
[RE] Counterfactual Generative Networks

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

In this paper, we attempt to verify the claims that the paper [11] makes about their proposed CGN framework that3

decomposes the image generation process into independent causal mechanisms. Further, the author claims that these4

counterfactual images improves the out-of-distribution robustness of the classifier. We use the code provided by the5

authors to replicate several experiments in the original paper and draw conclusions based on these results.6

Methodology7

We use the same hyperparameters and architecture as mentioned in CGN [11]. We use the PyTorch code from the8

authors’ publicly available repository. We make several changes to their code for the MNIST datasets since it gives9

spurious results/errors. Since we use ImageNet 1000 as a replacement for the ImageNet dataset, we modify the code10

accordingly. We reproduce tables 1-6 from CGN [11] paper, excluding results for models from other papers.11

Results12

We validated each of the author’s claim through the experiments given in the original paper and few additional13

experiments of our own. Overall, we found many experiments yielding identical results while some deviations were14

observed with both the Counterfactual Generative Network and the subsequent classification task. We were able15

to explain most of these deviations through our additional experiments while some couldn’t be validated due to16

computational limitations.17

What was easy18

Overall, clear environment setup instructions, well working code and availability of pretrained CGN models for both19

datasets proved valuable to validate the authors’ claim.20

What was difficult21

Some experimental details were not reported in the original paper which made validations time consuming. ImageNet22

based experiments were replaced with ImageNet-1k(mini) due to the computational limitation which made it difficult to23

validate the author’s original claims. Pre-trained classification models could have proven helpful in this case, but were24

unavailable, which meant we had to train the classifier from scratch. Code changes were required to obtain baseline25

results which was tedious considering different code architecture was implemented for MNIST & ImageNet.26

Communication with original authors27

We emailed the authors regarding inception score, MNIST dataset hyperparameters and ImageNet hyperparameters. We28

are awaiting a response from their end.29

Code available at https://anonymous.4open.science/r/re_counterfactual_generative-E18F30

https://anonymous.4open.science/r/re_counterfactual_generative-E18F


1 Introduction31

Neural Networks (NNs) have become ubiquitous in machine learning due to their predictive power. However, a32

shortcoming of NNs is their tendency to learn simple correlations that lead to good performance on test data rather33

than more complex correlations that generalise better. This shortcoming is apparent in the task of image classification,34

where NNs tend to overfit to factors like background or texture. To address this shortcoming, [11] proposes a method of35

generating counterfactual images that prevent classifiers from learning spurious relationships.36

The authors take a causal approach to image generation by splitting the generation task into independent causal37

mechanisms. The authors considered three separately learned Independent Mechanisms (IMs) to generate shapes,38

textures and backgrounds for an image. For the MNIST setting, all IM specific losses are optimized end-to-end from39

scratch, while in the ImageNet setting, each IM is initialized with weights from pre-trained BigGAN-deep-256[1]. The40

counterfactual image is then generated by passing the result of each IM to a deterministic composer function.41

In this report, we use the publicly available code provided by the authors to reproduce the results of the paper and42

validate the authors’ claims. In this endeavour, we made modifications to the code to determine the efficacy of their43

generative model and validate its impact on improving the out of distribution robustness of a classifier.44

2 Scope of reproducibility45

In this report, we investigate the following claims from the original paper:46

1. Generating high-quality counterfactual images that decompose into independent causal inductive biases, these47

mechanisms disentangle object shape, object texture and background48

2. Using counterfactual images improves the shape vs texture bias which is an inherent problem of deep classifiers49

3. Using counterfactual images improve the out-of-distribution robustness for the classifier during the classifica-50

tion task51

4. The Generative model can be trained efficiently on a single GPU with the help of powerful pre-trained models52

We attempt to reproduce the experiments from the paper [11] and perform exploratory analysis on the above mentioned53

claims. We propose using an extra loss function to mitigate some of the shortcomings during counterfactual generation54

