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Abstract

Lipschitz bounded neural networks are certifiably
robust and have a good trade-off between clean
and certified accuracy. Existing Lipschitz bound-
ing methods train from scratch and are limited to
moderately sized networks (< 6M parameters).
They require a fair amount of hyper-parameter
tuning and are computationally prohibitive for
large networks like Vision Transformers (5M to
660M parameters). Obtaining certified robustness
of transformers is not feasible due to the non-
scalability and inflexibility of the current methods.
This work presents CertViT, a two-step proximal-
projection method to achieve certified robustness
from pre-trained weights. The proximal step tries
to lower the Lipschitz bound and the projection
step tries to maintain the clean accuracy of pre-
trained weights. We show that CertViT networks
have better certified accuracy than state-of-the-art
Lipschitz trained networks. We apply CertViT on
several variants of pre-trained vision transform-
ers and show adversarial robustness using stan-
dard attacks. Code : https://github.com/
sagarverma/transformer-lipschitz

1. Introduction
Deep neural networks (DNNs) are vulnerable to adversarial
examples (Szegedy et al., 2013), where the perturbations to
the input are constructed deliberately to confuse the classi-
fier. Numerous heuristic solutions for adversarial defenses
have been proposed but these solutions are often broken
using more carefully crafted stronger attacks (Athalye et al.,
2018). This suggests that such methods provide only empiri-
cal robustness without any formal guarantees. But for safety
and mission-critical scenarios, we need certified defenses
with formal robustness guarantees that any norm-bounded
adversary will not be able to alter the network predictions.
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One such line of work providing certified robustness con-
centrates on bounding the Lipschitz constant of a neural
network. Existing methods obtain global and local Lips-
chitz bounded networks when training from scratch. These
methods have been applied to moderately sized networks
comprising only convolutional and dense layers. The largest
network experimented in (Virmaux & Scaman, 2018) con-
sists of 6M parameters. These methods become untenable
for deeper and more complex architectures such as trans-
formers.

Transformers proposed by (Vaswani et al., 2017) for ma-
chine translation has become the state-of-the-art method
in many NLP tasks. In (Dosovitskiy et al., 2020), the au-
thors have proposed Vision Transformer (ViT) with very
few changes to the original transformer. Data-efficient
ViT (DeiT) reduces the dependence of ViTs on large-size
datasets. Many different Vision Transformer architectures
are proposed for various tasks, but the attention layer re-
mains the backbone of most of them. It has to be noted
that, for ViT, the number of parameters tends to be very
large, so it is computationally expensive to train them from
scratch. Instead, researchers use their pre-trained models for
fine-tuning desired tasks or datasets. Although there have
been many works around the empirical robustness of trans-
formers and several adversarial attacks specifically designed
for fooling transformers, the internal properties relating to
robustness are not well studied. Moreover, in (Kim et al.,
2021), authors have proved that the standard dot product
(DP) self-attention is not Lipschitz continuous. They pro-
vide a Lipschitz continuous ℓ2 distance based self-attention
as the replacement of DP. They show the efficacy of their
transformer-based architecture on language modeling tasks
in terms of performance. To the best of our knowledge, the
certified robustness of pre-trained transformers has not been
investigated. Transformers being large networks efficacy of
current certifiable robust training methods is unknown. This
paper focuses on obtaining the certified robustness of large
pre-trained transformers and is a step in certifying the robust-
ness of parameter heavy models. Our main contributions
are summarized as follows:

• We present CertViT algorithm utilizing Douglas-
Rachford method which consists of two steps: lowering
the Lipschitz constant of the network and maintaining
good clean accuracy.

https://github.com/sagarverma/transformer-lipschitz
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• We first compare the effectiveness of our proposed
method CertViT in certifying convolution and linear
layer-based models with existing Lipschitz bounding
methods.

• For transformers, we adopt a Lipschitz continuous L2
self-attention from pre-trained DP attention networks,
making them Lipschitz continuous. We then demon-
strate the effectiveness of our method in certifying
different transformer architectures. We also discuss the
limitations associated with it.

2. On robustness of Transformers
Adversarial robustness of Vision Transformers (ViT) has
been studied in (Bhojanapalli et al., 2021; Mahmood et al.,
2021; Benz et al., 2021) and they compare different ViTs to
their ResNet counterparts. (Mahmood et al., 2021) studied
commonly used adversarial attacks and concluded attacks
do not transfer readily between transformers and ResNets.
They also proposed a new attack SAGA(Self-Attention Gra-
dient attack) for attacking an ensemble of transformers and
CNNs. Benz et al. (Benz et al., 2021) did a frequency anal-
ysis which suggests that the most robust ViT architectures
tend to rely more on low-frequency features compared to
CNNs. In (Bhojanapalli et al., 2021) experiments suggest
that ViTs are more robust to the removal of any single layer.
An interesting observation from the paper suggests a high
correlation in the later layers of ViTs, indicating a larger
amount of redundancy.

3. Proposed Method
3.1. Lipschitz Continuity

Definition 3.1. Lipschitz constant of a function f is an
upper bound on the ratio between the output and the input
variations of a function f . If L ∈ [0,+∞[ is such that, for
every input x ∈ RN0 and perturbation z ∈ RN0 ,

∥f(x+ z)− f(x)∥ ⩽ L∥z∥ (1)

then L is a Lipschitz constant of f . ∥.∥ denotes the
standard Euclidean norm, but any other norms can be
applied. If X is defined as the ϵ-ball at point x, i.e.,
X = {x′ |∥x− x

′∥ ⩽ ϵ}, then L is the local Lipschitz con-
stant of f at x.

