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ABSTRACT

This paper studies the multiobjective stochastic linear bandit (MOSLB) model un-
der lexicographic ordering, where the agent aims to simultaneously maximize m
objectives in a hierarchical manner. This model has various real-world scenar-
ios, including water resource planning and radiation treatment for cancer patients.
However, there is no effort on the general MOSLB model except a special case
called multiobjective multi-armed bandits. Previous literature provided a subopti-
mal algorithm for this special case, which enjoys a regret bound of Õ(T 2/3) under
a priority-based regret measure. In this paper, we propose an algorithm achieving
the almost optimal regret bound Õ(d

√
T ) for the MOSLB model, and its metric

is the general regret. Here, d is the dimension of arm vector and T is the time
horizon. The major novelties of our algorithm include a new arm filter and a mul-
tiple trade-off approach for exploration and exploitation. Experiments confirm the
merits of our algorithms and provide compelling evidence to support our analysis.

1 INTRODUCTION

Sequential decision-making under uncertainty arises in numerous real-world scenarios, such as
medical trials (Robbins, 1952), recommendation systems (Bubeck & Cesa-Bianchi, 2012), and au-
tonomous driving (Huang et al., 2019). This has motivated the development of the stochastic multi-
armed bandit (MAB) model, where the agent repeatedly selects an arm from K arms and receives
a single-valued reward sampled from a fixed but unknown distribution specific to the selected arm
(Agrawal, 1995; Li et al., 2010a; Xue et al., 2020; Ghosh & Sankararaman, 2022). The agent aims to
minimize the regret, which is the cumulative difference between the expected reward of the selected
arm and that of the best arm. Furthermore, the aforementioned scenarios can be better modeled if
multiple objectives are considered. An example is an online advertising system where the agent not
only needs to maximize the click-through rate but also the click-conversion rate (Rodriguez et al.,
2012). Therefore, a natural extension of MAB is replacing the single-valued reward with a vector,
known as multiobjective multi-armed bandits (MOMAB) (Drugan & Nowe, 2013).

A general framework of MOMAB is a T -round sequential decision-making system (Drugan &
Nowe, 2013), where the agent chooses an arm at from the given arm set {1, 2, . . . ,K} at the t-
th round and receives a reward vector [y1(at), y

2(at), . . . , y
m(at)] ∈ Rm whose i-th element is

a random variable with expectation E[yi(at)] = µi(at), i ∈ {1, 2, . . . ,m}. Most of the existing
work evaluates the performance of the agent by Pareto regret (Van Moffaert et al., 2014; Turgay
et al., 2018; Lu et al., 2019), which regards all objectives as equivalent and minimizing the regret
of any objective can guarantee a sublinear Pareto regret bound (Xu & Klabjan, 2023, Theorem 4.1).
Therefore, if the evaluation criterion is Pareto regret, the agent can select any of the m objectives to
optimize and ignore other objectives, which is unreasonable.

To deal with this inherent drawback, the lexicographic order is adopted to distinguish the importance
among different objectives (Ehrgott, 2005). In this setting, the priority over m objectives is given
by indices, such that the i-th objective has a higher priority than the j-th objective if i < j. For the
bandit model, given two arms a and a′ with expected rewards µ(a) = [µ1(a), µ2(a), . . . , µm(a)]
and µ(a′) = [µ1(a′), µ2(a′), . . . , µm(a′)], arm a is said to lexicographically dominate arm a′,
denoted by a �lex a′, if and only if µ1(a) > µ1(a′) or there exists some i∗ ∈ {2, . . . ,m}, such that
µi(a) = µi(a′) for 1 ≤ i ≤ i∗ − 1 and µi

∗
(a) > µi

∗
(a′). An arm a∗ is said to be lexicographic

optimal if and only if any other arm does not lexicographically dominate it.
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Hüyük & Tekin (2021) was the first to explore the MOMAB model under lexicographic ordering
and proposed a priority-based regret,

R̂i(T ) =

T∑
t=1

(
µi(a∗)− µi(at)

)
I
(
µj(a∗) = µj(at), 1 ≤ j ≤ i− 1

)
(1)

where a∗ denotes the lexicographic optimal arm and I(·) is the indicator function. Utilizing this re-
gret, Hüyük & Tekin (2021) developed an algorithm with a regret bound Õ((KT )2/3), which is sub-
optimal since the optimal regret bound for existing single objective MAB algorithms is O(K log T )
(Lai & Robbins, 1985). On the other hand, the MOMAB model neglects the contextual informa-
tion in real-world applications, such as user preferences and news features in news recommendation
systems, which could be employed to guide the decision-making process (Li et al., 2010b).

To incorporate contextual information into the decision-making process, a natural approach is to
utilize the stochastic linear bandit (SLB) model. The SLB model has been widely researched in
the single objective bandit field (Auer, 2002; Dani et al., 2008; Chu et al., 2011; Abbasi-yadkori
et al., 2011; Alieva et al., 2021; Zhu & Mineiro, 2022; He et al., 2022; Yang et al., 2022), and
here we extend it to multiobjective setting by formalizing the multiobjective stochastic linear bandit
(MOSLB) model. In MOSLB, the agent selects an arm xt from the given arm set Dt ⊂ Rd at the
t-th round and then receives a stochastic reward vector [y1t , y

2
t , . . . , y

m
t ] ∈ Rm satisfying

E[yit|xt,Ft−1] = 〈θi∗,xt〉, i = 1, 2, . . . ,m (2)

where yit represents the reward of the i-th objective, θi∗ denotes the unknown parameters for the
i-th objective, and Ft−1 = {x1,x2, . . . ,xt−1} ∪ {y11 , y12 , . . . , y1t−1} ∪ . . . ∪ {ym1 , ym2 , . . . , ymt−1}
constitutes a σ-filtration of events up to t. Meanwhile, a common assumption on the bandit problem
is that the stochastic rewards are sub-Gaussian with a fixed parameter R ≥ 0, that is, for any β ∈ R,

E[eβy
i
t |xt,Ft−1] ≤ exp

(
β2R2

2

)
, i = 1, 2, . . . ,m. (3)

To evaluate the performance of the agent, we adopt the general regret for single objective SLB (Auer,
2002), such that

Ri(T ) =

T∑
t=1

〈θi∗,x∗t − xt〉, i = 1, 2, . . . ,m (4)

where x∗t indicates the lexicographic optimal arm in Dt. Clearly, Ri(T ) is more stringent than
R̂i(T ) because R̂i(T ) disregards the regret of t-th round when the indicator function is false,
whereas Ri(T ) accumulates all instantaneous regret.