process and generate heatmap plots to study the classifier behaviour.55

3 Methodology56

Alex et al. [11] propose a Counterfactual Generative Network (CGN) framework to generate high-quality counterfactual57

images, which can be used to train invariant classifiers. The architecture of a CGN is composed of three IMs that are58

trained to generate backgrounds, shapes, and textures. Each IM is provided with a label. The task of the invariant59

classifier is to predict the label of a specific IM, regardless of the labels of the others. In conjunction with the composer60

function, the use of counterfactual images generated by the three IMs prevents the classifier from learning spurious61

relationships that arise from training on a natural dataset only.62

The architecture of the CGN consists of a GAN as the backbone of each IM. Each IM samples random noise µ ∼ N(0,1),
along with an independently sampled label to generate samples. The output xgen is generated using an analytical
function from the Composer ’C’,

xgen = C(m, f, b) = m⊗ f + (1−m)⊗ b

where ’m’ is the mask (alpha map), f is foreground and b is background. ⊗ denotes the element wise multiplication.63

The losses Lrec (xgt, xgen), L1 reconstruction loss, Lperceptual as shown in Fig. 1 are used to improve the quality64

of generated images. Once the CGN is trained, u and y are randomized per mechanism such that new counterfactual65

xgen are generated. Furthermore, hyperparameters such as CF ratio (the ratio indicates how many counterfactuals are66

generated per sampled noise) can be used to control the number of samples that are being generated. These samples are67

then used to train the classifier and evaluated on the corresponding test set.68

2



Figure 1: Architecture diagram from [11] for ImageNet [4] dataset.We observe that the architecture consists of fbg,
ftexture, fshape to assist with the generation of xgen. A powerful pre-trained Biggan-256 [1] is used to images from
noise for each of the independent mechanisms. The shape and background are extracted with the help of a pre-trained
U2-net [8], while texture is obtained by minimizing perceptual loss between the foreground (ftext and a patch grid
obtained from the value within the mask). The composer is analytically defined which uses alpha blending to generate
the counterfactual xgen. Components with trainable parameters are ’green’ and without are ’blue’.

3.1 Model descriptions69

The ImageNet variant follows the architecture that is illustrated in Fig. 1. The MNIST variant applies a simpler70

architecture by applying a second texture mechanism rather than a background mechanism.71

3.2 Experimental setup and code72

We use the datasets mentioned in [11], excluding ImageNet [3] due to limited resources and computational constraints.73

Description
Dataset

Colored MNIST Consists of digits in red or green.
Double Colored MNIST Consists of more varied backgrounds and digits than Colored MNIST.
Wildlife MNIST An attempt to build MNIST [6] closer to the ImageNet[3], texture was added as a bias to

the data. The ten digits of the striped texture class encode the foreground lables and the
background is labelled with the with the texture class ’veiny’.

ImageNet-1k(mini) Subset of the ImageNet-1k[10],available here1 that contains 34745 images in train set
and 3923 for validation set, each split among 1000 classes individually.

Table 1: Datasets used

For all the experiments, we make use of standard dataset splits akin to the CGN paper [11]. Considering the computa-74

tional constraint to train a classifier on ImageNet[4], we used the pre-trained CGN to generate counterfactual images75

and trained a classifier on ImageNet-1k(mini) and mini-imagenet datasets.76

3.3 Hyperparameter search77

We found that the hyperparameters provided by the authors were stable, and so we did not conduct a hyperparameter78

search in this report.79

3.4 Computational requirements80

All models are run on Nvdia GTX1080Ti GPUs (11Gb VRAM). For the MNIST datasets, training a CGN and a81

classifier each took approximately one hour.82

01https://kaggle.com/ifigotin/imagenetmini-1000

3



4 Results83

A lack of compute power prevented us from replicating the experiments on ImageNet. As a workaround, we limit84

ourselves to verifying the results using the ImageNet-1k(mini) dataset. This is beneficial because it extends the results of85

the paper and evaluates the method on a new dataset, and ensures that results can be reproduced with limited resources86

by referring to our report/code and the CGN paper.87

4.1 Results reproducing original paper88

4.1.1 Can Image generation process be decomposed into independent causal inductive biases effectively?89

We begin the experiment by training a CGN on the three variants of the MNIST dataset. We observe in Fig. 2 that the90

digits in case of colored MNIST dataset lose their shape when reconstructed, whereas for double colored and wildlife91