The first upper bound on the Lipschitz constant of a neural
network was derived by analyzing the effect of each layer
independently and considering a product of the resulting
spectral norms (Goodfellow et al., 2015). The spectral ma-
trix norm is equal to the maximum singular value of weight
matrix. An important assumption is that the activation oper-
ators are nonexpansive, i.e., 1-Lipschitz. This assumption is
satisfied for all the standard choices of activation operators
ReLU, tanh etc.

3.2. Constraining Lipschitz of a layer

Aiming for a tight Lipschitz bound of a network consists
of making the Lipschitz constant of individual layers of
the network small independently while keeping an overall
satisfactory accuracy. We assume that, for a given layer, a
training sequence of input/output pairs is available which
results from a forward pass performed on the original/pre-
trained network for some input dataset of length K. The
training sequence is split into J mini-batches of size T so
that K = JT . The j-th mini-batch with j ∈ {1, . . . , J} is
denoted by (xj,t, yj,t)1⩽t⩽T . To lower the Lipschitz con-
stant of the network, we propose to solve the following
constrained optimization problem

Problem 3.2.
minimize

W∈C
L(W ) (2)

C =
{
W ∈ RN×M | (∀j ∈ {1, . . . , J})

T∑
t=1

d2∂f(yj,t)
(Wxj,t − yj,t) ⩽ Tη

}
, (3)

where L is a Lipschitz measure defined on RN×M , η ∈
[0,+∞[ is defined accuracy tolerance, and d∂f(y)(Wx− y)
is a suitable accuracy measure for approximated values of
the layer parameters W . For more details refer appendix B.

Since, for every j ∈ {1, . . . , J}, the function W 7→∑T
t=1 d

2
∂f(yj,t)

(Wxj,t − yj,t) is continuous and convex, C
is a closed and convex subset of RN×M . In addition, this
set is nonempty when there exist W ∈ RN×M such that,
for every j ∈ {1, . . . , J} and t ∈ {1, . . . , T},

d2∂f(yj,t)
(Wxj,t − yj,t) = 0. (4)

This condition is satisfied when W are the parameters of the
pre-trained layer. A standard choice for such a function is
the ℓ1-norm of the matrix elements, L = ∥ · ∥1.

A standard proximal method for solving Problem 3.2 is the
Douglas-Rachford algorithm (Lions & Mercier, 1979; Com-
bettes & Pesquet, 2007).This algorithm alternates between
a proximal step (relaxβ) aiming at lowering the Lipschitz
value of the weight matrix and a projection step (projC) to
maintain original accuracy of the pre-trained network. This
algorithm can be written as :

The Douglas-Rachford algorithm uses positive parameters
β and (λn)n∈N. Throughout this article, projS denotes the
projection onto a nonempty closed convex set S.

Proposition 3.3. (Combettes & Pesquet, 2007) Assume that
Problem 3.2 has a solution and that there exists W ∈ C
such W is a point in the interior of the domain of h. As-
sume that β ∈ ]0,+∞[ and (λn)n∈N in ]0, 2[ is such that
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Algorithm 1 CertViT: Constraining a Layer

Initialize :Ŵ0 ∈ RN×M

for n = 0, 1, . . . do
Wn = relaxβ(Ŵn)

W̃n = projC(2Wn − Ŵn, η)

Ŵn+1 = Ŵn + λn(Wn − W̃n)

∑
n∈N λn(2−λn) = +∞. Then the sequence Wn∈N gener-

ated by Algorithm 1 converges to a solution to Problem 3.2.

The projection step relaxβ reduces the magnitude of each
parameter or element of the input matrix Wn by β (i.e
(sign(Wn) ∗ (abs(Wn)−β))). This is equivalent to making
a matrix sparse also known as magnitude pruning (Verma
& Pesquet, 2021). In turn, since the convex set C has an in-
tricate form, an explicit expression of projC does not exist.
Finding an efficient method for computing this projection
for large datasets thus constitutes the main challenge in the
use of the above Douglas-Rachford strategy, which we will
discuss in the next section.

3.3. Maintaining clean accuracy

For every mini-batch index j ∈ {1, . . . , J}, we define the
following convex function:

(∀W ∈ RN×M )

cj(W ) =

T∑
t=1

d2∂f(yj,t)
(Wxj,t − yj,t)− Tη. (5)

Note that, for every t ∈ {1, . . . , T} and j ∈ {1, . . . , J},
function cj is differentiable and its gradient at W ∈ RN×M

is given by

∇cj(W ) = 2

T∑
t=1

(Wxj,t − yj,t)x
⊤
j,t. (6)

Weight parameters belong to C if and only if it lies in
the intersection of the 0-lower level sets of the functions
(cj)1⩽j⩽J . To compute the projection of some W ∈ RN×M

onto this intersection, we use Algorithm 2 (∥ · ∥F denotes
here the Frobenius norm).