Existing optimal algorithms for single objective SLB exhibit the regret bound Õ(d
√
T ) (Dani et al.,

2008; Abbasi-yadkori et al., 2011). Therefore, a compelling and non-trivial challenge is to achieve
the regret bound Õ(d

√
T ) for the MOSLB under lexicographic ordering. In line with the standard

SLB model (Dani et al., 2008), the sequence of decision sets {D1,D2, . . . ,DT } are compact and
determined before the game starts. Thus, we claim that there exists some λ ≥ 0, the expected
rewards of different objectives satisfy

〈θi∗,x− x∗t 〉 ≤ λ · max
j∈[i−1]1

〈θj∗,x∗t − x〉, i = 2, 3, . . . ,m (5)

for any x ∈ Dt, t ∈ [T ]. Appendix A shows our claim is true. We want to emphasize two important
properties of the proposed parameter λ. Firstly, measuring the relative rate at which different ob-
jective values change with respect to the decision is sufficient to provide an upper bound for λ. To
illustrate this point, we provide a simple example involving two objectives and a fixed arm setD. For
any x,x′ ∈ D, if |〈θ1∗,x−x′〉| ≥ L1 can guarantee |〈θ2∗,x−x′〉| ≤ L2, then we have λ ≤ L2/L1.
L2/L1 is feasible as different objectives are related to each other in various applications, such as
water resource planning (Weber et al., 2002) and radiation treatment for cancer patients (Jee et al.,
2007). Secondly, λ captures the complexity of identifying the optimal arm x∗t within Dt. Specif-
ically, if λ is exceptionally large, there exists x ∈ Dt that yields substantially larger rewards than
the optimal arm x∗t for the i-th objective, while maintaining similar rewards for the preceding i− 1
objectives, making the identification of the optimal arm challenging.

1For a positive integer i, [i] denotes the set {1, 2, . . . , i}.
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To the best of our knowledge, this paper is the first attempt to investigate the MOSLB model under
lexicographic ordering. With the prior knowledge λ, we develop an algorithm that attains a general
regret bound of Õ((λi−1 + 1)d

√
T ) for the i-th objective, i ∈ [m]. This bound is almost optimal

in terms of d and T , as the lower bound for the single objective SLB problem is Ω(d
√
T ) (Dani

et al., 2008). Our algorithm improves upon the previous bound Õ((KT )2/3) in the most recent
study of Hüyük & Tekin (2021), which focused on the MOMAB model. Furthermore, we extend
the metric of the lexicographically ordered multiobjective bandit problem from the priority-based
regret (1) to the general regret (4), which more accurately evaluates the performance of algorithms.
The main innovations of our algorithm include a new arm filter and a multiple trade-off approach for
exploration and exploitation, which can be easily adapted to other bandit models, such as generalized
linear bandits (Jun et al., 2017) and Lipschitz bandits (Bubeck et al., 2011).

2 RELATED WORK

In this section, we provide a literature review on stochastic bandits and multiobjective bandits.
Throughout the paper, ‖x‖ is the `2-norm of vector x ∈ Rd. Additionally, the induced norm of
x by a positive definite matrix V ∈ Rd×d is denoted as ‖x‖V =

√
x>V x.

2.1 STOCHASTIC BANDITS

The seminal work of Lai & Robbins (1985) not only introduced a stochastic MAB algorithm with
a regret bound of O(K log T ) but also established a matching lower bound. Auer (2002) extended
the bandit algorithm to the linear model with finite arms and developed the SupLinRel algorithm,
which employs a sophisticated device to decouple reward dependence, yielding a regret bound of
Õ(
√
dT ). In the context of infinite-armed stochastic linear bandits, Dani et al. (2008) first applied

the confidence region technique to deduce the upper confidence bound for the expected rewards of
infinite arms, resulting in a regret bound of Õ(d

√
T ) that matches the given lower bound Ω(d

√
T ).

A subsequent study by Abbasi-yadkori et al. (2011) offered a new analysis for the algorithm of Dani
et al. (2008) and enhanced the regret bound by a logarithmic factor.

The Upper Confidence Bound (UCB) framework is a widely-used technique for balancing explo-
ration and exploitation in the decision-making process, which first computes the confidence bound
of forthcoming rewards through historical trials and then selects the arm with the highest upper
confidence bound (Auer et al., 2002; Abbasi-yadkori et al., 2011; Bubeck et al., 2015; Hu et al.,
2021; Li et al., 2022; Masoudian et al., 2022; Feng et al., 2022; Jin et al., 2022). To illustrate the
UCB technique utilized in the SLB model, we take the classical algorithm OFUL as an example
(Abbasi-yadkori et al., 2011). With trials up to the t-th round, OFUL minimizes the square loss of
the action-reward pairs {(x1, y1), (x2, y2), . . . , (xt−1, yt−1)} to estimate the inherent parameters
θ∗, such that,

θ̂t = arg min
θ∈Rd

‖Xtθ − Yt‖2 + ‖θ‖2 (6)

where Xt = [x1,x2, . . . ,xt−1] ∈ R(t−1)×d is the matrix composed of selected arm vectors, and
Yt = [y1, y2, . . . , yt−1] ∈ R(t−1)×1 is the vector composed of historical rewards. Using the esti-
mator θ̂t, OFUL constructs a confidence region Ct where the inherent parameter lies in with high
probability, such that

Ct = {θ | ‖θ − θ̂t‖Vt ≤ αt} (7)
where αt = O(

√
d log(t)) and Vt = X>t Xt + Id. Finally, OFUL selects the most promising arm

xt through bilinear optimization,

(xt, θ̃t) = arg max
x∈Dt,θ∈Ct

〈x,θ〉. (8)

Considering that the confidence region Ct is an ellipse, a simple application of the Lagrange method
shows that the upper confidence bound for the arm x ∈ Dt is

ut(x) = 〈θ̂t,x〉+ αt‖x‖V −1
t
, (9)

where 〈θ̂t,x〉 is an unbiased estimation of 〈θ∗,x〉, and αt‖x‖V −1
t

is the width of the confidence

interval, indicating the uncertainty of 〈θ̂t,x〉 (Zhang et al., 2016; Boyd & Vandenberghe, 2004).
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2.2 MULTIOBJECTIVE BANDITS

The MOMAB problem was initially investigated by Drugan & Nowe (2013), who proposed two
UCB-based algorithms that achieve regret bounds of O(K log T ) under the Pareto regret metric
and scalarized regret metric, respectively. The Pareto regret measures the cumulative distance be-
tween the obtained reward vectors and the Pareto optimal rewards, while the scalarized regret is the
weighted regret of all objectives (Drugan & Nowe, 2013). To leverage environmental side informa-
tion, Turgay et al. (2018) examined the multiobjective contextual bandit model, where the expected
reward satisfies the Lipschitz condition with respect to contextual vectors. Lu et al. (2019) devel-
oped an algorithm with a Pareto regret bound of Õ(d

√
T ) for the multiobjective generalized linear

bandit model. Another research direction focuses on designing algorithms from the perspective of
best arm identification, with the primary goal of identifying Pareto optimal arms within a limited
budget (Van Moffaert et al., 2014; Auer et al., 2016). Hüyük & Tekin (2021) is the only study for the
multiobjective bandit problem under lexicographic ordering. They presented the PF-LEX algorithm
for the MOMAB model, whose regret bound is Õ((KT )2/3) based on the priority-based regret met-
ric (1). However, this result is inferior to existing single objective MAB algorithms, which attain a
regret bound of O(K log T ) (Lai & Robbins, 1985).

