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ABSTRACT

Federated learning allows multiple clients to collaboratively train a model without
exchanging their data, thus preserving data privacy. Unfortunately, it suffers sig-
nificant performance degradation under heterogeneous data at clients. Common
solutions in local training involve designing a specific auxiliary loss to regularize
weight divergence or feature inconsistency. However, we discover that these ap-
proaches fall short of the expected performance because they ignore the existence
of a vicious cycle between classifier divergence and feature mapping inconsistency
across clients, such that client models are updated in inconsistent feature space
with diverged classifiers. We then propose a simple yet effective framework named
Federated learning with Feature Anchors (FedFA) to align the feature mappings
and calibrate classifier across clients during local training, which allows client mod-
els updating in a shared feature space with consistent classifiers. We demonstrate
that this modification brings similar classifiers and a virtuous cycle between feature
consistency and classifier similarity across clients. Extensive experiments show that
FedFA significantly outperforms the state-of-the-art federated learning algorithms
on various image classification datasets under label and feature distribution skews.

1 INTRODUCTION

With massive data located at edge clients of large-scale networks like the internet of things networks,
federated learning (McMahan et al., 2017) enables clients to jointly train a machine learning model
without collecting client data into a centralized server, thus preserving data privacy. However, the
private data are typically heterogeneous across clients, resulting in slower convergence (Li et al.,
2020; Karimireddy et al., 2020) and degraded generalization performance (Zhao et al., 2018; Li et al.,
2021a). This is because data heterogeneity makes the local objectives inconsistent with the global
objective and thus the converged model deviates from the expected optima (Wang et al., 2020b).

Common works tackle the data heterogeneity problem by improving federated optimization on the
client or server side. Client-side methods involve adding a regularizer to control weight divergence
such as (Li et al., 2020; Acar et al., 2021) or feature inconsistency across clients such as (Li et al.,
2021b; Zhang et al., 2021). Nevertheless, recent works (Li et al., 2021a; Chen & Chao, 2022; Luo
et al., 2021) found that these methods did not show clear advantages over the canonical method
FedAvg (McMahan et al., 2017) on classification tasks.

Data heterogeneity causes a vicious cycle between feature inconsistency and classifier divergence.
To unravel the underlying reasons for the ineffectiveness of existing methods, we first observe that
data heterogeneity (including heterogeneous label and feature distributions across clients) can induce
feature mapping inconsistency across client models. We analyze the existence of a vicious cycle
between feature inconsistency and classifier divergence across clients, as shown in Figure 1(a).
Specifically, inconsistent features diverge the classifier updates, and then the diverged classifiers force
feature extractors to map more inconsistent features, thus diverging client updates.
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Figure 1: A toy example with three inconsistent class features between two clients to show the
rationale of FedFA. Figures 1(a) and 1(b) illustrate the relationship between feature and classifier
updates without and with feature anchors, respectively. Since clients keep minimizing the angle
between features and their corresponding classifier proxies during local training, the vicious cycle
in Figure 1(a) describes that the inconsistent feature (to be verified in Figure 2) makes the classifier
proxy updates of client 1 contrary to that of client 2, such that feature extractors of client 1 and
client 2 to map more inconsistent features to decrease the classification error in local training. The
virtuous cycle in Figure 1(b) means that feature anchors align class features and calibrate the updates
of classifiers between client 1 and client 2, which in turn promotes the consistency between clients’
feature mappings (to be verified in Figure 4).

A new federated learning framework with feature anchors. We propose a simple yet effective
framework called Federated learning with Feature Anchors (FedFA) for classification tasks to address
the skewed label and feature distributions across clients. FedFA introduces the feature anchors to
unify the extraction of features by clients from a shared feature space and to calibrate classifier into
this space during local training. We show theoretically and empirically that FedFA has a property
of similar classifier updates under consistent feature maps, which brings a virtuous cycle between
classifier similarity and feature consistency as shown in Figure 1(b), contrary to the above vicious
cycle. Meanwhile, our experiments show that FedFA significantly outperforms the existing methods
under label distribution skew, feature distribution skew, and their combined skew. To the best of our
knowledge, we are the first to study the combined label and feature distribution skews.

Contributions. The main contributions of this work are summarized as follows:

• We demonstrate how, unlike previous research, data heterogeneity may lead to a vicious
cycle between classifier update divergence and feature inconsistency across client models.

• To address skewed label and feature distributions, we introduce a novel framework FedFA,
which leverages feature anchors to aligns features and classifiers across clients such that all
client models are updated in a uniform feature space.

• We analyze that FedFA can bring a virtuous cycle between feature consistency and classifier
update harmony. Moreover, our experiments show the significant advantage of FedFA over
the state-of-the-art algorithms under various data heterogeneity settings.

2 RELATED WORK

Due to space constraints, we mostly introduce approaches most similar to ours (i.e., adding auxiliary
loss at client side). Please see Appendix C and F.3 for more detailed discussion.

Tackle data heterogeneity based on model weights. To prevent local models from convergent to
their local minima instead of global minima, many works include a well-designed regularizer to
manage local updates so that local models will not be distant from the global model. For example,
FedProx (Li et al., 2020) uses the Euclidean distance between the local and global models as a
regularizer. FedDyn (Acar et al., 2021) modifies the local objective with a dynamic regularizer
consisting of a linear term based on the first-order condition and the Euclidean-distance term, such
that the local minima are consistent with the global minima. Instead of controlling the divergence of
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the whole model weights, (Luo et al., 2021) observes that the classifier layer (i.e., the last layer of
the model) suffers most from label distribution skew and proposes calibration of the classifier with
virtual features after training. Moreover, (Zhang et al., 2022) introduce a fine-grained calibrated
classifier loss to prevent the overfitting of missing and minority classes.

Tackle data heterogeneity based on features. Instead of controlling weight divergence, some recent
works pay more attention to feature contrast to restrict feature inconsistency across clients. For
instance, FedUFO (Zhang et al., 2021) shares client models with each others to align features and
logit output, and MOON (Li et al., 2021b) introduces a model-contrastive regularizer to maximize
(minimize) the agreement of the features extracted by the local model and that by the global model
(the local model of the previous round). In place of the model-contrastive term, FedProc (Mu
et al., 2021) adds a prototype-contrastive term to regularize the features within each class with class
prototypes (Snell et al., 2017). Nevertheless, our visualization experiments show that these works
fall short of the expected performance and still exists feature maps inconsistency even if they try to
control model divergence, as shown in Figures 6 to 9.

Our work aims at the typical federated learning setting as (McMahan et al., 2017) and tries to
improve the local optimization under both label and feature skewness by both feature and classifier
alignment. Compared with our method, the above mentioned methods only improve the performance
degeneration under label skewness based on one of feature alignment and classifier calibration, and
fall short of the expected performance since they neglect the relationship between different classifier
updates and inconsistent features.

3 INCONSISTENT FEATURE MAPPINGS BETWEEN CLIENTS

3.1 PROBLEM SETUP

Federated learning (McMahan et al., 2017) trains a global model parameterized by vector w by
collaborating a total of N clients with a server to solve the following optimization problem:

min
w∈Rd

L(w) := Ei[Li(w)] =

N∑
i

ni

n
Li(w) (1)

where n =
∑

i ni represents the total sample size with ni being the sample size of the i-th client,
and Li(w) := Eξ∈Di

[li(w; ξ)] is the local objective function in local dataset Di of the i-th client.
However, Di may differ (i.e., data heterogeneity) between clients such that federated training would
not be comparable to centralized training with the global dataset D = ∪Ni Di (Zhao et al., 2018).

Suppose that the global dataset D consists of C classes indexed by [C] for classification tasks. Let
(x, y) ∈ D and D ⊆ X × [C] where (x, y) denotes a sample x in the input-feature space X with the
corresponding label y in the label space [C]. We represent [Ci] (∪Ni=1[Ci] = [C]) as a subset of [C]
and Di,c = {(x, c) ∈ Di; c ∈ [Ci]} as the subset of Di with the label c at the i-th client. Moreover,
we decompose the classification model parameterized by w = {θ,ϕ} into a feature extractor (i.e.,
other layers except the last layer of the model denoted by fθ : X → H) and a linear classifier (i.e.,
the last layer of the model denoted by fϕ : H → R[C]). Specifically, the feature extractor maps a
sample x into a feature vector h = fθ(x) in the feature space H, and then the classifier, given the
feature h, generates a probability distribution fϕ(h) as the prediction for x.

3.2 MOTIVATION: FEATURE MAPPING INCONSISTENCY DUE TO DATA HETEROGENEITY

This work considers both label and feature distribution skews with concrete definitions provided in
Appendix A. Briefly, label (feature) distribution skew denotes the label (input feature) distribution
variation across clients with the same conditional distribution given the label (input feature).

Experimental validation. We first perform validation experiments by FedAvg with ten clients to train
a CNN model with two convolutional neural layers to show the feature mapping inconsistency under
both label and feature distribution skews. We separately sample a subset from their corresponding
test sets to visualize the feature mappings of the local models based on t-SNE visualization (Van der
Maaten & Hinton, 2008) and min-max normalization, where Appendix F.2 describes the specific
experiment settings. We also plot the histogram of feature cosine similarity according to the positive
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(c) FedAvg with Feature Skew
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Figure 2: The t-SNE visualization and the histogram of feature cosine similarity on FedAvg and
FedFA (Our) under label and feature distribution skews. Taking class 1 (i.e., dark blue) as the
example, given the same samples of class 1 into client local models, Figure 2(a) shows that client 1
(i.e., right triangle) and client 5 (i.e., square) extract inconsistent features (in the black box) under
label distribution skew, and Figure 2(c) presents the feature mappings of MNIST (i.e., left and right
triangles) deviate from that of SVHN (i.e., up and down triangles) under feature distribution skew.
In contrast, the inconsistency is significantly mitigated in Figures 2(b) and 2(d). The histograms
of FedAvg show a lower similarity for positive pairs and a smaller gap between positive pairs and
negative pairs than that of FedFA, meaning more inconsistent features across clients in FedAvg.