This algorithm has the advantage of proceeding in a mini-
batch manner. The simplest rule is to use each mini-batch
once within J successive iterations of the algorithm so that
they correspond to an epoch. The proposed algorithm be-
longs to the family of block-iterative outer approximation
schemes for solving constrained quadratic problems (Com-
bettes, 2003). One of the main features of this algorithm is
that it does not require performing any projection onto the

Algorithm 2 Mini-batch algorithm for computing
projC(W, η)

Initialize :W0 = W
for n = 0, 1, . . . do

Select a batch of index j ∈ {1, . . . , J}
if cj(W ) > 0 then

δW =
cj(W )∇cj(W )

∥∇cj(W )∥2
F

πn = ((W0 −W )⊤δW )
µn = ∥W0 −W∥2F
νn = ∥δW∥2F
ζn = µnνn − π2

n

if ζn = 0 and πn ⩾ 0 then
W = W + δW

else if ζn > 0 and πnνn ⩾ ζn then
W = W0 + (1 + πn

νn
)δW

else
W = W + νn

ζn
(πn(W0 −W )− µnδW )

else
Wn+1 = Wn

0-lower level sets of the functions cj , which would be in-
tractable due to their expressions. Instead, these projections
are implicitly replaced by subgradient projections, which
are much easier to compute in our context.

3.4. CertViT for a Network

Algorithm 3 Parallel CertViT for multi-layer network
Input: input sequence X ∈ RM×K , β magnitude for soft-

thresholding, error tolerance parameter η > 0, λ is
update rate, weight matrices W 1, . . . ,WL

Y 0 ← X
for l = 1, . . . , L do

Y l = Rl(W
lY l−1)

Ŵ l ← CertViT(β, η, λ,W l, Y l, Y l−1)

Ŵ 1, . . . , ŴL ← fine-tune(Ŵ 1, . . . , ŴL, X, Y )

Output: Ŵ 1, . . . , ŴL

Algorithm 3 describes how we make use of CertViT for
a transformer. We use a pre-trained transformer and the
training sequence to extract layer-wise input-output features.
Then we apply CertViT on individual layer l by passing pa-
rameter β, η, and λ for magnitude based soft-thresholding,
error tolerance, and Douglas-Rachford update rate, respec-
tively. Rl is the activation function just after the layer l.
Layer parameters W l and input-output features (Y l−1, Y l)
are extracted and passed to Algorithm 1. The benefit of
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applying CertViT to each layer independently is that we can
run CertViT on all the layers of a network in parallel. This
reduces the time required to process the whole network and
compute resources are optimally utilized. Once all layers
have been constrained using CertViT, we finally do a fine-
tuning on training set to overcome any accuracy lost during
the process. This is similar to retraining after magnitude
based pruning.

3.5. Computing Lipschitz constant of Transformers

Transformer model comprises of fully connected, convolu-
tional, and self-attention layers. Though the estimates of
the Lipschitz constant of fully connected and convolutional
layers are now widely studied in the literature, self-attention
layers are still under-explored in terms of Lipschitz bounds
and hence their certified robustness is of question. In (Kim
et al., 2021) authors investigate the Lipschitz bounds of self-
attention layer.They prove the standard DP self-attention
used in all the current transformer models is not Lipschitz.
They propose an alternative L2 Multi headed self-attention
(L2-MHA).

These estimates are Lipschitz continuous for the condition
that query and key weight matrices are shared for each head
in multi-headed self attention module. The estimates pre-
sented imply transformers have intrinsically high Lipschitz
constant due to the self-attention module and naively re-
stricting them to attain lower Lipschitz constant makes them
difficult to learn leaving both clean and certified accuracy
very low. Since this form of self-attention is Lipschitz con-
tinuous we adapt it to learn the ViTs from scratch and also
adapt the DP-attention to L2 attention weights in pre-trained
transformers.

The patch embedding layer is used for generating patches
and translating the patches to fixed dimension with their
positional embeddings. This layer can be constructed using
convolutional or dense layers. The output of the patch em-
bedding layer serves as the input to the transformer encoder.
The output of this encoder is fed to the MLP layer. The
Lipschitz bounds for the weights of both of these types of
layers can be estimated using spectral norm via the power
iteration method. The MLP layer consists of two dense lay-
ers. The first dense layer of MLP is followed by the GeLU
activation function. GeLU is not 1-Lipschitz, but Lipschitz
continuous with value 1.12 which can be trivially obtained
(Appendix C). So we calculate the Lipschitz bound for the
MLP layer in the transformer as 1.12∥W∥s.

4. Experiment
We perform various experiments to demonstrate our pro-
posed method’s effectiveness in making neural network
models more robust and provide a good trade-off between

clean and certified accuracy. In order to manage our ex-
periments we use Polyaxon1 on a Kubernetes2 cluster and
use 2 computing nodes with 16 A100 GPUs in each node
(40GB VRAM per GPU). Experimental details are available
in Appendix E.

4.1. Comparison to Existing Lipschitz Bounding
Methods

To concretize the effectiveness of the proposed method in
reducing the Lipschitz bounds, we first compare it with ex-
isting Lipschitz based methods used in certifying mid-size
networks with convolution and dense layers. We compare
our results with state-of-the-art of methods such as GloRo
(Leino et al., 2021), Local-Lip (Huang et al., 2021), and
BCP (Lee et al., 2020). We show these results on limited-
sized datasets: MNIST, CIFAR-10, CIFAR-100 and Tiny-
ImageNet in Table 1. We used the custom networks used
in the certified robustness literature. i.e., 4C3F: MNIST,
4C3F and 6C2F for CIFAR-10, 8C2F for CIFAR-100 and
TinyImageNet. We trained our model with the same config-
urations as provided in Local-Lip (Huang et al., 2021) for
fair comparisons. Next, we perform experiments on ViTs on
each of the datasets. We train a 6-layer ViT on MNIST and
CIFAR-10, 10-layer ViT on CIFAR-100, and 12-layer ViT
on TinyImageNet. We replace DP attention with L2 atten-
tion to make architecture Lipschitz continuous, as explained
in the previous sections. For all experiments of CertViT, we
use β = 0.01, η = 0.1, and λ = 1.2. More details about
ViT configurations in the Appendix E.

