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Abstract

Diffusion models have achieved remarkable success across a wide range of gener-
ative tasks. A key challenge is understanding the mechanisms that prevent their
memorization of training data and allow generalization. In this work, we inves-
tigate the role of the training dynamics in the transition from generalization to
memorization. Through extensive experiments and theoretical analysis, we identify
two distinct timescales: an early time τgen at which models begin to generate
high-quality samples, and a later time τmem beyond which memorization emerges.
Crucially, we find that τmem increases linearly with the training set size n, while
τgen remains constant. This creates a growing window of training times with n
where models generalize effectively, despite showing strong memorization if train-
ing continues beyond it. It is only when n becomes larger than a model-dependent
threshold that overfitting disappears at infinite training times. These findings reveal
a form of implicit dynamical regularization in the training dynamics, which allow
to avoid memorization even in highly overparameterized settings. Our results are
supported by numerical experiments with standard U-Net architectures on realis-
tic and synthetic datasets, and by a theoretical analysis using a tractable random
features model studied in the high-dimensional limit.

1 Introduction

Diffusion Models [DMs, 43, 17, 48, 49] achieve state-of-the-art performance in a wide variety of
AI tasks such as the generation of images [40], audios [57], videos [29], and scientific data [27, 35].
This class of generative models, inspired by out-of-equilibrium thermodynamics [43], corresponds
to a two-stage process: the first one, called forward, gradually adds noise to a data, whereas the
second one, called backward, generates new data by denoising Gaussian white noise samples. In
DMs, the reverse process typically involves solving a stochastic differential equation (SDE) with a
force field called score. However, it is also possible to define a deterministic transport through an
ordinary differential equation (ODE), treating the score as a velocity field, an approach that is for
instance followed in flow matching [28].

Understanding the generalization properties of score-based generative methods is a central issue
in machine learning, and a particularly important question is how memorization of the training set
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Figure 1: Qualitative summary of our contributions. (Left) Illustration of the training dynamics
of a diffusion model. Depending on the training time τ , we identify three regimes measured by the
inverse quality of the generated samples (blue curve) and their memorization fraction (red curve).
The generalization regime extends over a large window of training times which increases with the
training set size n. On top, we show a one dimensional example of the learned score function during
training (orange). The gray line gives the exact empirical score, at a given noise level, while the black
dashed line corresponds to the true (population) score. (Right) Phase diagram in the (n, p) plane
illustrating three regimes of diffusion models: Memorization when n is sufficiently small at fixed p,
Architectural Regularization for n > n⋆(p) (which is model and dataset dependent, as discussed in
[12, 22]), and Dynamical Regularization, corresponding to a large intermediate generalization regime
obtained when the training dynamics is stopped early, i.e. τ ∈ [τgen, τmem].

is avoided in practice. A model without regularization achieving zero training loss only learns the
empirical score, and is bound to reproduce samples of the training dataset at the end of the backward
process. This memorization regime [26, 4] is empirically observed when the training set is small
and disappears when it increases beyond a model-dependent threshold [21]. Understanding the
mechanisms controlling this change of regimes from memorization to generalization is a central
challenge for both theory and applications. Model regularization and inductive biases imposed by the
network architecture were shown to play a role [22, 42], as well as a dynamical regularization due
to the finiteness of the learning rate [55]. However, the regime shift described above is consistently
observed even in models where all these regularization mechanisms are present. This suggests that
the core mechanism behind the transition from memorization to generalization lies elsewhere. In this
work, we demonstrate – first through numerical experiments, and then via the theoretical analysis of
a simplified model – that this transition is driven by an implicit dynamical bias towards generalizing
solutions emerging in the training, which allows to avoid the memorization phase.

