
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CHARACTERISTIC FUNCTION-BASED
REGULARIZATION FOR PROBABILITY FUNCTION
INFORMED NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Regularization is essential in neural network training to prevent overfitting and
improve generalization. In this paper, we propose a novel regularization tech-
nique that leverages decomposable distribution and central limit theory assump-
tions by exploiting the properties of characteristic functions. We first define Prob-
ability Function Informed Neural Networks as a class of universal function ap-
proximators capable of embedding the knowledge of some probabilistic rules
constructed over a given dataset into the learning process (a similar concept to
Physics-informed neural networks (PINNs), if the reader is familiar with those).
We then enforce a regularization framework over this network, aiming to impose
structural constraints on the network’s weights to promote greater generalizability
in the given probabilistic setting. Rather than replacing traditional regularization
methods such as L2 or dropout, our approach is intended to supplement this and
other similar classes of neural network architectures by providing instead a con-
textual delta of generalization. We demonstrate that integrating this method into
such architectures helps improve performance on benchmark supervised classi-
fication datasets, by preserving essential distributional properties to mitigate the
risk of overfitting. This characteristic function-based regularization offers a new
perspective for enhancing distribution-aware learning in machine learning models.

1 AN INTRODUCTION AND (RATHER INFORMAL) DEFINITION OF
PROBABILITY FUNCTION INFORMED NEURAL NETWORKS

Let’s define Probability Function Informed Neural Networks (PFINNs) as a class of universal func-
tion approximators designed to integrate probabilistic knowledge into the learning process and more
specifically into the learning architecture. Refomulating concepts from Physics-Informed Neural
Networks (PINNs), which leverage physical laws to guide the training of neural networks (Cuomo
et al., 2022), we can say that PFINNs focus on embedding probabilistic rules into a networks con-
struction from the practitioner’s understanding of a given dataset.

At their core, PFINNs aim to enhance the learning of complex relationships and mappings by util-
ising the underlying probability distributions that characterize the data. This allows the model to
incorporate essential statistical information, which can lead to some level of interpretability. By
explicitly encoding probabilistic principles, such as conditional dependencies or marginal distribu-
tions, into the neural network architecture, PFINNs should be able better navigate the search space
of the data they are trained on to give more reasonable results as a functional approximator.

In simpler terms, PFINNs can be thought of as neural networks that not only learn from data but also
respect some probabilistic structures the practitioner would like to embed into the network that they
believe governs that data. This makes them particularly powerful for applications where uncertainty
plays a significant role, allowing practitioners to build models that are not only predictive but also
statistically sound for their context.

To explore the existence of PFINNs as (neuro)symbolic AI and as hybrid systems would require
significantly more than 9 pages in a manuscript. We believe instead, it is best to begin with a
simple PFINN architecture example derived from the lens of generalising the MNIST dataset and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

associated classification task. Where the main focus of this paper will be on presenting a general
characteristic function-based regularization method for contextual regularization, aimed at making
these interpretable models—particularly from a probabilistic perspective—more generalizable via
”relaxation” of the model through this regularisation.

.

2 MATHEMATICAL CONSTRUCTION OF A TYPE OF SIMPLE PFINN FROM
GENERALISATION OF THE MNIST DATASET AND ASSOCIATED
CLASSIFICATION PROBLEM

The MNIST dataset is a widely used benchmark in the field of machine learning, consisting of
images of handwritten digits. Mathematically, we can describe the dataset and the classification
problem as follows:

2.1 DATASET DESCRIPTION

The MNIST dataset can be formally defined as a collection of pairs:

D = {(xi, yi)}Ni=1

where:

• xi ∈ R28×28 represents a grayscale image of a handwritten digit, with each image being a
28× 28 pixel array.

• yi ∈ {0, 1, 2, . . . , 9} denotes the corresponding label, indicating the digit represented in
the image xi.

• N is the total number of samples in the dataset, typically N = 60, 000 for the training set
and N = 10, 000 for the test set.

Each image xi can be flattened into a vector:

xi ∈ R784

by concatenating the rows of the 28× 28 array.

2.2 CLASSIFICATION PROBLEM

The goal of the classification problem is to learn a mapping f : R784 → {0, 1, 2, . . . , 9} such that
for a given input image xi, the model predicts the correct digit label yi.

This is usually formulated as a supervised learning problem. For the sake of succinctness and sim-
plicity to understand methods introduced later in the paper more easily, we will make our first
assumption about the data in this dataset :
Assumption 1 (Linear Separability). We assume that the classes in this dataset are linearly separa-
ble. This means that there exists a hyperplane defined by the equation:

wTx+ b = 0

such that for all instances xi belonging to class C1, the following condition holds:

wTxi + b > 0,

and for all instances xj belonging to class C2, the following condition holds:

wTxj + b < 0.

