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Abstract

Glaucoma is a irreversible vision loss that disproportionately affects marginalized
communities. Current diagnostic and management strategies often fail to account
for individualized risks, leading to suboptimal patient outcomes and exacerbating
health disparities. Here, we present GUIDE (Glaucoma Understanding and Inte-
grated Data Evaluation), a conceptual framework for explainable multimodal AI
framework that integrates diverse data sources—including clinical measurements,
imaging data, unstructured electronic health records (EHR), and social determi-
nants of health (SDOH)—to create a comprehensive and personalized view of
glaucoma risk and progression. Our approach focuses on developing clinically
interpretable, expert-tunable hierarchical fusion models that address key issues
such as fairness, transparency, and robustness, aligning with responsible AI prin-
ciples. By disentangling the embedding space using clinical supervision at each
stage of modality fusion, we prevent model hallucinations and ensure that the
embeddings can be decoded into physician-understandable clinical concepts. We
also implement contextual transparency by engaging stakeholders and tailoring
transparency measures according to the NIST’s Contextual Transparency Playbook.
Our framework handles data quality issues through pre-training strategies and
hierarchical data fusion, and considers modalities with varying costs to optimize
resource utilization. We demonstrate how GUIDE provides a comprehensive un-
derstanding of glaucoma progression, facilitates more accurate risk stratification,
and enables personalized treatment plans.

1 Introduction

Glaucoma is the leading cause of irreversible vision loss worldwide, affecting over 3 million adults in
the United States alone [5, 2]. The disease disproportionately impacts marginalized communities,
exacerbating existing health disparities. Current diagnostic and management strategies often fail to
account for individualized risks, leading to suboptimal patient outcomes. This misalignment results in
inefficient allocation of healthcare resources, where low-risk individuals may receive more care than
needed, while high-risk patients remain inadequately monitored and managed [12]. Recent research
has highlighted how machine learning tools can offer new avenues for improved glaucoma detection
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and management [21, 8]. While these approaches have made significant strides in analyzing clinical
measurements and imaging data, many current methods still face challenges in integrating diverse
data types. They often lack the incorporation of unstructured electronic health records (EHR) and
social determinants of health (SDOH) characteristics, which are crucial for identifying key predictors
of glaucoma risk and progression and for accounting for health disparities in outcomes [8]. Moreover,
the integration of these varied data sources with traditional clinical and imaging data remains a
significant challenge in developing comprehensive, personalized risk assessment models.

To address these challenges, we present GUIDE (Glaucoma Understanding and Integrated Data
Evaluation), an explainable multimodal AI framework that integrates diverse data sources to create a
comprehensive and personalized view of glaucoma risk and progression. GUIDE combines available
clinical measurements (such as intraocular pressure and visual field tests), high-resolution imaging
data (including optical coherence tomography and fundus photography), unstructured electronic
health records (EHR), and social determinants of health (SDOH) in a unified framework. This
approach allows for a more holistic understanding of patient risk factors and disease trajectories.
GUIDE focuses on developing clinically interpretable, expert-tunable hierarchical fusion models
that address key issues such as fairness, transparency, and robustness, aligning with responsible AI
principles while leveraging the full spectrum of available patient data.

Our approach tackles several key challenges in the field:
1) Interpretability: We decompose the modeling process into distinct, interpretable stages, each
incorporating clinical context through semi-supervised learning. This ensures that the latent spaces
generated at each stage are directly translatable into meaningful clinical concepts, enhancing trans-
parency and alignment with clinical reasoning [13].
2) Multimodal integration: By transforming raw data into clinically meaningful metrics that reflect
underlying disease mechanisms, we construct a comprehensive view of the disease state in a latent
space regularized by clinical expertise. This facilitates more informed clinical decisions and advances
personalized medicine.
3) Temporal dynamics: We address the complexities of longitudinal patient data by treating each
visit’s data as independent set elements, allowing us to uncover temporal connections and dynamic
changes without enforcing a strict sequential order [1, 14].
4) Disentanglement of the representation: By disentangling the embedding space using clinical
semi-supervision at each stage of modality fusion, we restrict the embeddings to be decoded into
physician-understandable clinical concepts, preventing model hallucinations.
5) Contextual transparency: We implement contextual transparency by engaging stakeholders and
tailoring transparency measures according to the NIST’s Contextual Transparency Playbook [? ].
6) Data quality and resource optimization: Our framework handles data quality issues through
pre-training strategies and hierarchical data fusion, and considers modalities with varying costs to
optimize resource utilization.