(negative) pairs, i.e., features with (without) the same label. Note that we visualize features according
to the classes (digit dataset) owned by a client under label (feature) distribution skew.

According to Figures 2(a) and 2(c), the feature mapping inconsistency across client models exists
under both label and feature distribution skews, such as class 1 (i.e., dark blue), class 5 (i.e., dark red)
and class 9 (i.e., dark purple), which is significantly alleviated by FedFA proposed in the next section
in Figures 2(b) and 2(d). Moreover, the histograms show that both label and feature distribution
skews induce a low similarity for positive pairs in FedAvg, indicating inconsistent feature space
across clients. The histograms of FedAvg also present a low frequency of positive pairs and a small
gap between positive pairs and negative pairs, meaning inconsistent polymerization (i.e., a sizeable
intra-class feature distance) and discrimination (i.e., a small inter-class feature distance).

Moreover, our visualization experiments show that existing methods obtain similar results as Figure
2. That is, they also still exists feature inconsistency acorss clients even if they try to control model
divergence, as shown in Figures 6 to 9. Thus, these results demonstrate the necessity to further
analyze the causes of feature inconsistency across clients under label and feature distribution skews.

Theoretical demonstration. To further analyze the influence of data heterogeneity, we follow
(Movshovitz-Attias et al., 2017) to represent the classifier parameters ϕi of the i-th client as the
weight vectors {ϕi,c}Cc=1, where ϕi,c is named the c-th proxy of the c-th class samples of the i-
th client. For simplicity, we set all the bias vectors of the classifier as zero vectors and use the
cross-entropy loss as the supervised loss. The classifier forward process can be represented as:

Lsupi
(ϕi) := E(xj ,yj)∈Di

[lsupi
(ϕi; (xj , yj))] = −

1

ni

ni∑
j=1

Ci∑
c=1

I {yj = c} log
exp

(
ϕT

i,chi,yj

)∑C
q=1 exp

(
ϕT

i,qhi,yj

)
(2)

where I(·) is the indication function, and hi,yj
= fθi(xj) is the feature mapping of a sample (xj , yj).

The relationship between classifier and feature updates across clients is illustrated as follows:

Firstly, the classifier updates are diverged across clients. For the c-th proxy ϕi,c of the i-th client,
the positive features and negative features denote the features from the c-th class and other classes,

respectively. Let pj,c =
exp(ϕT

i,chi,yj )∑C
q=1 exp(ϕT

i,qhi,yj )
and compute the update of ϕi,c with the learning rate η
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as:

∆ϕi,c = −
η

ni

∂Lsupi

∂ϕi,c
=

η

ni

ni∑
j=1,yj=c

(
1− p

(i)
j,c

)
hi,yj︸ ︷︷ ︸

update by positive features

− η

ni

ni∑
j=1,yj ̸=c

p
(i)
j,chi,yj︸ ︷︷ ︸

update by negative features

. (3)

For label distribution skew, we assume that client i and client j hold the same samples of the c-th
class if c ∈ [Ci] ∩ [Cj ] to ablate the impact of feature distribution skew (i.e., hi,c = hj,c). Then we
have: (i) for class c ∈ {[C] \ [Ci]}, there is no update of ϕi,c at client i by positive features since the
client does not hold any sample with class c (i.e., hi,c = 0). That is, the updates of the c-th proxy
(i.e., ∆ϕi,c) only depend on negative features such that clients that hold different {[C] \ [Ci]} update
the c-th proxy inconsistently. (ii) for c ∈ [Ci], due to hi,c = hj,c, the inconsistent ∆ϕi,c originates
from the different updates by negative features. This is because the updates depend on the non-c-th
classes in [Ci], and clients with the skew of [Ci] hold different {[Ci] \ c}. For feature distribution
skew, since the global model initiates client models, the skewed input features of samples induce the
client models to map inconsistent features (i.e., hi,c ̸= hj,c) at the beginning of each round, resulting
in different ∆ϕi,c. Thus, label and feature distribution skews diverge the classifier updates across
clients, which explains the classifier divergence observed in (Luo et al., 2021).

Next, the diverged classifiers would induce feature inconsistency across clients. We compute the
update of hi,yj , which can be represented as:

∆hi,yj
= − η

ni

∂lsupi

∂hi,yj

=
η

ni

(
1− p

(i)
j,yj

)
ϕi,yj︸ ︷︷ ︸

update by positive proxy

− η

ni

C∑
c=1,c̸=yj

p
(i)
j,cϕi,c︸ ︷︷ ︸

update by negative proxies

. (4)

Similar to the above analysis of classifier updates, the feature updates are inconsistent across clients
because of diverged positive proxies and negative proxies, which demonstrates feature mapping
inconsistency across clients and has been also observed by (Li & Zhan, 2021; Tang et al., 2022).

Finally, there exists a vicious cycle between classifier divergence and feature inconsistency,
which can be concluded by combining (3) and (4) as: to minimize the supervised loss (2) (i.e., the
angle between features and their corresponding proxies) at each round, inconsistent feature mappings
make the update of classifiers diverge, and these different classifiers in turn force feature extractors
to map to more inconsistent features. Hence, we believe that feature inconsistency and classifier
divergence are coupled together to degrade the performance of federated learning.

4 FEDERATED LEARNING WITH FEATURE ANCHORS (FEDFA)

To escape the aforementioned vicious cycle, we propose FedFA, whose pseudo-code is demon-
strated by Algorithm 1, which trains client models in a consistent feature space with the classifiers
corresponding to this space.

Feature anchors loss. With a total of C classes in the whole dataset, the server initiates C feature
anchor vectors {ac}Cc=1 ∈ H × [C] indexed by c ∈ [C] before training, which are to align the
each-class feature mappings of feature extractors fθ(x) by the following loss:

Lfai(θi) := E(xj ,yj)∈Di
[lfa(θi;ac, (xj , yj), c = yj)] =

1

2ni

ni∑
j=1,c=yj

∥hi,c − ac∥2 (5)

where hi,c denotes the feature vector extracted by fθi
(x) for a sample (x, c). The feature anchor loss

inspired by the center loss (Wen et al., 2016) measures the average distance between features and
their corresponding feature anchors. Minimizing (5) can reduce the intra-class feature distance for a
given client, as well as across all clients, as shown in Figure 1 (b). Then, each mini-batch update
phase of local training is carried out as following:

Step1: optimizing local objective with feature anchor loss. In the local optimization, FedFA adds
the feature anchor loss to a standard supervised loss (e.g., the cross-entropy loss as shown in (2)
represented as lsup). At the t-th round, the server sends the current global model w(t−1) and feature
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anchors {a(t−1)
c }Cc=1 to a set S of active clients, and then each client i ∈ S locally updates w(t−1) to

w
(t)
i and with a mini-batch gradient descent from the following objective:

min
wi

Li(wi) := Lsupi
(wi) + Lfa(θi) := E(x,y)∈Di

[lsupi
(wi) + µlfai(θi)] (6)

where θi ∈ wi = {θi,ϕi} and µ is a hyper parameter to balance lsupi and lfai . The feature
inconsistency caused by the divergence of feature extractors can be reduced by Minimizing lfai .

Step2: calibrating local classifier with feature anchors. Feature anchors would be used to calibrate
the updates of classifier proxies after step 1. Specifically, at each mini-batch update of the t-th round
local training, the active client i ∈ S takes feature anchors {a(t−1)

c }Cc=1 as one mini-batch input of its
classifier fϕi

and their corresponding classes as the label set {C}, which can be described as:

min
ϕi

Lcali(ϕi) := E(ac,c)∈{ac}C
c=1

[lcali(ϕi; (ac, c))] = −
1

C

C∑
c=1

log
exp

(
ϕT

i,cac
)∑C

q=1 exp
(
ϕT

i,qac
) . (7)

According to (3), the classifier calibration loss lcali can correct the classifier divergence and keep
classifiers similar at the beginning of each mini-batch update by reducing the angle between the c-th
class proxy and feature anchor, thus preventing feature inconsistency as shown in Figure 1 (b).

Step3: fixing feature anchors in local training but accumulating class features by momentums. If
feature anchors {a(t−1)

c }Cc=1 are updated locally based on gradient descent like (Wen et al., 2016), the
updates of a(t−1)

c would be inconsistent across clients under heterogeneous data. Therefore, to keep
ac consistent in the k-th local epoch, client i does not update a(t−1)

c , but accumulate the c-th class fea-
tures of the τ -th batch B(t,kτ )

i as momentum m
(t,kτ )
c,i = m

(t,kτ−1)
c,i + 1

B|B(t,kτ )
i,c |

∑
(x,c)∈B(t,τ)

i,c
fθi

(x),

where B represents the total mini-batch number of one epoch and m(t,k0) = 0. Herein, to re-
duce computation, we take epoch momentums m

(t,k)
c,i to estimate the class features by ā

(t,k)
c,i =

λm
(t,k−1)
c,i + (1− λ)m

(t,k)
c,i , instead of computing them with training dataset after local training.