Here, w is the weight vector, b is the bias, and x represents the feature vectors of the dataset.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Advantages of this Assumption: This means we can construct a network without any hidden layers
where each input node is directly connected to the output node.

Associated Pitfall to be noted : Without hidden layers, a neural network is limited to approxi-
mating only linear functions. Consequently, such a network does not qualify as a true ”universal
approximator” and hence is not a perfect PFINN by definition. However, this design choice, is in-
tentional; it simplifies the methodology and reduces obfuscation, making conveying core ideas we
wish to demonstrate later in this paper more accessible. Also any practitioner can easily incorporate
hidden layers with appropriate activation functions, thereby extending this architecture to a universal
approximator; granted they have developed a general understanding of the methods presented here
and possess the requisite knowledge of the universal approximation theorem (Hornik et al., 1989)
(Cybenko, 1989), as well as the principles necessary for constructing architectures that align with
the definitions outlined in the proofs.

2.3 NETWORK CONSTRUCTION

Taking this structure our architecture is as follows:

• Input Layer: The input layer consists of 784 neurons, corresponding to the 28× 28 pixel
images in the MNIST dataset. Each input neuron xi represents the pixel intensity value of
the image:

xi ∈ [0, 1], for i = 1, 2, . . . , 784

• Output Layer: The output layer consists of 10 neurons, corresponding to the 10 possible
digit classes (0 through 9). The output for each neuron ok in the output layer can be
expressed as:

ok =

N=784∑
j=1

wjkxj + bk, for k = 0, 1, . . . , 9

where wjk are the weights connecting input neurons xj to output neurons ok. And bk is the
bias for the output neuron ok.

2.4 EMBEDDING A PROBABILITY STRUCTURE

Now we apply a function, f(·), which can be chosen based on what feels best for the problem to the
ok; for example for our approach we are going to consider the softmax function, converting the raw
output scores into probabilities ∈ [0, 1]:

P(y = k|x) = eok∑9
m=0 e

om

Essentially, what we have accomplished with this architecture is the construction of an approxima-
tion for the output probability p defined as:

p = f(wTx+ b)

where w is the weight vector, x is the input vector, and b is the bias term. We will utilize this
approximation under the assumption that each node in the output layer corresponds to a random
variable αi that follows a Bernoulli distribution:

αi ∼ Bernoulli(pi)

This means that each output node generates a binary outcome, determining whether the output cor-
responds to a specific class label based on the computed probability pi.

To simplify, we can conceptualize this process as a series of binary questions, where each variable
represents a yes-or-no inquiry about whether the current input corresponds to a particular number.
For instance, we could have a series of questions structured as follows:

”Is this the digit 1?” ; ”Is this the digit 2?” . . . ; ”Is this the digit 9?”

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In this context, the response to each question is influenced by the associated probability p, which is
derived from the linear combination of inputs and weights. Each output decision is thus determined
probabilistically by the computed p, providing a framework for classification over a probabilistic
structure based on the given inputs.

3 MOTIVATION FOR THE REGULARISATION

The first question to address is whether these N questions (in the case of MNIST N = 10) are
sufficient enough for generate a function that can capture a perfect solution space from the training
to generalise over unseen data later. Maybe other potential questions may merit consideration?
Given that we can reformulate these new questions into binary (yes/no) formats, they could serve
to expand the function we derive from the PFINN to get a better picture of the true distribution and
solution space.

Treating each question as statistically independent, defined informally such that the response to
one question does not influence the probabilities associated with another. For instance, if we pose
questions such as ”Is this 10?”, ”Is this a goose?”, ”Is it currently raining?”, ”Was this instance
run on Alan Turing’s computer?”, ”Was this instance run on Ada Lovelace’s Analytical Engine?”,
or ”Was this run on Claude Shannon’s GPAC?”, we can generate an infinite series of inquiries.
The sheer volume of potential questions of course poses a practical impossibility for storage but
nevertheless, we can leverage the conceptual framework inherent in this infinite set of questions
(through the Central Limit Theorem (CLT), more specifically in our case Lyapunov’s CLT) , to be
able to relax the function we find through the PFINN to ”generalize” better, granted our process
respects any required relevant assumptions.

Essentially for this, we consider the concept of decomposable distributions. The Bernoulli distri-
butions we have currently are indecomposable so maybe finding and exploiting a relationship to an
infinitely decomposable function like the normal distribution may yield some interesting results. It is
through discovering this relationship, via us toying around with the linear combinations of Bernoulli
variables which we have, that yields us the regularisation property; namely through exploiting their
convergence to a normal distribution if we assume the existence of the previously introduced infinite
question space.