The intuitive idea to settle the lexicographically ordered issue for the multiobjective bandit model is
to sequentially filter the arms according to the priority among objectives (Ehrgott, 2005; Hüyük &
Tekin, 2021). To further illustrate this idea, we introduce the PF-LEX algorithm (Hüyük & Tekin,
2021). At each round t, PF-LEX first calculates confidence intervals for expected rewards through
the historical trials. Specifically, the estimated reward of arm a ∈ [K] in the i-th objective is given
by µ̂it(a) =

∑t−1
τ=1 y

i(aτ )I(aτ = a)/Nt(a), where aτ represents the arm played at round τ and
Nt(a) denotes the number of times arm a has been played up to round t. Thus, the i-th confidence
intervals for arm a ∈ [K] is [

µ̂it(a)− wt(a), µ̂it(a) + wt(a)
]

(10)

where wt(a) = βt
√

(1 +Nt(a)) /N2
t (a) and βt = O(

√
log(Kmt)). Subsequently, PF-LEX either

chooses the arm with a wide confidence interval to explore potentially better arms or selects the arm
that is almost optimal in all objectives. Precisely, if some arm at ∈ [K] satisfies wt(at) > ε for a
given criteria ε > 0, PF-LEX chooses arm at. On the other hand, if wt(a) < ε for all arms a ∈ [K],
PF-LEX filters the promising arms through the chain relation. Starting from A0

t = [K], PF-LEX
operates as follows,

âit = arg max
a∈Ai−1

t

uit(a),Ait = {a ∈ Ai−1t |aCiâit}, i ∈ [m]. (11)

Here, uit(a) = µ̂it(a) +wt(a) and aCiâit denotes that arm a and âit are chained in the i-th objective,
such that there exists a sequence of arms {a, b1, b2, . . . , bn, âit} ⊆ [K], the i-th confidence intervals
of adjacent arms are intersected. Finally, PF-LEX selects arm âmt .

3 ALGORITHMS

In this section, we first extend the MOMAB algorithm proposed in Hüyük & Tekin (2021) to the
MOSLB model as a warm-up and then provide an improved algorithm that achieves the almost
optimal regret. Without loss of generality, we assume the arm vectors and inherent parameters are
restricted in the unit sphere, such that ‖x‖ ≤ 1 for any x ∈ Dt, t ∈ [T ] and ‖θi∗‖ ≤ 1, i ∈ [m].

3.1 WARM-UP: STE2LO

As a warm-up, we introduce the Single Trade-off between Exploration and Exploitation under Lexi-
cographic Ordering (STE2LO) algorithm, which is a simple extension of PF-LEX (Hüyük & Tekin,
2021). Given an input parameter ε > 0, STE2LO divides the decision-making operation at each
round into two cases: pure exploration case and exploration-exploitation trade-off case.

We give a formal definition of the chain relation to facilitate our presentation. Given any arms
z1, zn ∈ Dt, we say that z1 and zn are chained in the i-th objective, denoted by z1Cizn, if and
only if there exists a sequence of arms {z1, z2, . . . ,zn} ⊂ Dt satisfying the condition that the
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Algorithm 1 Single Trade-off between Exploration and Exploitation under Lexicographic Ordering
(STE2LO)
Input: time horizon T ∈ N, confidence parameter δ ∈ (0, 1), exploration criterion ε > 0

1: Initialize V1 = Id and θ̂i1 = 0, i ∈ [m].
2: for t = 1, 2, . . . , T do
3: Compute the estimated rewards and width of confidence intervals for any arm x ∈ Dt:
ŷit(x) = 〈θ̂it,x〉,∀i ∈ [m], wt(x) = γt‖x‖V −1

t
where γt = R

√
d ln(m(1 + t)/δ) + 1

4: if wt(xt) > ε for some xt ∈ Dt then
5: Play the arm xt and observe [y1t , y

2
t , . . . , y

m
t ]

6: else wt(x) ≤ ε ∀x ∈ Dt
7: Initialize D0

t = Dt
8: for i = 1, 2, . . . ,m do
9: x̂it = arg maxx∈Di−1

t
ŷit(x) + wt(x), Dit = {x ∈ Di−1t |xCix̂it}

10: end for
11: Play the arm xt = x̂mt and observe [y1t , y

2
t , . . . , y

m
t ]

12: end if
13: Update Vt+1 = Vt + xtx

>
t , Xt+1 = [xτ ]τ∈[t] and Y it+1 = [yiτ ]τ∈[t], i ∈ [m]

14: Update the estimators θ̂it+1 = V −1t+1Xt+1Y
i
t+1, i ∈ [m]

15: end for

confidence intervals of adjacent arms in the i-th objective are intersected, i.e., [`it(zj), u
i
t(zj)] ∩

[`it(zj+1), uit(zj+1)] 6= ∅,∀j ∈ [n−1]. Here, `it(·) and uit(·) denote the lower and upper confidence
bounds for the i-th objective at epoch t, respectively.

At epoch t, considering that the agent receives m values per epoch, SCE2LO performs least square
estimation on each value sequence to estimate the unknown parameters {θ1∗,θ2∗, . . . ,θm∗ }, such that,

θ̂it = arg min
θ∈Rd

‖Xtθ − Y it ‖2 + ‖θ‖2, i ∈ [m] (12)

where Xt = [xτ ]τ∈[t−1] ∈ R(t−1)×d is the matrix of selected arms, and Y it = [yiτ ]τ∈[t−1] ∈
R(t−1)×1 is the i-th historical rewards vector. Using a variant of the self-normalized bound for
martingales (Abbasi-yadkori et al., 2011), the estimated rewards and the confidence interval width
for any arm x ∈ Dt can be calculated as

ŷit(x) = 〈θ̂it,x〉, wt(x) = γt‖x‖V −1
t
, i ∈ [m] (13)

where γt = R
√
d ln(m(1 + t)/δ) + 1 and Vt = Id + XtX

>
t . Thus, for the arm x ∈ Dt, the

confidence interval for the expected reward 〈θi∗,x〉 is

[`it(x), uit(x)] = [ŷit(x)− wt(x), ŷit(x) + wt(x)]. (14)

