 0.48

T1-T1FS 0.54
T2-T1-T1FS 0.49

Table 1: Performance comparison of single-channel and multi-channel input configurations.

4. Conclusion

Automated segmentation of skull base tumors is a crucial step toward improving diagnostic
accuracy and treatment planning. This study demonstrates the feasibility of leveraging deep
learning for this task, offering a robust and scalable solution. With further advancements in
model design and dataset availability, this approach has the potential to become a standard
tool in neuro-oncology.
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