For each experiment, we report accuracy on non-perturbed
inputs (clean accuracy), accuracy on adversarial perturba-
tions generated via PGD attack (Madry et al., 2017) (PGD
accuracy), and the proportion of inputs that can be correctly
classified and certified within ϵ-ball (certified accuracy).
Certified accuracy gives a lower bound on the number of
correctly classified points that are robust, and PGD accu-
racy serves as an upper bound on the same quantity. We
also report the Lipschitz bounds for the trained models. We
test our Lipschitz constrained neural networks to certify ro-
bustness against ℓ2 perturbations within an ϵ-neighborhood
of 1.58 for MNIST, 36/255 for CIFAR-10, CIFAR-100,
and TinyImageNet (these are the ℓ2 norm bounds that have
been commonly used in the previous literature.). We also
tabulate the computational budget required to train each
of these models in terms of FLOPs. More details on the
training setup can be found in Appendix D. For different
state-of-the-art, we used hyper-parameters mentioned in the
respective works detailed in Appendix E for details.

Observations: As mentioned earlier, unconstrained neu-
ral network models have very high Lipschitz bounds. We

1https://github.com/polyaxon/polyaxon
2https://kubernetes.io/
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Method (Params) Model Clean (%) PGD (%) Cert. (%) Lip. FLOPs (×1013)

MNIST (ϵ = 1.58)

Standard (1973536) 4C3F 99.3 45.9 0.0 2.5× 103 6.1
BCP 4C3F 92.4 65.8 44.9 6.9 18.2
GloRo 4C3F 97.0 68.9 50.1 2.3 30.3
Local-Lip 4C3F 96.2 78.2 55.8 0.7 17.6
CertViT (Ours) 4C3F 98.2 82.9 61.3 0.8 5.5

Standard (1094528) ViT 98.6 63.4 0.0 1.4× 1013 9.3
CertViT (Ours) ViT 97.8 64.2 54.5 1.2 8.4

CIFAR-10 (ϵ = 36/255)

Standard (2528096) 4C3F 84.6 51.1 0.0 2.7× 104 8.2
BCP 4C3F 64.4 59.4 50.0 5.7 16.3
GloRo 4C3F 73.2 66.3 49.0 6.3 49.1
Local-Lip 4C3F 75.7 68.3 67.6 2.5 20.4
CertViT (Ours) 4C3F 81.2 69.8 69.1 1.9 7.4

Standard (2360672) 6C2F 86.4 50.5 0.0 2.8× 105 17.5
BCP 6C2F 65.7 60.8 51.3 11.35 35.0
GloRo 6C2F 70.7 63.8 49.3 9.21 140.1
Local-Lip 6C2F 69.8 64.3 54.1 7.89 43.7
CertViT (Ours) 6C2F 82.1 63.2 57.3 6.12 19.2

Standard (4086912) ViT 81.4 33.7 0.0 8.2× 1016 331.5
CertViT (Ours) ViT 75.1 42.7 33.1 9.1 358.0

CIFAR-100 (ϵ = 36/255)

Standard (2436864) 8C2F 62.3 25.3 0.0 8.1× 107 128.6
GloRo 8C2F 29.3 27.7 21.3 10.2 514.3
Local-Lip 8C2F 34.0 31.1 22.9 8.9 360.7
CertViT (Ours) 8C2F 42.4 35.2 25.4 7.2 77.1

Standard (4916736) ViT 55.3 15.4 0.0 6.3× 1014 397.6
CertViT (Ours) ViT 46.2 21.6 9.1 12.1 429.4

TinyImageNet (ϵ = 36/255)

Standard (5257984) 8C2F 39.1 12.1 0.0 2.9× 108 583.0
GloRo 8C2F 35.5 32.3 22.4 7.7 2331.8
Local-Lip 8C2F 37.4 34.2 27.4 5.9 1020.2
CertViT (Ours) 8C2F 38.1 34.9 26.3 6.1 349.8

Standard (9060864) ViT 42.4 10.8 0.0 1.64× 1028 2860.1
CertViT (Ours) ViT 36.3 13.1 2.3 13.2 3088.9

Table 1. Comparison of CertViT with state-of-the-art Lipschitz bounding methods. We use Clean, PGD and Certified Accuracy as the
performance metrics. We also report the Lipschitz constant values obtained and the FLOPs taken by each method. Note that for CertViT
we do not consider the training FLOPs used to obtain the pre-trained network. In case of CIFAR-10 (6C2F) BCP takes less time (FLOPs)
compared to standard + CertViT.

Model (→) ViT DeiT Swin

T/16 S/16 S/32 B/8 B/16 B/32 L/16 T S B T S B L

DP Params (×106) 5.7 22.0 22.9 86.4 80.5 88.2 304.1 5.7 22.0 86.4 28.3 49.5 87.7 196.4
L2 Params (×106) 5.2 20.2 21.0 78.8 79.2 81.0 278.4 5.2 20.2 78.8 25.7 44.9 79.9 179.4
L2 FLOPs (×1016) 6.4 25.0 6.4 392.7 100.6 25.6 350.4 6.4 26.7 396.8 26.3 50.1 90.3 199.9
CertViT FLOPs (×1016) 7.7 31.2 7.7 471.2 120.7 30.7 420.5 8.2 33.2 473.2 31.5 59.9 108.4 239.8

