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ABSTRACT

Reward signals in reinforcement learning are expensive to design and often require
access to the true state which is not available in the real world. Common alternatives
are usually demonstrations or goal images which can be labor-intensive to collect.
On the other hand, text descriptions provide a general, natural, and low-effort
way of communicating the desired task. However, prior works in learning text-
conditioned policies still rely on rewards that are defined using either true state or
labeled expert demonstrations. We use recent developments in building large-scale
visuolanguage models like CLIP to devise a framework that generates the task
reward signal just from goal text description and raw pixel observations which is
then used to learn the task policy. We evaluate the proposed framework on control
and robotic manipulation tasks. Finally, we distill the individual task policies into
a single goal text conditioned policy that can generalize in a zero-shot manner to
new tasks with unseen objects and unseen goal text descriptions.

1 INTRODUCTION
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Figure 1: Our method uses only goal text from user
and images from the environment at training time. We
train several agents on several tasks and distill their
policies into a single goal text conditioned policy that
can generalize to new tasks with an unseen goal text
description in a zero-shot manner. We assume no
access to environment reward, state, demonstrations,
or goal images at either train or test time.

Previous efforts have explored image-based goal
specification, with significant successes in visual
navigation and manipulation tasks (Pathak et al.,
2018; Nair et al., 2018; Fu et al., 2018; Singh et al.,
2019). Yet existing image-based goal specifica-
tion paradigms are limited because they are typ-
ically limited to a particular scene instance in an
environment, whereas a semantic goal comprises
multiple possible scene configurations. Reinforce-
ment learning offers one of the most appealing
premises in the study of AI: from a reward signal
alone, algorithms which learn optimal policies that
maximize expected reward can learn to perform
navigation, dexterous manipulation, and host of
other impactful tasks. However, discovering or
specifying a reward function for a given task is
often a very challenging problem, especially when
one is considering agents that can learn from un-
instrumented environments, e.g., from raw image
observations alone. We wish to have an agent
that can learn purely from pixels, with no access
to the underlying state of the environment at any
point during learning or task execution. Achieving
this goal without access to an instrumented reward
function has been exceedingly challenging.

One can use image-based reward specification to
cause a robot agent to navigate to a particular chair
next to a specific tall plant, but that agent may not
always succeed at the generic task of “go to a chair next to a tall flowering plant”: e.g., if the goal
specification image shows a red chair next to a plant with a yellow flower the agent may navigate
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Figure 2: Our Zero-Shot Reward Model (ZSRM) is made by first generating spatial text labels of random
exploration collected images with random initial states of arm and objects. We train ZSRM with the generated
data in the same style of CLIP. We then use a discretized dot product of current image observation embedding
and goal text embedding as our zero-shot reward. We train an agent via Reinforcement Learning with our
reward model that is computed using only goal text and current observation as input. We assume no access to
environment reward, state, demonstrations, or goal images at train or test time.

away from a scene with a blue chair next to a red flower, depending on the model’s underlying image
representation. To be sure that the true goal is properly specified irrespective of the invariances of
the model’s underlying perceptual representation, a user may have to provide a set of goal image
examples that cover the variation of the target concept, potentially a very expensive undertaking to
collect or generate.

We advocate semantic reward specification via grounded natural language, where a user describes a
goal configuration in the world using a natural language description referring to entities in the world.
This direction has long been a “holy grail” of AI research and a presumed capability of AI science
fiction—the ability to instruct a robot with natural language—yet attempts have been limited by the
state of the art in grounded language perception. It also falls under the general umbrella of leveraging
large-scale passive data to bootstrap embodied learning, where we rely on language as a means to
provide necessary reward signal which might be missing in visual data alone.