Feature anchor aggregation at server. The server performs weighted averaging on all the c-th
class feature ā

(t,K)
c,i of active clients to generate the next-round feature anchors {a(t)c }Cc=1, where K

represents the total number of local epoch . The update of feature anchors is the same as federated
model aggregation, which can be represented at the t-th round as:

a(t)c =
∑
i∈S

ni

ns
E(ac,i) =

∑
i∈S

ni

ns
ā
(t,K)
c,i . (8)

Next, we assume that there exist feature extractors so that the features are class-discriminative to
show the property of FedFA on the mitigation of classifier divergence:

Assumption 1 (Discriminative features) There exist a constant δ, C sub hyperspaces {Hc}Cc=1
in the feature space H, and C feature anchors {ac}Cc=1 such that for all c-th class features hc,
Hc = {hc|∥hc − ac∥2 < δ2}, where for i ̸= j,Hi ∩Hj = ∅.

Property 1 (Similar classifier updates). Let Assumption 1 holds. For ∥ac∥ >
√
2δ and the inner

product hc · hq ≤ 0 where c ̸= q, hc ∈ Hc and hq ∈ Hq , we have:

cos(∆ϕi,c,∆ϕv,c) > 0. (9)

We direct readers to Appendix D for a detailed proof, where the key idea is that the dot product
of inter-class features is negative. Therefore, FedFA can achieve similar updates of the t-th proxy
between clients i and v even without classifier calibration to regulate classifier updates.

A virtuous cycle in FedFA. As shown in Figure 1, FedFA can achieve a virtuous cycle to effectively
prevent the vicious cycle mentioned in section 3: both feature alignment and classifier calibration can
boost consistent classifier updates according to (7) and Property 1, which promotes feature mapping
consistency across clients. In addition to feature consistency, the histograms of Figures 2(c) and
2(d) show that FedFA improves the feature polymerization for positive pairs and discrimination for
negative pairs (i.e., FedFA can reduce intra-class feature distance and increase inter-class feature
distance across clients to help classification).
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We briefly describe our experimental setup, including the baselines, datasets, models and federated
setup. The experiment and hyper-parameter setup of all methods are described in Appendix F.

Datasets. This work aims at image classification tasks under label and feature distribution skews,
and it uses federated benchmark datasets as (McMahan et al., 2017; Yurochkin et al., 2019; Li
et al., 2021a), including EMNIST (Cohen et al., 2017), FMNIST (Xiao et al., 2017), CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), and Mixed Digits dataset (Li et al., 2021c). Specifically, for
label distribution skew, we consider two settings: (i) Same size of local dataset: following (McMahan
et al., 2017), we split data samples based on class to clients (e.g., #C = 2 denotes that each client
holds two class samples); (ii) Different sizes of local dataset: following (Yurochkin et al., 2019),
we set α of Dirichlet distribution Dir(α) as 0.1 and 0.5 to generate distribution pi,c by which the
c-th class samples are splitted to client i. For feature distribution skew, we consider two settings: (i)
Real-world feature skew: we sample a subset with 10 classes of a real-world dataset EMNIST (Cohen
et al., 2017) with natural feature skew; (ii) Artificial feature skew: we use a mixed-digit dataset
from (Li et al., 2021c)1 consisting of MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011),
USPS (Hull, 1994), SynthDigits and MNIST-M (Ganin et al., 2015).

Baselines and models. We compare FedFA with the canonical method FedAvg, model-weight-based
methods FedProx (Li et al., 2020) and FedDyn (Acar et al., 2021), and feature-based methods MOON
(Li et al., 2021b) and FedProc (Mu et al., 2021). For a fair comparison, our models follow what is
reported in the baselines. Following (Acar et al., 2021), we use a CNN model with two convolution
layers for EMNIST, FMNIST, and CIFAR-10. We utilize the ResNet-18 (He et al., 2016) with a
linear projector from (Li et al., 2021b) for CIFAR-100 and a CNN model with three convolutional
layers from (Li et al., 2021c) for Mixed Digits.

Federated setup and anchor initialization. In Tables 2 and 1, 100 clients attend federated training,
10 clients participate in each round, the local batch size is 64, the local epochs number is 5, and
the targeted communication round is 200. We use the SGD optimizer with a 0.01 learning rate and
0.001 weight decay for all experiments except for the CIFAR-100 experiment with 0.9 momentum
additionally. According to Property 1, we initiate the pairwise-orthogonal feature anchors ac by
sampling column vector from an identity matrix whose dimension is the same as features.

5.2 EXPERIMENT RESULTS

Table 1: The top-1 accuracy of all methods under label &
feature distribution skews on the test dataset. Note that we
report the average top-1 accuracy on five benchmark digit
datasets in Mixed Digit.

Method
Feature Distribution Skew Label & Feature Distribution Skew

EMNIST Mixed Digits Mixed Digits
#C = 2 α = 0.1 α = 0.5

FedAvg w/o skew - 82.66(2.38)
FedFA w/o skew - 88.10(0.39)

FedAvg 98.50(0.04) 82.66(2.83) 56.13(5.59) 63.74(2.35) 78.34(1.58)
FedProx 98.44(0.06) 82.46(2.65) 54.86(5.80) 62.57(2.22) 78.08(1.84)
FedDyn 97.63(0.19) 83.59(2.33) 51.66(7.33) 63.55(2.02) 79.40(1.76)
MOON 98.51(0.06) 81.46(2.84) 55.40(5.69) 62.18(1.93) 78.05(1.82)
FedProc 98.28(0.04) 82.06(2.68) 59.53(3.66) 64.59(2.15) 78.66(1.16)
FedFA 99.28(0.33) 90.73(2.01) 83.46(2.57) 85.71(0.71) 89.82(0.49)

Performance under feature distribu-
tion skew. According to Table 1, our
method obtains higher accuracy than all
baselines on EMNIST and Mixed Dig-
its. Specifically, the accuracy of FedFA
in EMNIST reaches 99.28%, which is
0.77% higher than the best baseline (i.e.,
MOON 98.51%). Moreover, we split
each digit dataset of Mixed Digits into
20 subsets, one for each client, with the
same sample number and label distribu-
tion (e.g., a skewed feature distribution
exists between the clients with a subset
of SVHN and the ones with a subset of
MNIST). Compared with the best baseline (i.e., Feddyn: 83.59%) on Mixed Digits, our method
achieves performance gains of 7.14%.

Performance under label distribution skew. Table 2 shows that FedFA provides significant gains
in different label-skew settings regardless of the dataset. Compared with α = 0.5, both #C = 2
and α = 0.1 indicate more severe label distribution skew, but clients under #C = 2 have the same
sample number while the ones with α = 0.1 do not. Firstly, we find that the performance of all

1Data source: https://github.com/med-air/FedBN
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Table 2: The top-1 accuracy of FedFA and all the baselines under label distribution skew on the test
datasets. We run three trials and report the mean and standard derivation. For FedAvg and FedFA, we
also report their top-1 accuracy without label skew.

Method
(lr = 0.01)

Label Distribution Skew

FMNIST CIFAR-10 CIFAR-100
#C = 2 α = 0.1 α = 0.5 #C = 2 α = 0.1 α = 0.5 #C = 20 α = 0.1 α = 0.5

FedAvg w/o skew 85.90(0.14) 59.66(0.05) 25.37(0.28)
FedFA w/o skew 89.67(0.16) 64.95(0.53) 33.94(0.44)

FedAvg 74.60(1.42) 69.81(3.00) 82.80(0.65) 36.07(3.02) 35.20(3.72) 48.66(3.00) 22.62(0.84) 21.79(0.79) 26.52(1.09)
FedProx 74.63(1.30) 69.59(2.99) 82.92(0.38) 36.63(2.64) 35.21(3.78) 48.43(2.27) 22.27(0.90) 22.30(0.47) 26.03(0.73)
FedDyn 74.77(1.76) 70.09(2.24) 83.95(0.29) 36.11(3.35) 36.00(3.78) 50.46(2.33) 13.28(2.19) 1.00(0.00) 1.00(0.00)
MOON 74.25(1.59) 68.52(2.26) 82.72(0.42) 35.90(3.17) 34.89(3.18) 48.74(2.45) 22.03(1.00) 22.04(0.62) 26.69(1.03)
FedProc 74.96(1.94) 69.80(3.26) 82.94(0.34) 36.57(3.61) 35.02(4.53) 48.99(2.85) 23.00(0.35) 22.32(0.63) 26.38(0.52)

FedFA (Our) 84.08(1.22) 83.42(1.14) 88.40(0.12) 52.64(1.46) 52.95(2.01) 60.40(0.38) 26.68(1.18) 24.05(2.32) 29.16(1.03)

methods decreases as the degree of data heterogeneity increases. Nevertheless, the decline of FedFA
is much smaller than that of other methods. For example, when α changes from 0.5 to 0.1, the top-1
accuracy of all the baselines goes down by about 13% on FMNIST and CIFAR-10, which is twice as
large as FedFA. Secondly, under the same label skew, FedFA achieves larger gains over other methods
when label distribution skew becomes more severe, up to 18.06% (i.e., Moon: 34.89% and FedFA
52.95% under α = 0.1 in CIFAR-10). Thirdly, to explore more difficult tasks, we test on CIFAR-100
with ResNet18, and our method still achieves the best performance (i.e., about 3% accuracy advance).

Performance under combined label and feature distribution skews. We combine label skew and
feature skew to explore the impact of data heterogeneity further. Namely, we not only split each
dataset in Mixed Digits into 20 subsets, one for each client, but also set the different label distributions
for each client (i.e., clients are subject to at least one of label distribution skew and feature distribution
skew). The results in Table 1 show that all the methods are more susceptible under this setting than
that of feature distribution skew. For example, the most significant performance drop reaches 31.93%
(i.e., FedDyn from 83.59% to 51.66% under #C = 2). Nevertheless, FedFA significantly mitigates
this performance degradation with a mild decrease from 90.73% to 83.46%. Meanwhile, FedFA keep
at least 10% performance advantage than all baselines under this case, where the largest gap can
reach 31.8% (i.e., FedFA from 83.59% to FedDyn 51.66% under #C = 2).

