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ABSTRACT

Multi-turn interactions between large language models (LLMs) and users naturally
include implicit feedback signals. If an LLM responds in an unexpected way to
an instruction, the user is likely to signal it by rephrasing the request, expressing
frustration, or pivoting to an alternative task. Such signals are task-independent and
occupy a relatively constrained subspace of language, allowing the LLM to identify
them even if it fails on the actual task. This creates an avenue for continually
learning from interactions without additional annotations. We introduce RESPECT,
a method to learn from such signals in past interactions via retrospection. We
deploy RESPECT in a new multimodal interaction scenario, where humans instruct
a multimodal LLM to solve an abstract reasoning task with a combinatorial solution
space. Through thousands of interactions with humans, we show how RESPECT
gradually improves task completion rate from 31% to 82%, all without any external
annotation.

1 INTRODUCTION

Language models (LMs) often engage in multi-turn interactions with human users. Similar to human-
human interactions, these interactions are naturally rich with implicit learning signals. If the LM fails
to respond appropriately, the user is likely to follow with an expression of frustration, a rephrase of
their intent, or maybe even completely pivot what they ask for. Similarly, if the LM does well, the
user may express approval or simply continue to their next objective. Such responses can inform the
LM of its performance, thereby creating an opportunity to learn through retrospection.

We study the efficacy of such signals, and how they can lead to a system that improves over time.
We introduce RESPECT, a simple approach to learn from signals the model itself derives about its
own past actions through retrospection of past interactions with human users. We experiment with
RESPECT by deploying a multimodal LLM (MLLM) in MULTIREF, a new multi-turn grounded
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Figure 1: Learning via RESPECT. We deploy an MLLM policy πθρ(a|x) in rounds ρ, to interact with
users in multi-turn interactions. Following each round, the LLM reasons retrospectively about each
of its actions (highlighted in blue) to decode feedback given the interaction context, including follow
up utterances. The decoded feedback can be positive (thumbs up as illustrated), negative or neutral.
After each round, the model is retrained using all data aggregated so far D≤ρ. The MLLM improves
over time without any external annotations. The plot on the right shows the performance curve in our
experiments – the MLLM improves from 31% to 82% task completion rate over six rounds.
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interaction scenario. MULTIREF is a generalization of reference games (Rosenberg & Cohen, 1964),
and requires models to display complex abstract reasoning, and humans to gradually instruct models
to accomplish sequences of goals to complete their tasks.

The key insight underlying RESPECT is that conversational implicit feedback signals occupy a
relatively constrained subspace of natural language. Such signals can include direct approvals (e.g.,
great!) or signs of frustration (e.g., not again), and also more subtle cues, such as when the user
rephrases their request. Critically, it is relatively simple to disentangle them from task performance. A
human can easily figure out from such cues if they do well or not, even if they have little understanding
about what they are asked for. It is this constrained nature that makes reasoning about such signals to
be within the capacities of large language models (LLMs), even if they fail at the task at hand.

RESPECT utilizes this signal in a process where the model interacts with humans, and after interaction
decodes feedback for each of its actions from the interaction context including the follow up utterances.
Figure 1 illustrates this process. The model interacts with humans to accomplish tasks, retrospectively
examines its own past interactions, and then re-trains. This process progresses in rounds, alternating
between interaction and training, with the model improving over time. Critically, unlike common
recipes for training from human feedback, RESPECT does not require any external annotation (Ouyang
et al., 2022, RLHF) or even soliciting feedback from the users themselves (Suhr & Artzi, 2023).

We deploy RESPECT in MULTIREF over multiple rounds of grounded interactions with human use
and re-training. We use IDEFICS2-8B (Laurençon et al., 2024) as our MLLM, and experiment
with multiple learning methods, including supervised learning, REINFORCE-style policy gradi-
ent (Williams, 1992; Kojima et al., 2021), and KTO (Ethayarajh et al., 2024). Across our experiments,
we observe that IDEFICS2-8B effectively decodes feedback, even as it initially performs poorly in
the same interactions. In our longest running experiment, we observe model task completion rate
improves from 31% to 82%. Our code, data, and models will be released upon publication.

2 TECHNICAL OVERVIEW AND NOTATION

We conduct continual learning1 studies by deploying our approach in MULTIREF, a new multi-turn
grounded interaction scenario (Section 3). Overall, the study progresses in rounds, where the MLLM
policy is first deployed to interact with users and complete tasks, and the interactions are then used to
re-train the policy. Our study involves multiple rounds, and our goal is to observe and evaluate the
long-term dynamics of the process. This includes the robustness of our award decoding and training
methods to the changing distribution of the data likely to be seen in an adaptive system in the wild.
Section 3 describes our interaction scenario in detail, and Section 4 our learning method. First, we
outline our problem of interest and its notation in abstract terms.

Task Notation The policy’s task is to respond effectively to human utterances given in conversa-
tional context. Formally, let π(at|xt) be the policy that controls the listener behavior, with at an
action string that represents the model response and xt being the context on which the policy is
conditioned, both at turn t in the interaction. The context includes the instruction history up to and
excluding turn t, including current (i.e., at turn t − 1) and past speaker utterances, as well as any
other relevant context in which the interaction takes place. As our learning progresses in rounds, we
denote θρ as the model parameters in round ρ, and πθρ as the parameterized policy.

Learning and Deployment We study a continual learning setup, where the learning signal is
acquired from interactions of the deployed model with human speakers. Our study progresses in
rounds (Figure 1). Each round ρ includes a deployment, followed by training. During deployment
at round ρ, the model πθρ interacts with users. For each model action ât ∼ πθρ(a|xt), we record a
tuple (xt, ât, pt, f̄t), where xt is the context given to the model at time t to predict action ât, pt is
the probability of ât at the time of prediction, and f̄t is the remainder of the interaction following ât.
Critically, these interaction tuples contain no explicit feedback. We compute the implicit feedback γ̂t
using a feedback decoder ϕ(xt, ât, f̄t), to obtain tuples (xt, ât, γ̂t, pt). We experiment with multiple
learning objectives using this feedback: supervised learning (SFT), policy gradient, and KTO.

1We define continual learning as the model improving over time on its task through interaction with human
users. The term continual learning is used broadly for other purposes such as domain adaptation.
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A diamond head man without legs

Another diamond head man

No find another one with diamond head 
and triangle body and triangle leg

Select I

Select C

Deselect C Select G

……

Figure 2: The interaction scenario we use in our experiments. MULTIREF is a multi-turn reference
game. A speaker and a listener both observe a shared set of tangram shapes, but in different order.
The goal of the speaker is to describe a subset of targets for the listener to select. Because the target
requires multiple abstract shapes, humans often communicate the targets gradually over multiple
turns. As an interaction progresses naturally, the speaker produces implicit feedback signals that
validate or reject the listener’s actions.

Evaluation We measure the quality of the listener model πθρ(at|xt) at each round ρ primarily by
interaction success rates from live human-bot deployments. The same interactions are used to train
the model for the next round. We track various characteristics of model behavior, such as number
of turns per interaction as an efficiency measure. We also do post-hoc annotation of a subset of the
interactions to measure utterance-level policy success rate and feedback decoder accuracy.

3 MULTIREF: A MULTI-TURN GROUNDED INTERACTION SCENARIO

Key to our study is that tasks are relayed gradually across multiple turns, as commonly happens in
human interactions. We create MULTIREF, a conversational interaction scenario where two partners,
a speaker and a listener, coordinate on the selection of a set of items. In our studies, the speaker is
always a human, and the listener is a model.