By addressing these challenges, GUIDE aims to provide a comprehensive understanding of glaucoma
progression, facilitate more accurate risk stratification through the identified patient trajectories, and
enable personalized treatment plans. Ultimately, this research seeks to improve patient outcomes, ad-
dress disparities in eye health, and advance eye and vision health equity. By focusing on marginalized
communities, this work contributes to reducing health disparities in eye care and informs community
guidelines for the responsible design of next-generation foundational models in healthcare. Further-
more, GUIDE serves as a case study for broader applications of trustworthy multimodal data fusion
in healthcare. The principles and methodologies developed in this work can potentially be adapted to
other medical domains, demonstrating how responsible AI can be implemented to integrate diverse
data sources while maintaining interpretability, fairness, and robustness.

1.1 Related Work

Recent advancements in AI for glaucoma management have shifted from single-modality models
[21, 8] to multimodal approaches [20, 19], which better capture the disease’s complexity. However,
these often neglect non-clinical data like social determinants of health (SDOH). Our work extends
these approaches by integrating SDOH with clinical and imaging data for a more comprehensive
risk assessment. Interpretability in medical AI remains crucial for clinical adoption. Recent efforts
focus on developing interpretable models [16], with specific applications in glaucoma [22]. We build
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on these techniques, extending them to a multimodal context and incorporating clinical expertise
throughout the modeling process.

Responsible AI in healthcare addresses fairness, accountability, and transparency. Studies have
highlighted gender and racial biases in medical AI [9, 3]. Our work applies these principles to
glaucoma care, explicitly considering SDOH and implementing fairness constraints. Temporal
modeling is essential for accurate risk prediction and personalized treatment. Recent works have
explored various approaches for healthcare data [10], including glaucoma progression [4]. We adapt
these techniques to our multimodal context, addressing challenges of irregular sampling and feature
heterogeneity. Contextual transparency in AI systems, particularly in healthcare, has gained attention.
Sloane et al. [15] argue for transparency measures tailored to specific stakeholders, while Mitchell et
al. [11] proposed model cards for comprehensive AI reporting. We incorporate these principles to
develop meaningful transparency mechanisms for both clinicians and patients. In summary, while AI
applications in glaucoma care have progressed significantly, there remains a need for responsible,
interpretable, and contextually transparent multimodal models that can integrate diverse data sources.

2 Conceptual Framework
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Figure 1: The proposed multi-level
hierarchical modality fusion. Clin-
ical contexts 1 and 2 are regu-
larizing the latent space in semi-
supervised fashion. Solid squares
illustrate the representation learn-
ing blocks.

Our approach, employs a hierarchical representation learning
framework that integrates multimodal data to produce clinically
interpretable representations for improved understanding and
management of established glaucoma patients. The methodol-
ogy consists of two main components: (1) Hierarchical Repre-
sentation Learning and (2) Patient Trajectory Analysis.
Hierarchical Representation Learning: The hierarchical rep-
resentation learning approach synthesizes diverse data sources
into coherent representations, offering new insights into treat-
ment responsiveness in a semi-supervised, clinically-driven
manner. This approach is well-suited to address the challenges
posed by the relatively low prevalence of glaucoma and the dif-
ficulty in distinguishing early glaucoma from normal variation.
As illustrated in Figure 1, the model employs joint modalities in
a hurdle-like fashion, prioritizing low-cost, common screening
tests at lower levels and progressing to more comprehensive
data integration at higher levels to identify higher risks.
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Figure 2: Feature embedding
update process at visit k. Each
new feature at level l con-
tributes to the update in the
embedding using an attention
mechanism.

At each point in time, our model learns feature embeddings at mul-
tiple levels of granularity. Let ejk represent the embedding of the
j-th feature at time step k at level l. The updated embedding at level
l is given by:

z
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k +∆z

(l−1)
k (1)

where ∆z
(l−1)
k is the change in the embedding from level l − 1

to l, computed using an attention mechanism on the new features
introduced at level l:
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The attention weights α(l−1)
jk are computed as:

α
(l−1)
jk =

exp(⟨u(l−1), e
(l)
jk ⟩)∑nk

i=1 exp(⟨u(l−1), e
(l)
ik ⟩)

(3)

2.1 Semi-Supervised Regularization and Disentanglement

To enhance interpretability, we employ a semi-supervised approach to disentangle the latent space
using available clinical supervision signals. At each stage l, we inject clinical knowledge to refine the
latent process z(l) with respect to defined clinical concepts y = y1:T ∈ RP×T . The regularization
loss is formalized as [17]:
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regularization loss = −
T∏

t=1

G∏
g=1

∏
j∈ν(g)

P (yjt |hj
γ(z

(l),ϵ(g)
t , ct)) (4)

where hj
γ(z

(l),ϵ(g)
t , ct) is the resultant hierarchical deep parameterized probability vector, and ν(g)

and ϵ(g) correspond to the indices of the g-th guided medical concept, and the indices in the latent
space defined for guided concept g at stage l, respectively.