Performance without label or feature distribution skew. We compare our method with FedAvg
under more homogeneous data and take the same learning rate of this case as that of data heterogeneity
for comparison, where the results are reported in Table 2 and Table 1. The results demonstrate that
FedFA still brings a significant advance in the presence of data homogeneity. For example, FedFA is
8.64% more accurate than FedAvg on CIFAR-100. Incredibly, FedFA under mild data heterogeneity
(e.g., α = 0.5 in FMNIST or Mixed Digits) even obtains higher accuracy than FedAvg without any
label or feature skew (e.g., FedFA: 88.40% vs. FedAvg: 85.90% in FMNIST). This illustrates the
importance of guaranteeing the consistency of feature mappings.

10% 20% 30% 40% 50%
(a) Client sample rate on CIFAR-10 =0.1
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Figure 3: The top-1 accuracy of all the methods under different
federated setting.

Performance under different
federated setting. Following the
setup form (Li et al., 2021b),
given 100 clients and 400 com-
munication rounds, we investi-
gate the impact of different feder-
ated setting on FedFA and base-
lines with SGD optimizer with
a 0.01 learning rate and momen-
tum 0.9 on CIFAR-10, including
different local epoch, batch size
and client sample rate , where the results are shown in Figures 3 and 12. On the one hand, various
local epochs and client sample rates affect the performance of all the methods differently (e.g., bigger
local epochs result in lower performance), while FedProx and MOON suffer from worse performance
degradation than FedAvg and FedFA. Additionally, FedFA’s benefit over baselines indicates its
scalability and robustness to various federated settings. On the other hand, FedFA present much
better performance than all baselines according to Table 2 and 3, regardless of the existence or lack
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(d) classifier update similarity on feature skew
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Figure 4: Feature distance (local models given the same inputs) and classifier update similarity for
different rounds (x-axis) under label skew (#C = 2) in FMNIST and feature skew in Mixed Digit.

of momentum in the local optimizer. Meanwhile, we found that momentum frequently converges
more quickly and generalizes more well, as analyzed by (Yu et al., 2019).

Classifier similarity and feature distance. We input the same samples into all local models to
compute the mean feature distance and classifier update similarity at the end of each round, as shown
in Figure 4. On the one hand, the lower the similarity of classifier updates, the more inconsistent the
feature mapping between clients will be according to Figure 4(c) and 4(d), indicating the vicious
cycle in section 3. All the baselines present a much more prominent feature divergence than FedFA,
verifying the effectiveness of preventing inconsistent feature mappings by FedFA. On the other hand,
for all the baselines, Figure 4 indicates that the vicious cycle under label distribution skew is mildly
alleviated as the global model is becoming converged, but the vicious cycle under feature distribution
skew becomes more serious. Nevertheless, FedFA still breaks the vicious cycle to obtain a virtuous
cycle for feature and classifier updates under both skews, verifying the analysis in section 4.

Table 3: The top-1 accuracy of FedFA with federated BN in
different ablation settings.

Method
(lr = 0.01)

Label Skew
(FMNIST #C = 2)

Feature Skew
(Mixed Digits)

Label & Feature Skew
(Mixed Digits #C = 2)

FedFA w/o anchor updating 81.89(1.87) 88.69(0.75) 76.81(1.78)
FedFA w/o classifier calibration 78.07(2.23) 79.25(1.25) 61.36(4.00)

FedFA w/o orthogonal anchor initialization 83.96(1.27) 90.76(0.54) 83.34(1.42)

FedFA (Our) 84.08(1.22) 90.86(1.92) 83.73(2.76)

Ablation study. As shown in Ta-
ble 3, we conduct ablation studies
on FedFA without anchor updat-
ing in (6), FedFA without classi-
fier calibration in (7), and FedFA
without orthogonal anchor initial-
ization according to Property 1 to
give an intuition of FedFA performance. More ablation research have been conducted on the effects of
anchor initialization and anchor momentum updates on FedFA as well as the ideal times to calibrate
classifiers in Appendix G.2.1 and G.2.2. First, under both label and feature distribution skews, the
anchor updating brings consistent performance benefits (i.e., at least around 2% boost) to FedFA
since the updated anchors can keep client models more expressive in the shared feature space. Second,
classifier calibration plays the most crucial role in FedFA under both label and feature skew because
the skew induces a low classifier update similarity observed in Figure 4. Third, as shown in Figure
11, orthogonal initialization provides a good initialization point for feature anchors though it does
not provide a large performance gains at the final performance under both label and feature skew.
Overall, FedFA promotes a shared feature space among clients and keeps classifiers consistent in this
space to overcome data heterogeneity.

6 CONCLUSION AND DISCUSSION

This work focuses on alleviating performance degradation caused by label and feature distribution
skews in federated learning. Firstly, we observe and analyze the existence of a vicious cycle between
feature mapping inconsistency and classifier update divergence under data heterogeneity. Secondly,
we propose FedFA to create a shared feature space across clients, assisted by feature anchors, and
keep the classifier consistent in this space, thus bringing a virtuous cycle between feature and classifier
updates. Finally, FedFA significantly outperforms baselines on various image classification tasks.

We will further explore the causes of feature inconsistency exists across clients under other tasks
besides classification, and if so, we will extend FedFA to resolve the data heterogeneous issue in these
settings in the future work. Furthermore, the performance advantage of FedFA tends to decrease for
deeper models, which is probably because only aligning the last feature maps does not effectively
align the shallow feature maps. Thus, it is promising to align the features of the shallow layers.
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APPENDIX

A TERMINOLOGIES

Global model vs. local model. Let us first clarify the concepts of “global” vs. “local” models: in each
communication round, local models denote the ones updated by the clients after local training, and
the global model denotes the model obtained by aggregating all local models at the server. Moreover,
client models denote the models being trained during local training.

Vicious cycle vs. virtuous cycle. As shown in Figure 1 (a), the vicious cycle represents the phe-
nomenon that inconsistent feature mappings of local models diverge the classifier updates, such that
the diverged classifiers of different clients induce feature extractors to map to more inconsistent
features across clients. As shown in Figure 1 (b), the virtuous cycle represents the phenomenon that
consistent feature mappings of client local models make the classifier updates similar, such that the
updated classifiers make feature extractors of clients map to more consistent features across clients.

Positive pair vs. negative pair. A positive pair denotes a pair of samples with the same label (i.e.,
the samples belong to the same class). A negative pair denotes a pair of samples with different labels
(i.e., the samples do not belong to the same class).

Positive feature vs. negative feature. For the c-th proxy ϕc, the positive features denote the features
of the c-th class, and the negative features denote the features of other classes except for the c-th
class.

Positive proxy vs. negative proxy. For the feature of the c-th class, the positive proxy denotes the c-th
proxy ϕc, and the negative proxies denote other proxies except for the c-th proxy ϕc.

Label distribution skew vs. feature distribution skew. Feature and label distribution skews are two
representative data heterogeneity (Kairouz et al., 2021), both covered in this work. Suppose that the
i-th client data distribution follows Pi(x, y) = Pi(x|y)Pi(y) = Pi(y|x)Pi(x) where x and y denote
the feature and label respectively. Following (Li et al., 2021a), the definition of feature distribution
skew and label distribution skew can are given as:

• Label distribution skew (prior probability): The label marginal distribution Pi(y) varies
across clients while Pi(x|y) = Pj(x|y) for all clients i and j.

• Feature distribution skew (covariate shift): The input feature marginal distribution Pi(x)
varies across clients while Pi(y|x) = Pj(y|x) for all clients i and j.

• Label & feature distribution skew: At least one of the label distribution skew and feature
distribution skew happens across clients. This means clients i and j still suffer from label
marginal distribution skew Pi(y) even if sharing the same Pi(x), or clients i and j still
suffer from input feature marginal distribution skew Pi(x) even if sharing the same Pi(y).

• Local data distributions without skew: Herein, for FMNIST, CIFAR-10, and CIFAR-100,
we split them evenly into client-side local datasets based on an identical label distribution.
For Mixed Digits, we first mix all the digit datasets as a global dataset and evenly split it
into client-side local datasets based on an identical label distribution. Note that this case
can not guarantee that local distributions share the same global distribution across clients.
Still, it means local distributions are more homogeneous than the cases of label or feature
distribution skew.

B MORE DISCUSSION

B.1 COMPARISON WITH CENTER LOSS

Our feature anchor loss borrows the idea of the center loss (Wen et al., 2016), but the purposes of
these two losses are different.

• Since data heterogeneity would make gradient-based updates diverge in local training. If
feature anchor loss follow gradient-based updates for feature anchors, the anchors would be
harmful to align features across clients.
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• Besides with a different updating method, the center loss aims to decrease the feature
distance for intra-class samples in centralized training, rather than keeping feature mapping
consistent across clients.

• The feature anchors are not utilized to calibrate the classifier in (Wen et al., 2016), but our
work does it to prevent the divergence of classifiers across clients in federated training. For
example, missing some class samples would make classifier updates diverge and contract the
margin between the features corresponding to missing classes and their decision boundaries
in classifiers.

Therefore, we use the feature anchor loss to distinguish the center loss proposed by the research
community on face recognition.