MULTIREF generalizes the commonly studied reference game scenario. Its design and our choice of
stimuli are grounded in existing work from both cognitive science and computational language mod-
eling (Rosenberg & Cohen, 1964; Clark & Wilkes-Gibbs, 1986; Schober & Clark, 1989; Goodman &
Frank, 2016). Figure 2 illustrates the scenario. Both partners observe a shared set of images, but in
different order. The speaker is given a subset of the images as targets, with the goal of communicating
the targets to the listener, so the latter selects the exact subset. Only the speaker can write messages,
and only the listener can select or deselect images. The interaction concludes successfully once all
and only targets are selected, or fails if the partners run out of turns, 20 in our studies.

The interaction progresses in turns t, alternating between speaker and listener turns. At each speaker
turn, they provide a single unrestricted natural language utterance. It may direct the listener to select
one or more items, ask to deselect items if the listener previously made a mistake, or include whatever
other content they desire. This utterance as well as the history of the interaction, the set of images,
and their selection status compose the context xt for the following model turn at turn t. The follower
responds with an action at, which includes one or more image selects or deselects according to their
understanding of the speaker intention. The action space consists of all possible legal sequences of
the form Deselect E select F or Select D G assuming images are code-named alphabetically.

The motivation behind MULTIREF is to create a task-oriented scenario that is both accessible to non-
expert humans and encourages constructing a solution in multiple turns, thereby creating multi-turn
interactions and eliciting the learning signals we aim to study. The rules of the interaction are simple:
the speaker describes targets to select, and the listener selects what the speaker is referring to. This
makes MULTIREF easily accessible to crowdsourcing workers. At the same time, the solution the
speaker communicates to the listener is relatively complex, because of the enormous solution space:
Consider a conventional reference games, where the goal is to select a single image. The number
of possible solutions is the number of images in the context. In MULTIREF, the goal is to select
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a subset of unknown size, so the combinatorial solution space the listener faces is exponential in
the number of images. Meanwhile, the solution is decomposable, and the speaker can comment on
the impact immediately after the listener’s action (unlike Haber et al. (2019, PhotoBook)), creating
natural opportunities to decompose the solution and for implicit incremental feedback to appear.

Key to making MULTIREF work well is the choice of images. We use tangram shapes from the
diverse KILOGRAM dataset (Ji et al., 2022). Tangrams are abstract shapes that are designed to
elicit common concepts in humans. This abstractness often leads to ambiguous descriptions open
to interpretation, e.g., Shape A in Figure 2 can be described as a bat, a lowercase w, or even a star
wars star fighter. We select tangrams because they naturally provide an ambiguous and challenging
stimuli for human interaction (Clark & Wilkes-Gibbs, 1986; Schober & Clark, 1989; Fox Tree, 1999;
Hawkins et al., 2020b), thereby leading to highly diverse language. They also remain challenging for
contemporary MLLMs to reason about (Ji et al., 2022), leaving significant room for learning.

The free-form natural language human speakers produce in MULTIREF is very diverse, and balances
between competing pressures. First, it often requires complex pragmatic reasoning (Clark & Wilkes-
Gibbs, 1986; Schober & Clark, 1989; Horton & Gerrig, 2002), because of the abstractness of tangrams.
This is compounded by how the combinatorial solution space drives humans to balance between
relaying as much information as possible, and relaying clear objectives to make gradual progress.
This is a balance between two Gricean maxims: quantity and manner.2 Speakers may or may not
include explicit feedback such as good, or deselect the last one; the speaker may describe more than
one target in a single utterance, for example, select two men; speakers may refer to previous selections
without directly describing targets, for example, the other one, or try again. In combination with the
abstract stimuli tangrams provide, this creates a challenging reasoning problem for the listener model.

MULTIREF is not designed to increase complexity in arbitrary ways, but to provide an environment
for humans to naturally expose core aspects of human communication. At the same time, the scenario
is both controlled and scoped, allowing for easy measurement of task completion and progress, as
well as making learning feasible with relatively limited data. This makes MULTIREF particularly
suitable to research in academia or other low-resource settings.

4 RESPECT: RETROSPECTIVE LEARNING FROM PAST INTERACTIONS

RESPECT has two components: decoding implicit feedback from past interactions (retrospection) and
learning from the decoded feedback signals (learning). We deploy RESPECT in an iterative continual
learning scenario, where each round includes both steps. This deployment allows us to observe the
dynamics of RESPECT over time. However, the method itself is not limited to continual learning, and
can be applied a single time as well.

The goal of RESPECT is to re-estimate the parameters of a model given interactions that were
collected by the model itself, or previous versions of it. We assume access to a raw dataset Draw =
{(x(i), â(i), p(i), f̄ (i))}Ni=1, where x(i) is the policy context, â(i) is the predicted action, p(i) is the
probability of this action, and f̄ (i) is the remainder of the interaction following â(i).3 In our continual
learning setup, Draw is a union of all data collected from past rounds.

The feedback decoder ϕ computes a categorical feedback γ̂(i) ∈ {positive, neutral, negative}
for each action â(i) holistically based its context x(i), action taken â(i), follow up utterances f̄ (i).4

This process transforms Draw to D = {(x(i), â(i), p(i), γ̂(i))}Ni=1. We use this dataset for training.

4.1 DECODING IMPLICIT FEEDBACK THROUGH RETROSPECTION

We implement the feedback decoder ϕ by prompting the model to analyze past interaction tuples
(x, â, p, f̄) to compute feedback γ̂ = ϕ(x, â, f̄). The goal is a process where the model bootstraps

2Grice’s maxim of quantity: one tries to be as informative as one possibly can, and gives as much information
as is needed, and no more; Grice’s maxim of manner: one tries to be as clear, as brief, and as orderly as one can
in what one says, and where one avoids obscurity and ambiguity. (Grice, 1975)

3For simplicity of notation, we omit the turn step in this section.
4We do not compute feedback for the last action in each interaction because there is not followup interaction.

For simplicity, Draw does not include them.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Feedback Decoder Prompt

User: Please carefully read the following conversation and answer: Is the very last utterance
from the speaker positive or negative positive, neutral, or negative feedback? Often negative
feedback include corrections and keywords like no, not, undo, don’t, with generally negative
sentiment, while positive feedback often includes good, yes, correct, okay, or simply move
on to the next stage. Lean towards negative if it sounds neutral.
(start of the conversation)

Listener: Deselect F select G

Speaker: yes, pick the thin person with a triangle head

Listener: Select A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Action to focus on)

Speaker: yes, pick the house with chimney . . . . . . . . . . . . . . . . . . . . . . . (Feedback)

(end of the conversation)
Answer a single word, Positive, or Negative Positive, Neutral or Negative.
Assistant: Positive

Figure 3: The prompt used to decode feedback from past interactions. The figure combines the
prompts for both binary and ternary feedback decoding. The parts that belong to the binary case only
are colored green, while parts that belong the ternary case are colored orange. The verbal feedback
generated by the model is in bold. Additional comments for readability are in magenta italics.

from its own interactions. Our hypothesis is that LLMs have the ability to reason about the relatively
constrained space of implicit signals, even if they fail at the task. We show this empirically in
our experiments. Critically, this process does not rely on a stronger LLM for critique or on past
interactions created by other LLMs. Figure 3 shows the decoder prompt. We experiment with binary
or ternary feedback. Ternary adds neutral on top of the positive and negative binary options.
The feedback decoder is designed to identify general linguistic cues, and not for the specific task we
study. We assume no access to any auxiliary annotation or privileged information (e.g., not inferring
based on whether the policy selects a ground truth target in a turn, or whether an entire interaction
ends early), although they are likely to be useful signals as explored in Pang et al. (2023).