Table 2. Comparison of parameters of DP-attention and L2-attention transformers and the computation utilized to obtain the L2-attention
from DP attention along with FLOPs used to constrain the L2-attention transformer using CertViT. T/16 means Tiny variant with patch
size 16. S, B, and L are Small, Base, and Large, respectively.

observe that ViTs with just 1M parameters have very high
Lipschitz constant of order 1013, making them unsuitable for
certification. The high value can be attributed to the multi-
headed self-attention layer in the transformers and residual
branches. Our proposed method, CertViT is very successful

in lowering the Lipschitz bounds of networks compared to
the existing works on networks with convolution and dense
layers. CertViT also maintained accuracy close to the pre-
trained network. We achieved better PGD and certified ac-
curacy than existing works for all the datasets. CertViT also
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Model (↓) DP Attention L2 Attention CertViT on L2 Attention

Clean(%) PGD(%) Clean(%) PGD(%) Lip. (×1028) Clean(%) PGD(%) Cert.(%) Lip.

ViT-T/16 63.0 29.1 62.5 28.2 0.2 57.9 32.4 21.7 10.9
ViT-S/16 74.2 48.2 73.7 47.3 1.1 69.2 51.3 0 72.9
ViT-S/32 67.6 40.6 67.5 39.5 2.3 63.1 44.5 0 317.4
ViT-B/8 80.9 59.2 79.9 58.2 13.2 75.5 60.1 0 785.1
ViT-B/16 78.8 57.0 77.8 56.1 13.7 73.2 59.3 0 1720.4
ViT-B/32 75.0 53.7 74.1 52.0 25.8 70.4 56.4 0 8791.7
ViT-L/16 82.6 71.8 81.9 70.2 1.6× 1010 77.8 74.8 0 1.7× 109

DeiT-T 72.6 30.4 71.8 29.2 0.5 67.2 31.6 17.3 13.6
DeiT-S 71.5 45.4 70.5 44.8 1.7 64.6 49.3 0 93.7
DeiT-B 75.2 44.6 74.2 43.4 16.1 69.6 48.3 0 4592.0

Swin-T 72.6 21.2 71.2 20.5 7.2 65.8 22.8 0 483.6
Swin-S 75.7 26.0 74.3 25.1 3.8× 109 69.7 28.0 0 2.7× 108

Swin-B 79.8 30.1 78.5 29.1 11.7× 1010 73.6 31.1 0 1.9× 1010

Swin-L 81.5 28.1 79.8 27.7 23.1× 1010 73.9 30.2 0 4.1× 1010

Table 3. Comparisons of different ViT variants pre-trained on ImageNet-1K adapted to have L2 attention and constrained using CertViT.
Lip. denotes Lipschitz constant of the network.

takes less computational time than other methods, which
can be attributed to its applicability to pre-trained weights.
Moving to ViTs, CertViT successfully lowered the Lipschitz
bounds of pre-trained classifiers by orders of magnitude in
all the cases, and we were able to certify the samples. It can
also be observed that the performance of existing methods
on ViTs is unknown, and the theory usually revolves around
non-expansive operators such as ReLU. We still tried these
methods on ViTs using a few modifications and found they
failed miserably in lowering Lipschitz bounds and hence
did not certify any samples. Therefore, we have removed
them from our comparisons. In contrast, our method was
able to tighten the Lipschitz bound and improve PGD and
certified accuracy. In the case of transformers, CertViT re-
quires considerably fewer FLOPs than the existing works
implying it requires fewer epochs to converge.

4.2. Constraining Lipschitz of large pre-trained
transformers

To show the applicability of our proposed method on large
transformers, we apply it on ImageNet-1K pre-trained
weights of ViT (tiny, small, base, and large), DeiT (tiny,
small, and base), and Swin (tiny, small, base, and large).
All weights were obtained from timm3 library. First, we
replace the DP attention in ViT and DeiT networks with L2
attention. Similarly, in Swin, we replace the shifted window
and window attention with their L2 variants as described
in Appendix F. We then apply our Lipschitz constraining
method (CertViT) on these L2-adapted networks. Table 2
shows the number of parameters for DP attention and L2
attention versions of all the large transformers used in our
experiments. The Table also reports the computational cy-
cles (FLOPs) used in adapting pre-trained DP attention to

3https://github.com/rwightman/
pytorch-image-models

L2 attention and the computational cycles used by CertViT
when constraining L2 attention pre-trained networks. Ta-
ble 3 shows results obtained by DP attention, L2 attention,
and Lipschitz constrained (CertViT) L2 attention networks.
Our proposed method managed to constrain the Lipschitz
constant while maintaining acceptable clean and PGD. We
were only able to obtain certified accuracy for ViT-T/16
and DeiT-T. This is because we are calculating a very loose
upper Lipschitz bound that increases with the depth and
parameters of the network. In all other cases, we reduced
Lipscthiz, leading to increased PGD accuracy. For PGD ac-
curacy on ImageNet-1K, we randomly select 1000 samples
such that each class has one sample from the test set and
report the accuracy of the selected sample. The value of
ϵ-neighbourhood is kept at 36/255.

5. Conclusion
In this work, we propose an efficient way of providing certi-
fied robustness using Lipschitz bounds focusing on vision
transformers. With the ever-increasing deployment of neural
networks, such formal guarantees are necessary for safety-
critical applications. Such Lipschitz constrained training
has been missing in the literature for transformers. We have
presented a proximal projection step for lowering the Lips-
chitz bounds while maintaining the accuracy of the classifier.
We show the efficacy of CertViT on simple architectures
with convolution and fully-connected layers compared to
existing techniques. We establish this pipeline for making
the transformer layers Lipschitz continuous by using L2
attention layers. In the case of pre-trained transformers, we
have adapted DP attention to L2 attention layers. We use
our proposed method, CertViT, for pre-trained transformers.
Results obtained on large transformer variants pre-trained
on ImageNet-1K show the efficacy of our proposed method.