B.2 PRIVACY ISSUES INTRODUCED BY FEATURE ANCHORS

FedFA can provide privacy protection at the basic level with a promising performance for federated
learning. Firstly, feature anchors can be fixed/without updates during federated training (i.e., the
client would not aggregate any information into feature anchors, which would not bring potential
privacy leakage) because of the powerful representation of neural networks. That is, the fixed anchors
in FedFA specified a feature space and a classifier between clients before training. The third row
of Table 3 shows better results of experiments of FedFA without feature-anchor updates than the
best baseline under label and feature skewness. Therefore, there is a trade-off between privacy and
generalization performance for FedFA. Secondly, FedFA only shares the feature centroid (statistic
mean of features) of the changing feature under training, rather than the fully trained feature map
from raw data, so the information leaked to the attacker by the feature anchor may be limited, which
is verified by (Luo et al., 2021). Thirdly, since feature anchors are a component of the trained model,
we argue that current approaches such as secure aggregation and differential privacy can protect data
privacy against reconstruction attacks based on feature anchors. Meanwhile, the weakness of our
study is the absence of an analysis of the degree of privacy leakages by feature anchors. We will
further investigate it in our future work.

B.3 CHALLENGES OF DEPLOYING CONTRASTIVE LEARNING WITH FEDERATED LEARNING

Contrastive learning is currently widely used and seeks to align sample features under various
augmentations. More and more methods, such as MOON (Li et al., 2021b) and FedUFO (Zhang et al.,
2021), try to solve the data heterogeneity problem from feature-contrastive perspective. One main
challenge in deploying contrastive learning to federated learning is how to generate features from the
datasets of other clients to perform alignment, since the privacy requirement does not allow clients
to share raw data with each other. For example, MOON uses the global model to generate global
features to align local features generated by local model, and our method FedFA does it by means of
shared feature anchors. Moreover, another main challenge is how to balance the supervised loss and
contrastive loss (an auxiliary loss) since if the contrast loss is too large at the beginning of training, it
will increase the difficulty of training, but if it is too small, it will easily fail to align features.

C RELATED WORKS

Federated learning is a fast-developing area, and we mainly introduce the methods close to ours (i.e.,
federated optimization-based methods) and briefly introduce other methods. Comprehensive field
studies have appeared in (Kairouz et al., 2021; Wang et al., 2021; Tan et al., 2022a).

Tackle data heterogeneity on the client side. To avoid local models converging to their local
minima instead of global minima, many works add a well-designed regularization term to penalize
local models to make them not far away from the global model. For example, FedProx (Li et al.,
2020) uses the Euclidean distance between local models and the global model as the regularization
loss. FedDyn (Acar et al., 2021) modifies the local objective with a dynamic regularizer consisting
of a linear term based on the first order condition and the Euclidean-distance term, such that the
local minima are consistent with the global stationary point. MOON (Li et al., 2021b) utilizes
the feature similarity between previous local models and the global model as model-contrastive
regularization to correct the local training of each client. In place of the model-contrastive term in
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MOON, FedProc (Mu et al., 2021) introduces a prototype-contrastive term to regularize the features
within each class with class prototypes (Snell et al., 2017). Besides, instead of implicit correction by
regularization, a number of works reduce the bias explicitly in local updates by controlling variates
or posterior sampling. Borrowing the variance-reduce technique in standard convex optimization,
SCAFFOLD (Karimireddy et al., 2020) presents a control variate to correct the client updates, so
they are much closer to the global update. Another way to reduce the bias is to run Markov Carlo,
instead of stochastic gradient descent, which produces approximate local posterior samples like
FedPA (Al-Shedivat et al., 2021). Similar to (Li et al., 2021a; Chen & Chao, 2022; Luo et al., 2021;
He et al., 2021), our experiments in Section 5 show that these works may not provide stable better
performance gains over FedAvg (McMahan et al., 2017) in classification tasks, which motivates us to
analyze the relationship between classifier updates and feature mappings in local training.

Tackle data heterogeneity on the server side. In addition to improving on the client side, many
works have developed alternative aggregation schemes on the server side to tackle data heterogeneity.
For instance, (Wang et al., 2020b) finds an objective inconsistency problem caused by unbalanced data
that induces a different number of local updates and propose FedNova to eliminate the inconsistency
by normalizing the local updates before averaging. Besides, (Reddi et al., 2021) adopts adaptive
momentum update on the server-side to mitigate oscillation of global model updates when the server
activates the clients with a limited subset of labels. Beyond layer-weighted averaging, some works
like FedMA (Wang et al., 2020a) and Fed2 (Yu et al., 2021) introduce neuron-wise averaging
because there may exist neuron mismatching from permutation invariance of neural networks in
federated learning. These ideas complement our work and can be integrated into our method because
our method only adds a regularizer on the client side.

Tackle data heterogeneity based on feature. Instead of considering from the federated-optimization
view, some recent works such as (Li et al., 2021b; Mu et al., 2021; Li & Zhan, 2021; Luo et al.,
2021; Zhang et al., 2022; Tang et al., 2022) pay more attention to feature space across clients. To
improve feature consistency, MOON (Li et al., 2021b) and FedProc (Mu et al., 2021) introduce a
feature-based local regularizer mentioned above. FedUFO (Zhang et al., 2021) shares client models
with each others to align features and logit output. Meanwhile, (Tang et al., 2022) generates a
shared virtual dataset for all clients before training, and calibrates features by minimizing the feature
distribution distance between the virtual dataset and the real dataset.

Tackle data heterogeneity based on classifier. To improve classifier consistency, (Luo et al., 2021)
observes that the classifier layer (i.e., the last layer of the model) suffers most from label distribution
skew and proposes calibration of the classifier with virtual features after training. Moreover, (Li &
Zhan, 2021; Zhang et al., 2022) introduce a restricted loss cross-entropy and a fine-grained calibrated
cross-entropy loss, respectively. The key idea of the two methods is to prevent the overfitting of
missing classes (Li & Zhan, 2021) and minority classes (Zhang et al., 2022) (i.e., both under the label
distribution skew) with an improved cross-entropy loss. However, compared with our method, these
methods only consider the label distribution skew setting by improving the performance degeneration
based on feature calibration or classifier calibration, and neglect vicious cycle between different
classifier updates and inconsistent features, which hurts their performance.

Other methods. The data-centric method is one recent new direction, which shares common
datasets with all clients like the public dataset in (Zhao et al., 2018). To avoid violating the privacy
requirement, some works focus on sharing synthesized data like (Luo et al., 2021; Li et al., 2022;
Tang et al., 2022) and coded data (Sun et al., 2022; Shao et al., 2022) with privacy protection to
construct a more homogeneous dataset for federated learning. Moreover, another line of research
aims to train a personalized model for each client, rather than a global model (Tan et al., 2022a).
Since there is still no standard approach to personalized federated learning, many researchers achieve
it by personalized regularization (T Dinh et al., 2020), meta learning (Fallah et al., 2020), prototype
learning (Tan et al., 2022b) and personalized layers (Chen & Chao, 2022), etc.

Our work aims at the typical federated learning (McMahan et al., 2017) and tries to improve the local
optimization by feature alignment in federated optimization. There are two existing works similar
to ours, i.e., MOON (Li et al., 2021b) which introduces a model-contrastive loss to maximize the
agreement of the features extracted by the local model and that by the global model, and FedProc
(Mu et al., 2021) which proposes a prototype-contrastive loss to correct features by class prototypes.
However, compared with our method, although considering the feature mapping inconsistency across
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local models, MOON and FedProc neglect the vicious cycle between different classifiers’ updates
and inconsistent features, which hurts their performance.

D PROOF OF PROPERTY 1

Proof 1 (Property 1) Let A =
∑ni
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We compute the similarity of classifier updates between client i and client v,

cos(∆ϕi,c,∆ϕv,c) =
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Herein, we represent < A,B > as:
< A,B > =< A1 −A2, B1 −B2 >

=< A1, B1 > + < A2, B2 > − < A1, B2 > − < A2, B1 > .
(11)

According to Assumption 1, when hc ∈ Hc and hq ∈ Hq and c ̸= q, the inner product < hc,hq >
is less than or equal to 0. Thus, we have:

< A1, B2 >= <

ni∑
ji=1,yji

=c

(
1− p

(i)
ji,c

)
hi,yji

,

nv∑
jv=1,yjv ̸=c

p
(v)
jv,c

hv,yjv
>

=

nv∑
jv=1,yjv ̸=c

ni∑
ji=1,yji

=c

(
1− p

(i)
ji,c

)
p
(v)
jv,c

< hi,yji
,hv,yjv

>

≤ 0

(12)

where the inequality holds because yji = c but yjv ̸= c and thus < hi,yji
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Similarly, we have:
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Also, according to Assumption 1, when ∥ac∥ >
√
2δ, for any hi,c ∈ Hc and hv,c ∈ Hc, we obtain

that the inner product < hi,c,hv,c > is larger than 0 since the arccosine of largest angle between
hi,c and hv,c is 2arccos(∥ac∥/

√
2δ) (i.e., the largest angle is smaller than π/2).

< A1, B1 >= <

ni∑
ji=1,yji

=c

(
1− p

(i)
ji,c

)
hi,yji

,

nv∑
jv=1,yjv=c

(
1− p

(v)
jv,c

)
hv,yjv

>

=

nv∑
jv=1,yjv=c

ni∑
ji=1,yji

=c

(
1− p

(i)
ji,c

)(
1− p

(v)
jv,c

)
< hi,yji

,hv,yjv
>

> 0.