MNIST, the digits look much better. Since we do not clearly understand why the shape in Colored MNIST is poor, we92

generated a mask timeline to verify any patterns. Fig. 3a details the same. Further analysis on this was conducted and93

recorded in 4.2. We also propose an additional loss function to help mitigate this problem.94

Figure 2: For brevity, we display only first 3 digits that were generated by training from scratch by us for the given
three MNIST datasets.

Quality of Counterfactual Images on ImageNet-1k95

To quantify the quality of the composite images produced by the CGN, the authors calculate the inception score (IS).96

The details of the IS calculations (inception model used, number of images used) were not mentioned in the paper. In97

an attempt to recreate the results regarding IS, we use the OpenAI implementation 1. We plot the results of IS vs the98

number images using 10 splits in Fig. 9. We observe the IS converges to an IS of 198.99

We made use of the pre-trained CGN trained on ImageNet-1k that was present as part of the codebase to generate100

counterfactual images. Since there is no quantitative way to measure the quality of counterfactual images, we reproduced101

the images given in the original paper. We achieved a similar quality of counterfactual images but also noted deviations.102

Fig. 7 shows all the images that were given in the original paper. A deviation in the mask is observed for the class103

’Agaric’ and ’Cauliflower’. The difference in the images to the original paper prompted us to collect the classes with104

poorer counterfactual images to observe any patterns.105

Fig. 8 is generated from the pre-trained CGN that have a low quality of images picked from random classes. Since the106

analysis is qualitative, we relied on the realism of the counterfactual compared to original images from that class. Images107

under the classes ’Cliff dwelling’ ’American Chameleon’ suffer from Texture-background entanglement resulting in the108

counterfactual with no subject. On the other hand, the images under the class ’Goldfinch’, ’Junco’ suffer from reduced109

realism due to linear constraints applied on the composer.110

4.1.2 Impact of counterfactual images towards shape-bias of the classifier111

Experiments conducted with ImageNet-1k(mini) dataset112

1https://github.com/nnUyi/Inception-Score

4



In order to identify the impact of shape bias on the classifier, we made use of the proposed architecture for the classifier113

ensemble that included 3 different heads. The ensemble includes a pre-trained classifier(we made use of Resnet-50)114

as the backbone, while attaching 3 different heads to it. Each head controls the variance with respect to one of the 3115

independent mechanism(Shape, Texture, Background) which are individually trained from scratch. The result from116

these heads are averaged to get the prediction accuracy of the classifier ensemble.117

The results in Table 2(a) for ImageNet-1k(Mini) showed a considerable deviation. The shape bias is marginally lower118

compared to the baseline result while the texture bias is high. The reduction in the shape bias could be due to the smaller119

dataset that we are using. Since this is ambiguous to validate the original claim we conducted additional experiments120

which are detailed in section 4.2.

Shape Bias
Dataset

ImageNet-1k 48.1%

ImageNet-1k + CGN/Shape 47.00%
ImageNet-1k + CGN/Text 37.01%
ImageNet-1k + CGN/Bg 47.02%

(a) Impact on shape bias

IN-9 Mixed Mixed BG-Gap
Same Rand

Dataset

ImageNet-1k 17.27% 6.37% 7.65% 1.28%
ImageNet-1k 18.2% 14.05% 12.35% 1.7%
+ CGN

(b) Out-of-distribution accuracy for ImageNet variants

Top-1 Train Accuracy Top-5 Train Accuracy Test Accuracy
Dataset

ImageNet-1k(mini) 91.27% 97.35% 73.12%
ImageNet-1k(mini) + CGN 90.32% 97.24% 11.36%