Several previous efforts train reward functions or policies that take natural language as input for goal
description (Oh et al., 2017; Bahdanau et al., 2018; Zhou & Small, 2020; Goyal et al., 2020; Fu et al.,
2019; Hermann et al., 2017; Shao et al., 2020). They all however rely on reward signals that have
access to state of the system or demonstrations of the task distribution they are training on. There are
works that use human videos to learn reward functions to train their agent with (Shao et al., 2020;
Sermanet et al., 2018; 2016), but they require a curated dataset of humans performing the tasks.

Recently however, the advent of large-scale multimodal training data together with large capacity
language and vision deep learning models has significantly advanced the state of the art. A steady
series of innovations have advanced grounded language modeling, from early work on multimodal
translation and fusion models (Barnard et al., 2003; Quattoni et al., 2007; Guadarrama et al., 2016),
to large-scale joint embedding models (Frome et al., 2013; Radford et al., 2021), to the plethora
of multimodal transformer models currently under investigation (Su et al., 2019; Lu et al., 2019;
Chen et al., 2019; Hu & Singh, 2021). CLIP, in particular, demonstrated a transformative advance on
zero-shot object recognition (Radford et al., 2021).

One way to communicate text-based goal to a robot is by simply offering a description of the goal
configuration in natural language and using the CLIP embedding dot product with an observed image
to evaluate proximity to goal state. Surprisingly, this can work in simple cases, for examples see
the top example in figure 5. However, for more complex goals, such as those involving spatial
relationships, the simple solution has poor performance as shown in the bottom example of figure 5.

To overcome these limitations and scale to complex manipulation tasks, we spatially ground the
natural language goal in the image. We factor ‘what’ vs ‘where/how’ aspects of goal state, and offer
a novel spatial-salience scheme to generate data using this factorization (Figure 2 top). We argue that
existing (e.g., CLIP-like) models can be used to ground the what aspects of a goal quite effectively,
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including appropriate attribute and concept-level generalization, while a separate where/how module
can ground spatial relationship aspects of goal configuration. On this generated data, we first learn our
Zero-Shot Reward Model (ZSRM) and then use ZSRM to learn individual text-conditioned policies.
Finally, the individual task policies are distilled into a single goal-text-conditioned policy which is
multi-task in nature and can execute unseen tasks in a zero-shot fashion – from a natural language
description of task – without having to train a new policy for every new task.

2 METHOD

In our work we assume an agent only has access to a text description of the goal desired by the user
and image observations from the environment. At no point during training or testing does the agent
have access to demonstrations, goal images, or reward from the environment. The agent only has
access to a reward model that takes images and goal text as input to provide progress towards goal
text description with a reward score output. The reward is then used to teach the agent how to achieve
the goal described by the text with online reinforcement learning. Given these assumptions we will
now describe how we provide a zero-shot reward model by leveraging CLIP and how we learn a text
conditioned policy with this model.

2.1 VANILLA DOT-PRODUCT VISUOLINGUISTIC BASE REWARD MODEL

Our base model is the most intuitive way to use the CLIP model to compute reward. Our base model
simply computes reward by taking a dot product between the goal text feature and image observation
feature through CLIP’s language and image encoders respectively: rt = EI(It) ·EL(g) A subset of
tasks can be learned with this reward model. We visualize the limits of this model on two tasks in
Figure 5. One significant limitation of CLIP is that it cannot distinguish spatial relationship of objects
in images. This limits our base reward model from being useful for tasks that have spatial goals. Our
full zero-shot reward model remedies this issue by leveraging CLIP in a very different way.

2.2 SPATIALLY GROUNDED VISUOLINGUISTIC ZERO-SHOT REWARD MODEL (ZSRM)

Spatial Language Label Label Grounding Criteria

Obj1 on the left of Obj2 O2
x > O1

x

Obj1 on the right of Obj2 O1
x > O2

x

Obj1 on top of Obj2 |O1
x − O2

x| < ϵ1 & O2
y < O1

y < O2
y + ϵ2

Obj1 below Obj2 |O1
x − O2

x| < ϵ1 & O1
y < O2

y < O1
y + ϵ2

Obj1 in between Obj2, Obj3 min(O2
x, O3

x) < O1
x < max(O2

x, O3
x)

Obj1 in front of Obj2 O1
x2 > O2

x2

Obj1 behind Obj2 O2
x2 > O1

x2

Obj1 close to Obj2 ∥O1
xy − O2

xy∥2 < ϵ

Obj1 inside of Obj2 ∥O1
xy − O2

xy∥2 < ϵ

Table 1: Spatial Language Grounding Criteria.