4 REGULARISATION METHODOLOGY

To formalize the ideas presented above, we can derive a regularization method for the specific class
of PFINN architecture described in Section 2 as follows :
Definition 1 (Lyapunov Central Limit Theorem). Suppose we have a sequence of independent ran-
dom variables, {Y1, Y2, . . . , Yn}, each with finite expected value µi and variance σ2

i .

If we define the following sum of variances:

s2n =

n∑
i=1

σ2
i . (1)

If ∃δ > 0, such that Lyapunov’s condition:

lim
n→∞

1

s2+δ
n

n∑
i=1

E
[
|Yi − µi|2+δ

]
= 0, (2)

is satisfied =⇒ the sum of the normalized variables Yi−µi

sn
converges in distribution to a standard

normal random variable as n→ ∞:

1

sn

n∑
i=1

(Yi − µi) → N. (3)

where N ∼ N (0, 1)
(Lyapunov, 1900)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We model each data point as being generated from a random variable ℵ, which is represented as an
approximation of linear combination of Bernoulli variablesXi ∼ Bern(p). We will now demonstrate
that properly formulating ℵ allows for convergence to N (0, 1) as the number of Bernoulli variables
increases sufficiently.

Axiom 1. Let us establish the following fundamental assumption that will underpin our framework.
Given the true data distribution, D (which can be conceptualized as the ”Population Distribution” in
statistical terms), we assert that the data points (the ”Samples” we usually have in our finite dataset)
are generated from a random variable ℵ such that:

ℵ ∼ D (4)

Definition 2. The characteristic function ϕ(u) of a random variable Y is defined as:

ϕ(u) = E[eϑuY].1 (5)

Definition 3. We model the random variable ℵ, as a linear combination of Bernoulli Random Vari-
ables, defined as follows:

ℵ =
1

sn

n∑
i=1

(Xi − µi), (6)

where Xi ∼ Bern(pi) =⇒ µi = E[Xi] = pi and s2n =
∑n

i=1 V ar[Xi] =
∑n

i=1 pi(1− pi).

Proposition 1. The characteristic function for ℵ can be computed as follows from 5 and 6:

ϕD(u) =

n∏
i=1

e

(−ϑupi)√∑n
i=1

(pi∗(1−pi))
2
(1− pi) +

n∏
i=1

e

(ϑu(1−pi))√∑n
i=1

(pi∗(1−pi))
2
(pi) (7)

Proof.

ϕD(u) = E[eϑuℵ] = E
[
eϑu

1
sn

∑n
i=1(Xi−µi)

]
. (8)

Using the product law of exponents (an ∗ am = a(n+m)), we rewrite the characteristic function:

= E

[
n∏

i=1

eϑu
1
sn

(Xi−µi)

]
. (9)

Next, we separate it into the following by linearity of the expectation:

= E

[
n∏

i=1

eϑu
1
sn

(Xi−µi)I{Xi = 0}

]
+ E

[
n∏

i=1

eϑu
1
sn

(Xi−µi)I{Xi = 1}

]
. (10)

By properties of the Bernoulli Random Variable this is more precisely:

= E

[
n∏

i=1

eϑu
1
sn

(0−pi)I{Xi = 0}

]
+ E

[
n∏

i=1

eϑu
1
sn

(1−pi)I{Xi = 1}

]
. (11)

Using linearity of expectation, we have:

=

n∏
i=1

eϑu
1
sn

(−pi)E[I{Xi = 0}] +
n∏

i=1

eϑu
1
sn

(1−pi)E[I{Xi = 1}]. (12)

By definition of Expectation of Indicator Function, we have:

=

n∏
i=1

eϑu
1
sn

(−pi)P(Xi = 0) +

n∏
i=1

eϑu
1
sn

(1−pi)P(Xi = 1). (13)

1We deviate from common practice and use ϑ instead of i to define the imaginary unit in a bid to reduce
confusion as the letter i is used for indexing in much of the later proofs and writing

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

By properties of the Bernoulli Random Variable, this can be re-expressed as:

=

n∏
i=1

eϑu
1
sn

(0−pi)(1− pi) +

n∏
i=1

eϑu
1
sn

(1−pi)pi. (14)

Reformulating the s2n:

∵ s2n =

n∑
1

σ2
i =⇒∴ sn =

√√√√ n∑
1

σ2
i =

√√√√ n∑
1

(pi(1− pi))2 (15)

Thus, we conclude:

=⇒ ∴ ϕD(u) =

n∏
i=1

e

(−ϑupi)√∑n
i=1

(pi(1−pi))
2
(1− pi) +

n∏
i=1

e

(ϑu(1−pi))√∑n
i=1

(pi(1−pi))
2
(pi) (16)