Contributions and theoretical picture. We investigate the dynamics of score learning using
gradient descent, both numerically and analytically, and study the generation properties of the score
depending on the time τ at which the training is stopped. The theoretical picture built from our
results and combining several findings from the recent literature is illustrated in Fig. 1. The two main
parameters are the size of the training set n and the expressivity of the class of score functions on
which one trains the model, characterized by a number of parameters p; when both n and p are large
one can identify three main regimes. Given p, if n is larger than n∗(p) (which depends on the training
set and on the class of scores), the score model is not expressive enough to represent the empirical
score associated to n data, and instead provides a smooth interpolation, approximately independent
of the training set. In this regime, even with a very large training time τ → ∞, memorization does
not occur because the model is regularized by its architecture and the finite number of parameters.
When n < n∗(p) the model is expressive enough to memorize, and two timescales emerge during
training: one, τgen, is the minimum training time required to achieve high-quality data generation; the
second, τmem > τgen, signals when further training induces memorization, and causes the model to
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increasingly reproduce the training samples (left panel). The first timescale, τgen, is found independent
of n, whereas the second, τmem, grows approximately linearly with n, thus opening a large window
of training times during which the model generalizes if early stopped when τ ∈ [τgen, τmem]. Our
results shows that implicit dynamical regularization in training plays a crucial role in score-based
generative models, substantially enlarging the generalization regime (see right panel of Fig. 1), and
hence allowing to avoid memorization even in highly overparameterized settings. We find that the key
mechanism behind the widening gap between τgen and τmem is the irregularity of the empirical score
at low noise level and large n. In this regime the models used to approximate the score provide a
smooth interpolation that remains stable for a long period of training times and closely approximates
the population score, a behavior likely rooted in the spectral bias of neural networks [37]. Only at
very long training times do the dynamics converge to the low lying minimum corresponding to the
empirical score, leading to memorization (as illustrated in the 1D examples in the left panel of Fig. 1).

The theoretical picture described above is based on our numerical and analytical results, and builds up
on previous works, in particular numerical analysis characterizing the memorization–generalization
transition [15, 56], analytical works on memorization of DMs [12, 22, 21], and studies on the spectral
bias of deep neural networks [37]. Our numerical experiments† use a class of scores based on a
realistic U-Net [41] trained on downscaled images of the CelebA dataset [30]. By varying n and p, we
measure the evolution of the sample quality (through FID) and the fraction of memorization during
learning, which support the theoretical scenario presented in Fig. 1. Additional experimental results
on synthetic data are provided in Supplemental Material (SM, Sects. A and B). On the analytical
side, we focus on a class of scores constructed from random features and simplified models of data,
following [12]. In this setting, the timescales of training dynamics correspond directly to the inverse
eigenvalues of the random feature correlation matrix. Leveraging tools from random matrix theory,
we compute the spectrum in the limit of large datasets, high-dimensional data, and overparameterized
models. This analysis reveals, in a fully tractable way, how the theoretical picture of Fig. 1 emerges
within the random feature framework.

Related works.

• The memorization transition in DMs has been the subject of several recent empirical investiga-
tions [7, 44, 45] which have demonstrated that state-of-the-art image DMs – including Stable
Diffusion and DALL·E – can reproduce a non-negligible portion of their training data, indicat-
ing a form of memorization. Several additional works [15, 56] examined how this phenomenon
is influenced by factors such as data distribution, model configuration, and training procedure,
and provide a strong basis for the numerical part of our work.

• A series of theoretical studies in the high-dimensional regime have analyzed the memorization–
generalization transition during the generative dynamics under the empirical score assumption
[4, 1, 51], showing how trajectories are attracted to the training samples. Within this high-
dimensional framework, [8, 9, 54, 12] study the score learning for various model classes.
In particular, [12] uses a Random Feature Neural Network [38]. The authors compute the
asymptotic training and test losses for τ → ∞ and relate it to memorization. The theoretical
part of our work generalizes this approach to study the role of training dynamics and early
stopping in the memorization–generalization transition.

• Recent works have also uncovered complementary sources of implicit regularization explaining
how DMs avoid memorization. Architectural biases and limited network capacity were for
instance shown to constrain memorization in [22, 21], and finiteness of the learning rate
prevents the model from learning the empirical score in [55]. Also related to our analysis, [25]
provides general bounds showing the beneficial role of early stopping the training dynamics to
enhance generalization for finitely supported target distributions, as well as a study of its effect
for one-dimensional gaussian mixtures.

• Finally, previous studies on supervised learning [37, 58], and more recently on DMs [53], have
shown that deep neural networks display a frequency-dependent learning speed, and hence a
learning bias towards low frequency functions. This fact plays an important role in the results
we present since the empirical score contains a low frequency part that is close to the population
score, and a high-frequency part that is dataset-dependent. To the best of our knowledge, the
training time to learn the high-frequency part and hence memorize, that we find to scale with n,
has not been studied from this perspective in the context of score-based generative methods.