Data Generation Using CLIP-Saliency
Phrase Grounding We use a simple
method that generates texts with spatial in-
formation for images using phrase grounding
and spatial relationship processing. We as-
sume we have access to the noun phrases that
will be used by the user to specify their full
goal text. Figure 2 illustrates how the object
noun phrases are passed through CLIP’s lan-
guage encoder and the current image observa-
tion is passed through CLIP’s image encoder.
We use the language encodings as class em-
beddings of each object noun phrase to perform a saliency analysis (using Grad-CAM (Selvaraju
et al., 2017)) on the image encoding of the observation on the last convolutional layer (specifically,
the ReLU layer of CLIP’s ResNet-50 backbone). Saliency models such as Grad-CAM generally
output a heatmap of the features that indicate a class exists in the current image input. The state
extractor in Figure 2 computes the “state” of each object using the argmax of the saliency heatmap
(see Figure 3). Once we have the the object states (object pixel coordinates), we use the criteria
described in the next section to generate a full text description of the image describing the spatial
relationship between the objects. The images we use to label are randomly sampled robot arm and
object locations with random actions taken by the agent to move the arm.

Spatial Language Grounding Criteria We generate a spatial text label using the object pixel
coordinates of one or more camera views as input to match various criteria. The criteria that matches
our object state determines the text label of the image. The text labels used are the simplest spatial
descriptions we could think of. We did not engineer what text labels to use.

Our spatial language grounding criteria are fully defined in Table 2.2. The first set (left of, right
of, on top of, below, and in between) assume coordinates in a front camera view and the semantics
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Figure 3: a) Mask R-CNN object detection results b) Mask R-CNN detection results on far view c) Mask
R-CNN instance segmentation results on far view d) Grad-CAM result with ’red block’ text input (white being
highest intensity) e) Grad-CAM result with ’yellow block’ text input (white being highest intensity).

are defined in that camera view with positive y in the upward direction and positive x in the right
direction. The second set (in front of & behind) has access to a left camera view with coordinate x2
pointing towards the right which is towards the front in the first camera view and y2 pointing upward
similar to the first camera view. The second camera is needed to know if the object is placed in the
front or behind another object correctly. The third set (close to & inside of) require access to a front
camera view with a 45 degree downward tilt towards the ground. This camera view is needed to see
if the object is getting closer to another object in two orthogonal directions at once where as a left
only or front view only allows you to determine one dimension of closeness. For “inside of” a 45
degree camera helps the agent see if the object is going inside another object without occlusion. The
ϵ threshold for “inside of” is much smaller than for “close to” since the centroid can come much
closer when an object goes inside a container object.

Full Reward Model Training and Usage After generating spatial language labels for randomly
collected images using CLIP-saliency phrase grounding, we train our full reward model similar
to CLIP (Radford et al., 2021) with the similar visuolinguistc contrastive loss where the model
essentially predicts which caption matches which image in every batch. The cosine similarity of the
image and text embeddings of the correct pairs in the batch are maximized while the cosine similarity
of the embeddings of the incorrect pairs are minimized. We initialized our model with the pretrained
language and image encoders from CLIP. This, what we call ‘full reward model’, is essentially same
as the base reward model but now it has been ”fine-tuned” with spatial-grounded text-image data
generated automatically. To prevent catastrophic forgetting and overfitting to just the new data, one
could maintain a distillation loss with respect to the old model. However, we found that training the
model from scratch on this new data to work well. Finally, the dot product of our new model can
directly be used as reward but we found thresholding the dot product to obtain binarized reward to
work better. This finetuned zero-shot reward model can be used for a broad set of manipulation tasks
to push or place objects to semantic locations which we showcase in our results.