Corollary 1. By the Lyapunov Central Limit Theorem, as n → ∞, the characteristic function
converges to that of the characteristic function of the normal distribution:

∵ D → N (0, 1) =⇒ ∴ ϕD(u) → ϕN (0,1)(u). (17)

Note this is true because rate of growth of the moments is contrained as per the Lyapunov condition,
described in detail by proof outlined in the appendix A.1. Some graphics from numerical simulation
of this effect is also attached in the appendix C.5, along with some helper graphs to visualise some
transformations of characteristic functions as it is difficult to find some and there aren’t really many
online.
Definition 4 (Regularization). Regularization is a technique used to prevent overfitting by adding a
penalty term to the loss function. The regularized loss function is typically expressed as:

min

n∑
i=1

L(ŷi, yi) + λR(f) (18)

where ŷi = f(xi) is the predicted output, L is the loss function, R(f) is the regularization term, and
λ is a hyperparameter that controls the trade-off between model fit and complexity.

If we interpret ϕN (0,1) as a relaxed fit that our function can be adjusted towards, we can establish
a regularization term R(f), which levies a penalty on the complexity of model f , by adding a
constraint through examining the difference between ϕD and ϕN (0,1). This can be achieved by
measuring the distance between the signals using:

R(f) = d(ϕD, ϕN (0,1)) (19)

The choice of the distance metric , d(·), is up to the practitioner but we briefly mention the ones we
used for evaluation in the appendix B for reference.

Note also, that for a general class of PFINNs, one only needs to adjust the modeling of the random
variable presented in Definition 3 to reformulate the equation in Proposition 1 accordingly.

5 NUMERICAL CONSIDERATIONS

The characteristic function is generally a considered a ”pure mathematical tool” whereby it’s con-
tinuous nature presents significant challenges when implemented in discrete computational environ-
ments. Modern computers rely on finite precision arithmetic, which inherently restricts the exact
representation of continuous functions, including characteristic functions. This means that we have
to formulate discretizations based on some assumptions to integrate the characteristic function into

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

a practical regularization algorithm for machine learning, enabling it to operate and execute within
finite time.

Specifically, we will have to restrict it’s domain to a ”good enough” range since t ∈ R and the
associated infinite nature of the reals. In other words, abstractly the problem is then as follows (with
the help of some informal proof sketches for the sake of brevity due to page limit and for the reader’s
sanity) :
Proposition 2. The set of real numbers R is uncountably infinite.
Informal Proof Sketch 1. This can be shown using Cantor’s famous Diagonal Argument. Assume
for contradiction that R is countable. Then we can list all real numbers in the interval [0, 1] as
r1, r2, r3, We can then construct a new real number r by taking the diagonal of this list and
changing each digit, ensuring that r differs from each rn at the n-th digit. Therefore, r cannot be
in our original list, contradicting the assumption that we had listed all real numbers. Thus, R is
uncountably infinite. (Cantor, 1932)
Proposition 3. The set of real numbers R is complete.
Informal Proof Sketch 2. The completeness of R can be demonstrated using Dedekind’s cuts. A
Dedekind cut partitions the rational numbers into two non-empty sets A and B, where all elements
of A are less than all elements of B. For any non-empty set of rationals that is bounded above, there
exists a least upper bound (supremum) in R. This property ensures that every Cauchy sequence of
real numbers converges to a real number, establishing the completeness of R. (Dedekind, 2012)
Proposition 4. The set of computable real numbers is countably infinite.
Informal Proof Sketch 3. The set of computable real numbers can be described as those numbers
for which there exists a finite algorithm (Turing machine) that can produce their digits. Since the
set of all finite algorithms is countable, it follows that the set of computable real numbers is also
countable.(Bournez, 2024)(Weihrauch, 2012)
Proposition 5. The set of computable real numbers is not complete.
Informal Proof Sketch 4. To see this, consider the sequence of computable numbers defined
by rn = 1

n , which converges to 0. Although 0 is a limit point of the sequence, it is not com-
putable because there is no finite algorithm that can output the exact value of 0. This demon-
strates that there exist Cauchy sequences of computable real numbers that do not converge to a com-
putable limit, thereby showing that the set of computable real numbers is not complete. (Bournez,
2024)(Weihrauch, 2012)

It becomes evident that propositions 2, 3, 4, and 5 present significant challenges in computing the
desired function ϕ(t) especially on a Discrete Dynamical System like the modern computer we use.
To address this, we have adopted a strategy of restricting to a finite domain of t ∈ [−2π, 2π] where
we discretize this interval into n = 1000 finite segments, which can be easily accomplished using
a linear space function such as numpy.linspace or similar methods on modern programming
languages.