(14)

Similarly, we have:
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Combining (11) to (15), we obtain that < A,B > is larger than 0, and thus cos(∆ϕi,c,∆ϕv,c) > 0.
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E PSEUDOCODE OF FEDFA

Herein, we get the inspiration from Batch Normalization (Ioffe & Szegedy, 2015) and perform
exponential moving average to estimate ā

(t,k)
c,i based on the c-th class samples Bi,c of one mini batch

Bi when performing prediction in (8), as presented as following:

m
(t,kτ )
c,i = m

(t,kτ−1)
c,i +

1

B|B(t,kτ )
i,c |

h̄
(t,kτ )
c,i (16)

ā
(t,k)
c,i = λm

(t,k−1)
c,i + (1− λ)m

(t,k)
c,i (17)

where h̄
(t,τ)
c,i = 1

|B(t,τ)
i,c |

∑
(x,c)∈B(t,τ)

i,c
fθi

(x), and τ ∈ [1, B] denotes the τ -th mini batch of the total

number B at the k-th epoch.

The pseudocode of FedFA is shown as the following Algorithm 1. Compared with FedAvg, FedFA
adds a feature anchor loss and calibrates the classifier locally.

Algorithm 1 FedFA (Proposed Framework): Federated Learning with Feature Anchors
Input: initial model w = {θ,ϕ}, initial feature anchors {ac}Cc=1, learning rate η, local epoch K,
client number N, class number C
for each round t = 1, · · · , R do

Server samples clients S ⊆ {1, · · · , N}
Server communicates w(t−1) and {a(t−1)

c }Cc=1 to all clients i ∈ S
on client i ∈ S in parallel do

Initialize the local model wi ← w(t−1), the local feature anchor ac,i ← a
(t−1)
c

for local epoch k = 1, · · · ,K do
for each mini-batch do
% feature alignment with feature anchors
Calculate the local loss li ← lsupi

+ µlfai according to (6)
Compute mini-batch gradient gi(wi)← ∇wi li
Update local model wi − ηgi(wi)
% classifier calibration with feature anchors
Calculate the calibration loss li ← lcali according to (7)
Compute mini-batch gradient gi(ϕi)← ∇ϕi

lcali
Calibrate classifier proxies ϕi − ηgi(ϕi)
% Accumulate class features
Perform moving average to estimate the expectation of feature anchors according to (16)

Estimate feature anchors m(t,k)
i according to (17)

end for
Communicate w

(t)
i and {a(t)c,i}Cc=1 back to the server

end on client
Server aggregates the global model w(t) ← 1

|S|
∑

i∈S w
(t)
i , and the feature anchors a

(t)
c ←

1
|S|

∑
i∈S a

(t)
c,i according to (8)

end for

F DETAILS OF EXPERIMENT SETUP

F.1 SPECIFIC MODELS

Our validation and test experiments, including label distribution skew, feature distribution skew
and label & feature distribution skews, use the models according to Table 4. Herein, to ablate the
effect of BN layers, we follow (Hsieh et al., 2020) to replace the BN layer with the GroupNorm
layer in all experiments. For a fair comparison, our models follow those reported in the baselines’
works. Specifically, following (Acar et al., 2021), we use a CNN model for EMNIST, FMNIST,
and CIFAR-10, consisting of two 5x5 convolution layers followed by 2x2 max pooling and two
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fully-connected layers with ReLU activation. Following (Li et al., 2021b) and (Li et al., 2021c), we
utilize the ResNet-18 (He et al., 2016) with a linear projector for CIFAR-100 and a CNN model with
three 5x5 convolution layers followed by five GroupNorm layers for the Mixed Digits dataset.

Table 4: The specific parameters settings for all the models used in our experiments.
Validation Experiment Test Experiment

Layer Label Skew Feature Skew Label Skew Feature Skew

FMNIST Mixed-digit dataset FMNIST/EMNIST CIFAR-10 CIFAR-100 Mixed-digit dataset

1 Conv2d(1, 32, 5)
ReLU,MaxPool2D(2,2)

Conv2d(3, 64, 5)
ReLU,MaxPool2D(2,2)

Conv2d(1, 32, 5)
ReLU,MaxPool2D(2,2)

Conv2d(3, 64, 5)
ReLU,MaxPool2D(2,2)

Basicbone of Resnet18
with GroupNorm

Conv2d(3, 64, 5, 1, 2)
ReLU,MaxPool2D(2,2)

2 Conv2d(32, 32, 5)
ReLU,MaxPool2D(2,2)

Conv2d(64, 64, 5)
ReLU, MaxPool2D(2,2)

Conv2d(32, 32, 5)
ReLU,MaxPool2D(2,2)

Conv2d(64, 64, 5)
ReLU, MaxPool2D(2,2)

FC(512,512)
ReLU

Conv2d(64, 64, 5, 1, 2)
ReLU,MaxPool2D(2,2)

3 FC(992,384)
ReLU

FC(1024,384)
ReLU

FC(992,384)
ReLU

FC(1600,384)
ReLU FC(512,256) Conv2d(3, 128, 5, 1, 2)

ReLU

4 FC(384,100) FC(384,100) FC(384,192)
ReLU

FC(384,192)
ReLU FC(256,100) FC(6272, 2048)

ReLU

5 FC(100,10) FC(100,10) FC(192,10) FC(192,10) FC(2048,512)
ReLU

6 FC(512,10)

Source model from
(Acar et al., 2021)

model from
(Acar et al., 2021)

model from
(Li et al., 2021b)

model from
(Li et al., 2021c)

F.2 VALIDATION EXPERIMENT SETUP

The total number of training samples per client is 1000 in this case. We separately sample a subset
from test sets of FMNIST and Mixed Digit to visualize the normalized feature mappings of the local
models based on t-SNE visualization (Van der Maaten & Hinton, 2008). In Figure 2, although we
input the same Validation samples into all clients’ local modes, we only show their features mappings
for which clients have the corresponding class (i.e., if client 1 only holds class 1 and class 2 samples,
we only offer the feature maps of the client 1 model for these two classes, as it would be unfair to ask
the local model of client 1 to map the feature of classes on which it did not learn.). We visualize the
feature mappings of client models according to the labels (digit dataset) owned by the corresponding
client for label (distribution) distribution skew. The specific setup is described as:

• Label Distribution Skew: The experiment has 10 clients where each client has 2 classes
with 500 samples per class from FMNIST, and utilizes the SGD optimizer with a 0.01 learn-
ing rate and without momentum. The federated setting involves 10 local epoch numbers, 15
communication rounds, and a 100% client sample rate. The top-1 accuracy of global model
of all method at the targeted communication round is that FedAvg without skew: 80.32%;
FedAvg:52.66%; FedProx:51.43%; FedDyn:51.90%; MOON:45.67%; FedProc:49.87%;
FedFA(our): 67.54%.

• Feature Distribution Skew: The experiment has 10 clients where each client has 10 classes
with 100 samples per class from one of the digit datasets in Mixed Digit (i.e., MNIST, SVHN,
USPS, SynthDigits, and MNIST-M), and utilizes the SGD optimizer with a 0.01 learning
rate and without momentum. The federated setting involves 10 local epoch numbers, 15
communication rounds, and a 100% client sample rate. The Mean top-1 accuracy of the
global models of all methods at the targeted communication round is that FedAvg without
skew: 81.66%; FedAvg:79.56%; FedProx:78.76%; FedDyn:79.60%; MOON: 79.58%;
FedProc:79.30%; FedFA(our): 80.44%.

F.3 TEST EXPERIMENT SETUP

Baselines. Federated learning (McMahan et al., 2017) aims to train a global model parameterized
by w by collaborating a total of N clients with a central server to solve the following optimization
problem:

min
w∈Rd

L(w) := Ei[Li(w)] =

N∑
i

ni

n
Li(w)

where n =
∑

i ni represents the total sample size with ni being the sample size of the i-th client, and
Li(w) := Eξ∈Di [li(w; ξ)] is the local objective function in local dataset Di of the i-th client.
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Many methods have been proposed to solve this optimization problem and alleviate the negative
impact of data heterogeneity across clients. Herein, from the view of local-optimization methods,
we compare FedFA with the common federated learning algorithms, including FedAvg (McMahan
et al., 2017), FedProx (Li et al., 2020) and the state-of-the-art methods based on well-designed local
regularization including FedDyn (Acar et al., 2021), MOON (Li et al., 2021b) and FedProc (Mu
et al., 2021). The specific description of these methods can be denoted as:

• FedAvg: As a canonical method to solve (1) proposed by (McMahan et al., 2017), in each
communication round, FedAvg firstly selects a subset of clients and initiates client models
as w and then updates the local models wi by minimizing Li(w), and finally aggregates the
local models wi as the new global model w until L(w) arrives at a stationary point.

• FedProx: FedProx (Li et al., 2020) adds the Euclidean regularization loss between local
models and the global model in the local optimization problem, which can be described as:

Li(w) = min
wi

E(x,y)∈Di
[li(wi;w

(t−1)) +
µ

2
∥wi −w(t−1)∥2]. (18)

• FedDyn: FedDyn (Acar et al., 2021) modifies the local objective with a dynamic reg-
ularization consisting of a linear term based on the first order condition and an above
Euclidean-distance term, such that the local minima are consistent with the global stationary
point, which can be described as:

Li(w) = min
wi

E(x,y)∈Di
[li(wi;w

(t−1))− < ∇Li(w
(t−1)),wi > +

µ

2
∥wi −w(t−1)∥2].

(19)
• MOON: MOON (Li et al., 2021b) utilizes the feature similarity of the client model with

previous-round local models and with the global model as model-contrastive regularization
to correct the local training of each client, which can be described as:

Li(w) = min
wi

E(x,y)∈Di
[li(wi;w

(t−1))−µ log
exp(sim(hi,hglobal)/τ)

exp(sim(hi,hglobal)/τ) + exp(sim(hi,hpre)/τ)
]

(20)
where hi,hglobal,hpre denote the feature mappings of the local model wi, the global model
w, and the local model at previous round wt−1

i given the same input x, respectively; τ is the
hyperparameter to control the effect of cosine similarity in model-contrastive loss.