4.2 LEARNING

The feedback decoding process transforms the dataset from Draw to D = {(x(i), â(i), p(i), γ̂(i))}Ni=1.
We study several learning approaches using this data: supervised learning, offline reinforcement
learning (RL), or the KTO-style utility maximization (Ethayarajh et al., 2024).

Supervised Learning We fine-tune on positive data points (γ̂(i) = positive) and discard data
points predicted as neutral or negative. We use cross entropy loss with additional label smoothing
to prevent overfitting and encourage exploration. Our setup is distinct from conventional supervised
learning in that the data is coming from the model interactions (i.e., on-policy), and not from a given
dataset. Also, we run the learning process iteratively, each time with more data. We do not design the
supervised approach in any special way to fit these changes, but this is a potential avenue for future
work, which can further improve performance.

Reinforcement Learning We follow prior work (Kojima et al., 2021) and use simple REINFORCE-
style policy gradient (Williams, 1992). The categorical feedback γ(i) (i.e., the text generated by the
prompted LLM) is mapped to a numerical value with a simple reward function:

R(γ) =


1, γ = positive

0, γ = neutral

−0.1, γ = negative

. (1)

Dropping the i-superscripts for simplicity, the gradient estimator for a single example is:

∆ = cR(γ̂)∇logP (â|x; θρ+1) c =

{
1, if R(γ̂) ≥ 0
P (â|x;θρ+1)

p , if R(γ̂) < 0 ,
(2)
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where the coefficient c downweights examples with negative reward by their inverse propensity
score (Kojima et al., 2021). This is critical because limP (·)→0 logP (·) = −∞. In practice, we also
discard data points with predicted neutral feedback (R(γ̂) = 0).

We choose REINFORCE for its simplicity. The positive case reduces to be mathematically equivalent
to the gradient of supervised fine-tuning (SFT), whose optimization is relatively well understood.
As opposed to other methods, such as PPO (Schulman et al., 2017), REINFORCE does not require
a reward model and has relatively few hyperparameters. This is critical with human-in-the-loop
experiments, where broad parameter sweeps are not possible. Recent work (Ahmadian et al., 2024)
also suggests REINFORCE can produce on-par results in LLMs with PPO despite its simplicity.

Utility Maximization To experiment with utility maximization, we use Kahneman-Tversky Op-
timization (Ethayarajh et al., 2024). KTO was developed to learn from per-example binary human
feedback, a scenario that fits ours well. We consider examples with decoded positive feedback
as desired utterances, those with decoded negative feedback as undesired, and discard those with
neutral feedback. We refer readers to Ethayarajh et al. (2024) for the definition of the objective.

5 EXPERIMENTAL SETUP

Interaction Instantiation We use the KILOGRAM (Ji et al., 2022) tangram images, following Gul
& Artzi (2024). KILOGRAM contains 1,013 images. We randomly split them into a main split (912
tangrams) and a development split (101 tangrams). We create interaction contexts by randomly
sampling 10 tangrams, and randomly select 3–5 as targets. The development split is exclusively used
for seeding the initial listener policy πθ0 , and all human-bot interactions are conducted on images
from the main split, i.e., tangrams that the seed policy πθ0 has never seen before.

Model and Initialization We use IDEFICS2-8B (Laurençon et al., 2024) as our model for both the
policy and feedback decoder. We fine-tune with LoRA (Hu et al., 2022). We seed the initial policy πθ0
by fine-tuning the pretrained IDEFICS2-8B weights on a small supervised dataset of 90 successful
turns from 25 human-human games constructed with the development split tangrams, augmented with
12 synthetically generated deselection turns, because while necessary for human-model interactions,
deselections are rare in human-human interactions (Appendix B.2). D0 is reused in continual training
via rehearsal. We validate our design online with 30 main-split human-bot pilot interactions, or offline
with a validation set of 344 successful main-split human-human turns (Appendix A). We use the
original IDEFICS2-8B for feedback decoding, because the narrow focus of our data is likely to inhibit
some general linguistic knowledge. This means we cannot see improvement in the model feedback
decoding capability, likely low-balling the potential of the approach. It remains an important direction
for future work to keep the decoder model in sync with the policy. This requires deployments that
include high domain diversity. We observe the original IDEFICS2-8B to provide robust feedback
decoding out of the box, confirming our hypothesis, and providing a solid ground for our experiments.

System Variants We study six system variants based on two dimensions: (a) feedback decoder
configuration (binary vs. ternary); (b) optimization methods (supervised vs. REINFORCE vs. KTO):

• B-SUP and T-SUP binary (B) / ternary (T) that only trains on positive data points with a
supervised fine-tuning objective (SUP).

• B-RL and T-RL trains on both positive and negative data points using REINFORCE.
• B-KTO and T-KTO are like B-RL and T-RL, but using KTO.

For variants involving negative data points (B-RL, T-RL, B-KTO, and T-KTO), we subsample negative
ones to keep the positive:negative ratio close to 5:4 (Ethayarajh et al., 2024).

Deployment We conduct three rounds of training-deployment for all six systems and three more
rounds for B-SUP. We select B-SUP for another three rounds because it is the most promising
variant after three rounds, and we want to observe its progress over a longer period. The reason
for this cascaded design is the high cost of experiments. We do not distinguish between training
and evaluation in the traditional sense. Instead, all listener policies are evaluated live on MTurk on
about 330 human-bot interactions each round containing roughly 2400 turns. Then the same data is
used to train the next iteration of policies respectively. The policies in the same round are deployed
concurrently in a randomized experiment on the same set of games to mitigate human biases and
variances due to game difficulty. More details on crowdsourcing are in Appendix A.3.
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Learning Implementation Details We use the validation set for model selection throughout
continual learning. Following prior work (Misra et al., 2017; Müller et al., 2019; Liu et al., 2022), we
add an entropy term and length normalization to all three objectives to reduce over-fitting given the
relatively small amount of data. Appendix B provides additional reproducibility details. Unlike with
REINFORCE, where we train from scratch each round, when using KTO, we continually fine-tune
from a previous model checkpoint θρ to obtain θρ+1 with data accumulation. This was shown to
outperform training from scratch in pilot studies.

Evaluation We evaluate each system variant at each round by the success rate during the live
deployment. We report both interaction- and utterance-level success rates. The interaction level
success rate is straightforward - whether the game ended with all targets selected by the listener and
nothing else. The utterance level success rate is more nuanced because we do not have access to the
ground truth, i.e., the intended action. We sample 1,000 utterances per round from B-SUP to annotate
by MTurk workers post hoc. We report two measures: exact match between the annotation and model
action and similarity score, which is based on the computed similarity between the tangrams selected
or deselected during the turn by the human annotator and the system. We also evaluate the quality of
the feedback decoder by comparing its predictions with human interpretations collected during the
post-hoc annotation. Because of cost, we cannot do post-hoc annotation for all system variants, so
we also report click accuracy, which approximates utterance-level performance well. It measures
the ratio of the model actions that lead to selection statuses that do not violate the set of targets (i.e.,
selections of target tangrams are good, deselection of non-target tangrams are good). Lastly, we track
the number of turns per interaction. Appendix B.4 provides full definitions of our metrics.