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
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A. Appendix
A. Related work

In (Virmaux & Scaman, 2018), the problem of computing the exact Lipschitz constant of a differentiable function is shown
to be NP-hard; hence most works focus on finding the tightest upper bound. Virmaux et al. (Virmaux & Scaman, 2018)
proposed the first generic algorithm (AutoLip) for upper bounding the Lipschitz constant of any differentiable function.
RecurJac (Zhang et al., 2019b) is a recursive algorithm analyzing the local Lipschitz constant in a neural network using a
bound propagation (Zhang et al., 2019a). FastLip (Weng et al., 2018) is a weaker form of RecurJac. SDP-based Lipschitz
Constant estimates were explored in (Fazlyab et al., 2019). Using the non-expansiveness property of the activation function,
the optimization problem of estimating a Lipschitz constant is recast as solving a semi-definite positive programming
problem, and this estimate is limited to ℓ2 perturbations. Jordan et al. (Jordan & Dimakis, 2020) compute tight Lipschitz
bound using mixed integer programming. In (Latorre et al., 2020), authors proposed a polynomial constrained optimization
(LipOpt) based technique for estimating the Lipschitz constant. This estimate can be used for any ℓp norm for input and
output perturbations, but it is valid for a neural network with a single output. These estimates though tight are only limited to
small and pre-trained models since it is difficult to parallelize the optimization solver and make it differentiable for training.
A multivariate aspect of understanding Lipschitz properties is discussed in (Gupta et al., 2022b) to analyze the sensitivity of
individual inputs.

Utilizing the Lipschitz constant to certify robustness has been studied in several instances in the literature. Neural networks
trained without any robustness constraint usually have very large global Lipschitz constant bounds (Szegedy et al., 2013),
most existing works train the network with the criterion that promotes small Lipschitz bound. Cisse et al.(Cisse et al., 2017)
designed networks with orthogonal weights whose Lipschitz constants are exactly 1. Miyato et al.(Miyato et al., 2018)
showed control on the Lipschitz constant using spectral normalization for GANs and in (Serrurier et al., 2021), authors
learn 1-Lipschitz networks using hinge regularisation loss for binary classifiers. Lipschitz Margin training (LMT) (Tsuzuku
et al., 2018) trains networks that are certifiably robust by constructing a loss on worst logits which are calculated using
the global Lipschitz bounds. It adds

√
2ϵLglob, where ϵ is the perturbation radius to be certified, to all logits other than

that corresponding to the ground-truth class. Box constrained propagation (BCP) (Lee et al., 2020) achieves a tighter outer
bound than the global Lipschitz-based outer bound, by considering local information via interval bound (box) propagation.
They also compute the worst-case logit based on the intersection of a (global) ball and a (local) box. GloRo (Leino et al.,
2021) bounds the upper bounds on the worst margins using the global Lipschitz constant. It constructs a new logit with
a newly constructed class called the bottom class and determines if the sample can be certified. Local-Lip (Huang et al.,
2021) utilizes the interactions between activation functions (e.g. ReLU, MaxMin) and weight matrices. By eliminating the
corresponding rows and columns where the activation function output is constant they guarantee a lower provable local
Lipschitz bound than the global Lipschitz bound for the neural network. Gouk et al. (Gouk et al., 2021) proposed a relaxed
Lipschitz constrained training method in which neural network optimizers can be adapted with a projection step to lower the
Lipschitz constant. This is achieved by normalizing the parameters of a neural network by its spectral norm at every training
step. To maintain a good trade-off between robustness and performance (Gupta et al., 2022a) proposes a control loop with a
known Lipschitz target.

Adversarial robustness of pre-trained classifiers -(Salman et al., 2020) proposed denoised smoothing to make pre-trained
classifiers robust without any retraining or fine-tuning. It prepends a custom-trained Gaussian denoiser to the pre-trained
classifier and applies randomized smoothing (Cohen et al., 2019) to the whole network resulting in a certifiably robust
classifier. It applies to ℓ2 bounded perturbations and is not easily extensible to other perturbation models. (Norouzzadeh
et al., 2021) offers a higher empirical robust accuracy than denoised smoothing, eliminating the need for multiple queries
per sample and reducing the high computational cost of multiple forward passes during inference time. (Norouzzadeh et al.,
2021) show the applicability of their approach to ℓ∞ perturbations as well. Such methods also provide a high degree of
empirical robustness but do not provide any formal guarantees of robustness.

B. Linear layers and variational principles

A single layer linear network without any bias can be defined as:

y = R(Wx) (7)

where x ∈ RM is the input, y ∈ RN the output, W ∈ RN×M is the weight matrix, and R is a nonlinear activation operator
from RN to RN . Combettes et al. (Combettes & Pesquet, 2020a;b) recently showed that most neural network activation
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functions are proximity operators of convex functions. This shows that there exists a proper lower-semicontinuous convex
function f from RN to R∪{+∞} such that R = relaxf . We recall that f is a proper lower-semicontinuous convex function
if the area overs its graph, its epigraph

{
(y, ξ) ∈ RN × R

∣∣ f(y) ⩽ ξ
}

, is a nonempty closed convex set. For such a function
the proximity operator of f at z ∈ RN (Moreau, 1962) is the unique point defined as

relaxf (z) = argmin
p∈RN

1

2
∥z − p∥2 + f(p). (8)