• FedProc: Instead of the model-contrastive term in MOON, FedProc (Mu et al., 2021)
introduces a prototype-contrastive term to regularize the features within each class with
class prototypes (Snell et al., 2017), which can be described as:

Li(w) = min
wi

E(x,y)∈Di
[
t

T
li(wi;w

(t−1)) + (1− t

T
) log

exp(sim(hi,pc)/τ)∑c=C
c=1 exp(sim(hi,pc)/τ)

]

(21)
where T is the targeted communication round, and pc is the prototype of class c. In FedProc,
pc is updated by the whole local dataset at the end of one communication round (i.e.,
p
(t,k)
c,i = 1

|Di,c|
∑

(x,c)∈Di,c
hi,c). However, we need to denote that if pc is updated like this,

rather than the momentum update as (8), and we found that FedProc would suffer from
the divergence because the update of pc is too drastic in our experiments 2. Therefore, we
improve FedProc with momentum update (8).

Datasets. This work aims at image classification tasks under label distribution skew, feature distri-
bution skew and label & feature distribution skew, and uses benchmark datasets with the same data
heterogeneity setting as (McMahan et al., 2017; Yurochkin et al., 2019; Li et al., 2021a), including
EMNIST (Cohen et al., 2017), FMNIST (Xiao et al., 2017), CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), and Mixed Digits dataset (Li et al., 2021c). Specifically, for label distribution skew, we
consider two settings:

• Same size of local dataset: Following (McMahan et al., 2017), we split data samples based
on classes to clients (e.g., #C = 2 denotes each client holds two class samples), where each
client holds 250 samples per class;

2The codes of FedProc are not open source, and thus our reproduction settings cannot be completely consistent
to the original setting, but we fine-tune the hyperparameter of FedProc carefully and report the best results.

19



MN
IST

MN
IST
_M

Syn
thD

igit
s

SVH
N

US
PS

(a) (b)

Figure 5: Data visualization. (a) Examples from each dataset (client) in Mixed Digit. (b) feature
distributions skew across the datasets (over random 100 samples for each dataset).

• Different sizes of local dataset: Following (Yurochkin et al., 2019), we fist sample pi
from Dirichlet distribution Dir(α) and then assign pi,c proportion of the samples of class
c to client i, where we set α as 0.1 and 0.5 to measure the the level of data heterogeneity
in our experiments. Moreover, when α = 0.1, the label distributions across clients are so
skewed that the quantity of clients’ local dataset is also skewed. That is, the experiment
cases related to α = 0.1 would involve label distribution skew and quantity distribution
skew, which denotes the unbalanced data size of the local dataset across clients.

For feature distribution skew, we consider two settings:

• Real-world feature imbalance: We use a subset of the real-world dataset with natural
feature imbalance, EMNIST (Cohen et al., 2017), including 10 classes and 341873 samples
(about 34000 samples per class) totally;

• Artificial feature imbalance: We use a mixed-digit dataset from (Li et al., 2021c) consisting
of five benchmark digit datasets: MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011),
USPS (Hull, 1994), SynthDigits and MNIST-M (Ganin et al., 2015), including 7430 samples
for one digit dataset and 743 sample per class. The data visualization is shown as Figure 53.

Note that for the experiments on Mixed Digits, we report the average top-1 accuracy on five benchmark
digit datasets in Table 1 and Table 3, and show the top-1 accuracy on each digit dataset during the
training in Figure 18 to Figure 20. For the experiments on other datasets except for Mixed Digits, we
test the top-1 accuracy on all datasets based on the global model and report them during the training
as shown in Figure 14 to Figure 17.

Federated Simulation Setup. All experiments are performed based on PyTorch Paszke et al. (2019)
and one node of the High-Performance Computing platform with 4 NVIDIA A30 Tensor Core
GPUs with 24GB. We use an existing dataset-split tool FedLab (Zeng et al., 2021) to generate
federated local datasets for all clients. There are in total 100 clients, and 10 clients participating in
federated training at each communication round. We use the SGD optimizer with a 0.01 learning rate
and 0.001 weight decay for all experiments except for the CIFAR-100 experiment, which uses 0.9
momentum additionally. The local batch size is 64, the number of local epochs is set to 5, and the
number of communication rounds is set to 200. Moreover, we carefully select the coefficient of local
regularization from {1, 0.1, 0.01} (i.e., µ/2 = 0.05 for FedProx and FedDyn, µ = 1 for MOON
except µ = 5 on CIFAR-10 ), set the temperature hyperparameter τ = 0.5 for MOON and FedProc,
and report their best results in our experiments.

FedFA setup. We set the coefficient of exponential moving average λ = 0.5 in (8) and local loss
coefficient µ = 0.1 in (6) like our baselines, and according to Property 1, we initiate the pairwise
orthogonal feature anchors ac by sampling column vector from an identity matrix whose dimension
is the same as the size of the feature mappings. Other settings of FedFA are the same as baselines in
all experiments, such as the same random seed (seed: 2021, 2022, 2023) and the same training and
test dataset.

3Figure comes from (Li et al., 2021c)
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G ADDITIONAL EXPERIMENT RESULTS

G.1 ADDITIONAL VALIDATION EXPERIMENT RESULTS

G.1.1 FEATURE VISUALIZATION AND SIMILARITY HISTOGRAM FOR ALL METHODS UNDER
LABEL DISTRIBUTION SKEW

Figures 6 and 7 show the t-SNE visualization and the histogram of cosine similarity of feature
mappings for label distribution skew for all methods. We observe that all baselines under label skew
exist feature mapping inconsistency across clients. Still, our method FedFA alleviates it significantly,
such as class 1 (i.e., dark blue), class 5 (i.e., dark red) and class 9 (i.e., dark purple) in Figures 6 and
7. Besides, similar to the analysis of Figure 2, the histograms also show that label distribution skew
could induce the lower similarity for positive pairs, which means feature inconsistency. Moreover,
there exists a low frequency of positive pairs and a small gap between positive pairs and negative
pairs, which indicates inconsistent polymerization and discrimination (i.e., sizeable intra-class feature
distance and small inter-class feature distance) across clients in classification tasks. These results of
label distribution skew reveal that all client models are trained in inconsistent feature spaces by our
baselines, which hurts their performance.

0.0 0.2 0.4 0.6 0.8
1.0 0.0

0.4
0.2

0.6
0.8

1.0

0.0
0.2
0.4
0.6
0.8

0.0 0.2 0.4 0.6 0.8 1.0 0.0

0.4
0.2

0.6
0.8

1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0

0.4
0.2

0.6
0.8

1.0

0.0
0.2
0.4
0.6
0.8
1.0

Client 0
Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

1.0 0.5 0.5 1.00.0
Cosine Similarity

0.00

0.05

0.10

0.15

Fr
eq

ue
nc

y

(

Postive Pairs
Negative Pairs

1.0 0.5 0.5 1.00.0
Cosine Similarity

0.00

0.05

0.10

0.15

Fr
eq

ue
nc

y

Postive Pairs
Negative Pairs

1.0 0.5 0.5 1.00.0
Cosine Similarity

0.0

0.1

0.2

Fr
eq

ue
nc

y

Postive Pairs
Negative Pairs

a) FedAvg without Label Skew (b) FedAvg with Label Skew (c) FedFA with Label Skew

Figure 6: The t-SNE visualization and the histogram of cosine similarity of feature mappings for
FedAvg under data homogeneity and for FedAvg and FedFA under label distribution skew with 10
clients.
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Figure 7: The t-SNE visualization and the histogram of cosine similarity of feature mappings for all
baselines under label distribution skew with 10 clients.
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G.1.2 FEATURE VISUALIZATION AND SIMILARITY HISTOGRAM FOR ALL METHODS UNDER
FEATURE DISTRIBUTION SKEW

Similar to label distribution skew, Figures 8 and 9 show the t-SNE visualization and the histogram of
cosine similarity of feature mappings for feature distribution skew for all methods. We also observe
that all baselines under feature skew still suffer from feature mapping inconsistency across clients,
but our method does not. Moreover, without the feature alignment, all baselines present the weak
feature polymerization and feature discrimination of clients’ local models, which would make the
classifier updates divergent as denoted in (3). Therefore, these results of feature distribution skew
reveal that all client models are trained in inconsistent feature spaces by our baselines, which hurts
their performance.
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Figure 8: The t-SNE visualization and the histogram of cosine similarity of feature mappings for
FedAvg under data homogeneity and for FedAvg and FedFA under feature distribution skew with 10
clients.
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Figure 9: The t-SNE visualization and the histogram of cosine similarity of feature mappings for all
baselines under feature distribution skew with 10 clients.

G.2 ADDITIONAL ABLATION EXPERIMENT RESULTS

G.2.1 ADDITIONAL ABLATION EXPERIMENTS ON CLASSIFIER CALIBRATION

Difference between classifier calibration with feature anchors and classifier calibration with
virtual representations. The major difference between classifier calibration with feature anchors
and classifier calibration with virtual representations (CCVR) (Luo et al., 2021) is when to calibrate
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classifiers in federated learning. FedFA calibrates classifiers during training (i.e., each mini-batch
update phase of local training) by clients, and CCVR does it after training by the server. The goal of
our local classifier calibration is to keep clients’ classifiers similar across clients at the beginning of
the next mini-batch update without additional communication. We observed that this modification
could bring similar classifier updates and feature consistency for federated learning, as shown in
Figure 4.