(c) Train and Test accuracies for ImageNet-1k(mini) with Resnet-50 backbone

Table 2: Results for experiments conducted using Imagenet-1k(mini) dataset

121

4.1.3 Do Counterfactual images improve the OOD robustness of the classifier?122

Classification Accuracy (MNIST Dataset) Firstly, we trained a classifier on counterfactuals generated by the pre-123

trained CGN provided by the authors. It was not clear how many counterfactual images the classifier should be trained124

on, but the accuracies in Table 3 were similar to the results in the ablation study in Fig. 7 using 106 counterfactuals, so125

this is the number we chose. There was also ambiguity between the statements in the paper and the code about the126

classifier being trained on any real images, so we trained two classifiers. One classifier was shown real images, and the127

other was not.128

The classifier trained with counterfactuals generated by the pre-trained models achieved comparable results to those in

Colored MNIST Double-colored MNIST Wildlife MNIST
Train Acc Test Acc Train Acc Test Acc Train Acc Test Acc

Pre-Trained (Ours/With real images) 100.0 96.98 98.9 92.29 99.7 88.35
Pre-Trained (Ours/Without real images) 100.0 92.70 98.9 90.42 99.8 85.09
Trained (Ours/With real images) 98.7 68.96 96.8 88.54 99.9 72.93
Trained (Ours/Without real images) 98.7 43.88 96.7 87.90 99.9 75.28
Original+CGN (Theirs) 99.7 95.10 97.4 89.00 99.2 85.70

Table 3: MNIST Classification Accuracy

129

the paper. From table 3, it can be seen that the pre-trained models achieved train accuracies that differed by less than 3%,130

and test less than 1.5% compared to the results in the paper. However, the classifier trained on counterfactuals generated131

by CGNs that we trained (using the provided configurations) performed significantly worse on colored MNIST and132

5



wildlife MNIST in terms of test accuracy. We anticipate that the provided configurations were not the same as the133

configurations used to acquire the results in the paper.134

The presence of real images in the dataset for the pretrained models appeared not to have a significant effect on train or135

test accuracy. The largest gain obtained by including real images was approximately 4%. This demonstrates that the136

ambiguity regarding whether or not real images were used in the training of the classifier was inconsequential. For the137

CGNs that we trained, however, the presence of real images improved the performance of the classifier significantly.138

Classification Accuracy(ImageNet Dataset)139

The classifier was trained on counterfactual images from pre-trained CGN and ImageNet-1k(mini). The results in table140

2(c) indicate the trend that was observed. The training accuracy showed a similar trend to the original paper’s classifier141

(trained on ImageNet). There is a similar drop in the training accuracy compared to the baseline(ImageNet-1k).142

Even though the original paper does not include the test accuracy for the classifier for the same distribution, we found143

that the classifier does not perform well with respect to the test data. The drop in top-1(the predicted class is the correct144

class that the image corresponds to) & top-5(5 out of 1000 classes with the highest probability as predicted by the145

classifier matches the actual label) accuracy compared to the baseline was attributed to the ability of the counterfactual146

models to reduce the shape bias of classifier which would improve the classifier’s robustness to unseen data. However,147

this is invalidated by the low percentage of the test accuracy. To further understand why the classifier ensemble is not148

performing well with unseen test data, we conducted additional experiments to explain the same behaviour.149

Out of distribution accuracy: A similar study as given in the paper was conducted to understand how the trained model150

performs with an out-of-distribution dataset. Table 2(b) contains the information with respect to the ImageNet-1k(mini)151