It follows from standard subdifferential calculus that Eq. (7) can be re-expressed as the following inclusion relation:

Wx− y ∈ ∂f(y), (9)

where ∂f(y) is the Moreau subdifferential of f at y defined as

∂f(y) =
{
t ∈ RN

∣∣ (∀z ∈ RN )f(z) ⩾ f(y) + ⟨t | z − y⟩
}
. (10)

The subdifferential constitutes a useful extension of the notion of differential, which is applicable to nonsmooth functions.
The set ∂f(y) is closed and convex and, if y satisfies Eq. (7), it is nonempty. The distance to this set of a point z ∈ RN is
given by

d∂f(y)(z) = inf
t∈∂f(y)

∥z − t∥. (11)

We thus see that the subdifferential inclusion in Eq. (9) is also equivalent to

d∂f(y)(Wx− y) = 0. (12)

Therefore, a suitable accuracy measure for approximated values of the layer parameters (W ) is d∂f(y)(Wx− y).

C. GELU activation

The Lipschitz constant of any function f(x) : R→ R, which follows Lipschitz continuity, can be calculated as the absolute
maximum value of its derivative f ′(x). That is |f ′(x)| ⩽ L ∀x then L is the Lipschitz constant of f . GELU activation
function (f(x)) and its derivative (f ′(x)) is given as

f(x) =
x

2
[1 + erf(x/

√
2)] (13)

where, erf(x) =
2√
π

∫ x

0

e−t2dt (14)

f ′(x) =
xe−x2/2

√
2π

+
erf(x/

√
2)

2
+

1

2
(15)

From the figure 1 we see that the maximum of |f ′(x)| is 1.12. So, for the GELU activation function in the transformers, we
loosely take the Lipschitz constant as 1.12 and the Lipschitz constant of the MLP layer with the GELU activation function
as 1.12∥W∥s.

D. Training Setup

D.1. TRAINING STRATEGIES

Figure 2 describes the different training strategies and pipelines we have used in our experiments.

D.2. EXPERIMENTAL SETUP

PyTorch is employed to implement all the experiments. We use timm4 implementation of ViT5 and Swin6. We replace
Linear and Convolutional layers with our own implementation called LinearX and ConvX, respectively. These layers allow

4https://github.com/rwightman/pytorch-image-models
5https://github.com/rwightman/pytorch-image-models/blob/0.5.x/timm/models/vision_

transformer.py
6https://github.com/rwightman/pytorch-image-models/blob/0.5.x/timm/models/swin_

transformer.py

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models/blob/0.5.x/timm/models/vision_transformer.py
https://github.com/rwightman/pytorch-image-models/blob/0.5.x/timm/models/vision_transformer.py
https://github.com/rwightman/pytorch-image-models/blob/0.5.x/timm/models/swin_transformer.py
https://github.com/rwightman/pytorch-image-models/blob/0.5.x/timm/models/swin_transformer.py
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Figure 1. Representation of GELU activation function and its derivative. The maximum absolute value of the derivative is 1.12, as seen
from the graph.

us to compute the Lipschitz constant and project weight according to the requirement of CertViT. We also implement L2
attention to replace attention in ViT and Swin. In order to manage our experiments we use Polyaxon7 on a Kubernetes8

cluster and use 2 computing nodes with 16 A100 GPUs in each node (40GB VRAM per GPU).

E. Hyper-parameter

E.1. ARCHITECTURES

Dataset Input Channels Patch Layers Embed MLP
Size Size Dim Ratio

MNIST 28 1 7 6 128 4
CIFAR-10 32 3 4 6 192 3
CIFAR-100 32 3 4 12 192 3
TinyImageNet 64 3 4 12 384 3

Table 4. ViT architectures used for different datasets when trained from scratch.

Name Input Channels Patch Layers Embed MLP
Size Size Dim Ratio

ViT-T/16 224 3 16 12 192 3
ViT-S/16 224 3 16 12 384 6
ViT-S/32 224 3 32 12 384 6
ViT-B/8 224 3 8 12 768 12

ViT-B/16 224 3 16 12 768 12
ViT-B/32 224 3 32 12 768 12
ViT-L/16 224 3 16 24 1024 16

DeiT-T 224 3 16 12 192 3
DeiT-S 224 3 16 12 384 6
DeiT-B 224 3 16 12 768 12

Table 5. ViT architectures are used for different datasets when ImageNet-1K pre-trained weights are used.

Table 4 shows ViT architecture parameters used to train from scratch on MNIST, CIFAR-10, CIFAR-100 and TinyImageNet
datasets. Table 5 shows ViT and DeiT variants parameters for ImageNet-1K pre-trained networks used in the experiment.
Swin variants (pre-trained on ImageNet-1k) details is shown in Table 6.
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Figure 2. (a) L2 adaptation in a pre-trained network that was trained with DP-MHA. All the layers in the transformer encoder (shown in
red) are frozen and the DP-MHA is replaced with L2 MHA and trained for adaptation. (b) Depiction of the proposed approach CertViT,
which alternates between maintaining a good accuracy and a small Lipschitz constant.

Name Input Chnls Patch Window Layers Embed HeadsSize Size Size Dim

Swin-T 224 3 4 7 2, 2, 6, 2 96 3, 6, 12, 24
Swin-S 224 3 4 7 2, 2, 18, 2 96 3, 6, 12, 24
Swin-B 224 3 4 7 2, 2, 18, 2 128 4, 8, 16, 32
Swin-L 224 3 4 7 2, 2, 18, 2 192 6, 12, 24, 48

Table 6. Swin architectures used for ImageNet-1K.