The rationale for selecting the interval [−2π, 2π] is motivated by the analysis of the figures C.1 and
C.3 in the appendix of the characteristic function for the standard normal distribution, as well as
the set of convergence graphs for the ℵ-modelled linear combinations of Bernoulli random variables
observed in C.5. The region of primary interest lies within this interval, and while any variations
outside this interval may be potentially significant under certain circumstances, we can effectively
treat them as an acceptable level of statistical noise, we are willing to quantified by some ϵ. This
allows us to disregard this noise in the context of testing viability, though it may come at the expense
of some regularization ”performance”.

There is no universally ”correct” range or sample size (n); however, for the purposes of our experi-
mentation, we consider this choice to be sufficient.

6 EVALUATION OF METHOD ON DATASETS

For evaluating our regularization approach, we consider the following 7 cases, no regularization
(None), standard L1, L2 and L∞ regularization and our ψ1 , ψ2 and ψ∞ regularization (as described
in appendix section B). Other than MNIST, we built a similar structure of PFINNs for 4 other datasets

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

pertinent to classification tasks. It is worth noting for the PhiUSIL dataset, we have down sampled
to 7% of the original sample size, and reduced from the original 54 features to 6, to allow our tests
to run on weaker machines for reproducibility.

As for the loss function L(·) as described in Equation 18, we used the cross-entropy loss. The
regularization parameter λ was consistently set to 0.01 across all test cases presented in Table 1.
Additionally, a learning rate of 0.1 was applied uniformly across all experiments.

Each result presented is derived from 3 independent runs of 100 epochs each. The reported values
represent the averages of each metric across these 3 runs, other than the Min and Max values indicate
the minimum and maximum results obtained from all 300 points of interest respectively.

Table 1: Test accuracy and associated metrics comparison table

Dataset Metric None L1 L2 L∞ ψ1 ψ2 ψ∞

MNIST

Mean 0.9245 0.8068 0.9196 0.9239 0.9216 0.9243 0.9245
Median 0.9245 0.8076 0.9197 0.9240 0.9217 0.9244 0.9245
Std Dev 0.00146 0.00660 0.00143 0.00139 0.00196 0.00147 0.00146
Avg Min 0.9181 0.7835 0.9148 0.9178 0.9135 0.9177 0.9181
Avg Max 0.9274 0.8196 0.9228 0.9271 0.9254 0.9271 0.9274
Min 0.9124 0.7805 0.9116 0.9124 0.9117 0.9124 0.9125
Max 0.9276 0.8210 0.9230 0.9274 0.9260 0.9276 0.9275

HAR

Mean 0.9502 0.7308 0.9368 0.9487 0.9427 0.9500 0.9502
Median 0.9565 0.7431 0.9511 0.9558 0.9522 0.9565 0.9565
Std Dev 0.01751 0.09931 0.03406 0.01976 0.02648 0.01829 0.01746
Avg Min 0.8390 0.4056 0.7607 0.8299 0.7889 0.8328 0.8389
Avg Max 0.9613 0.8886 0.9627 0.9613 0.9654 0.9613 0.9612
Min 0.7112 0.3244 0.6861 0.7099 0.6759 0.7000 0.7095
Max 0.9630 0.8951 0.9637 0.9634 0.9661 0.9634 0.9630

WINE

Mean 0.5699 0.5713 0.5616 0.5673 0.5699 0.5714 0.5703
Median 0.5708 0.5708 0.5620 0.5677 0.5703 0.5708 0.5703
Std Dev 0.0069 0.0063 0.0066 0.0066 0.0069 0.0076 0.0069
Avg Min 0.5396 0.5438 0.5302 0.5396 0.5385 0.5458 0.5417
Avg Max 0.5885 0.5885 0.5750 0.5865 0.5885 0.5875 0.5875
Min 0.5063 0.5094 0.4969 0.5063 0.5063 0.5219 0.5094
Max 0.5938 0.5938 0.5781 0.5906 0.5938 0.5906 0.5938

Waveform

Mean 0.8723 0.8720 0.8741 0.8724 0.8727 0.8723 0.8723
Median 0.8723 0.8723 0.8750 0.8728 0.8727 0.8727 0.8723
Std Dev 0.0035 0.0038 0.0042 0.0037 0.00317 0.00352 0.00355
Avg Min 0.8603 0.8600 0.8620 0.8597 0.8620 0.8600 0.8600
Avg Max 0.8813 0.8800 0.8823 0.8817 0.8800 0.8813 0.8813
Min 0.8580 0.8580 0.8620 0.8580 0.8610 0.8580 0.8570
Max 0.8830 0.8810 0.8830 0.8830 0.8820 0.8830 0.8830