†Code available at github.com/tbonnair/Why-Diffusion-Models-Don-t-Memorize.
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Setting: generative diffusion and score learning. Standard DMs define a transport from a target
distribution P0 in Rd to a Gaussian white noise N (0, Id) through a forward process defined as an
Ornstein-Uhlenbeck (OU) stochastic differential equation (SDE):

dx = −x(t)dt+ dB(t), (1)

where dB(t) is square root of two times a Wiener process. Generation is performed by time-reversing
the SDE (1) using the score function s(x, t) = ∇x logPt(x),

−dx = [x(t) + 2s(x, t)] dt+ dB(t), (2)

where Pt(x) is the probability density at time t along the forward process, and the noise dB(t) is
also the square root of two times a Wiener process. As shown in the seminal works [20, 52], s(x, t)
can be obtained by minimizing the score matching loss

ŝ(x, t) = argmin
s

Ex∼P0,ξ∼N (0,Id)

[
∥
√

∆ts(x(t), t) + ξ∥2
]
, (3)

where ∆t = 1− e−2t. In practice, the optimization problem is restricted to a parametrized class of
functions sθ(x(t), t) defined, for example, by a neural network with parameters θ. The expectation
over x is replaced by the empirical average over the training set (n iid samples xν drawn from P0),

Lt(θ, {xν}nν=1) =
1

n

n∑
ν=1

Eξ∼N (0,Id)

[
∥
√
∆tsθ(x

ν(t)) + ξ∥2
]
, (4)

where xνt (ξ) = e−txν +
√
∆tξ. The loss in (4) can be minimized with standard optimizers, such as

stochastic gradient descent [SGD, 39] or Adam [24]. In practice, a single model conditioned on the
diffusion time t is trained by integrating (4) over time [23]. The solution of the minimization of (4) is
the so-called empirical score (e.g. [4, 26]), defined as semp(x, t) = ∇x logP

emp
t (x), with

P emp
t (x) =

1

n (2π∆t)
d/2

n∑
ν=1

e−
1

2∆t
∥x−xνe−t∥2

2 . (5)

This solution is known to inevitably recreate samples of the training set at the end of the generative
process (i.e., it perfectly memorizes), unless n grows exponentially with the dimension d [4]. However,
this is not the case in many practical applications where memorization is only observed for relatively
small values of n, and disappears well before n becomes exponentially large in d. The empirical
minimization performed in practice, within a given class of models and a given minimization
procedure, does not drive the optimization to the global minimum of (4), but instead to a smoother
estimate of the score that is independent of the training set with good generalization properties [21],
as the global minimum of (3) would do. Understanding how it is possible, and in particular the role
played by the training dynamics to avoid memorization, is the central aim of the present work.

2 Generalization and memorization during training of diffusion models

Data & architecture. We conduct our experiments on the CelebA face dataset [30], which we
convert to grayscale downsampled images of size d = 32× 32, and vary the training set size n from
128 up to 32768. Our score model has a U-Net architecture [41] with three resolution levels and a
base channel width of W with multipliers 1, 2 and 3 respectively. All our networks are DDPMs [17]
trained to predict the injected noise at diffusion time t using SGD with momentum at fixed batch size
min(n, 512). The models are all conditioned on t, i.e. a single model approximates the score at all
times, and make use of a standard sinusoidal position embedding [50] that is added to the features of
each resolution. More details about the numerical setup can be found in SM (Sect. A).

Evaluation metrics. To study the transition from generalization to memorization during training,
we monitor the loss (4) during training using a fixed diffusion time t = 0.01. At various numbers
of SGD updates τ , we compute the loss on all n training examples (training loss) and on a held-out
test set of 2048 images (test loss). To characterize the score obtained after a training time τ , we
assess the originality and quality of samples by generating 10K samples using a DDIM accelerated
sampling [46]. We compute (i) the Fréchet-Inception Distance [FID, 16] against 10K test samples
which we use to identify the generalization time τgen; and (ii) the fraction of memorized generated
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Figure 2: Memorization transition as a function of the training set size n for U-Net score models
on CelebA. (Left) FID (solid lines, left axis) and memorization fraction fmem (dashed lines, right axis)
against training time τ for various n. Inset: normalized memorization fraction fmem(τ)/fmem(τmax)
with the rescaled time τ/n. (Middle) Training (solid lines) and test (dashed lines) loss with τ for
several n at fixed t = 0.01. Inset: both losses plotted against τ/n. Error bars on the losses are
imperceptible. (Right) Generated samples from the model trained with n = 1024 for τ = 100K or
τ = 1.62M steps, along with their nearest neighbors in the training set.