Dataset MNIST CIFAR-10 CIFAR-100 TinyImageNet

Warm-up 5 15 30 35
Batch Size 512 512 512 512
Epochs 500 800 800 500
ϵtrain 1.74 0.16 0.16 0.16
ϵtest 1.58 0.141 0.141 0.141
Optimizer Adam Adam Adam Adam
Init LR 1e-3 1e-3 1-e3 2.5e-4
LR Decay 5e-6 5e-6 5e-6 5e-7
ϵschedule single single single single
Power Iter 5 5 5 5

Table 7. Hyperparameters used for training GloRo.

E.2. TRAINING FROM SCRATCH

Table 7 and Table 8.show hyperparameters used in GloRo and LocalLip training of convolutional networks. We use
TensorFlow implementation provided here9. Table 9 shows the hyperparameters required to train convolutional and ViTs on
MNIST, CIFAR-10/100, and TinyImageNet from scratch.

7https://github.com/polyaxon/polyaxon
8https://kubernetes.io/
9https://github.com/klasleino/gloro,https://github.com/yjhuangcd/local-lipschitz

https://github.com/polyaxon/polyaxon
https://kubernetes.io/
https://github.com/klasleino/gloro
https://github.com/yjhuangcd/local-lipschitz
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Dataset MNIST CIFAR-10 CIFAR-100 TinyImageNet

Warm-up 0 5 20 30
Batch Size 256 256 256 128
Epochs 300 300 800 250
ϵtrain 1.58 0.1551 0.1551 0.16
ϵtest 1.58 0.141 0.141 0.141
Init LR 1e-3 1e-3 1-e3 2.5e-4
End LR 5e-6 5e-6 5e-6 5e-7
λsparse 0.0 0.0 0.0 0.01
λθ 0.0 0.0 0.0 0.1
LR Decay Epoch 150 200 400 150
ϵschedule Epochs 150 200 400 125
Power Iter 5 5 2 1

Table 8. Hyperparameters used for training Local-Lip

Dataset MNIST CIFAR-10 CIFAR-100 TinyImage

Batch Size 512 512 512 512
Epochs 100 200 200 200
Optimizer Adam Adam Adam Adam
Init LR 1e-3 1e-3 1e-3 2.5e-4
LR Decay 5e-6 5e-6 5e-6 5e-7
Scheduler MultiStep CosAneal CosAneal CosAnneal
Milestones (50, 60, 70, 80) NA NA NA
γscheduler 0.2 NA NA NA
ηmin NA 1e-5 1e-5 1e-5
CertViT Epochs 5 5 5 5
projC Epochs 2 2 2 2
η 1e-2 1e-2 1e-2 1e-2
β 0.1 0.1 0.1 0.2
λ 1.1 1.2 1.2 1.2

Table 9. Hyperparameters used for training transformers with L2 attention and then using CertViT to constrain the trained network.

E.3. CONSTRAINING PRE-TRAINED NETWORKS

Dataset Batch Adaptation CertViT projC η β λSize Epochs Epochs Epochs

ViT-T/16 2048 50 5 2 1e-2 0.1 1.2
ViT-S/16 2048 50 5 2 1e-2 0.1 1.2
ViT-S/32 1024 70 5 2 1e-2 0.1 1.2
ViT-B/8 128 70 6 2 1e-2 0.2 1.3
ViT-B/16 256 50 5 2 1e-2 0.2 1.2
ViT-B/32 256 50 6 2 1e-2 0.2 1.3
ViT-L/16 256 70 6 2 1e-2 0.2 1.3
DeiT-T 2048 50 5 2 1e-2 0.1 1.2
DeiT-S 2048 70 6 2 1e-2 0.2 1.2
DeiT-B 256 70 6 2 1e-2 0.2 1.3
Swin-T 1024 40 5 2 1e-2 0.1 1.2
Swin-S 512 50 6 2 1e-2 0.2 1.2
Swin-B 256 50 6 3 1e-2 0.25 1.3
Swin-L 128 70 7 3 1e-2 0.25 1.3

Table 10. Hyperparameters used for L2 adaptation and CertViT applied on different transformer architectures pre-trained on ImageNet-1K.

Hyper-parameters used in L2 adaptation and constraining using CertViT of transformer variants pre-trained on ImageNet-1K
are shown in Table 10.

F. Swin

The Swin transformer builds hierarchical feature maps by merging image patches in deeper layers and has linear computation
complexity to input image size due to computation of self-attention only within each local window, unlike in other ViTs
where the attention is calculated globally and hence the complexity is quadratic with respect to patch number. Global
self-attention in most ViTs variants is generally unaffordable for high-resolution images, while window-based self-attention
is scalable. Window-based self-attention lacks connections across windows, limiting its modeling power. They propose a
shifted window partitioning that introduces a connection between neighboring non-overlapping windows in consecutive
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Swin transformer blocks.

In simple terms, Swin transformers calculate self-attention in non-overlapping local windows and are suitable for applications
where the image resolution is high. The windows are arranged to partition the image in a non-overlapping manner evenly.
The Swin transformers block is built by replacing the standard multi-head self-attention (MSA) module in the standard
transformer block with a module based on shifted windows (W-MSA), with other layers kept the same. This W-MSA layer
is still calculated using standard Dot product attention. We replace the Dot product in each W-MSA layer with L2 attention
to make the layer Lipschitz continuous and everything else in the architecture remains the same.