2.3 LANGUAGE CONDITIONED MULTI-TASK POLICY

Now that we have a method for learning tasks in a zero-shot reward fashion, we would like to be
able to not require training a new policy for every new task and ideally have a language conditioned
multi-task policy that takes in the goal text description of an unseen task and executes the task without
needing any new samples from the environment.

To approach this goal, we first learn several tasks via reinforcement learning using our zero-shot
reward model. We then create a large dataset of the rollouts of those polices and pair each trajectory
with the goal text description of the tasks it was trained to learn. We then use behavioral cloning
(supervised learning for predicting actions) to learn a policy that takes images and text goal task
description as input and actions as target outputs. We use CLIP’s language encoder as the text goal
embedding that is fed to the multi-task policy. In addition we use image augmentation techniques to
aid behavioral cloning in learning more robust policies.

3 EXPERIMENTS

3.1 PHRASE GROUNDING AND BASE ZERO-SHOT REWARD MODEL VISUALIZATION

Object detectors are one way to extract object states for our spatial text generator, however, they
are usually not used off the shelf and need to be fine-tuned with in domain data. In Figure 3, we
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show pretrained Mask R-CNN (He et al., 2017) outputs on different camera views for the block
stack environment. As you can see in the first two subfigures, the blocks are not proposed as objects
with Mask R-CNN from both far and close camera views. This is a demonstration of the need for
in-domain fine-tuning of object detectors to work in the environment you want to use. Our Grad-CAM
output from CLIP however, highlights exactly the objects we are interested in from the object noun
phrases that describes each object in the last two subfigures. Another limitation with Mask R-CNN is
that even if the object proposals were good, it would not necessarily classify objects it has not been
trained for and therefore not output a filtered set of object proposals. In other words, we would not
know which object is which if the detector hasn’t been trained with the label of objects we care about.

Figure 4: We showcase our base re-
ward model trained policy in Double
Inverted Pendulum performing slightly
better than oracle reward. We average
our results over 3 seeds per task.

In Figure 5 we show what our base reward model outputs
on two goal descriptions: 1. inverted pendulum 2. yellow
object close to a blue object. For the first goal description
we observe that the dot product increases as the pendulum
becomes more inverted from either side as desired. For the
second goal description we observe that as the blue object gets
closer to the yellow object the dot product increases except for
the closest image where it dips which results in an undesired
output. We observed this example and many others that the base
reward model is not sufficient for recognizing object spatial
relationships. The encoders are good at identifying what objects
are in the image however, which is what we leverage to generate
paired language image data for our full reward model.

3.2 FULL ZERO-SHOT REWARD MODEL RESULTS

0 1 2 3 4

0 1 2 3 4

Image index

Image index

Figure 5: We visualize the results of the base reward model
which is a trivial dot product between the goal language de-
scription and image observation. The top row (green box)
displays a successful utilization of the base reward model and
the bottom row (red box) shows a failure case. The x-axis
represents image index.

In Figure 6 we show how our full re-
ward model performs on three manipula-
tion tasks. We train each task using our
full zero-shot reward model output as re-
ward for the PPO reinforcement learning
algorithm (Schulman et al., 2017). We then
train for the same tasks with other types of
reward functions as baselines or privileged
methods for comparison:

a) Oracle reward (privileged): this reward
function has direct access to state to de-
termine task completion. In other words
it uses true x,y,z spatial positions of the
objects to determine if the desired spatial
relationship is reached and outputs 1 to the
RL algorithm for every timestep the condi-
tions of the task are met.