6 RESULTS AND ANALYSIS

We deploy our models for three rounds, with additional three rounds for B-SUP, the best-performing
variant, to better understand long-term dynamics. All our results are from concurrent randomized
deployment, where the models interact with humans in real time. We collected a total of 7,230
interactions consisting of 55,004 utterances over 4 weeks, at a cost of $11,180 USD.

Figure 4 shows the deployment statistics for all six system variants, as well as control deployments
for the initial policy and human-human games.5 Figure 5 shows utterance-level statistics for B-SUP
from the post-hoc annotations we collected. The interaction success rate of all systems improves
monotonically in the first three rounds, except for B-KTO in round three. We conduct three more
rounds with B-SUP, the leading system after the first three rounds. B-SUP then plateaus, and even
shows a temporary decrease in performance, before resuming its improvement.6

Overall, B-SUP improves interaction-level success rate by 51% (31%→82%) and utterance-level
exact match by 22% (31%→53%). At the last round, following the plateau, B-SUP interaction success
rate improves by 5% (77%→82%). The number of turns follows these trends. As the policy gets
better, more games are completed within the allotted number of turns, and even faster. B-SUP starts
with 8.9 turns per game, and concludes with 6.7 per game. The center panel of Figure 5 shows that
actions taken by the policy increasingly resemble human actions, even mistakes (actions that receive
negative feedback) become more similar to human actions. All other statistics largely track these,
except some of the utterance-level statistics around when B-SUP plateaus. While all show a deviation
from the monotonous earlier trend, some show a temporary decrease and not just a stagnation, but
delayed by one round. This illustrates the complex dynamics of continual learning, which we explore
in more detail below.

There remains a significant gap between B-SUP (our leading system) and HH (human-human interac-
tions), which shows perfect task success rate and almost double efficiency (i.e., tasks are completed
with much shorter interactions). Our intuition is that the gap is due to the lack of long-term credit

5We present results in rounds for simplicity. Appendix C connects rounds to cumulative number of interac-
tions. Appendix E presents full tables corresponding to these plots.

6The reasons behind the plateau are hard to infer. One hypothesis we considered is that changes in the amount
of data over time made some settings sub-optimal. Specifically, we considered our LoRA adapter settings, as
they impact the expressiveness of fine-tuning. We conducted a separated deployment, branching out from round
three for two rounds (four and five) with B-SUP and more expressive adapters. We observed this increase in
expressivity allows the model to continue its monotonous improvement. Appendix D provides the details. This
mini experiment illustrates the complexities of continual learning with current learning systems.
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Figure 4: Task performance and efficiency improve as the policy learns from more past interactions.
We present deployment results across three rounds for six concurrent systems, and three more rounds
for the top system B-SUP, together with human-human references (HH) and a redeployment of the
initial policy πθ0 (CONTROL). Left: interaction-level success rate (↑, higher is better). Center:
interaction-level efficiency by # turns per interactions (↓). Right: micro-level performance by click
accuracy (↑). Shades are 95% confidence intervals by bootstrapping with 10,000 resamples.
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(â
,a
∗ )

0 1 2 3 4 5 6
Round

30%

40%

50%

Po
s

fe
ed

ba
ck

B-SUP CONTROL NEG FB

Figure 5: Turn-level performance of B-SUP evaluated by post-hoc human annotations. Left: % turns
where the policy’s action â matches exactly the human listener’s action a∗ (↑). Center: similarity
between the policy’s action and the human listener’s action (↑). Even actions that receive negative
feedback in deployment (NEG FB) are increasingly similar to human actions. Right: % turns that
annotated to have received positive implicit feedback from human listeners (↑).

assignment in our learning method. This is especially influential in learning to reason about later turns.
Later turns show much stronger dependence on earlier turns, creating a more complex reasoning
problem and a harder credit assignment problem. This learning challenge is compounded by data
scarcity: we have significantly less data for later turns, as not all interactions include them. This can
potentially be addressed by not including all past turns in the context (i.e., sliding window approach).

User Adaptation A potential confounder is user adaptation: the improvement in interaction success
rate could have been attributed to users adapting to the interaction scenario and the system, instead of
policy improvement (Hawkins et al., 2020a). We redeploy the initial policy πθ0 concurrently to final
B-SUP round to test this (CONTROL in Figure 4). The interaction success rate of CONTROL remains
relatively stable over time (31% → 33%), suggesting that speaker familiarity and adaptation do not
explain the overall 51% absolute improvement in B-SUP interaction success rate.

Positive Only vs. All Data The difference between systems using positive learning signals only
(B-SUP, T-SUP) and those using all (B-RL, T-RL, B-KTO, T-KTO) is in learning objectives (supervised
vs. RL/KTO). Overall, the systems based on positive signals only perform better. It is expected that
positive signals will be more informative for learning. Our policy acts in a large action space. Negative
rewards suppress specific actions, but without more information about what a good action is, they
simply encourage a uniform distribution. This has been shown to have a helpful regularizing effect in
past work (Kojima et al., 2021). However, not only does negative feedback not help meaningfully, it
seems to confuse the learner. The positive-only systems that, in effect, have access to fewer learning
signals perform better. Utilizing negative signals better is an important direction for future work.
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Figure 6: Confusion matrices of the binary (top row) and ternary (bottom row) feedback decoders
over rounds. Feedback decoders yield negligibly low false positives (top right corner), even in early
rounds. The feedback decoder also correctly classifies more than 60% (diagonals) across rounds.

Feedback Decoder Evaluation We evaluate the quality of the feedback decoder through our
annotation task. For each turn, workers annotate if the speaker was satisfied with the answer given
their followup utterances. Figure 6 shows feedback decoding confusion matrices over time. The
feedback decoder performance is relatively stable throughout the rounds, showing robustness to
changes in the data distribution. If we collapse together actual positives and neutrals, we observe
above 90% precision consistently. The ternary feedback decoder is more conservative compared to
the binary one and labels more positive turns as neutrals. This is a task-dependent trade-off. The zero
feedback of neutrals essentially eliminates the examples, but allows for slightly cleaner data. Here
we empirically observe it is beneficial to have slightly noisy data but more of it.

Supervised vs. REINFORCE vs. KTO Overall, the supervised variants (B-SUP and T-SUP)
perform best. The KTO variants (B-KTO and T-KTO) trail after the REINFORCE variants (B-RL,
T-RL). B-KTO even diverges at some point and starts losing performance fast. We suspect this is
because the KTO recipe does not work well in the challenging optimization scenario of continual
learning, where the model is fine-tuned multiple times. We observe that B-KTO deteriorates in rounds
two and three, and starts generating illegal outputs (e.g., Deselect select). Appendix B.3 describes
a quick intervention we applied to try to mitigate this issue. Although it eliminated the illegal outputs,
the quality remained low. It is possible that further refinement of how KTO is used or further tuning
of its hyperparamters will help. However, this is a complex process in a live deployment.