samples fmem(τ) granting access to τmem, the memorization time. Following previous numerical
studies [56, 15], a generated sample xτ is considered memorized if

Exτ

[
∥xτ − aµ1∥2
∥xτ − aµ2∥2

]
< k, (6)

where aµ1 and aµ2 are the nearest and second nearest neighbors of xτ in the training set in the L2

sense. In what follows, we choose to work with k = 1/3 [56, 15], but we checked that varying k to
1/2 or 1/4 does not impact the claims about the scaling. Error bars in the figures correspond to twice
the standard deviation over 5 different test sets for FIDs, and 5 noise realizations for Ltrain and Ltest.
For fmem, we report the 95% CIs on the mean evaluated with 1,000 bootstrap samples.

Role of training set size on the learning dynamics. At fixed model capacity (p = 4× 106, base
width W = 32), we investigate how the training set size n impacts the previous metrics. In the left
panel of Fig. 2, we first report the FID (solid lines) and fmem(τ) (dashed lines) for various n. All
trainings dynamics exhibit two phases. First, the FID quickly decreases to reach a minimum value on
a timescale τgen (≈ 100K) that does not depend on n. In the right panel, the generated samples at
τ = 100K clearly differ from their nearest neighbors in the training set, indicating that the model
generalizes correctly. Beyond this time, the FID remains flat. fmem(τ) is zero until a later time τmem

after which it increases, clearly signaling the entrance into a memorization regime, as illustrated
by the generated samples in the right-most panel of Fig. 2, very close to their nearest neighbors.
Both the transition time τmem and the value of the final fraction fmem(τmax) (with τmax being one to
four million SGD steps) vary with n. The inset plot shows the normalized memorization fraction
fmem(τ)/fmem(τmax) against the rescaled time τ/n, making all curves collapse and increase at
around τ/n ≈ 300, showing that τmem ∝ n, and demonstrating the existence of a generalization
window for τ ∈ [τgen, τmem] that widens linearly with n, as illustrated in the left panel of Fig. 1.

As highlighted in the introduction, memorization in DMs is ultimately driven by the overfitting of
the empirical score smem(x, t). The evolution of Ltrain(τ) and Ltest(τ) at fixed t = 0.01 are shown
in the middle panel of Fig. 2 for n ranging from 512 to 32768. Initially, the two losses remain
nearly indistinguishable, indicating that the learned score sθ(x, t) does not depend on the training
set. Beyond a critical time, Ltrain continues to decrease while Ltest increases, leading to a nonzero
generalization loss whose magnitude depends on n. As n increases, this critical time also increases
and, eventually, the training and test loss gap shrinks: for n = 32768, the test loss remains close
to the training loss, even after 11 million SGD steps. The inset shows the evolution of both losses
with τ/n, demonstrating that the overfitting time scales linearly with the training set size n, just like
τmem identified in the left panel. Moreover, there is a consistent lag between the overfitting time and
τmem at fixed n, reflecting the additional training required for the model to overfit the empirical score
sufficiently to reproduce the training samples, and therefore to impact the memorization fraction.
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Figure 3: Effect of the number of parameters in the U-Net architecture on the timescales
of the training dynamics. (Left) FID (panels A, B) and normalized memorization fraction
fmem(τ)/fmem(τmax) (panels C, D) for various n and W during training. In panels B and D,
time is rescaled such that all curves collapse. (Right) (n, p) phase diagram of generalization vs
memorization for U-Nets trained on CelebA. Curves show, for τ ∈ {τgen, 3τgen, 8τgen}, the minimal
dataset size n(p) satisfying fmem(τ) = 0. The shaded background indicates the memorization–
generalization boundary for τ = τgen.

Memorization is not due to data repetition. We must stress that this delayed memorization with
n is not due to the mere repetition of training samples, as a first intuition could suggest. In SM
Sects. A and B, we show that full-batch updates still yield τmem ∝ n. In other words, even if at fixed
τ all models have processed each sample equally often, larger n consistently postpone memorization.
This confirms that memorization in DMs is driven by a fundamental n-dependent change in the loss
landscape – not by a sample repetition during training.