2.2 Patient Trajectory Analysis

Building upon our hierarchical representation learning approach, we now focus on analyzing patient
trajectories to enable dynamic risk scoring and patient subtyping. This analysis is crucial for enhanc-
ing personalized glaucoma management through the comprehensive examination of multimodal data
trajectories. We represent the sequence of visit data up to time T for patient j as an unordered set
Sj = si := (τ1, z1), · · · , (τT , zT ), where τ is a positional time embedding normalized to a chosen
dimension c, i.e., τ ∈ Rc [18], and zi is the feature embedding at embedded time τi obtained from
our hierarchical representation learning process. Inspired by Horn et al. [6], we employ a set function
approach to aggregate all elements (visit data) within each patient. This method is particularly
well-suited for the irregularly-sampled and non-synchronized time series data common in glaucoma
care. By treating each visit as an element in a set, we can naturally handle varying numbers of
observations and unaligned measurements across different modalities. The patient’s trajectory is
embedded using a summary statistic of the set Sj , defined as:

Ψi =
1

|Si|
∑

j ≤ iaj(sj ,S)h(sj) (5)

where aj are attention weights, and h(sj) is a feature function applied to each set element sj . These
summary statistics are then aggregated using a parameterized function gθ, implemented as a neural
network that operates over sets: gθ(Ψi). Following Horn et al. [6], we express our set function f as:

f(S) = g

 1

|S|
∑
sj∈S

h(sj)

 (6)

where h : Ω → Rd and g : Rd → RC are neural networks, d ∈ N+ determines the dimensionality of
the latent representation, and C is the number of classes. This formulation allows for learning dataset-
specific summary statistics optimized for classification performance. To handle irregularly sampled
time series data and quantify risks at intermediate time points, we incorporate a self-supervised
learning approach through masking, as proposed by Trottet et al. [17]. This technique captures both
local and global structures of glaucoma progression, particularly where trend changes are observed at
a few visits. Our set function approach offers several advantages for glaucoma progression modeling:

Flexibility: It handles varying numbers of observations per patient without requiring imputation or
fixed-length inputs. Permutation invariance: The order of observations doesn’t affect the output,
suitable for non-synchronized measurements. Scalability: The computational cost scales linearly
with the number of observations, making it efficient for large datasets [6]. Interpretability: Using
attention mechanisms allows us to quantify the importance of individual observations to the final
prediction. By combining this set function approach with our hierarchical representation learning
and semi-supervised disentanglement, we create a powerful and flexible framework for modeling
glaucoma progression that can handle the complexities and irregularities of real-world clinical data.

2.3 Contextual Transparency

To ensure fairness and transparency in glaucoma risk assessment and subtyping, we align our approach
with the Blueprint for an AI Bill of Rights [7] and the concept of contextual transparency [15].
Recognizing perfect transparency as unattainable, we adopt a tailored approach specific to glaucoma
care, involving: i) Stakeholder Specificity: Identifying key stakeholders and their transparency needs.
ii) ADS Specificity: Documenting our model’s technical details, including its hierarchical structure
and data processing methods. iii) Transparency and Outcome Specificity: Designing measures that
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directly address glaucoma risk assessment and patient subtyping goals. We prioritize transparency by
documenting the algorithm’s design and decision-making processes, ensuring accessibility to both
healthcare providers and patients. This includes explaining data integration, handling of irregularly
sampled data, and the derivation of risk assessments and patient subtypes. Our dynamic, customized
approach surpasses a one-size-fits-all framework by: i) Developing interpretable visualizations
of patient trajectories and risk factors; ii) Providing context-specific explanations tailored to user
expertise; iii) Offering quantifiable measures of model certainty and factor importance. This approach
fosters trust and understanding of the AI’s role, crucial for addressing the diverse presentations and
ensuring equitable, unbiased diagnostics in glaucoma care.