Language Analysis We analyze the human instructions and how they change as the policy learns
from more interactions (Figure 7). We observe a reduction in vocabulary size and utterance length
early on. This is expected, and follows known observations in how humans adapt to reduce cognitive
costs (e.g., Clark & Wilkes-Gibbs, 1986; Effenberger et al., 2021). However, in later rounds, B-
SUP witnesses an increase in vocabulary size and utterance length. This surprising trend reversal
is attributed to only three outlier workers, so does not express a significant change in population
behavior. The number of reset signals drops, another reflection of improved collaborated task
performance. Such trends are fairly consistent across system variants, except for B-KTO, which also
shows divergence in performance. We observe that initially workers tend to use Try again instead of
directly describing a target, or request a reset with instructions like Deselect everything (Figure 15
and Figure 16). The occurrences of both decrease in later rounds. Even though the workers change
their language, this does not really help the initial policy πθ0 , which remains poor (Figure 4).

7 RELATED WORK

Learning from Feedback Learning from feedback for LLMs is being studied extensively. RL from
human feedback (RLHF) is maybe the most common technique (Ouyang et al., 2022). It relies on
soliciting pair-wise preferences from annotators, which is significantly different than our reliance
on unpaired signals from the interaction itself. Learning from feedback on a single system output
has also been studied, either in the form of binary feedback (Ethayarajh et al., 2024; Suhr & Artzi,
2023; Gao et al., 2023) or through more expressive editing (Gao et al., 2024) or commenting and
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Figure 7: Language analysis of human instructions. All systems show a decrease in instruction
complexity in the first three rounds, except for B-KTO, suggesting adaptation and improved efficiency
on the speaker’s side. Keyword-based analysis reveals that the number of reset/frustration signals
drops, a reflection of the model learning and collaboration improving.

refinement (Li et al., 2017; Sumers et al., 2021; Scheurer et al., 2023). Hancock et al. (2019) trains
a separate supervised model to continually predict satisfaction levels, which is then used to pause
interactions and solicit explicit feedback. We do not solicit feedback, but rely on natural signals that
arise from the followup interaction. Some of these include explicit feedback, but many do not.

Learning from Naturally Occurring Signals Kojima et al. (2021) presents an approach to learn
to generate instructions by observing how humans follow them, a complementary mode of learning
to our focus on general response. Pang et al. (2023) maximizes heuristics, such as the chance of
long responses from humans, in a chatbot scenario. Artzi & Zettlemoyer (2011) studied the use
of naturally occurring recovery efforts (i.e., when the user switches to simpler language to relay
information) to train a symbolic semantic parser from a corpus of dialogue interactions. In contrast,
we opt for a general approach to infer feedback from natural language interactions of the model itself.

Concurrently to our work, Don-Yehiya et al. (2024), as well as Petrak et al. (2023), proposes an
approach that uses naturally occurring feedback in conversations to filter a large conversational
corpus. The linguistic cues they rely on are similar to ours. Unlike our study, the model they improve
is not the model that generated the interactions, creating a distillation-like setup, where improvement
is not coming from the model’s own interaction, but from other models. We focus on model self-
improvement, where it is critical that no stronger model is involved. Another difference is our interest
in continual deployment with humans, whereas they follow a standard train-test benchmarking recipe.
This allows our work to expose dynamics that are otherwise hidden. Our work and Don-Yehiya et al.
(2024) complement each other and strengthen our conclusions. Their work shows the signal can be
derived from large-scale diverse data, whereas ours shows how a single-model loop can work over a
long period of time, and the dynamics it creates.

LLMs that Self-improve A common approach to improve models is via AI feedback, solicited
from the model itself or another model (Bai et al., 2022; Burns et al., 2023; Madaan et al., 2023;
Kumar et al., 2024; Qu et al., 2024; Yuan et al., 2024; Li et al., 2024). In contrast, we elicit real human
feedback automatically from the interactions in deployment. This signal is more on-the-job, and
less influenced by model biases. We also use the same model for interaction and inferring feedback,
ruling out concerns about distillation.

8 DISCUSSION

We introduce RESPECT: retrospective learning from interactions, an annotation-free approach by
leveraging signals from naturally occurring feedback in interactions. We demonstrate its effectiveness
in long-term deployments and robustness to system variants. As opposed to evaluating on a static
benchmark, we design MULTIREF to study real interactions over a period of time. We make trade-offs
between the generality of the task, and the ability to iterate on a prototype fast, and without high costs.
It is important to expand this type of study to other tasks, such as summarization or conversational
question answering, where similar signals may be more complex, far apart, or demand long-term
credit assignment. Another interesting orthogonal direction is expanding the expressivity of the
feedback decoder, such that it recovers a more expressive signal (e.g., a natural language explanation).
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A THE MULTIREF GAME DESIGN AND DATA COLLECTION

A.1 INTERACTION DESIGN

MULTIREF is a multi-target, multi-turn reference game between two players, a speaker and a listener.
Each game starts with 10 tangrams as the context, with 3–5 tangrams designated as targets. The
target designations are revealed to the speaker but hidden to the listener. The goal is to select all
targets without selecting any non-targets. The speaker can only communicate with the listener
through a sequence of utterances, and only the listener can take selection and deselection actions. The
interaction starts with a speaker turn. Turns alternate between speaker and listener, with a maximum
of 20 turns. In each speaker turn, they type an utterance to send to the listener. Speaker turns are
limited to 25 seconds. In each listener turn, they have 45 seconds to select or deselect images as
instructed to by the speaker. The game concludes when the listener selects only and all targets, or the
when the partners run out of turns. Appendix A.3 shows screenshots of the interface.

Context Construction We follow Gul & Artzi (2024) and construct game contexts using 1,013
tangram images from KILOGRAM Ji et al. (2022). We group tangrams randomly into two splits:
development split (101 tangrams) and main split (912 tangrams). The development split is exclusively
used for seeding the initial listener policy π0. All human-bot interactions are constructed from the
main split, i.e., tangrams that the seed policy π0 has never seen before. We construct all games with
3–5 target tangrams. More targets are generally harder, given the same maximum number of turns
per interaction.

A.2 HUMAN EVALUATION DESIGN

Automatically evaluating turn-level policy performance is hard, because we have no ground truth
(i.e., the selection and deselection actions intended by the speaker in each turn) to compare against.
Similarly, we have no ground truth to systematically assess the feedback decoder quality. We conduct
human evaluation surveys to address these problems. We annotate a subset of B-SUP interactions,
roughly 120 interactions or 1,000 turns per system-turn.

We show human annotators a complete interaction turn by turn, without revealing the underlying
targets. For each turn, the annotation consists for two phases:

1. Ground-truth: we show context, currently selected tangrams, and instruction given by the
speaker. We ask the annotator to annotate the listener action. The annotator action a∗ is
considered as ground truth action for this turn. We use these labels for tune-level evaluation.
After the action annotation, we reveal the action â actually taken by the listener (i.e., the
model) during the interaction.

2. Satisfaction: we present the follow-up utterance. We ask the annotator to rate if the speaker
is satisfied with the listener’s action, based on the follow-up utterance. They choose one of
the following options:

a. Yes.
b. Yes, even though the listener did not perform all required selections/deselections.
c. Yes, even though the listener made incorrect selections/deselections.
d. No.

The third option accounts for the listener accidentally selecting a target tangram not intended
by the speaker, but the speaker choosing to move on without correction or even validating
the selection. We treat these labels as ground truth for evaluating feedback decoders.