The wider confidence interval implies higher uncertainty in the estimate of expected reward, requir-
ing the arm to be pulled to obtain more information. Therefore, if there exists some xt ∈ Dt that has
a confidence interval wider than the input parameter ε, i.e., wt(xt) > ε, SCE2LO plays the arm xt as
pure exploration. In contrast, if all arms have narrow confidence intervals, i.e., wt(x) ≤ ε, ∀x ∈ Dt,
SCE2LO tends to play the arm with the highest upper confidence bound in all objectives to balance
exploration and exploitation. However, the arm with the highest upper confidence bound may vary
for different objectives, preventing simultaneous maximization of all objectives. Considering the
importance of different objectives, SCE2LO filters the arms from the first objective to the last ob-
jective sequentially. More precisely, starts from D0

t = Dt, SCE2LO filters the arm set through the
filtering mechanism below,

x̂it = arg max
x∈Di−1

t

ŷit(x) + wt(x),Dit = {x ∈ Di−1t |xCix̂it}, i ∈ [m] (15)

where x̂it is the arm with the highest upper confidence bound in the i-th objective, and xCix̂it selects
the arms chained with the arm x̂it. After filtering on the last objective, SCE2LO plays the arm x̂mt

5



Under review as a conference paper at ICLR 2024

Algorithm 2 Lexicographically Ordered Arm Filter (LOAF)
Input: arm set Dt, scalarized paramter λ, maximum confidence intervals width W , upper confi-

dence bound uit(x) for all x ∈ Dt and i ∈ [m].
1: Initialize the arm set D0

t = Dt
2: for i = 1, 2, . . . ,m do
3: x̂it = arg maxx∈Di−1

t
uit(x)

4: Dit = {x ∈ Di−1t |uit(x) ≥ uit(x̂i)− (2 + 4λ+ . . .+ 4λi−1)W}
5: end for
6: Return the filtered arm set Dmt

and observes the reward vector [y1t , y
2
t , . . . , y

m
t ]. Finally, for i ∈ [m], SCE2LO updates the estimator

from θ̂it to θ̂it+1 with the updated contextual information matrix Xt+1 and historical rewards vector
Y it+1. The following theorem establishes the theoretical guarantees for the SCE2LO algorithm.

Theorem 1 Suppose that (2) and (3) hold, and the arm sets are finite, i.e., |Dt| = K,∀t ∈ [T ]. If
STE2LO is run with δ ∈ (0, 1) and ε > 0, then with probability at least 1− δ, STE2LO satisfies

R̂i(T ) ≤ 100ε−2d lnT
(
R2d ln (m(1 + T )/δ) + 1

)
+ 2KTε, ∀i ∈ [m]

where R̂i(T ) =
∑T
t=1〈θi∗,x∗t −xt〉I(〈θ

j
∗,x
∗
t 〉 = 〈θj∗,xt〉, 1 ≤ j ≤ i−1) is a priority-based regret.

Remark: By setting the input parameter ε = d2/3(KT )−1/3, Theorem 1 implies that STE2LO can
achieve a Õ((dKT )2/3) bound without requiring any prior knowledge. This bound matches the
bound of the existing algorithm PF-LEX in terms of K and T (Hüyük & Tekin, 2021). STE2LO
allows the arm set Dt to vary during the learning process, a distinguishing feature from PF-LEX
that lacks such flexibility. However, there are two limitations for this algorithm. First, STE2LO is
suboptimal as the lower regret bound for single objective SLB model is Ω(d

√
T ) (Dani et al., 2008).

Second, the priority-based regret R̂i(T ) relies on the indicator function I(·), which only measures
the performance of the first objective when 〈θ1∗,xt〉 < 〈θ1∗,x∗t 〉.

3.2 IMPROVED ALGORITHM: MTE2LO

Although STE2LO is straightforward, its regret bound is suboptimal even with the priority-based
metric R̂i(T ). In this section, we introduce an improved algorithm called MTE2LO, which achieves
the almost optimal bound on the general regret Ri(T ). To motivate the development of MTE2LO,
we first briefly explain why the simple algorithm STE2LO is suboptimal.

1st

2nd

𝐿𝐿1

𝐿𝐿2

𝐿𝐿2/𝐿𝐿1 ≤ 𝜆𝜆
𝒙𝒙𝑡𝑡∗

𝒙𝒙

Figure 1: Motivation

One limitation of STE2LO is the use of the chain relation Ci,
which may result in the absence of the lexicographic optimal arm
x∗t from Di−1t to Dit for some i ∈ [m]. To illustrate this issue,
we present a simple example with two objectives in Fig. 1. In
this example, there are three arms, where the red point x∗t repre-
sents the lexicographically optimal one. The square denotes the
confidence intervals for the first and second objectives. Clearly,
x̂1
t = x̂∗t , and D1

t contains both x∗t and x since their confidence
intervals for the first objective intersect. However, D2

t loses x∗t
because x̂2

t = x and x̂2
t is not chained with x∗t in the second

objective. To remove this limitation, we observe that the confi-
dence interval width for both objectives is equal for a fixed arm,
and scaling the confidence interval of the second objective ensures the intersection of confidence
intervals. Motivated by this observation, we design a novel Lexicographically Ordered Arm Filter
(LOAF), which filters promising arms without losing the optimal arm, as detailed in Algorithm 2.

LOAF sequentially refines promising arms from the first objective to the last objective by the upper
confidence bounds shown in the following equation,

uit(x) = ŷit(x) + wt(x), i ∈ [m] (16)
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Algorithm 3 Multiple Trade-off between Exploration and Exploitation under Lexicographic Order-
ing (MTE2LO)
Input: time horizon T ∈ N, scalarized parameter λ

1: Initialize S = blnT c, V0 = Id and θ̂i0 = 0, i ∈ [m].
2: for t = 1, 2, . . . , T do
3: Compute the estimated rewards and width of confidence intervals for any arm x ∈ Dt:
ŷit(x) = 〈θ̂it,x〉,∀i ∈ [m], wt(x) = γt‖x‖V −1

t
where γt = R

√
d ln(m(1 + t)/δ) + 1

4: Initialize s = 1,Dt,1 = Dt
5: repeat
6: if wt(x) ≤ 1/

√
T ∀x ∈ Dt,s then

7: Invoke the Algorithm 2 to filter the promising arms Dmt,s = LOAF (λ, 1/
√
T ,Dt,s)

8: Play the arm xt = arg maxx∈Dmt,s ŷ
m
t (x) + wt(x) and observe [y1t , y

2
t , . . . , y

m
t ]

9: else if wt(xt) > 2−s for some xt ∈ Dt,s then
10: Play the arm xt and observe [y1t , y

2
t , . . . , y

m
t ]

11: else wt(x) ≤ 2−s ∀x ∈ Dt,s
12: Invoke the Algorithm 2 to filter the promising arms Dt,s+1 = LOAF (λ, 2−s,Dt,s)
13: Update s = s+ 1
14: end if
15: until an arm xt is played.
16: Update Vt+1 = Vt + xtx

>
t , Xt+1 = [xτ ]τ∈[t] and Y it+1 = [yiτ ]τ∈[t], i ∈ [m]

17: Update the estimators θ̂it+1 = V −1t+1Xt+1Y
i
t+1, i ∈ [m]

18: end for

where ŷit(x) and wt(x) are the estimated reward and confidence interval width in (13). For the i-th
objective, LOAF selects the most promising arms from the previous arm set Di−1t as follows,

x̂it = arg max
x∈Di−1

t

uit(x) (17)

where the initialized arm set D0
t = Dt. Then, LOAF retains the arms that are not far away from the

arm x̂it in the i-th objective through the intersection of scalarized confidence intervals, i.e.,

Dit =
{
x ∈ Di−1t |uit(x) ≥ uit(x̂it)− (2 + 4λ+ . . .+ 4λi−1)W

}
(18)

where λ is the scalarized parameter in the assumption (5), and W is the maximum width of confi-
dence intervals among the input arms. LOAF not only keeps the optimal arm in the returned arm
set Dmt but also ensures the expected rewards of arms in Dmt are close to the optimal arm across all
objectives. The following proposition supports this claim.