+ CGN. There is a significant reduction in the accuracy of the out-of-distribution dataset. The baseline also showed152

a similar trend, and we could not achieve the higher percentage reported as part of the paper. We concluded that the153

baseline result is on the lower side primarily because of the size of the ImageNet-1k(mini) dataset that was used for154

training. Since the results show that the ensemble classifier improves the out-of-distribution robustness compared to the155

baseline, the percentage was still very low to make any conclusion.156

Both the trend with the test accuracy and out-of-distribution accuracy falls on the lower side, which prompted us157

to investigate further. We generated explainability plots using the same distribution and out-of-distribution data to158

determine how the model is behaving with and without the heads that disentangle shape, texture, background. We159

recorded All of the experiments as part of section 4.2.160

4.2 Results beyond original paper161

For Additional Result 1 we make use of CGN[11] architecture that has been designed for MNIST datasets due to162

computational limitations.163

4.2.1 Additional Result 1 - Does fbg , ftexture, fshape and Lperceptual (Perceptual loss) proposed in [11] cover all164

aspects of background, shape, texture?165

CGN [11] makes use of texture loss Ltext (xgt, xgen), = sampling 36 patches of size 15 x 15 grid from regions wherever166

mask has values near 1. Further, from these 36 patches, a patch grid of 6 x 6 is used. It is then upscaled to 256 x167

256 resolution, which is in turn used an input to the Perceptual loss Lperceptual between foreground f and patch grid168

Ltext(f, pg). However, we observe that important image properties such as luminance, contrast, structure are not taken169

into consideration with the Ltext loss proposed in CGN [11] for the generated image and the ground truth image and170

also because171

Hence, we propose the usage of an additional Loss function Lssim (SSIM) [12]. In addition, motivated by results172

as shown in [13], [7] L2 loss unlike SSIM [12] over different distortions of the image remains constant instead of173

recognising them . It complements the structural loss Lrec. Default Gaussian Kernel of 11 was used as a hyperparameter174

for SSIM [12].175

We observe from Table 4 that using SSIM [12] loss improves classification accuracy on the Wildlife MNIST dataset.176

Qualitative improvements in the generated images can be seen in Fig 3b. Images trained with SSIM [12] loss show177

better structure and crisper outlines. Improvements can be seen using SSIM [12] loss on the Double Colored MNIST178

dataset to a lesser extent. However, accuracy on the colored MNIST dataset decreases. This may be due to the dataset’s179

6



shape/structure/bias. Comparing Fig. 3a and Fig. 3b, we observe that usage SSIM [12] leads to generation of mask

mask
after 10k after 20k after 40k after 46k

iterations

generated digit samples

(a) Wildlife MNIST mask samples obtained using default hyper-
parameters mentioned in CGN [11].

mask
after 10k after 20k after 40k after 46k

iterations

generated digit samples using SSIM loss

(b) Wildlife MNIST mask samples obtained by adding SSIM [12]
loss.

Figure 3: Results for experiments conducted using Wildlife MNIST dataset

180

samples that are sharper, capture more structure details, clearer outputs. Specifically, when compared to Fig. 3a the181

digits 0, 2, 4 lead to better visual outputs. As a result, we show in Table 1 that the overall classifier’s accuracy increases182

by around 16% when compared to training from scratch by us, and around 6% when compared to accuracy of given183

pre-trained model.184

Using pretrained weights Training from scratch Trained from scratch with SSIM [12]
Datasets

Colored MNIST 96.42 61.12 44.77
Double Colored MNIST 86.26 86.19 87.88
Wildlife MNIST 71.89 61.94 77.64

Table 4: Accuracy for MNIST datasets when SSIM [12] loss function is used. For the Wildlife dataset and Double
colored dataset we observe an increase in the overall accuracy when compared to what has been reported in the paper
with the usage of SSIM [12]

4.2.2 Exploring classifier robustness with ImageNet185

From 2(c), we find a considerable drop in the training and test accuracies(top-1) compared to the baseline. To explain186

the performance of the model, we integrated lime[9] package to generate explainability heatmap plots.(code reference187

lime_plots.py)188

Same distribution Test set Fig 4 shows the outcome of the plots using the same image(from an unseen set) run through189

2 different classifiers. Firstly, we used a pre-trained Resnet-50 to find out the robustness of the same towards unseen190

dataset. Secondly, we made use of a fully trained classifier ensemble with a pre-trained Resnet-50 as the backbone and191