We annotate 5% of long-term human-bot interactions annotations by three different annotators, to
estimate how reliable the annotations are. We observe 85% agreement on the correctness (whether
â = a∗) on ground truth stage,7 and 65% agreement on the ground-truth action a∗ across workers.8

For satisfaction annotation, we observe 93% agreement rate, illustrating the relative simplicity of
extracting the signal that drive our learning process.

7The percentage of cases where all annotators agree that the bot did right or wrong.
8The percentage of cases where all three annotators provided exactly the same set of actions.
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Figure 8: The MULTIREF interface for the speaker in turn 1. Predefined targets are revealed to the
speaker in black boxes.

A.3 MTURK DETAILS

Worker Recruitment We follow Gul & Artzi’s (2024) worker recruitment recipe. We require
workers to have a minimum 98% approval rate, at least 1,000 approved HITs (Human Intelligence
Task), and be located in English-majority locales. All workers must watch a video tutorial and pass a
quiz before gaining qualification to work on MULTIREF interactions. They must read a thorough
guideline and pass another quiz before granted access to human evaluation surveys. We recruit 33
expert workers to interact with LLMs in the main study and annotate by completing surveys after the
main study. This study is exempted by Institutional Review Board.

Payment We pay workers $0.81 USD per MULTIREF game, and a bonus if the game is successful.
Overall the estimated hourly wage is $13.00 USD, and closer to $23.00 USD by the end of the
continual study when the LLM is fairly good at the game. On average a human-bot game takes
under 2 minutes. We pay workers $0.06 USD per turn for human evaluation surveys, or $0.08 USD
if the turn annotation involves error modes. The estimated hourly wage is $16.00 USD for human
evaluation surveys. On average it takes under 2.5 minutes to annotate one game. We set the payment
scheme through pilot studies and aim at $15.00 USD hourly wage.

Interface and Serving We implement MULTIREF using Empirica (Almaatouq et al., 2021) and on
top of the code base of Gul & Artzi (2024). The speaker has 25 seconds to type into a chat box each
turn and hit Enter or submit, and the listener has 45 seconds to click on the tangrams to select or to
deselect. The game ends if one party idles for one turn, and the party idling is not compensated. We
serve on an EC2 instance. We serve LLM policies with the Ray framework (Moritz et al., 2018). We
walk through the first turns of a sample interaction in Figure 8, Figure 9, and Figure 10.
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Figure 9: The MULTIREF interface for the listener in turn 2, following the speaker turn in Figure 8.
Targets are hidden for the listener, and the context tangrams are in a different order. Here the listener
has selected a tangram given the instruction select the butterfly.

Figure 10: The MULTIREF interface for the speaker in turn 3, following the listener turn in Figure 9
The listener selected a non-target tangram, shown in red to the speaker.
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Policy prompt

System: <img>A <img>B <img>C <img>D <img>E <img>F <img>G <img>H
<img>I <img>J . . . . . . . . . . . . . . . . . . . . . (Context tangrams tagged by code names)
System: none is selected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Turn 1 state)
User: Select the letter S with the large triangle back side . . . . . (Turn 1 utterance)
Assistant: Select J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Turn 1 action)
System: J currently selected
User: unselect that one and try again
Assistant: Deselect J select A
System: A currently selected
User: almost, unselect that one and try one more time
Assistant: Deselect A select G
System: G currently selected
User: correct. Now select the rabbit facing right
Assistant: Select F
System: F G currently selected
User: no that is a bird, try again
Assistant: Deselect F select H
System: G H currently selected
User: no that is another bird, try again
Assistant: Deselect H select F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Action)

Figure 11: Policy prompt example with a model predicted action and additional comments for
readability.

B LEARNING DETAILS

B.1 INTERACTION REPRESENTATION

We encode the context x as in Figure 11. We standardize action representation by ordering actions,
for example, always produce Select A C rather than Select C A. We shuffle the context images
during training as the order of context tangrams should not have any impact on the interaction logic.

B.2 POLICY INITIALIZATION

We seed the initial policy π0 by fine-tuning the model on a small dataset of 90 turns D0, where both
the speaker and the listener are humans. We also experimented with prompting to initialize the policy.
We find early that few-shot prompting yields a random policy at best, likely because reasoning with
abstract shapes such as tangrams is visually out-of-distribution for the model.

There is a significant distribution shift between human-human interactions, and human-policy interac-
tion, especially early on when the model performs poorly. In practice, two major differences are the
length of interactions and the prevalence of deselection instructions, which are rare in human-human
interactions. We address the deselection issue with data augmentation. We synthetically generate
turns where the speaker asks for deselections, and the listener complies. We augment the data with
these at a ratio of 1:12 to the existing data. This helps the LLM policy learn to deselect and recover
from mistakes. This augmentation is only used for D0 and such distribution shift is not present in
alter rounds, when learning from actual human-bot interactions.

B.3 HYPERPARAMETERS AND OTHER IMPLEMENTATION DETAILS

We use the instruction-tuned IDEFICS2-8B model for all policies. We fine-tune with LoRA
adapters (Hu et al., 2022) (α=r=8, dropout=0.1) due to compute constraints. Appendix D pro-
vides more LoRA details. We train each model with a single GPU, RTX A6000, NVIDIA A100
40GB or 80GB. The time to train ranges between 2–24 hours, longer in later rounds as more data
accumulates. For stopping criteria, we pick checkpoints by highest accuracy (exact match) among
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Policy prompt with deselection augmentation

[Previous turns omitted]
System: none is selected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Previous turns)
Speaker: Man in a hat
Listener: Select A
System: A currently selected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Augmented state)
Speaker: Wrong, undo what you selected . . . . . . . . . . . . . . . (Augmented utterance)
Listener: Deselect A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Augmented action)

Figure 12: An example of deselection augmentation with augmented action and comments.

three seeds on a hold-out validation set of 344 turns DHH
val . The validation set is curated from 92

human-human games the main split of tangrams. We summarize hyperparameters in Table 1.

Hyperparameter Search Space Supervised REINFORCE KTO

Optimizer AdamW AdamW RMSProp
Learning rate {1e-6, 1e-5, 1e-4, 2e-4} 1e-4 1e-4 1e-5
Learning rate decay {no, cosine, linear} cosine cosine no
Epochs {5, 10, 20, 40} 20 20 20
Warm-up steps {0, 10, 50} 10 10 10
Weight decay {0, 0.01, 0.1} 0.01 0.01 0.01
Effective batch size {16, 32, 48, 64, 128} 64 64 64
Entropy weight {0, 0.01, 0.5, 0.1} 0.01 0.01 0.1
βKTO {0.01, 0.1, 0.5} 0.5
Temperature 1 1 1

Table 1: Hyperparameter settings.

Data Imbalance The decoded feedback is imbalanced, with more negative examples than positive
examples (3:1 to 2:1), especially at early rounds of continual learning. We address this by weighing
the loss by the absolute value of the reward, i.e., −0.1 for RL or λd and λu for KTO, and by
downsampling negative examples per batch, such that the number of positive examples and negative
examples is roughly 5:4.