b) VICE (privileged): VICE(Fu et al., 2018) is used as a privileged method that has access to task
goal image for comparison. We train the VICE reward model as a binary goal classifier that is trained
with true goal images of the task such as “red block on top of yellow block” as positive images and
images that aren’t in the correct goal configuration as negative images. We discretize the model to
output 1 if it determines the current image is positive and 0 otherwise.

c) Ours-base: Our base zero-shot reward model that uses the dot product between the goal text feature
and image observation feature of CLIP as reward.

d) Curiosity-RL (Pathak et al., 2017; Burda et al., 2018): Curiosity is used as a baseline since it only
has access to images similar to our method for computing reward, but has only been successful for
videogames such as Atari and Mario or locomotion where exploring new states leads to progressing
through the task (going further in levels of game for example). It is less privileged however, in that it
does not use language input for task specification.
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Figure 6: We showcase our Full Reward Model performing as well as oracle reward and VICE both of which are
priviledged on SawyerSimRobot-Pushing (pushing a blue puck close to a yellow puck), FetchSimRobot-Stacking
(stacking a yellow block on top of a red block), and FetchSimRobot-Placing (placing a yellow block on the right
of a red block). We average results over 3 seeds per task. Oracle reward is privileged with true state information
used to compute proximity to goal. VICE is privileged with true goal images used to train its reward model in
classifying observations as close to goal or not.

In Fig. 6 we observe that our Full Reward Model performs as well as oracle reward and VICE both of
which are priviledged on SawyerSimRobot-Pushing (pushing a blue puck close to a yellow puck),
FetchSimRobot-Stacking (stacking a yellow block on top of a red block), and FetchSimRobot-Placing
(placing a yellow block on the right of a red block). For Curiosity-RL we see that it learns the pushing
pucks close together task but then starts learning separation of the pucks which reemphasizes that
curiosity is only useful for tasks where exploring new dynamics leads to going farther in the task.
Curiosity also has some trouble learning the double inverted pendulum task because the dynamics of
the pendulum swinging can be hard to predict and therefore have misleading higher reward. Curiosity
also does not learn the other manipulation tasks (stacking and placing) as those are more complex
tasks that are harder to reach by exploration.

For Double inverted pendulum (Fig. 4) our base reward model does better than oracle by chance
which we speculate is because the oracle reward was originally designed for state input and was not
tuned for learning image to reward mapping. Our base reward model fails for pushing, stacking, and
placing, which take “an image of a yellow block on top of a red block”, “an image of a yellow object
close to a blue object”, and “an image of a yellow block on the right of a red block” as language input
for those tasks respectively.

The oracle reward function for Double-Inverted-Pendulum is alive bonus minus distance penalty
minus velocity penalty. The oracle for SawyerSimRobot-Pushing is a sparse reward that outputs
one when the centroid distance between two pucks are below a threshold. The oracle reward for
FetchSimRobot-Stacking is a sparse reward that outputs one when a yellow block is within a horizontal
and vertical threshold distance of a red block. The oracle reward for FetchSimRobot-Placing is a
sparse reward that outputs one when a yellow block is correctly placed on the right of a red block.
See Figs. 3 & 5 for image observation examples of FetchSimRobot and SawyerSimRobot.

3.3 MULTI-TASK POLICY RESULTS

In order to avoid having to train a new policy for every new task we want to learn, we train a multi-task
policy with a set of training tasks and then show that it can generalize to a set of unseen test tasks by
leveraging CLIP’s language model to encode the goal text description of the tasks as conditioning
input to our multi-task policy.