Proposition 1 For the algorithm LOAF, suppose that (5) holds and the expected rewards are con-
tained within confidence intervals (14) with probability at least 1 − δ. If x∗t is the optimal arm of
the input arm set Dt and W is the maximum width of confidence intervals for the input arms, then
with probability at least 1− δ, x∗t belongs to the set Dmt , and

〈θi∗,x∗t − x〉 ≤ 4(1 + λ+ . . .+ λi−1)W, i ∈ [m],∀x ∈ Dmt .

Remark: Proposition 1 demonstrates that LOAF returns an arm set Dmt that contains the optimal
arm x∗t . Meanwhile, it establishes a bound on the gap between the expected rewards of the optimal
arm x∗t and any other arm within the set Dmt . This bound is O((1 + λi−1)W ), which increase
exponentially as the index of objectives grows. However, most multiobjective problems typically
involve two or three objectives (Deb & Jain, 2014; Li et al., 2015), thus λi−1 will not be extreme.

Another drawback of STE2LO is its high trial consumption in the case wt(xt) > ε, which is a pure
exploration case without any exploitation. To settle this issue, we divide the decision-making oper-
ation at each round into S stages to make a delicate trade-off between exploration and exploitation.
The proposed algorithm, Multiple Trade-off between Exploration and Exploitation under Lexico-
graphic Ordering (MTE2LO), is shown in Algorithm 3.

MTE2LO adopts a framework similar to STE2LO, but takes a more delicate decision-making pro-
cess. At each time step t, MTE2LO first calculates the estimated rewards and confidence interval

7
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Table 1: Expected reward vectors for λ = 0.1 and λ = 10

Arms λ = 0.1 λ = 10

Arm 1 (0.42,−0.11, 0.06,−0.27, 0.41) (0.33, 0.50, 0.20,−0.23,−0.03)
Arm 2 (0.42,−0.24,−0.22,−0.48, 0.00) (0.33, 0.34,−0.18, 0.24,−0.13)
Arm 3 (0.17,−0.24,−0.40,−0.38, 0.34) (−0.06, 0.34, 0.20,−0.21, 0.31)
Arm 4 (−0.37,−0.07,−0.40,−0.27,−0.02) (0.28, 0.15, 0.20,−0.46, 0.18)
Arm 5 (−0.14,−0.12,−0.09,−0.27, 0.13) (0.24, 0.29,−0.18,−0.46, 0.03)
Arm 6 (0.22,−0.38,−0.26,−0.50, 0.13) (0.00,−0.29,−0.26, 0.43, 0.03)
Arm 7 (0.30,−0.18,−0.52,−0.75, 0.08) (−0.16, 0.45, 0.40,−0.22, 0.20)
Arm 8 (−0.06,−0.33,−0.56,−0.42, 0.10) (−0.22,−0.30, 0.03,−0.16,−0.15)
Arm 9 (−0.23,−0.30,−0.66,−0.33, 0.35) (0.19,−0.16,−0.18,−0.06,−0.14)
Arm 10 (0.40,−0.40,−0.14,−0.38, 0.07) (−0.35,−0.10, 0.40, 0.02,−0.08)

width for each arm in Dt, using the formula (13). Subsequently, MTE2LO initiates a loop of S
stages to iteratively refine the promising arms, starting with Dt,1 = Dt.

At each stage s, MTE2LO first checks if the confidence interval widths for all arms in Dt,s is less
than or equal to 1/

√
T . If this is the case, MTE2LO invokes the LOAF algorithm with the input

arm set Dt,s and maximum confidence interval width 1/
√
T , obtaining the promising arms set Dmt,s.

Then, MTE2LO plays the arm with the highest upper confidence bound at the m-th objective from
Dmt,s and records its rewards. Alternatively, if the confidence interval width of some arm in Dt,s
exceeds 2−s, MTE2LO plays this arm for exploration and records its rewards. Lastly, if the widths
of all confidence intervals of the arms in Dt,s are less than or equal to 2−s, MTE2LO applies the
LOAF algorithm with the input arm set Dt,s and maximum confidence interval width 2−s to update
the promising arms set from Dt,s to Dt,s+1. The last case balances exploration and exploitation
because the maximum confidence interval width 2−s promotes exploration, and the intersection of
salarized confidence intervals in LOAF promises exploitation.

Let the total number of stages S = blnT c, then 2−S < 1/
√
T . Thus, MTE2LO plays an arm before

the decision-making loop ends. After playing an arm and observing its rewards, MTE2LO updates
the estimators θ̂it+1, i ∈ [m]. The following theorem guarantees the performance of MTE2LO.

Theorem 2 Suppose that (2), (3) and (5) hold. If MTE2LO is run with δ ∈ (0, 1), then with proba-
bility at least 1− δ, the regret of MTE2LO satisfies

Ri(T ) ≤ 8(1 + λ+ . . .+ λi−1)
(√

T + 5d lnT
(
R
√

ln (m(1 + T )/δ) + 1
)√

T
)
,∀i ∈ [m].

Remark: Theorem 2 states that MTE2LO achieves the Õ((1 + λi−1)d
√
T ) bound for the i-th

objective, which is consistent with the optimal regret of single objective SLB algorithms in terms of
the factors d and T (Dani et al., 2008; Abbasi-yadkori et al., 2011). In addition, the above theorem
adopts the general regretRi(T ), which measures the performance of each objective more accurately
than the priority-based regret R̂i(T ). Hüyük & Tekin (2021) established an expected lower regret
bound Ω(T 2/3) for MOMAB under lexicographic ordering. This does not conflict with our result
since we consider pseudo-regret instead of expected regret (Lattimore & Szepesvári, 2020).

4 EXPERIMENTS

In this section, we conduct experiments to present the empirical performance of our proposed al-
gorithms. We adopt PF-LEX (Hüyük & Tekin, 2021) and OFUL (Abbasi-yadkori et al., 2011) as
baselines, where PF-LEX is designed for MOMAB under lexicographic ordering, and OFUL is
designed for single objective SLB model.