3 different heads as specified in the original paper[11]. The results are recorded by obtaining the top-5 classes with192

highest probability.193

The image on the left of Fig 4 was classified as ’iPod’ with regions including the object and the background contributing194

towards it. The plot shows how the classifier is extracting information from not only the object but also the background195

to determine the correct class. On the other hand, the image on the right shows the explainability plot when the196

suggested classifier ensemble is used. It performs poorly categorising the image as ’American_chameleon’ with a197

higher probability when compared to the actual classification ’iPod’. The heatmap sheds the light into this behavior198

showing that the classifier does not include the background(as evident from the red zone) and focuses primarily on the199

object shape to make a decision.200

From the above experiments through visual plots, we are able to determine that the counterfactual images to skew the201

shape-bias of the classifier does not contribute to the robustness towards unseen data within the same distribution. This202

7



can be attributed to the inclusion of counterfactual images that are of reduced realism which affects the classifier from203

learning meaningful information from the dataset at hand.204

Figure 4: Heatmap plots and corresponding classification(probability in %) of the top 5 best classes for the image iPod.
From left to right, same image classified with a pre-trained Resnet-50 & Classifier ensemble architecture from the
original paper[11]. Green regions contribute towards the classification while red regions do not.

5 Discussion205

5.1 What was easy206

It was easy to set up the environment as listed/indicated in the README file of the Github repository. Although not all207

commands were explicitly listed, it helped us navigate through and run the code. The presence of .yaml files for each208

dataset in the case of MNIST [6] helped us to train CGNs and classifiers with well-working hyperparameters quickly.209

ImageNet experiments were structured clearly in multiple sections within the codebase. It made it easier to understand210

the difference in the architecture that was followed to handle Mnist, ImageNet. Since, reliance on pre-trained network211

for ImageNet was important, the presence of scripts to download all the data, weights made the setup easier.212

5.2 What was difficult213

In the case of the architecture for ImageNet, replacing it with ImageNet-1k or Mini-ImageNet required code changes.214

The python parameters to load the dataset(–data) had no effect that prompted changes in the dataloader.py. The classi-215

fier(train_classifier.py) did not have provision to generate the values without mandatorily providing the counterfactual216

information. This proved to be a challenge as we needed the baseline results to compare the performance of the217

proposed model. Code modification was done to accommodate the same and the experiment was conducted.218

The results from the original paper included the inception score for the proposed CGN, but we could not find a code219

block to calculate the same. Considerable amount was spent on trying to find out the hyperparameters that was needed220

to generate the counterfactual images. Since the inception score was dependent on the number of counterfactuals221

generated, we worked towards identifying the correct hyperparameters before continuing with classifier training.222

Can the generative model be trained on a single GPU? From table 5, we were able to train the generative model223

from scratch for all variations of MNIST. However, for Imagenet architecture, with the default parameters, it was going224

to take upwards of 200 hours. Therefore, we were unable to verify this claim.225

5.3 Suggestions for reproducibility226

In general, the resources provided by the authors on GitHub in conjunction with the explanations in the paper were227

sufficient to generate similar results to those found in the paper with relative ease. However, in the future, it may be228

helpful if the authors provided the weights of the exact models used in the paper, along with the hyperparameters used229

to train them.230

In addition, the size of the ImageNet dataset makes running several experiments infeasible without significant compute231

power. Therefore, we suggest that additional experiments using a subset of ImageNet (i.e. Mini-ImageNet) be added to232

the report for the sake of reproducibility.233

8



References234

[1] A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity natural image synthesis, 2019.235

[2] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual236

representations. In International conference on machine learning, pages 1597–1607. PMLR, 2020.237

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database.238

In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.239

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li. Imagenet: a large-scale hierarchical image database.240

pages 248–255, 06 2009.241

[5] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual representation learning.242