In FetchSimRobot env, we train 18 tasks with PPO each for 200K environment steps with our
zero-shot reward model described in the previous section and show generalization results for 18
unseen test tasks by training a language conditioned policy with behavior cloning on rollouts of the
18 training tasks. We collect 5000 timesteps per task which is around 50 trajectories. We do this for
pickplace-left, pickplace-right, and stack tasks for different object combinations. The object training
colors are red, green, and yellow, and the object test color is blue. So the multi-task policy has never
seen blue block in text input or image input.
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Seen distribution Unseen distribution
train tasks test tasks train tasks test tasks

(episode reward stats) mean s.e. mean s.e. mean s.e. mean s.e.
No Conditioning 17.91 1.11 14.82 0.97 14.81 1.02 10.79 0.85
Primitive Code Cond. 26.71 1.23 17.20 1.03 17.03 1.07 11.74 0.87
Language Cond. 29.89 1.28 22.41 1.09 21.14 1.16 15.69 0.98

Table 2: Multi-task Policy Performance Results: We report multi-
task average and standard error performance across all 18 training
tasks and all 18 test tasks (unseen object color in goal text or image)
for seen and unseen initial state distributions with no conditioning,
primitive code conditioning, and language conditioning. The values
reported are the episode reward averaged across 50 seeds per task
policy rollout. The tasks are robotic arm manipulation of objects
to different target semantic relationships of each other in the Fetch-
SimRobot environment. While the policies were trained using our
full zero-shot reward model, the reward metric reported is oracle
reward to evaluate true performance.

In evaluation, for each task we aver-
age episode rewards over 50 seeds.
We then average across all training
tasks to get the train metric and across
all test tasks to get the test metric
respectively. We compare our lan-
guage conditioned policy with a pol-
icy trained without task labels, and
one trained with a primitive code as
the conditioning input. The latter
baseline simply labels the training
tasks with integers 0 to 17. Since the
Primitive code conditioned policy has
only been trained with primitive codes
of the training tasks, when evaluating
it for test tasks we allow the policy to
use CLIP’s language embedding to find the closest corresponding training primitive code. This
is done by comparing the text description embedding of all the training tasks to the test task text
description embedding and choosing the training task primitive code corresponding to the smallest
L2 distance.

We use the same oracle reward that has direct access to state in figure 6 to measure the performance
of our multi-task models. Every timestep the objects are in the correct target text description the
agent is rewarded 1 point. The objects never start in the correct target state. Therefore it always takes
several timesteps for the policy to move the objects to the correct state. All episodes timeout after
100 timesteps or if one of the objects falls off the table. In RL training and in policy rollout collection
for behavior cloning each object has a one block width of variation in starting point location. We
tested the policies on same distribution of start point variation interval (seen initial state distribution)
and double the start point variation interval (unseen initial state distribution).

In Table 2 we see that no conditioning policy has the lowest performance as expected since there
is full ambiguity in what task to perform given only an image. However, since the no conditioning
policy has been trained across many different object colors going to different target states it has
learned general displacement of blocks to different semantic locations randomly that can sometimes
be moved to the correct semantic location by chance during testing. For the training tasks it has higher
performance than testing tasks since it can memorize to execute some of the training tasks that have
almost the exact same initial states sampled during testing as those in the behavior cloning dataset
and thereby execute correctly as memorized. We observe that the primitive code conditioned policy
has much higher training performance than the no conditioning policy since it can disambiguate what
task it needs to execute.

We observe that the language conditioned policy performs significantly better on test tasks than the
primitive code conditioned policy since it can use the language embedding to infer the target task
determined by the goal text description. The primitive code conditioning policy has access to the
language embedding only to determine the closest training primitive code to the target task description.
It’s interesting to observe that the primitive code conditioning performs better than no conditioning
on the test tasks because the closest primitive code can sometimes lead to a successful execution
of the test task since it has some signal towards the correct task. One such example is that the test
goal description task of ”a blue block on the right of a yellow block” is mapped to the primitive code
of the training goal description task of ”a red block on the right of a yellow block”. In Table 2 we
also observe the same trend in the policy performances in unseen intial state distribution: the no
conditioning policy performing the poorest on train and test tasks, the primitive code conditioned
policy performing significantly better on both, the language conditioned policy performing the best at
training and test tasks via its language structured specification of tasks.