Following the existing experimental setup (Lu et al., 2019), we set the objective number m = 5
and feature dimension d = 10. The arm sets are fixed as Dt = D for t ≥ 1, and the arm number
matches the feature dimension (|D| = 10), which ensures that PF-LEX and our proposed algorithms
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Figure 2: Comparison of our algorithms versus OFUL and PF-LEX.

encounter the same number of unknown parameters. The coefficients θi∗ for i ∈ [m] and arm x ∈ D
are uniformly sampled from the unit sphere2. Let the first sampled arm be the lexicographic optimal
arm. We set the remaining nine arms to satisfy two conditions to distinguish the lexicographically
ordered bandit problem from the single objective bandit problem. Firstly, there are two arms with
equal expected rewards for each objective. Secondly, all arms satisfy the claim (5), and λ is set as
0.1 and 10 respectively to demonstrate the performance of all algorithms across different problem
difficulties. The expected reward vectors are summarized in Table 1. For the chosen arm xt ∈ D,
the reward for the i-th objective is given as 〈θi∗,xt〉 + ηt, where ηt is sampled from a Gaussian
distribution with mean 0 and variance 1. We set T = 105 and δ = 0.01 for all algorithms.

To reduce the randomness across the algorithms, we repeated each algorithm ten times and reported
the average regret. The exploration parameter ε for STE2LO and PF-LEX is set to d2/3(KT )−1/3

and (KT )−1/3, respectively, which are theoretically optimal. In line with the common practice in
bandit learning, we fine-tune the scaled parameters αt, βt and γt of the confidence interval width in
(9), (10), and (13), within the range of [1e−3, 1] (Jun et al., 2017; Lu et al., 2019).

Fig. 2 displays the general regret for the 1st and 5th objectives, where Fig. 2(a) and Fig. 2(b) present
the results for the problem instances with λ = 0.1 and λ = 10, respectively. For λ = 0.1, OFUL
performs the best in the first objective but performs worst in the fifth objective, as it is specifically
designed for single objective bandit model. MTE2LO exhibits comparable performance to OFUL in
the first objective but significantly outperforms it in the fifth objective. STE2LO performs slightly
better than PF-LEX in the first objective but falls behind in the fifth objective. Both STE2LO and
PF-LEX are inferior to MTE2LO. A interesting phenomenon is that all algorithms achieve better
performance in the fifth objective than in the first when λ = 10, which is inconsistent with the regret
bound in Theorem 2. This peculiarity can be attributed to the fact that most randomly sampled arms
have higher expected rewards than the lexicographic optimal arm in the fifth objective for λ = 10.

5 CONCLUSION AND FUTURE WORK

We have investigated the MOSLB model under lexicographic ordering and presented two algo-
rithms: STE2LO and MTE2LO. STE2LO is straightforward and independent of prior knowledge,
but its regret bound is suboptimal. The improved algorithm MTE2LO achieves an almost optimal
regret bound Õ((λi−1 + 1)d

√
T ) for the i-th objective, i ∈ [m]. We extend the metric of lexico-

graphically ordered multiobjective bandits from the priority-based regret (1) to the general regret (4),
which more accurately evaluates the performance of algorithms. Our major novelties include a new
arm filter and a multiple trade-off approach for exploration and exploitation. These techniques can
be easily adapted to other bandit models, such as generalized linear bandits and Lipschitz bandits.

In the future, a challenging open problem is to develop an algorithm that is independent of the prior
knowledge λ and achieves the regret bound Õ(d

√
T ). Moreover, Theorem 2 demonstrates that ob-

jectives with lower priority have higher regret bounds, which contradicts the observed performance
in Fig. 2(b). Thus, the regret bounds of low-priority objectives may be further reduced.

2The unit sphere is defined as the set {x ∈ Rd|‖x‖ ≤ 1}.
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A PROOF OF CLAIM (5)

The effectiveness of our proposed MTE2LO algorithm depends on whether the claim (5) is true. In
this section, we provide a detailed proof to show that the standard stochastic linear bandit model
satisfies claim (5). As a result, our proposed algorithm, MTE2LO, has the same scope of application
as existing linear bandit algorithms (Auer, 2002; Abbasi-yadkori et al., 2011). To help with the
understanding, we first prove the claim (5) for the first and second objectives.

Proposition 2 Suppose the arm sets {D1,D2, . . . ,DT } are compact, then there exists some λ(1,2) ≥
0, the expected rewards for the first and second objectives satisfy

〈θ2∗,x− x∗t 〉 ≤ λ(1,2) · 〈θ1∗,x∗t − x〉 (19)

for any x ∈ Dt, t ∈ [T ].

Proof. In the case where λ(1,2) does not exist (i.e., λ(1,2) = +∞), there is at least one t ∈ [T ] that
fails to satisfy inequality (19). For this special t ∈ [T ], let S = {x ∈ Rm|〈θ1∗,x〉 = 〈θ1∗,x∗t 〉}
represent the optimal line for the first objective, and let Dt denote the closure of Dt. The optimality
of x∗t guarantees that x∗t lies at the endpoint of a line segment in S ∩Dt. Since λ(1,2) = +∞, there
must exist a sequence of points {z1, z2, . . . ,zn} ⊂ Dt such that limn→∞〈θ1∗,x∗t − zn〉 = 0 and
limn→∞〈θ2∗, zn − x∗t 〉 = C > 0. Let limn→∞ zn = z, then 〈θ1∗,x∗t − z〉 = 0 and 〈θ2∗, z − x∗t 〉 =
C > 0. Therefore, z lies in S ∩ Dt and does not belong to Dt. This implies that Dt 6= Dt, which
contradicts the standard setting thatDt is compact for the stochastic linear bandit model (Dani et al.,
2008). As a result, λ(1,2) must exist in the standard stochastic linear bandit model. Hence, the proof
of Proposition 2 is completed. �

For the claim (5) with m > 2 objectives, the proof is similar to the Proposition 2 but with a different
optimal line. Precisely, for a fixed i ∈ [m], let the optimal line for previous i − 1 objectives is
S′ = {x ∈ Rm|〈θj∗,x〉 = 〈θj∗,x∗t 〉, j ∈ [i− 1]}. If λ = +∞, there must exist a sequence of points
{z′1, z′2, . . . ,z′n} ⊂ Dt such that limn→∞〈θ1∗,x∗t −z′n〉 = 0, . . . , limn→∞〈θi−1∗ ,x∗t −z′n〉 = 0 and
limn→∞〈θi∗, z′n − x∗t 〉 = C > 0. Let limn→∞ z

′
n = z′, then 〈θ1∗,x∗t − z′〉 = 0, . . . , 〈θi−1∗ ,x∗t −

z′〉 = 0 and 〈θi∗, z′ − x∗t 〉 = C > 0. Therefore, z′ lies in S′ ∩ Dt and does not belong to Dt.
This implies that Dt 6= Dt, which contradicts the setting that Dt is compact. Thus, λ must exist in
standard stochastic linear bandit model. The proof is finished. �

B PROOF OF THEOREM 1

To begin with the proof of Theorem 1, we present three lemmas that are crucial to our analysis.
The first lemma guarantees the reliability of our constructed confidence intervals, the second lemma
specifies the number of trials required for pure exploration in STE2LO, and the third lemma gives
the instantaneous regret for the exploration-exploitation trade-off case in STE2LO.