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9729–9738,243

2020.244

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.245

Proceedings of the IEEE, 86(11):2278–2324, 1998.246

[7] P. Pandey, A. K. Tyagi, S. Ambekar, and A. Prathosh. Unsupervised domain adaptation for semantic segmentation247

of nir images through generative latent search. In European Conference on Computer Vision, pages 413–429.248

Springer, 2020.249

[8] X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M. Jagersand. U2-net: Going deeper with nested250

u-structure for salient object detection. Pattern Recognition, 106:107404, 2020.251

[9] M. T. Ribeiro, S. Singh, and C. Guestrin. "why should I trust you?": Explaining the predictions of any classifier.252

In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,253

San Francisco, CA, USA, August 13-17, 2016, pages 1135–1144, 2016.254

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,255

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of256

Computer Vision (IJCV), 115(3):211–252, 2015.257

[11] A. Sauer and A. Geiger. Counterfactual generative networks. arXiv preprint arXiv:2101.06046, 2021.258

[12] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to259

structural similarity. IEEE transactions on image processing, 13(4):600–612, 2004.260

[13] H. Zhao, O. Gallo, I. Frosio, and J. Kautz. Loss functions for image restoration with neural networks. IEEE261

Transactions on computational imaging, 3(1):47–57, 2016.262

9



Appendices263

A Ablation Study264

We conducted experiments to recreate the MNIST Ablation Study. For this study, the pre-trained model provided by the265

authors was used. We observed a similar trend to the authors. An increase in the number of counterfactual images used266

in training resulted in higher training accuracies. However, our values differed significantly from those in the report,267

as seen in Fig. 5 and Fig. 6 . In particular, we observed higher accuracies for each dataset, especially when only 104268

counterfactuals were used in training. This difference may be explained by differences between the pre-trained models269

provided by the authors and the models that were used to generate the plots.270

Figure 5: Recreated MNIST Ablation Study

Figure 6: Original MNIST Ablation Study from CGN[11]

B Training time for Generative Model271

The following table shows the training time for each generative network against the dataset that was used.272

Note: The Imagenet based CGN depends only on the biggan-256 backbone and U2-net to train. The MNIST based CGN273

architecture however, trains using the dataset without any pre-trained weight as backbone. Imagenet counterfactual274

generation was going to run for 1.2 million iterations(0.5s/iteration), which was not computationally feasible with our275

resources.276

Training time
(in hours)

Dataset

Colored MNIST ≈ 0.6
Double-colored MNIST ≈ 0.6
Wildlife MNIST ≈ 3.5
Imagenet ≈167

Table 5: Training time for CGN for different datasets

10



C Counterfactual Images277

The following images using the pre-trained CGN model that was provided with the codebase. Minor deviations were278

observed with the image given in the paper to the result we obtained.

Cauliflower Jay King Penguin Agaric Wallaby

Figure 7: Grid of Counterfactual Images from the Pre-trained CGN [11] as given in the original paper. The CGN is
trained with biggan-256 as the backbone and Pre-trained U2-net for mask generation.

279

Cliff dwelling American chameleon Goldfinch Sea lion Juneo

Figure 8: Grid of Counterfactual Images from same class that have poorer xgen. All classes are picked at random and
the counterfactual analysed for ’realism’

Figure 9: Inception score (10 splits) of images generated by the pre-trained CGN

11



D SSIM Loss function280

SSIM [12] helps preserve the structural properties between the two images by using luminance, contrast and structural281

information. Additionally, SSIM [12] leads to generating better structured masks using the ’m’ that helps to localize the282

digits in a better way in the final output xgen.283

SSIM [12] is defined using the three aspects of similarities, luminance
(
l(x, xgen)

)
, contrast

(
c(x, xgen)

)
and structure284 (

s(x, xgen)
)

that are measured for a pair of images {x, xgen} as follows: Given two images ground truth x and285

generated image xgen, the SSIM [12] loss is defined [7] as follows:286

Lssim(α) = 1−Ex [l(α).cs(α)] (1)
287

l(x, xgen) =
2µxµxgen

+ C1

µ2
x + µ2

xgen
+ C1

(2)