PhiUSIL

Mean 0.9244 0.9247 0.9118 0.9106 0.9244 0.9189 0.9245
Median 0.9245 0.9255 0.9119 0.9094 0.9245 0.9184 0.9255
Std Dev 0.0044 0.0041 0.0033 0.0034 0.0044 0.0052 0.0044
Avg Min 0.9124 0.9124 0.9023 0.9013 0.9124 0.9074 0.9124
Avg Max 0.9305 0.9305 0.9154 0.9184 0.9305 0.9305 0.9305
Min 0.9003 0.9003 0.8943 0.8973 0.9003 0.8973 0.9003
Max 0.9305 0.9305 0.9154 0.9184 0.9305 0.9305 0.9305

The most attractive metric in Table 1 would be the mean for each dataset. It is generally observed
that the mean for the regularisation we proposed, throughout 4 out of 5 datasets, achieve the highest
mean. It is also worth noting that the standard deviation is one of the lowest (except in the case of
PhiUSIL), which implies that there is a very minimal difference between each run. This property
might suggest the nature of ”consistency” in the regularisation method which might yield better
results in the training and testing of larger datasets.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

It can also be further observed that the limitations of our approach show up in the datasets waveform
and HAR, which might also imply that our regularisation in it’s current form could be improved to
work better with time series data and noisy data. This could be a result of generalising noise as well,
and perhaps could be further altered via some form of simple noise filtering whilst pre-processing
the data.

As a quick aside we would like to caution the reader regarding empirical tests such as the one
presented above. This is due to the myriad of factors that can influence overall performance; the
results are also highly dataset-dependent. For instance, variations in the gradient starting point or
learning rate can yield significantly different empirical outcomes for the same problem. There is
no guaranteed method to achieve a perfect readout, as this would necessitate exploring an infinite
search space, which is computationally impossible.

A natural question would be why was K-fold cross-validation not employed for evaluation. To
address this, K-fold cross-validation while effective for approaching more optimal hyperparame-
ters, truly involves exploration of an infinite search space for the ”fairest” representation of the best
metrics for a given method. Although it seemingly provides more robust performance estimates
compared to a vanilla implementation, our focus in this study is on presenting a context-driven alter-
native method rooted in probability theory rather than maximizing some raw performance metrics
delta.

Given this approach, we believe that demonstrating reasonable performance with a random seed
using simple constructions and standard default values suffices to validate our method. Furthermore,
the relevant code is provided, allowing others to reproduce our results and adapt the methods to their
own contexts, as detailed later in the reproducibility statement.

In essence, using different seeds for any given parameter can tell different stories, and even aggre-
gating results over multiple seeds may lead to varied outcomes. The key takeaway is that while this
approach may serve as a viable alternative for a specific dataset and problem, it might not always
be the optimal choice. The purpose of such empirical tests is to demonstrate that they can be a
‘good enough’ and ‘reliable’ option when necessary. Ultimately, it is the practitioner’s responsi-
bility to evaluate how well this approach aligns with their specific problem and to discern whether
employing a particular tool makes sense in their context.

7 CONCLUSION

This study provides a basic framework for constructing a PFINN and applying the proposed regular-
ization method to facilitate the implementation of contextual relaxing of the learned function. The
key takeaway is that integrating these techniques can offer a probability theory based perspective
on model architecture construction which allows assembling of relevant regularisation mechanisms,
paving the way for more flexible applications on unseen data. Possible future work could be to better
formalize PFINNs and develop further machinery to provide new insights into these models.

8 REPRODUCABILITY STATEMENT

We are committed to ensuring the reproducibility of our research findings. Our models have been
implemented with generic hyperparameter settings as discussed in the start of section 6, avoiding
any specific tuning to present an honest view of our methodology. All proofs are listed with detailed
steps to help readers. Furthermore additional proofs and figures are attached in the appendix to aid
understanding of the concepts presented. We encourage the community to engage with our work. If
any discrepancies or concerns are identified, we welcome dialogue to address them in the spirit of
scientific inquiry and collaboration.

REFERENCES

Olivier Bournez. lix.polytechnique.fr. https://www.lix.polytechnique.fr/
˜bournez/load/MPRI/Cours-2024-MPRI-partie-I-goodMPRI.pdf, 2024. [Ac-
cessed 02-10-2024].

9

https://www.lix.polytechnique.fr/~bournez/load/MPRI/Cours-2024-MPRI-partie-I-goodMPRI.pdf
https://www.lix.polytechnique.fr/~bournez/load/MPRI/Cours-2024-MPRI-partie-I-goodMPRI.pdf

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

G Cantor. Uber eine elementare frage der mannigfaltigkeitslehre, jahresbericht der deutschen
mathematiker-vereiningung 1: 75–78, 1932.