3 Experiments

To evaluate the effectiveness of the proposed GUIDE framework, we are conducting extensive
experiments using a multicenter comprehensive electronic health record (EHR) dataset encompassing
over 10,000 patients diagnosed with glaucoma. Our dataset comprises a rich array of multimodal
data sources. Clinical measurements include intraocular pressure (IOP) readings, visual acuity
scores, and visual field (VF) test results. The imaging data consists of optical coherence tomography
(OCT) scans and fundus photographs, providing detailed structural information about the retina and
optic nerve. We also incorporated unstructured clinical notes containing physician observations and
patient-reported symptoms, which offer valuable contextual information and sometimes supervision
signal for the semi-supervised disentanglement (Section 2.1). To address health disparities, we
extracted social determinants of health (SDOH) data from patient records and linked community-
level data sources. Additionally, we included patient health system interactions, such as records
of appointments, missed visits, and prescription adherence, to capture patient engagement patterns.
Evaluation Metrics We employ a comprehensive set of evaluation metrics to assess various aspects
of our model’s performance. Predictive accuracy was primarily measured using the area under the
Receiver Operating Characteristic curve (AUC) for risk prediction tasks. To evaluate interpretability,
we conducted attention weight analysis and gathered feedback from clinicians on the model’s outputs.
Fairness is assessed using demographic parity and equalized odds metrics across different patient
subgroups, ensuring that the model performed equitably across diverse populations. We also test the
model’s robustness against missing data scenarios and adversarial perturbations to simulate real-world
challenges.

3.1 Illustrative Example: Representing Unstructured Visual Acuity Text Data as LogMAR

Figure 3: Example of Level
1 integration in Figure
1: parsing clinical notes
into machine-readable em-
beddings, classifying, and
normalizing the output to
endpoint scores.

To clarify our concept of meaningful embeddings in the context of
glaucoma management, we present an illustrative example using
visual acuity data. This example demonstrates how our approach
can transform unstructured clinical text into standardized, clinically
interpretable values. Visual acuity is a critical measure in glaucoma
assessment, but it often appears in clinical notes as unstandardized,
textual descriptions. Our goal was to convert these unstructured de-
scriptions into standardized LogMAR (Logarithm of the Minimum
Angle of Resolution) scores, which are widely used in ophthal-
mology for quantifying visual acuity. We developed a pipeline to
achieve this transformation, consisting of three main steps (illus-
trated in Figure 3): First, unstructured clinical text is converted into
a machine-readable format through tokenization and transforms into
an embedded representations that can be processed by downstream
machine learning algorithms. Second, a Random Forest classifier is
trained to differentiate between various descriptions of visual acuity
and assign corresponding standardized labels. This step is analogous
to the first level of our hierarchical model (as shown in Figure 1).
Finally, the output from the classifier is normalized to produce either
discrete categorical labels or continuous LogMAR values.

This approach demonstrates several key aspects of our broader
GUIDE framework: First, by converting textual data into standard-
ized numerical scores, we enable the integration of visual acuity information with other clinical
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measures. Second, the resulting LogMAR scores are directly interpretable by clinicians, maintaining
the clinical relevance of the original data while standardizing it for computational analysis. In tests
with a subset of visual acuity descriptions, our method achieved high classification accuracy, with
99% of the variability captured by the first 338 most unique frequent terms.

4 Conclusions

The GUIDE framework represents a conceptual advancement in applying multimodal AI to healthcare,
particularly for managing chronic conditions like glaucoma. It addresses key challenges in respon-
sibly building and deploying AI systems, aiming for high predictive accuracy while maintaining
interpretability, fairness, and robustness – crucial for AI adoption in healthcare.

A key innovation of GUIDE is its approach to creating meaningful embeddings from complex data at
each stage of modality fusion. This capability is crucial for handling heterogeneous and irregularly
sampled data in glaucoma care and potentially other medical domains. Our framework recognizes
that irregularity in both measurement modalities and visit timing carries valuable information about
the patient’s condition and risk state.

In chronic condition management, the patient’s risk state evolves, sometimes becoming more uncertain
at different disease stages. GUIDE is designed to capture this dynamic nature, recognizing when
additional fine-tuned modalities, such as expensive imaging or invasive checks, may be necessary. By
learning from existing patterns of irregularity, GUIDE can suggest optimal modalities for each visit
and inform better timing for future follow ups.

This adaptive approach to data collection and visit scheduling represents a significant advancement
in personalized care, allowing for more efficient resource use while ensuring critical changes in a
patient’s condition are not missed. The principles underlying GUIDE are applicable to a wide range
of chronic conditions where long-term patient trajectories and diverse data sources are crucial.

Our emphasis on contextual transparency addresses critical ethical considerations in AI-assisted
healthcare, aiming to foster trust among clinicians and patients by tailoring transparency measures to
specific stakeholders and contexts.

This is an ongoing research with the following directions:

• Implementation and testing in glaucoma care settings, optimizing modality selection and
visit timing.

• Extending the model to other chronic conditions with similar data requirements.

• Developing dynamic interfaces for guiding clinicians in test selection and follow-up schedul-
ing.

• Investigating the impact of the model’s suggestions on long-term outcomes and resource
utilization.

• Exploring effective communication of the model’s rationale to enhance shared decision-
making.

While still a conceptual framework, GUIDE represents a significant step towards responsible AI in
healthcare.
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