Lemma 1 Suppose that (2) and (3) hold. If γt = R
√
d ln(m(1 + t)/δ) + 1, then with probability

at least 1− δ, we have

|〈θ̂it,x〉 − 〈θi∗,x〉| ≤ γt‖x‖V −1
t
,∀i ∈ [m],∀t ≥ 1

for any x ∈ Dt.

Proof. The sub-Gaussian property (3) allows us to expand the Confidence Ellipsoid theorem of
Abbasi-yadkori et al. (2011) to a multiobjective context by using a union bound over the m objec-
tives, which states that for any i ∈ [m] and t ≥ 1, θi∗ lies in the confidence region

Cit = {θ | ‖θ − θ̂it‖Vt ≤ γt} (20)

with probability at least 1− δ, where γt = R
√
d ln(m(1 + t)/δ) + 1.
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Through the Lagrange method (Boyd & Vandenberghe, 2004), we calculate the upper confidence
bound of 〈θi∗,x〉 for a given arm x ∈ Dt as

uit(x) = max
‖θ−θ̂it‖Vt≤γt

〈θ,x〉

= max
‖θ‖Vt≤γt

〈θ + θ̂it,x〉

= 〈θ̂it,x〉+ γt‖x‖V −1
t
.

(21)

Similarly, the lower confidence bound of 〈θi∗,x〉 for a given arm x ∈ Dt is given by

`it(x) = 〈θ̂it,x〉 − γt‖x‖V −1
t
. (22)

Thus, we can conclude that with probability at least 1− δ, for any x ∈ Dt, the following inequality
holds for all i ∈ [m] and t ≥ 1,

|〈θ̂it,x〉 − 〈θi∗,x〉| ≤ γt‖x‖V −1
t
. (23)

The proof of Lemma 1 is finished. �

Lemma 2 In STE2LO, suppose ψ(t, ε) = {τ ∈ [t]|wτ (xτ ) > ε} with wτ (xτ ) = γτ‖xτ‖V −1
τ

, then

|ψ(T, ε)| ≤ 50ε−2d lnT
(
R2d ln(m(1 + T )/δ) + 1

)
.

Proof. Firstly, we use Lemma 3 from Chu et al. (2011) to obtain∑
t∈ψ(T,ε)

‖xt‖Ṽ −1
t
≤ 5
√
d|ψ(T, ε)| ln |ψ(T, ε)| (24)

where Ṽt = Id +
∑
τ∈ψ(t−1,ε) xτx

>
τ . Since Vt = Id +

∑
τ∈[t−1] xτx

>
τ , we can observe that

‖xt‖V −1
t
≤ ‖xt‖Ṽ −1

t
. Therefore, we get∑

t∈ψ(T,ε)

‖xt‖V −1
t
≤ 5
√
d|ψ(T, ε)| ln |ψ(T, ε)|. (25)

Use the fact that γt‖xt‖V −1
t

> ε for t ∈ ψ(T, ε), we can derive

ε|ψ(T, ε)| ≤5γT
√
d|ψ(T, ε)| ln |ψ(T, ε)|. (26)

Simplify the above inequality and take γT = R
√
d ln(m(1 + T )/δ) + 1 into it, we obtain

|ψ(T, ε)| ≤ 25ε−2γ2T d lnT ≤ 50ε−2d lnT (R2d ln(m(1 + T )/δ) + 1). (27)

This completes the proof. �

Lemma 3 In STE2LO, suppose ψ̃(t, ε) = {τ ∈ [t]|wτ (xτ ) ≤ ε} with wτ (xτ ) = γτ‖xτ‖V −1
τ

, then

with probability at least 1− δ, for any t ∈ ψ̃(T, ε)〈
θi∗,x

∗
t − xt

〉
· I
(
〈θj∗,x∗t 〉 = 〈θj∗,xt〉, j ∈ [i− 1]

)
≤ 2Kε, i ∈ [m].

Proof. In the first case where I
(
〈θj∗,x∗t 〉 = 〈θj∗,xt〉, j ∈ [i− 1]

)
= 0, Lemma 3 holds obviously.

Then, we analyze the second case 〈θj∗,x∗t 〉 = 〈θj∗,xt〉, j ∈ [i − 1]. According to the definition of
upper confidencce bound and lower confidence bound, we can easily get

〈θi∗,x∗t 〉 − 〈θi∗,xt〉 ≤ uit(x∗t )− `it(xt) (28)

holds with probability at least 1− δ.

Use the induced method, we can prove that x∗t ∈ Di−1t in the second case. Precisely, for i = 1, it is
obvious that x∗t ∈ D0

t sinceD0
t = Dt. Then, we assume that x∗t ∈ Di−2t . Next, we focus on proving

x∗t ∈ Di−1t . Since 〈θi−1∗ ,x∗t 〉 = 〈θi−1∗ ,xt〉, x∗t and xt are chained in the (i− 1)-th objective. The

14
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filter method Di−1t = {x ∈ Di−2t |xCi−1x̂i−1t } shows that xt is chained with x̂i−1t . Since the chain
relation satisfies the transitive property, x∗t is chained with x̂i−1t , thus x∗t ∈ Di−1t .

According to x̂it = arg maxx∈Di−1
t

uit(x), we get that

uit(x
∗
t )− `it(xt) ≤ uit(x̂it)− `it(xt). (29)

Combining equations (28) and (29) yeilds

〈θi∗,x∗t 〉 − 〈θi∗,xt〉 ≤ uit(x̂it)− `it(xt). (30)

In the decision rounds ψ̃(T, ε), it can be observed that all arms have confidence intervals that are
smaller than ε, and given that there areK arms in total, we can conclude that uit(x̂

i
t)−`it(xt) ≤ 2Kε.

This inequality can be substituted into equation (30) to complete the proof. �

Take the Lemma 2 and Lemma 3 into R̂i(T ), we get that with probability at least 1− δ,

R̂i(T ) =

T∑
t=1

〈θi∗,x∗t − xt〉I(〈θj∗,x∗t 〉 = 〈θj∗,xt〉, 1 ≤ j ≤ i− 1)

=
∑

t∈ψ(T,ε)

〈θi∗,x∗t − xt〉I(〈θj∗,x∗t 〉 = 〈θj∗,xt〉, 1 ≤ j ≤ i− 1)

+
∑

t∈ψ̃(T,ε)

〈θi∗,x∗t − xt〉I(〈θj∗,x∗t 〉 = 〈θj∗,xt〉, 1 ≤ j ≤ i− 1)

≤ 2|ψ(T, ε)|+ 2KTε

≤ 100ε−2d lnT
(
R2d ln(m(1 + T )/δ) + 1

)
+ 2KTε.