KTO Stability Deviation from the original KTO implementation by higher learning rate, higher
β, more epochs, produce better results empirically on the validation set in pilot and round ρ = 1.
However, in round ρ = 2, B-KTO policy start to degenerate by producing nonsensical actions such as
Deselect A select A B or Deselect select select. We attempt to mitigate this issue during
training round ρ = 3 by switching from weighing λd = 4 and λu = 1 as recommended in Ethayarajh
et al. (2024) to λd = λu = 1, plus downsampling negative examples. We also introduce regex-based
constrained decoding to prevent nonsensical actions for B-KTO and T-KTO policies in round ρ = 3.
Despite that, the KTO group performs worse in live interactions (Figure 4). We suspect KTO is more
challenging to optimize for iterative continual learning, but we suspect further tuning (with higher
computational costs) can reduce or even eliminate these issues.

B.4 EVALUATION METRICS

Interaction-level Metrics Interaction performance and statistics are computed automatically from
live deployment interactions. They do not require further annotation.

1. Success rate = # successful interactions / # all interactions. An interaction is successful if
the listener selects all and only targets before running out of 10 turns. This is the primary
metric we use to evaluate the performance of the LLM policy.

2. # Turns per interaction. This is a measure of collaborative efficiency.
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Turn-level Metrics with Reference to Human Annotation We compute turn-level metrics either
with respect to HH games where we consider human listener action as ground truth (e.g., DHH

val ), or with
respect to B-SUP games where we consider actions a∗ annotated in post-hoc surveys as ground truth.
When computed with live interactions, these metrics are biased towards longer or failed interactions
because they have more turns than successful interaction.

1. Exact match = # exact match / # all turns. An exact match is when the action taken by the
policy matches exactly the action labeled/taken by human listeners (â = a∗).

2. Similarity = Sim(â, a∗) is a composite metric. Let f(p, q) : I × I → R be a function that
evaluates the similarity of between two images p, q ∈ I. Let the action taken by policy be
â = {p̂1, p̂2, ..., p̂n̂, q̂1, q̂2, ..., q̂m̂} where p are the selected tangrams and q are the deselected
tangrams. Denote the ground truth actions as a∗ = {p∗1, p∗2, ..., p∗n∗ , q∗1 , q

∗
2 , ..., q

∗
m∗}. The

similarity between two actions is defined as:

Sim(â, a∗) =
1

n̂n∗ + m̂m∗

(
Σn̂

i=1Σ
n∗

j=1f(p̂i, p
∗
j ) + Σm̂

i=1Σ
m∗

j=1f(q̂i, q
∗
j )
)

.

If only one of n̂ and n∗ is zero, we rewrite Σn̂
i=1Σ

n∗

j=1f(p̂i, p
∗
j ) with −max(n̂, n∗), and

n̂n∗ in the denominator with max(n̂, n∗), intuitively assigning -1 for each missed selection.
This edge case is similarly treated for m̂, m∗ and deselection. We compute similarities using
embeddings from the tangram fine-tuned CLIP model of Ji et al. (2022) .

3. Positive feedback = # turns receiving positive feedback / # all turns. An action receives
positive feedback if speaker is satisfied with the listener’s action in the followup interaction.
This is labelled in human evaluation survey.

Micro-level Metric with Reference to Ground Truth Targets We compute click accuracy with
respect to the ground truth targets (instead of the targets intended by the speaker). This is cheaper
because it does not require human annotation, so we can compute it for all system variants and all
interactions. However, this measure produces false positives when an action selects a target not
intended by the speaker. In practice, though, we find it correlates well with our human-annotated
evaluation.

We compute click accuracy for a turn given its context x and action â. We denote the set of ground
truth targets in this interaction as T , the set of currently selected context tangrams as S , then for each
click c in â (select or deselect), we compute the click accuracy as:

Click accuracy(c, T ,S) =
{
1 if (c ∈ T ∧ c /∈ S) ∨ (c /∈ T ∧ c ∈ S)
0 otherwise

Intuitively, a click is approximately accurate if it selects a target or deselects a non-target. We compute
this for all clicks from all interactions in a round for all systems in Figure 4.

Corpus-level Metrics We analyze speaker instructions per system-round. The keyword used to
generate the analysis in Figure 7 are:

1. # Reset = occurrences of phrases in {reset, restart, from scratch, all over, start over, deselect
everything, deselect all, remove everything, remove all, clear everything, clear all, unselect
everything, unselect all, drop everything, drop all }

2. # Try again = occurrences of phrases in {try again, try one more time, the other one }
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C CUMULATIVE NUMBER OF INTERACTIONS OBSERVED

The main text includes results by round. We collect roughly 330 interactions per policy per round.
Due to the uncertainty of live data collection, we do not always hit this exact number for each variant
and round. Figure 13 shows the cumulative number of human-bot interaction seen by a policy variant
by each round.
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Figure 13: Cumulative number of human-bot interactions used to train the policy each round.

D ADDITIONAL ENHANCED LORA LAUNCH

We suspect the plateau of B-SUP in Figure 4 is partially due to the limited expressivity of LoRA
adapters we used. We test this hypothesis by deploying round ρ = 4 and ρ = 5 again with enhanced
LoRA adapters. We use the same hyperparameters as in Section B.3 except additional adapters. The
original adapter placement is on the text model, the modality projector, and the perceiver resampler.
Adapters include the down projection layers, the gate projection layers, the up projection layers,
and the key/query/value projection layers. In comparison, the enhanced launch adds adapters on the
vision model, including the out projection, the first and the second fully connected layers, besides the
projection layers on text models. Figure 14 shows the results from this complementary deployment.
The enhanced LoRA adapters yield a small improvement in interaction success rate compared to
the original launch, yet the overall slowdown is evident. This suggests LoRA expressivity has some
effect, but other effects are also limiting the LLM policy from continuing its earlier improvement
trends.
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Figure 14: Success rate of B-SUP with additional LoRA adapters in round 4 and 5.
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E DETAILED RESULTS

We present numerical results of metrics for interaction level performance in Figure 2 (Table 2, Table 3,
Table 4), human evaluation performance in Figure 5 (Table 5, and language analysis in Figure 7
(Table 6, Table 7, Table 8, Table 9).

Round 0 1 2 3 4 5 6

B-SUP 31.4 55.1 66.9 78.7 77.1 77.3 81.9
T-SUP 31.4 55.8 67.8 74.0 - - -
B-RL 31.4 50.0 64.4 70.7 - - -
T-RL 31.4 56.8 62.4 70.3 - - -
B-KTO 31.4 45.1 52.0 46.9 - - -
T-KTO 31.4 50.0 61.7 66.1 - - -
CONTROL 31.4 - - - - - 33.0
HH - - - - - - 100.0

Table 2: Interaction task success rate in percentage (↑). We collect roughly 330 human-bot games per
datapoint, except for HH where we only collect 50 games. Round 0 is shared among systems, except
for HH. All system are deployed for three rounds, and the top performing one (B-SUP) is deployed
for additional three rounds; preempted or not-applicable rounds are marked with dash (-). We bold
the highest task success rate in a round.

Round 0 1 2 3 4 5 6

B-SUP 8.87 8.16 7.33 6.99 6.92 6.87 6.71
T-SUP 8.87 7.95 7.44 7.14 - - -
B-RL 8.87 8.10 7.42 7.22 - - -
T-RL 8.87 7.94 7.60 7.24 - - -
B-KTO 8.87 8.15 7.66 8.03 - - -
T-KTO 8.87 8.06 7.56 7.27 - - -
CONTROL 8.87 - - - - - 8.75
HH - - - - - - 4.61

Table 3: # turns per interaction (↓). Maximum 10 turns. Each game has 3-5 targets and HH games
usually take one turn per target. We bold the fewest # turns per interaction in a round.