Effect of the model capacity. To study more precisely the role of the model capacity on the
memorization–generalization transition, we vary the number of parameters p by changing the U-Nets
base width W ∈ {8, 16, 32, 48, 64}, resulting in a total of p ∈ {0.26, 1, 4, 9, 16} × 106 parameters.
In the left panel of Fig. 3, we plot both the FID (top row) and the normalized memorization fraction
(bottom row) as functions of τ for several width W and training set sizes n. Panels A and C
demonstrate that higher-capacity networks (larger W ) achieve high-quality generation and begin to
memorize earlier than smaller ones. Panels B and D show that the two characteristic timescales
simply scale as τgen ∝ W−1 and τmem ∝ nW−1. In particular, this implies that, for W > 8, the
critical training set size ngm(p) at which τmem = τgen is approximately independent of p (at least on
the limited values of p we focused on).When n > ngm(p), the interval [τgen, τmem] opens up, so that
early stopping within this window yields high quality samples without memorization. In the right
panel of Fig. 3, we display this boundary (solid line) in the (n, p) plane by fixing the training time to
τ = τgen, that we identify numerically using the collapse of all FIDs at around Wτgen ≈ 3×106 (see
panel B), and computing the smallest n such that fmem(τ) = 0. The resulting solid curve delineates
two regimes: below the curve, memorization already starts at τgen; above the curve, the models
generalize perfectly under early stopping. We repeat this experiment for τ = 3τgen and τ = 8τgen,
showing saturation to larger and larger p as τ increases. Eventually, for τ → ∞, we expect these
successive boundaries to converge to the architectural regularization threshold n⋆(p), i.e. the point
beyond which the network avoids memorization because it is not expressive enough, as found in
[12] and highlighted in the right panel of Fig. 1. In order to estimate n⋆(p), we measure for a given
τ the largest n(τ) yielding fmem ≈ 0. The curve n(τ) approaches n⋆(p) for large τ . We therefore
estimate n⋆(p) by measuring the asymptotic values of n(τ), which in practice is reached already at
τ = τmax = 2M updates for the values of W we focus on.
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3 Training dynamics of a Random Features Network

Notations. We use bold symbols for vectors and matrices. The L2 norm of a vector x is denoted by
∥x∥ = (

∑
i x

2
i )

1/2. We write f = O(g) to mean that in the limit n, p→ ∞, there exists a constant
C such that |f | ≤ C|g|.

Setting. We study analytically a model introduced in [12], where the data lie in d dimensions. We
parametrize the score with a Random Features Neural Network [RFNN, 38]

sA(x) =
A
√
p
σ

(
Wx√
d

)
. (7)

An RFNN, illustrated in Fig. 4 (left), is a two-layer neural-network whose first layer weights
(W ∈ Rp×d) are drawn from a Gaussian distribution and remain frozen while the second layer weights
(A ∈ Rd×p) are learned during training. This model has already served as theoretical framework for
studying several behaviors of deep neural network such as the double descent phenomenon [31, 10].
σ is an element-wise non-linear activation function. We consider a training set of n iid samples
xν ∼ Px for ν = 1, . . . , n and we focus on the high-dimensional limit d, p, n→ ∞ with the ratios
ψp = p/d, ψn = n/d kept fixed. We study the training dynamics associated to the minimization of
the empirical score matching loss defined in (4) at a fixed diffusion time t. This is a simplification
compared to practical methods, which use a single model for all t. It has been already studied in
previous theoretical works [8, 12]. The loss (4) is rescaled by a factor 1/d in order to ensure a finite
limit at large d. We also study the evolution of the test loss evaluated on test points and the distance
to the exact score s(x) = ∇ logPx,

Ltest =
1

d
Ex,ξ

[
∥
√
∆tsA(xt(ξ)) + ξ∥2

]
, Escore =

1

d
Ex

[
∥sA(x)−∇ logPx∥2

]
, (8)

where the expectations Ex,ξ are computed over x ∼ Px and ξ ∼ N (0, Id). The generalization
loss, defined as Lgen = Ltest − Ltrain, indicates the degree of overfitting in the model while the
distance to the exact score Escore measures the quality of the generation as it is an upper bound on the
Kullback–Leibler divergence between the target and generated distributions [47, 6]. The weights A
are updated via gradient descent

A(k+1) = A(k) − η∇ALtrain(A
(k)), (9)

where η is the learning rate. In the high-dimensional limit, as the learning rate η → 0, and after
rescaling time as τ = kη/d2, the discrete-time dynamics converges to the following continuous-time
gradient flow:

Ȧ(τ) = −d2∇ALtrain(A(τ)) = −2∆t
d

p
AU− 2d

√
∆t√
p

VT , (10)

with

U =
1

n

n∑
ν=1

Eξ

[
σ

(
Wxνt (ξ)√

d

)
σ

(
Wxνt (ξ)√

d

)T]
, V =

1

n

n∑
ν=1

Eξ

[
σ

(
Wxνt (ξ)√

d

)
ξT

]
. (11)

Assumptions. For our analytical results to hold, we make the following mathematical assumptions
which are standard when studying Random Features [36, 14, 19] namely (i) the activation function
σ admits a Hermite polynomial expansion σ(x) =

∑∞
s=0

αs

s! Hes(x); and (ii) the data distribution
Px has sub-Gaussian tails and a covariance Σ = EPx [xx

T ] with bounded spectrum. We assume
that the empirical distribution of eigenvalues of Σ converges weakly in the high dimensional limit
to a deterministic density ρΣ(λ) and that Tr(Σ)/d converges to a finite limit (for a more precise
mathematical statement see SM Sect. C.3). Moreover, we make additional assumptions that are
not essential to the proofs but which simplify the analysis: (iii) the activation function σ verifies
µ0 = Ez[σ(z)] = 0; and (iv) the second layer A is initialized with zero weights A(τ = 0) = 0. In
numerical applications, unless specified, we use σ(z) = tanh(z) and Px = N (0, Id).
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Figure 4: (Left) Illustration of an RFNN. (Middle/Right) Spectrum of U. Density ρ(λ) from
Theorem 3.1 in the overparameterized Regime I described in Theorem 3.2, with ψp = 64, ψn = 8,
t = 0.01, and ρΣ(λ) = δ(λ− 1). The bulk of the spectrum (orange) is between λ ≈ 10 and λ ≈ 45.
The histogram shows the eigenvalues from a single realization of U at d = 100. Inset: zoom near
λ = 0 (in blue) showing the first bulk ρ1 and the delta peak at λ = s2t . (Right) Same as (Middle), but
with ρΣ(λ) = 1

2δ(λ− 0.5) + 1
2δ(λ− 1.5). The first bulk in blue remains unchanged, as it depends

only on σ2
x = Tr(Σ)/d = 1 in both cases, while the second bulk varies with Σ.

(A) (B) (C)

Figure 5: Evolution of the training and test losses for the RFNN. (A) Distance to the true score
Escore against training time τ for ψn = 4, 8, 16, 32,ψp = 64, t = 0.1 and d = 100. In the inset, the
training time is rescaled by τmem = ψp/∆tλmin. (B) Training (solid) and test (dashed) losses for
various ψn. The inset shows both losses rescaled by τmem. (C) Heatmaps of Lgen for τ = 103 (top)
and τ = 104 (bottom) as a function of ψn and ψp. All the curves use Pytorch [34] gradient descent.
More numerical details can be found in SM Sect. D.

Emergence of the two timescales during training. We first show in Fig. 5 that the behavior of
training and test losses in the RF model mirrors the one found in realistic cases in Sect. 2, with a
separation of timescales τgen and τmem which increases with n. Equation (10) is linear in A and
hence it can be solved exactly (see SM). The timescales of the training dynamics are given by the
inverse eigenvalues of the p× p matrix ∆tU/ψp. Building on the Gaussian Equivalence Principle
[GEP, 13, 14, 32] and the theory of linear pencils [5], George et al. (2025) derive a coupled system
of equations characterizing the Stieltjes transform of the eigenvalue density ρ(λ) of U for isotropic
Gaussian data that lie in a D-dimensional subspace with D ≤ d and D = O(d). We offer an
alternative derivation presented in SM for general variance using the replica method [33] – a heuristic
method from the statistical physics of disordered systems – yielding the more compact formulation
for obtaining the spectrum stated in Theorem 3.1. Before stating the theorem, we introduce

bt = Eu,v[vσ(e−tσxu+
√
∆tv)], at = Eu,v[σ(e−tσxu+

√
∆tv)

u

e−tσx
], (12)

v2t = Eu,v,w[σ(e−tσxu+
√

∆tv)σ(e
−tσxu+

√
∆tw)]− a2t e

−2tσ2
x, (13)

s2t = Eu[σ(Γtu)2]− a2t e
−2tσ2

x − v2t − b2t , (14)
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where σ2
x = Tr(Σ)

d , Γt = e−2tσ2
x +∆t = 1 + e−2t(σ2

x − 1) and the expectation is over the u, v, w
random variables which are independent standard Gaussian N (0, 1).