We train the language conditioned policy with ResNet18 image encoding that is concatenated with
CLIP language encoding both of which are pushed through an fc layer before concatenation. The
concatenated vector is then inserted into two fc layers before predicting actions. The primitive code
conditioned policy swaps the CLIP language encoding with an integer from 0-17 representing the
primitive code input. The no conditioned policy only has two fc layers on top of the same image
encoding as the other two policies. We apply an L2 regression loss on the output for predicting
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continuous actions (behavior cloning). The policy is trained using Adam optimizer with AMS grad
with learning rate of 1e-4. The images are augmented with PyTorch RandomResizedCrop of 0.95
to 1.0 area and 0.98 to 1.02 aspect ratio randomization and resized to original image dimensions of
128x128. All the policies are trained for 300 epochs.

4 RELATED WORK:

Goal conditioned policies Goal conditioned policies allow a user to specify the agent’s goal. States
(Schaul et al., 2015; Andrychowicz et al., 2017) and Images (Pathak et al., 2018; Nair et al., 2018; Fu
et al., 2018; Singh et al., 2019) are one way of specifying goal. However, they assume that the user
has access to a photo or state of the completed task to give to the agent. We assume no access to goal
images or state to minimize human labor and instrumentation, and use language which provides a
natural form of supervision.

Goal text conditioned policies Several previous efforts train reward functions or policies that take
natural language as input for goal description (Oh et al., 2017; Bahdanau et al., 2018; Zhou & Small,
2020; Goyal et al., 2020; Fu et al., 2019; Hermann et al., 2017; Shao et al., 2020). They all however
rely on reward signals that have access to state of the system or demonstrations of the task distribution
they are training on.

Learning reward functions There are works that use human videos to learn reward functions to
train their agent with (Sermanet et al., 2018; 2016; Shao et al., 2020). We however, don’t need a
curated dataset of humans performing the tasks we want our agent to train with. Having humans
perform all tasks we are interested in may not scale well with the amount of labor needed for recording
and curating those datasets. CLIP has the advantage of learning a caption model from 400 million
image, text pairs from the publicly available sources on the internet WIT.

No Environment Reward There have been recent work on methods that use no reward signal from
the environment to train for specific tasks. Two notable ones are Curiosity (Pathak et al., 2017) and
DIAYN (Eysenbach et al., 2018). Curiosity has only been successful on navigation and video games
with discrete action space and DIYAN has mostly been successful on direct state input. Our method
however, can learn a subset of manipulation tasks in continuous action space on raw pixels and can
be specified easily with goal text.

Utility of large vision language models in RL There has been recent work that leveraged CLIP to
do many complex manipulation tasks (Shridhar et al., 2021). They however, have access to labeled
expert demonstrations for training their policy. We assume no access to demonstrations or goal
images at training or test time.

5 DISCUSSION

In this work, we presented a method for learning a set of object manipulation tasks without access to
state of the system by computing reward from pixels conditioned on text goal description alone. Our
method doesn’t use goal images or demonstrations at either training time or test time. We devised a
zero-shot reward model that leverages a language vision model (CLIP) that has been trained on a
very large dataset of captioned images on the internet to compute progress (reward) towards a goal
text description. We use this zeroshot-reward model to collect data on many tasks to then supervise
a language conditioned multi-task policy that can execute new tasks without need of extra training.
There are many future directions that can expand the abilities of our reward model such as taking into
account pose of objects and state of objects (such as closed door).

Finally we must address the ethical perils inherent in our leverage of models trained on large-scale
vision and language datasets. Such datasets are well known to suffer from dataset bias that can cause
failure or unintended harm (Buolamwini & Gebru, 2018). While the near-term risks appear to be
limited with the robotic applications presently envisioned, practitioners should continuously monitor
systems for bias against underrepresented groups and ensure that robotic systems work across all
socioeconomic domains. Techniques for bias assessment and debiasing should be employed whenever
possible to ensure this remains the case.
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