Round 0 1 2 3 4 5 6

B-SUP 59.7 64.0 67.2 69.9 69.8 69.5 72.2
T-SUP 59.7 65.2 67.1 68.9 - - -
B-RL 59.7 63.8 66.6 68.8 - - -
T-RL 59.7 64.9 65.0 67.0 - - -
B-KTO 59.7 60.7 61.6 58.5 - - -
T-KTO 59.7 62.1 63.2 64.0 - - -
CONTROL 59.7 - - - - - 60.5
HH - - - - - - 89.3

Table 4: Click accuracy in percentage (↑). We bold the highest click accuracy in a round.
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Round 0 1 2 3 4 5 6 CONTROL HH

Exact match 30.7 38.4 44.8 47.2 48.7 46.7 52.3 31.7 79.1
Pos Feedback 33.0 39.2 43.1 47.5 49.1 49.4 50.4 34.6 78.4
Sim(â, a∗) 19.0 34.8 42.5 46.0 47.7 43.5 51.3 19.4 83.8
Sim(â, a∗) -FB 0.0 13.6 19.2 23.9 23.3 15.6 25.7 1.4 67.9

Table 5: Turn level performance of B-SUP based on human evaluation, all in percentages (↑).

Round 0 1 2 3 4 5 6

B-SUP 1458 1400 1283 1179 1206 1211 1307
T-SUP 1458 1361 1279 1206 - - -
B-RL 1458 1352 1248 1187 - - -
T-RL 1458 1310 1306 1164 - - -
B-KTO 1458 1324 1183 1238 - - -
T-KTO 1458 1303 1332 1184 - - -
CONTROL 1458 - - - - - 1311
HH - - - - - - 433

Table 6: Vocabulary size of different systems across rounds.

Round 0 1 2 3 4 5 6

B-SUP 8.78 8.87 7.94 8.49 8.53 8.30 9.23
T-SUP 8.78 8.69 8.24 8.49 - - -
B-RL 8.78 8.29 7.94 8.45 - - -
T-RL 8.78 8.42 8.39 8.26 - - -
B-KTO 8.78 8.29 8.59 8.57 - - -
T-KTO 8.78 8.05 8.41 8.05 - - -
CONTROL 8.78 - - - - - 8.19
HH - - - - - - 8.49

Table 7: Utterance length of different systems across rounds.

Round 0 1 2 3 4 5 6

B-SUP 19 11 14 7 6 9 6
T-SUP 19 5 3 2 - - -
B-RL 19 10 17 9 - - -
T-RL 19 3 9 6 - - -
B-KTO 19 17 42 47 - - -
T-KTO 19 13 21 8 - - -

Table 8: # Reset words of different systems across rounds.

Round 0 1 2 3 4 5 6

B-SUP 42 24 14 3 4 4 14
T-SUP 42 15 7 5 - - -
B-RL 42 16 12 4 - - -
T-RL 42 21 15 6 - - -
B-KTO 42 20 5 9 - - -
T-KTO 42 11 6 6 - - -

Table 9: #Try again words of different systems across rounds.
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F FEEDBACK DECODER DESIGN

The prompt design is minimal, general, and task-agnostic. We validate the prompt with manual
inspection prior to continual learning launch and human surveys. Considering only the most recent
two action-utterance turns ⟨âi−1, ui, âi, ui+1⟩ is sufficient to produce satisfactory decoding results,
and more history seems to distract the decoder.

We also experimented with numerical reward (i.e., decoding a real number), experimenting with a
discretized reward space of {.0, .1, .5, .9} . Our experiments show the model is not well calibrated
for such decoding.

G INTERACTION CASE STUDIES

Figures 15–18 show case studies that illustrate the diversity of MULTIREF interaction scenarios.
Black borders indicate targets. Yellow dots indicate actions taken by the listener. Green borders
indicate correct selections, while red borders indicate wrong selection.

Initial context

Turn 1: get the bird flying

Turn 2: get the flat table with pointed bottom underneath

Turn 3: get the shape that is flat on the bottom and jagged on top

Turn 4: great. now get the shape that looks like a J

Turn 5: no, not that one. this one is tall and skinny. it looks like a J with a square on top.

Turn 6: no, not that one. deselect it and try again.

1

Figure 15: The speaker is left with the last target at Turn 4. Failing, they provide an additional
description in Turn 5, and eventually resort to “try again” without describing the target in Turn 6.
The initial turns illustrate how feedback is implied, rather than specified explicitly. The interaction
concludes successfully.
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Initial context

Turn 1: looks like a spaceship with a point on top

Turn 2: no deselect looks like a figure bent over

Turn 3: no deselect everything

Turn 4: yes looks likr a bottle with a square lid

Turn 5: yes looks like a small triangle on a flat surface

Turn 6: no deselect looks like a house with an open door

Turn 7: yes looks like a fgure bent over facing right

1

Figure 16: The speaker asks to deselect everything in Turn 3 to reset, an expression of frustration.
The interaction concludes successfully.

H FEEDBACK DECODER ERROR AND POTENTIAL FIX

Roughly 15% of feedback decoder predictions are false negatives, see Figure 6 top row, and an
example in Figure 19. We handle negatives in different ways in our experiments, but generally
negatives examples have less impact than positive ones, so the learner is robust to false negative noise.
Of course, it does mean that we are losing valuable positive data, and reducing this error rate is an
important direction for future work. This can potentially speed up learning further.

I ETHICAL CONSIDERATIONS

Deploying our approach to learning from human-model interactions suffers the same risks as ap-
proaches that fine-tune on interaction data. It is critical to remove sensitive and private information
by data filtering or other techniques.
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Initial context

Turn 1: a W shape on top of a table

Turn 2: Yes. A triangle next to a tall pole

Turn 3: Yes. The front of a dog. We can’t see his tail.

Turn 4: No, we can’t see his tail. Just the head and front paw.

Turn 5: No, that’s not it

Turn 6: You have three correct. Select the bear front

Turn 7: No, that’s not it. his ear is sticking up.

1

Figure 17: The abstractness and ambiguity of tangrams lend to complex interactions. There are two
dogs in the context, and the listener struggles to disambiguate or identify the target. The interaction
concludes successfully.
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Initial context

Turn 1: Find the two people.

Turn 2: Well done. Now select the stacked squares with a spout on the left side

1

Figure 18: The speaker asks for two targets in Turn 1, exemplifying Grice’s Maxims of Quantity -
one tries to be as informative as one possibly can, and gives as much information as is needed, and
no more (Grice, 1975). The interaction concludes successfully.

Feedback Decoder Case Study (False Negative)

User: Please carefully read the following conversation and answer: Is the very last utterance
from the speaker positive or negative feedback? Often negative feedback include corrections
and keywords like no, not, undo, don’t, with generally negative sentiment, while positive
feedback often includes good, yes, correct, okay, or simply move on to the next stage. Lean
towards negative if it sounds neutral.
(start of the conversation)

Speaker: house

Listener: Select F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Action to focus on)

Speaker: horned roof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Feedback)

(end of the conversation)
Answer a single word, Positive, or Negative
Assistant: Negative

Figure 19: Feedback decoder false-negative example: the feedback decoder fails to recognize an
implicit positive feedback from the speaker by moving on to the next target. The verbal feedback
generated by the model is in bold. Additional comments for readability are in italics.
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