Theorem 3.1. Let q(z) = 1
p Tr(U − zIp)

−1, r(z) = 1
p Tr(Σ

1/2WT (U − zIp)
−1WΣ1/2) and

s(z) = 1
p Tr(W

T (U− zIp)
−1W), with z ∈ C. Let

ŝ(q) = b2tψp +
1

q
, (15)

r̂(r, q) =
ψpa

2
t e

−2t

1 +
a2te

−2tψp

ψn
r +

ψpv2t
ψn

q
. (16)

Then q(z), r(z) and s(z) satisfy the following set of three equations:

s =

∫
dρΣ(λ)

1

ŝ(q) + λr̂(r, q)
, (17)

r =

∫
dρΣ(λ)

λ

ŝ(q) + λr̂(r, q)
, (18)

ψp(s
2
t − z) +

ψpv
2
t

1 +
a2te

−2tψp

ψn
r +

ψpv2t
ψn

q
+

1− ψp
q

− s

q2
= 0, (19)

The eigenvalue distribution of U, ρ(λ), can then be obtained using the Sokhotski–Plemelj inversion
formula ρ(λ) = lim

ε→0+

1
π Im q(λ+ iε).

We now focus on the asymptotic regime ψp, ψn ≫ 1, typical for strongly over-parameterized models
trained on large data sets. In this limit, the spectrum of U can be described analytically by the
following Theorem 3.2.
Theorem 3.2 (Informal). Let ρ denote the spectral density of U.

Regime I (overparametrized): ψp > ψn ≫ 1.

ρ(λ) =
(
1− 1 + ψn

ψp

)
δ(λ− s2t ) +

ψn
ψp

ρ1(λ) +
1

ψp
ρ2(λ).

Regime II (underparametrized): ψn > ψp ≫ 1.

ρ(λ) =
(
1− 1

ψp

)
ρ1(λ) +

1

ψp
ρ2(λ).

where ρ1 is an atomless measure with support[
s2t + v2t

(
1−

√
ψp/ψn

)2

, s2t + v2t

(
1 +

√
ψp/ψn

)2
]
,

and ρ2 coincides with the asymptotic eigenvalue bulk density of the population covariance Ũ =
EX[U]; ρ2 is independent of ψn and its support is on the scale ψp. The eigenvectors associated with
δ(λ − s2t ) leave both training and test losses unchanged and are therefore irrelevant. In the limit
ψp ≫ ψn, the supports of ρ1 and ρ2 are respectively on the scales ψp/ψn and ψp, i.e. they are well
separated.

The proofs of both theorems are shown in SM (Sect. C). We recall that training timescales are directly
related to eigenvalues λ via the relation τ−1 = ψp/∆tλmin. Theorem 3.2 therefore demonstrates
the emergence of the two training timescales τmem and τgen in the overparametrized regime of the
RFNN model. They are respectively associated to the measures ρ1 and ρ2, which are well separated
in regime I, for ψp ≫ ψn ≫ 1, as shown in Fig. 4.
Generalization: The timescale τgen on which the first relaxation takes place is associated to the
formation of the generalization regime. It is related to the bulk ρ2 and is or order 1/∆t. This regime
only depends on the population covariance Σ of the data and is independent of the specific realization
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of the dataset. On this timescale, which is of order one, both the training Ltrain and test Ltest losses
decrease. The generalization loss Lgen = Ltest − Ltrain is zero, and Escore tends to a value that we
find to scale as O(ψ−η