(31)

The proof of Theorem 1 is completed. �

C PROOF OF PROPOSITION 1

To prove the Proposition 1, we use induction method. For i = 1, we note that

u1t (x
∗
t ) ≥ 〈θ1∗,x∗t 〉 ≥ 〈θ1∗, x̂1

t 〉 ≥ u1t (x̂1)− 2W, (32)

which confirms that x∗t ∈ D1
t since D1

t = {x ∈ D0
t |u1t (x) ≥ u1t (x̂

1
t ) − 2W} and x∗t ∈ D0

t . Then,
based on the filtered method in D1

t , we get that for any x ∈ D1
t ,

〈θ1∗,x〉 ≥ u1t (x)− 2W ≥ u1t (x̂1
t )− 4W ≥ u1(x∗t )− 4W ≥ 〈θ1∗,x∗t 〉 − 4W, (33)

which indicates 〈θ1∗,x∗t − x〉 ≤ 4W .

Next, we prove that if x∗t ∈ Di−1t then x∗t ∈ Dit, and if 〈θj∗,x∗t − x〉 ≤ 4(1 + λ + . . . + λj−1)W
for j ∈ [i− 1] then 〈θi∗,x∗t − x〉 ≤ 4(1 + λ+ . . .+ λi−1)W for any x ∈ Dit.

According to inequality (5), it is evident that 〈θi∗,x∗t 〉 ≥ 〈θi∗, x̂it〉 − λ · maxj∈[i−1]〈θj∗,x∗t − x̂it〉.
Moreover, considering that the maxmium confidence interval width is W , uit(x

∗
t ) ≥ 〈θi∗,x∗t 〉 and

〈θi∗, x̂it〉 ≥ uit(x̂it)− 2W hold. Thus, we get that

uit(x
∗
t ) ≥ uit(x̂it)− 2W − (4λ+ 4λ2 + . . .+ 4λi−1)W, (34)

which indicates x∗t ∈ Dit since Dit = {x ∈ Di−1t |uit(x) ≥ uit(x̂
i) − (2 + 4λ + . . . + 4λi−1)W}.

With x∗t ∈ Dit and the filtered method in Dit, we can derive that for any x ∈ Dit,

〈θi∗,x〉 ≥ uit(x)− 2W

≥ uit(x̂
i
t)− 4W − (4λ+ 4λ2 + . . .+ λi−1)W

≥ uit(x
∗
t )− 4(1 + λ+ . . .+ λi−1)W

≥ 〈θi∗,x∗t 〉 − 4(1 + λ+ . . .+ λi−1)W.

(35)

Thus we get 〈θi∗,x∗t − x〉 ≤ 4(1 + λ+ . . .+ λi−1)W . The proof is finished. �
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D PROOF OF THEOREM 2

One of the most important advantage of MTE2LO is the multiple trade-off between exploration and
exploitation through the proceeding of multiple stages in the decision-making process. We provide
the following lemma to specify the number of trials at each stage.

Lemma 4 In MTE2LO, suppose ψs(t) = {τ ∈ [t]|xτ is played in the else if case: wτ (xτ ) > 2−s},
where wτ (xτ ) = γτ‖xτ‖V −1

τ
, then for all s ∈ [S],

|ψs(T )| ≤ 5 · 2s
(
R
√
d ln(m(1 + T )/δ) + 1

)√
d|ψs(T )| ln |ψs(T )|.

Proof. Firstly, we use Lemma 3 from Chu et al. (2011) to obtain∑
t∈ψs(T )

‖xt‖Ṽ −1
t
≤ 5
√
d|ψs(T )| ln |ψs(T )| (36)

where Ṽt = Id +
∑
τ∈ψs(t−1) xτx

>
τ . Since Vt = Id +

∑
τ∈[t−1] xτx

>
τ , we can observe that

‖xt‖V −1
t
≤ ‖xt‖Ṽ −1

t
. Therefore, we get∑

t∈ψs(T )

‖xt‖V −1
t
≤ 5
√
d|ψs(T )| ln |ψs(T )|. (37)

Using the fact that γt‖xt‖V −1
t

> 2−s for t ∈ ψs(T ), we can derive

2−s|ψs(T )| ≤5γT
√
d|ψs(T )| ln |ψs(T )|. (38)

Taking γT = R
√
d ln(m(1 + T )/δ) + 1 into above equation tells that

|ψs(T )| ≤ 5 · 2s
(
R
√
d ln(m(1 + T )/δ) + 1

)√
d|ψs(T )| ln |ψs(T )|. (39)

The proof of Lemma 4 is finished. �

Let ψ0(T ) = [T ] \
⋃
s∈[S] ψs(T ) denote the trials whose confidence interval width is less than or

equal to 1/
√
T . Then, the regret for the i-the objective can be rewritten as

Ri(T ) =
∑

t∈ψ0(T )

〈θi∗,x∗t − xt〉+

S∑
s=1

∑
t∈ψs(T )

〈θi∗,x∗t − xt〉 (40)

The trials in ψ0(T ) are filtered by LOAF with maximum width W = 1/
√
T and the trials in ψs(T )

are filtered by LOAF with maximum width W = 2 · 2−s. Based on Proposition 1, we have that∑
t∈ψ0(T )

〈θi∗,x∗t − xt〉 ≤ 4(1 + λ+ . . .+ λi−1)|ψ0(T )|/
√
T (41)

and ∑
t∈ψs(T )

〈θi∗,x∗t − xt〉 ≤ 4(1 + λ+ . . .+ λi−1)2 · 2−s|ψs(T )|. (42)

Thus, the regret for the i-the objective can be bounded by

Ri(T ) ≤ 4(1 + λ+ . . .+ λi−1)

(
|ψ0(T )|/

√
T +

S∑
s=1

2 · 2−s|ψs(T )|

)
(43)

By Lemma 4, we obtain
S∑
s=1

2 · 2−s|ψs(T )| ≤ 10
(
R
√
d ln (m(1 + T )/δ) + 1

) S∑
s=1

√
d|ψs(T )| ln |ψs(T )|

≤ 10d
(
R
√

ln (m(1 + T )/δ) + 1
)√

ST lnT

≤ 10d lnT
(
R
√

ln (m(1 + T )/δ) + 1
)√

T .

(44)

Taking equation (44) into equation (43) shows that

Ri(T ) ≤ 8(1 + λ+ . . .+ λi−1)
(√

T + 5d lnT
(
R
√

ln (m(1 + T )/δ) + 1
)√

T
)
. (45)

The proof is finished. �
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