Rogero Cotes. Logometria auctore rogero cotes, trin. coll. cantab. soc. astr. and ph. exp. professore
plumiano, and r. s. s. Philosophical Transactions (1683-1775), 29:5–45, 1714. ISSN 02607085.
URL http://www.jstor.org/stable/103030.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Richard Dedekind. Essays on the Theory of Numbers. Courier Corporation, 2012.

Leonhard Euler. Introductio in analysin infinitorum, volume 2. Lausanæ: Apud Marcum-Mich ælem
Bousquet and Socios, 1748.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Aleksandr Lyapunov. Sur une proposition de la théorie des probabilités. Bulletin de l’Acadeémie
Impeériale des Sciences, 13(4):359–386, 1900.

Klaus Weihrauch. Computable analysis: an introduction. Springer Science & Business Media,
2012.

A APPENDIX

A.1 SATISFACTION OF LYAPUNOV CONDITION

Definition 5. Suppose there exists a sequence of independent random variables {Y1, Y2, ...Yn}, with
finite mean and variance, we can expect that the growth of the moments are limited by the Lyapunov
Condition.

lim
n→∞

1

s2+δ
n

n∑
i=1

E
[
|Yi − µi|2+δ

]
= 0 (20)

Definition 6. For some sequence of independent Bernoulli random variables {X1, X2, ..Xn}, such
that

Xi ∼ Bernoulli(pi) (21)

P(Xi = 1) = p, 0 ≤ p ≤ 1, E(Xi) = p, V ar(Xi) = pi(1− pi)

Proposition 6. Under most conditions, the Lyapunov CLT condition holds for Bernoulli Random
Variables.

Proof.

lim
n→∞

1

s2+δ
n

n∑
i=1

E[(|Xi − µi|2+δ)] (22)

Without Loss of Generality, let δ = 2:

lim
n→∞

1

s4n

n∑
i=1

E[(|Xi − µi|4)] (23)

By replacing µi with E(Xi):

= lim
n→∞

1

s4n

n∑
i=1

E[(|Xi − E(Xi)|4)] (24)

10

http://www.jstor.org/stable/103030

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

By the Law of the Unconscious Statistician (LOTUS):

= lim
n→∞

1

s4n

n∑
i=1

Xi=1∑
Xi=0

[(|Xi − E(Xi)|4)] (25)

By definition of Bernoulli distribution:

= lim
n→∞

1

s4n

n∑
i=1

(0− pi)
4(1− pi) + (1− pi)

4(pi) (26)

With reference to equation 2:

= lim
n→∞

1

(
∑n

i=1 σ
2)2

n∑
i=1

p4i (1− pi) + (1− pi)
4(pi) (27)

By the Variance described for Bernoulli Random Variables, σ2 = pi(1− pi):

= lim
n→∞

1

(
∑n

i=1(pi(1− pi)))2

n∑
i=1

p4i (1− pi) + (1− pi)
4(pi) (28)

Since parameter 0 ≤ p ≤ 1, we can claim p4i ≤ pi and (1− pi)
4 ≤ (1− pi):

≤ lim
n→∞

1

(
∑n

i=1(pi(1− pi)))2

n∑
i=1

pi(1− pi) + (1− pi)(pi) (29)

= lim
n→∞

1

(
∑n

i=1(pi(1− pi)))2

n∑
i=1

2pi(1− pi) (30)

By Linearity of the Sum,

= lim
n→∞

2
∑n

i=1(pi(1− pi))

(
∑n

i=1(pi(1− pi)))2
(31)

= lim
n→∞

2∑n
i=1(pi(1− pi)

(32)

As n→ ∞,

∵
n∑

i=1

(pi(1− pi)) → ∞ (33)

We have
lim
n→∞

2∑n
i=1(pi(1− pi))

= 0 (34)

as desired.

B DISTANCE MEASURES

In this section, we extend the concept of Lp norms to measure the differences between the distribu-
tions ϕD and ϕN (0,1). We define the distance function d(ϕD, ϕN (0,1)) by calculating the pointwise
differences between the two distributions and applying the Lp norms.