n ) with η ≃ 0.59 numerically (see Fig. 5).
Memorization: The timescale τmem, on which the second stage of the dynamics takes place, is
associated to overfitting and memorization. It is related to the bulk ρ1, and scales as ψp/∆tλmin,
where λmin is the left edge of ρ1. In the overparameterized regime p≫ n, τmem becomes large and of
order ψn/∆t, thus implying a scaling of τmem with n. On this timescale, the training loss decreases
while the test loss increases, converging to their respective asymptotic values as computed in [12].
Fig. 5 indeed shows that all training and test curves separate, correspondingly the generalization loss
Lgen increases, at a time that scales with ψp/∆tλmin, as shown in the inset.
As n increases, the asymptotic (τ → ∞) generalization loss Lgen decreases, indicating a reduced
overfitting. For n > n∗(p) = p, although some overfitting remains (i.e., Lgen > 0), the value of
Lgen is sensibly reduced, and the model is no longer expressive enough to memorize the training
data, as shown in [12]. This regime corresponds to the Architectural Regularization phase in Fig. 1.
We show in Fig. 5 (panel C) how the generalization loss Lgen varies in the (n, p) plane depending
on the time τ at which training is stopped. In agreement with the above results, we find that the
generalization–memorization transition line depends on τ and moves upward for larger values of τ ,
similarly to the numerical results exposed in Fig. 3 and the illustration in Fig. 1.

4 Conclusions

We have shown that the training dynamics of neural network-based score functions display a form
of implicit regularization that prevents memorization even in highly overparameterized diffusion
models. Specifically, we have identified two well-separated timescales in the learning: τgen, at
which models begins to generate high-quality, novel samples, and τmem, beyond which they start to
memorize the training data. The gap between these timescales grows with the size of the training
set, leading to a broad window where early stopped models generate novel samples of high-quality.
We have demonstrated that this phenomenon happens in realistic settings, for controlled synthetic
data, and in analytically tractable models. Although our analysis focuses on DMs, the underlying
score-learning mechanism we uncover is common to all score-based generative models such as
stochastic interpolants [3] or flow matching [28]; we therefore expect our results to generalize to this
broader class.

Limitations and future works.

• While we derived our results under SGD optimization, most DMs are trained in practice with
Adam [24]. In SM Sects. A.3 and D, we show that the two key timescales still arise using
Adam, although with much fewer optimization steps. Studying how different optimizers shift
these timescales would be valuable for practical usage.

• All experiments in Sect. 2 are conducted with unconditional DMs. We additionally verify in
SM Sect. B, using a toy Gaussian mixture dataset and classifier-free guidance [18], that the
same scaling of τmem with n holds in the conditional settings. Understanding precisely how
the absolute timescales τmem and τgen depend on the conditioning remains an open question.

• Our numerical experiments cover a range of p between 1M and 16M. Exploring a wider range
is essential to map the full (n, p) phase diagram sketched in Fig. 1 and understand the precise
effect of expressivity on dynamical regularization.

• Finally, our theoretical analysis rely on well-controlled data and score models that reproduce
the core effects. Extending these analytical frameworks to richer data distributions (such as
Gaussian mixtures or data from the hidden manifold model) and to structured architectures
would be valuable to further characterize the implicit dynamical regularization of training
score-functions. In particular investigating how heavy-tailed data distribution [2] affect the
picture described here could be valuable.

• Although DMs trained on large and diverse datasets likely avoid the memorization regime
we study here, some industrial models were shown to exhibit partial memorization [7, 44].
Our results provide practical guidelines (early-stopping, control the network capacity) to train
DMs robustly and hence avoid memorization, which can be especially helpful in data-scarce
domains (e.g., physical sciences).
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are supported by the thorough
numerical experiments from Sect. 2 and the deep analytical study of random features in
Sect. 3.

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
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the same dataset, or provide access to the model. In general. releasing code and data
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on the nature of the contribution. For example
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how to reproduce that algorithm.
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(c) If the contribution is a new model (e.g., a large language model), then there

should either be a way to access this model for reproducing the results or a way to
reproduce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code used to train the models, solve the equations and make the plots
is publicly available at the following address: https://github.com/tbonnair/Why-Diffusion-
Models-Don-t-Memorize.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the details about the architecture and the parameters we used to perform the
experiments are given in the main text, and more details can be found in the supplemental
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All plots of the numerical parts include shaded areas corresponding to confi-
dence intervals on the mean or standard deviations over multiple runs when relevant. Sect. 2
explains how they are computed.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, con-

fidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables
or figures symmetric error bars that would yield results that are out of range (e.g.
negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All the information about the resources used to run the experiments can be
found in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in this paper is compliant with the NeurIPS code of
ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]

Justification: Due to the theoretical nature of the paper, there is no direct broader impact to
declare.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact
specific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites the openly public dataset CelebA used to carry parts of the
numerical experiments.

Guidelines:
• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.
• Including this information in the supplemental material is fine, but if the main contri-

bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The present research does not involve LLMs as an important component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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