When to calibrate classifier is the best? To further investigate this question, we perform the
following study on the FMNIST #C = 2 case whose setting is the same as Table 2, where the
term “CC” denotes local classifier calibration: The above results reveal that the best time to calibrate

Table 5: Classifier calibration at different training phase.
Accuracy

FedAvg 73.19
FedAvg w/ CCVR 75.95
FedFA 84.90
FedFA w/o CC 76.81
FedFA w/o CC but w/ CCVR 76.94
FedFA w/ CC and CCVR 84.94
FedFA w/ CC at the end of each local epoch 82.05

classifiers is during each mini-batch in local training. Meanwhile, post-calibration only improves
little for FedFA, which means that keeping the virtuous cycle between feature consistency and
classifier update similarity during training, as shown in Figure 1, can promote the final performance
significantly.

G.2.2 ADDITIONAL ABLATION EXPERIMENTS ON FEATURE ANCHORS

The momentum update of feature anchors. We set different momentum coefficient (λ) in (17) to
perform experiments on the FMNIST with #C = 2 case whose setting is the same as Table 2. The
results are shown as follows:

Table 6: The momentum update of feature anchors with differen λ.
λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Accuracy 84.12 83.83 83.94 84.19 83.79 84.08 84.05 84.19 84.08 84.37 81.55

The results denote that FedFA is not sensitive to the momentum coefficient λ. When λ=1, feature
anchors will not be updated, as showed in Figure 10(b). When λ=0, feature anchors will be set as the
new mean feature of the last epoch. FedFA with λ=0 appears to work about as well as other cases,
but it introduces more oscillations during training, as showed in Figure 10(a).
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Figure 10: The updates of feature anchors of FedFA With different λ.

The initialization of feature anchors. To explore the impact of initialization of feature anchors on
convergence speed, we design three experiments, including random initialization, one-round-FedAvg
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initialization that you suggested and “ideal” initialization. The “ideal” initialization denotes feature
anchors are initiated by the trained feature anchors obtained from finishing FedFA training. The
results are shown as follows:

Table 7: The Top-1 accuracy at the targeted round under FedFA with different initialization.
Accuracy

FedFA (lambda=0.9) 84.37
FedFA w/ random initialization 84.07
FedFA w/ 1round FedAvg 84.94
FedFA w/ “ideal” initialization 84.33

The results reveal that the initialization of the feature anchors may not affect the convergence speed
of FedFA, possibly because the anchors are updated in each communication round so that the impact
of initialization of feature anchors is quickly and drastically mitigated. For example, as shown in
Figure 11, FedFA with orthogonal initialization provides better accuracy than others in the first round
but does not obtain the best accuracy in the final round.
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Figure 11: The feature anchors of FedFA with different initialization.

G.3 ADDITIONAL TEST EXPERIMENT RESULTS

G.3.1 PERFORMANCE UNDER DIFFERENT FEDERTATED SETTING

Following the setup form (Li et al., 2021b), given 100 clients and 400 communication rounds, we
investigate the impact of different federated setting on FedFA and baselines with SGD optimizer with
a 0.01 learning rate and momentum 0.9 on CIFAR-10, including different local epoch, batch size and
client sample rate , where the results are shown in Figures 3 and 12. For different local epochs, we
observe that the bigger local epochs result in lower performance in all methods, FedProx and MOON
suffer from worse performance degradation than FedAvg and FedFA. For different batch sizes, 12
presents FedAvg with a relatively small batch size can work better than that of larger batch sizes,
and FedFA, FedProx and MOON performs best with batch size 64. For different client sample rates,
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Figure 12: Performance under different (a) client sample rate, (b) batch size and (c) local epoch on
CIFAR-10.
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FedFA have a significant performance advantage than other methods, which demonstrates the unique
advantage of FedFA in addressing data heterogeneity (i.e., it is robust to different heterogeneous
Settings).

G.3.2 COMMUNICATION EFFECTIVENESS

To compare the communication effectiveness, we perform the experiments under label and feature
skew to test the communication round number when the global model trained by all methods can
reach the target accuracy. As shown in Tables 8, FedFA realizes better communication efficiency than
our baselines with data heterogeneity or not on all datasets except for CIFAR-100. Meanwhile, the
training accuracy shown in the following accuracy figures also presents similar results. For example,
FedFA present an amazing convergence rate on models with shallow layers under both label skewness
and feature skewness, as shown in 14 and 17.
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Figure 13: Convergence rate performance with different µ

Additional, we added an experiment to explore the effect of µ in E.q. 6 on the convergence rate,
whose setting is the same as 3 based on CIFAR-10 with α = 0.5, as shown in Figure 13. According
to the results, When µ >, the model converges quite slow, even be constant. µ = yield a similar
convergence rate. In our experiments, µ = achieves the best performance. However, FedFA achieves
better generalization than baselines on CIFAR-100 with ResNet but takes more communication
rounds to converge. Moreover, as the number of model layers increases, the performance advantages
of FedFA diminish. This is probably because the feature anchor loss only regularizes the feature
maps of the penultimate layer and is less effective on the shallow layers, which we will explore in
future work.

Table 8: The top-1 accuracy (round number when the accuracy reaches the target accuracy) the of all
methods under feature distribution skew on the test dataset.

Method
(lr = 0.01)

Label Distribution Skew

FMNIST CIFAR-10 CIFAR-100
#C = 2 α = 0.1 α = 0.5 #C = 2 α = 0.1 α = 0.5 #C = 20 α = 0.1 α = 0.5

Targeted Accuracy 59.682666 55.85066 66.24000 28.85600 28.1600 38.92533 18.09866 17.4346 21.22399

FedAvg w/o skew 62.99(4) 57.31(3) 67.38(6) 29.56(9) 28.34(8) 39.24(23) 18.52(21) 17.69(20) 21.25(28)
FedFA w/o skew 62.62(2) 58.89(1) 67.40(3) 30.06(3) 30.06(3) 40.57(8) 18.17(35) 18.17(35) 21.48(45)

FedAvg 60.22(25) 57.43(34) 66.47(12) 29.64(38) 28.19(43) 39.04(47) 18.34(52) 17.56(73) 21.39(48)
FedProx 59.88(25) 58.55(34) 66.42(13) 29.90(38) 28.62(42) 39.21(42) 18.13(51) 17.76(72) 21.41(52)
FedDyn 62.45(28) 61.99(34) 66.88(12) 30.55(32) 30.19(40) 40.68(36) 0 0 0
Moon 60.54(28) 57.49(34) 66.77(13) 29.09(38) 30.14(48) 39.46(43) 18.35(59) 17.46(81) 21.23(48)

FedProc 61.83(29) 56.44(32) 67.62(22) 30.79(42) 30.10(48) 39.85(49) 18.41(51) 17.52(81) 21.23(52)
FedFA (Our) 62.14(10) 59.46(7) 67.63(5) 30.67(15) 29.94(11) 41.72(14) 18.76(75) 17.70(106) 22.99(87)

G.3.3 TRAINING ACCURACY UNDER LABEL DISTRIBUTION SKEW

The training accuracy under label skew is shown as Figure 14 to Figure 16, which illustrates that
the performance of FedFA is better than all baselines on FMNIST, CIFAR-10, and CIFAR-100.
FedFA achieves better generalization than baselines on CIFAR-100 with ResNet but takes more
communication rounds to converge. This observation is reasonable because regularizing only the
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penultimate layer by feature anchor loss takes more time to align the feature maps of the shallow
layers, which we will explore in future work.
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Figure 14: FMNIST with label skew.
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Figure 15: CIFAR-10 with label skew.
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Figure 16: CIFAR-100 with label skew.

G.3.4 TRAINING ACCURACY UNDER FEATURE DISTRIBUTION SKEW

Figures 17 to 18 show the better performance of FedFA over all baselines under feature distribution
skew on EMNIST and Mixed Digit.

G.3.5 TRAINING ACCURACY UNDER LABEL AND FEATURE DISTRIBUTION SKEW

Figures 19 to 21 show the better performance of FedFA over all baselines under label & feature skew
on Mixed Digit.
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Figure 17: EMNIST with feature skew.

0 25 50 75 100 125 150 175 200

20

40

60

80

(a) Mean Top-1 Accuracy on All Datasets

FedFA w/o Skew
FedAvg w/o Skew
FedFA
FedAvg
FedProx
FedDyn
MOON
FedProc

0 25 50 75 100 125 150 175 200
0

20

40

60

80

100
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(d) Top-1 Accuracy on USPS

FedFA w/o Skew
FedAvg w/o Skew
FedFA
FedAvg
FedProx
FedDyn
MOON
FedProc

0 25 50 75 100 125 150 175 200

20

40

60

80

100

(e) Top-1 Accuracy on SynthDigits

FedFA w/o Skew
FedAvg w/o Skew
FedFA
FedAvg
FedProx
FedDyn
MOON
FedProc

0 25 50 75 100 125 150 175 200

10

20

30

40

50

60

70

80

90

(f) Top-1 Accuracy on MNIST-M

FedFA w/o Skew
FedAvg w/o Skew
FedFA
FedAvg
FedProx
FedDyn
MOON
FedProc

Figure 18: Mixed Digit without label skew.
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Figure 19: Mixed Digit with label skew #C = 2.
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(c) Top-1 Accuracy on SVHN
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(d) Top-1 Accuracy on USPS
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(e) Top-1 Accuracy on SynthDigits
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(f) Top-1 Accuracy on MNIST-M
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Figure 20: Mixed Digit with label skew α = 0.1.
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(b) Top-1 Accuracy on MNIST
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(c) Top-1 Accuracy on SVHN
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(d) Top-1 Accuracy on USPS
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(e) Top-1 Accuracy on SynthDigits
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(f) Top-1 Accuracy on MNIST-M
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Figure 21: Mixed Digit with label skew α = 0.5.
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