288

c(x, xgen) =
2σxσxgen + C2

σx
2 + σxgen

2 + C2
(3)

289

s(x, xgen) =
σxxgen

+ C3

σxσxgen
+ C3

(4)

where µ’s denote sample means and σ’s denote variances. C1, C2 and C3 are constants. With these, SSIM and the290

corresponding loss function Lssim, for a pair of images {x, xgen} are defined as:291

SSIM(x, xgen) = l(x, xgen)
α · c(x, xgen)

β · s(x, xgen)
γ (5)

where α > 0, β > 0 and γ > 0 are parameters used to adjust the relative importance of the three components.292

Lssim(x, xgen) = 1− SSIM(x, xgen) (6)

D.0.1 Additional Result 2 - Exploring the biased behaviour of CGN[11] with the datasets293

To investigate the robustness of the CGN architecture [11] to varied color augmentations, we applied color jitter294

to augment the training data. We found that applying a color jitter decreased classification accuracy by 10% on295

double-colored MNIST and 50% on wildlife MNIST.296

Amongst all widely known augmentations we make use of color jitter since from [2], [5] it is evident that color jitter,297

sobel flter augmentations are imperative to learn useful representations from the given dataset.298

We observe that from Table 6 that when we used it on Double Colored dataset the classifier’s accuracy decreases by299

almost 10 %. Similarly, there is decrease in accuracy of Wildlife MNIST dataset by almost around 50% as indicated in300

Table 4.301

Using pretrained weights Training from scratch Trained from scratch using jitter
Datasets

Double Colored 86.26 86.19 78.56
Wildlife 71.89 61.94 10

Table 6: Accuracy for MNIST datasets when Color Jitter augmentation is used.

To determine why the color jitter augmentation decreases training accuracy, we observed the results visually through the302

samples generated across 40K iterations by the CGN. It can be seen that digit 6 loses its shape over iterations. Digits 0303

and 1 have the same background and similar digit font. These artefacts produced by the CGN[11] are a likely cause of304

the classifier’s decreased performance. Which might indicate that the CGN is overfitting itself to the image backgrounds305

while learning the generative model cGAN using the loss functions.306

12



xgen after 10k after 20k after 40k after 46k

iterations

generated digit samples

Figure 10: Double Colored MNIST samples obtained using default hyper-parameters mentioned in CGN [11].

xgen after 10k after 20k after 40k after 46k

iterations

generated digit samples when color jitter is used

Figure 11: Double Colored MNIST samples obtained using addition of color jitter. We observe that it leads to generation
of samples that are not indicative of the actual samples from the Double Colored MNIST dataset. We observe that there
is difference between with/without augmentation in terms of the brightness, contrast, overall image representations.
Specifically, digit 6 loses its shape, texture, colors. Similarly, digits 0,1 are generated using different colors in contrast
to Fig. 10. Therefore, the visual samples indicate possibly why the classifier’s accuracy drops by around 10%.

13


	Introduction
	Scope of reproducibility
	Methodology
	Model descriptions
	Experimental setup and code
	Hyperparameter search
	Computational requirements

	Results
	Results reproducing original paper
	Can Image generation process be decomposed into independent causal inductive biases effectively?
	Impact of counterfactual images towards shape-bias of the classifier
	Do Counterfactual images improve the OOD robustness of the classifier?

	Results beyond original paper
	Additional Result 1 - Does fbg, ftexture, fshape and Lperceptual (Perceptual loss) proposed in sauer2021counterfactual cover all aspects of background, shape, texture? 
	Exploring classifier robustness with ImageNet


	Discussion
	What was easy
	What was difficult
	Suggestions for reproducibility

	Appendices
	Ablation Study
	Training time for Generative Model
	Counterfactual Images
	SSIM Loss function
	Additional Result 2 - Exploring the biased behaviour of CGNsauer2021counterfactual with the datasets