We start with the general definition of the Lp norm for a vector x = (x1, x2, . . . , xn):

||x||p =

(∑
|xk|p

) 1
p

, p ≥ 1. (35)

Extending the definition of the standard L1 norm, which provides a measure based on the absolute
differences:

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

ψ1 = d1(ϕD, ϕN (0,1)) = ||ϕD − ϕN (0,1)||1 =

∞∑
k=−∞

|ϕD(uk)− ϕN (0,1)(uk)|. (36)

Next, we extend the L2 norm, which measures the Euclidean distance between the pointwise differ-
ences:

ψ2 = d2(ϕD, ϕN (0,1)) = ||ϕD − ϕN (0,1)||2 =

√√√√ ∞∑
k=−∞

|ϕD(uk)− ϕN (0,1)(uk)|2. (37)

Finally, we can consider the extensions of the L∞ norm, which measures the maximum pointwise
difference:

ψ∞ = d∞(ϕD, ϕN (0,1)) = ||ϕD − ϕN (0,1)||∞ = sup
k

|ϕD(uk)− ϕN (0,1)(uk)|. (38)

The selection of these three distance measures is intentional, prioritizing simplicity and ease of
replication. While geometric distance measures could potentially yield greater performance, we
have chosen to focus on these straightforward metrics to provide a gentle introduction to the topic
and methodology discussed in this paper.

C FIGURES

C.1 CHARACTERISTIC FUNCTION OF NORMAL AND BERNOULLI DISTRIBUTION

Figure 1: Plot of Normal and Bernoulli Characteristic Functions (Only Real Part)

The figure C.1 shows the plot of real part of the Normal and Bernoulli Distribution. We thought this
would be apt to add as this is to give a visual intuition for the reader for how these functions look
when graphed as there is not much literature regarding visualising them.

C.2 IMAGINARY PART INCLUSIVE CHARACTERISTIC FUNCTION OF NORMAL AND
BERNOULLI DISTRIBUTION

The figure C.2 shows the plot of the Normal and Bernoulli Distribution inclusive of the imaginary
part. It is interesting to note the imaginary part is on the zero line for the Normal. As for the
Bernoulli we can see a ”phase” difference between the Imaginary and the Real Part.

If one would like to explore why, they can derive insight using the following as a starting point:

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Figure 2: Extended Plot of Normal and Bernoulli Characteristic Function (Includes Imaginary Part)

Definition 7. Euler’s formula (Euler, 1748) (Cotes, 1714) states that for any real number x:

eϑx = cos(x) + ϑ sin(x) (39)

This formula can be used to express complex exponentials in terms of trigonometric functions.
Definition 8. Using equation 5 and definition 7, the characteristic function of a random variable X
is defined as:

ϕ(u) = E[eϑuX] = E[cos(uX)] + ϑE[sin(uX)] (40)

where the real and imaginary parts of the characteristic function are:

Re(ϕ(tu) = E[cos(uX)] (41)

Im(ϕ(u)) = E[sin(uX)] (42)

C.3 ZOOMED OUT VIEW TO OBSERVE PERIODICITY

Figure 3: Plot of Normal and Bernoulli

The figure C.3 shows that the Normal Characteristic Function does not seem to periodic unlike
the Bernoulli Characteristic Function which seems to have a defined π-periodic structure It also

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

shows that the Normal Characteristic Function is concentrated within the −2π to 2π region. (Which
motivated our choice in the numerics section 5).

C.4 BEHAVIOUR OF THE CHARACTERISTIC FUNCTION WHEN JUST ADDING BERNOULLI
VARIABLES TOGETHER MINDLESSLY

Figure 4: Numerical Simulation Plot of the Convergence

The figure C.4 is generated random generated pi values for a
∑N

i=1 Bernoulli Distributions. It is
interesting to note how just adding the Bernouli’s will result in it resulting in a convergence towards
the zero line.

C.5 NUMERICAL SIMULATION OF CONVERGENCE DESCRIBED IN PROPOSITION 1

The figure C.5 is generated random generated pi values for a linear combination N Bernoulli Dis-
tributions which are added according to the ℵ model described in definition 3.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 5: Numerical Simulation Plot of just adding Bernoullis

15

	An Introduction and (rather informal) Definition Of Probability Function Informed Neural Networks
	Mathematical Construction of a type of simple PFINN from Generalisation of the MNIST Dataset and associated Classification Problem
	Dataset Description
	Classification Problem
	Network Construction
	Embedding a Probability Structure

	Motivation for the Regularisation
	Regularisation Methodology
	Numerical Considerations
	Evaluation of Method on Datasets
	Conclusion
	Reproducability Statement
	Appendix
	Satisfaction of Lyapunov Condition

	Distance Measures
	Figures
	Characteristic Function of Normal and Bernoulli Distribution
	Imaginary Part Inclusive Characteristic Function of Normal and Bernoulli Distribution
	Zoomed out view to observe periodicity
	Behaviour of the Characteristic Function when just adding Bernoulli variables together mindlessly
	Numerical Simulation of Convergence Described in Proposition 1

