
Scaling Test-time Compute for LLM Agents

Anonymous ACL submission

Abstract001

Scaling test-time compute has shown remark-002
able success in improving the reasoning abili-003
ties of large language models (LLMs). In this004
work, we conduct the first systematic explo-005
ration of applying test-time scaling methods to006
language agents and investigate the extent to007
which it improves their effectiveness. Specif-008
ically, we explore different test-time scaling009
strategies, including: (1) parallel sampling al-010
gorithms; (2) sequential revision strategies; (3)011
verifiers and merging methods; (4) strategies012
for diversifying rollouts. We carefully ana-013
lyze and ablate the impact of different design014
strategies on applying test-time scaling on lan-015
guage agents, and have the following findings:016
1. Scaling test time compute could improve017
the performance of agents. 2. Knowing when018
to reflect is important for agents. 3. Among019
different verification and result merging ap-020
proaches, the list-wise method performs best.021
4. Increasing diversified rollouts exerts a pos-022
itive effect on the agent’s task performance.023
All code are available at https://anonymous.024
4open.science/r/ATTS-D74F.025

1 Introduction026

Language agents demonstrate exceptional capa-027

bilities in various domains (Tang et al., 2025;028

Zhou et al., 2023b; Hong et al., 2023; Face,029

2025; Zhou et al., 2023c, 2024). For example,030

LangChain(repository, 2022) connects LLMs with031

various tools to solve different tasks in an end-to-032

end manner, while Meta-GPT(Hong et al., 2023)033

enables multiple AI Agents to take on different034

roles and collaborate to accomplish tasks. Recently,035

long-thinking models like O1 (Jaech et al., 2024)036

and R1 (Guo et al., 2025) showcase excellent rea-037

soning abilities of Large Language Models (LLMs).038

Recent approaches (Li, 2025; Liang et al., 2025)039

leverage the extended thinking capabilities of long-040

activation models for planning, code writing, tool041

calling, and completing complex tasks. However,042

despite the strong capabilities of LLMs, they still 043

struggle to match human performance in complex 044

search and reasoning tasks (Zhou et al., 2023a; Koh 045

et al., 2024a). This occurs due to remaining limita- 046

tions in model capabilities, errors in task planning 047

and question answering, and issues with complex 048

tool calling abilities. 049

Increasing computational resources during the 050

inference phase greatly enhances LLMs’ perfor- 051

mance. Some works (Liu et al., 2025a,b) improve 052

model exploration during inference through differ- 053

ent sampling strategies, achieving excellent scores 054

in challenging areas like mathematical reasoning. 055

(Snell et al., 2024) investigate the effects of scaling 056

test-time computate, while (Xiong et al., 2025) fo- 057

cus on enhancing model performance through self- 058

correction methods. However, directly applying 059

TTS methods to the Agentic Framework presents 060

many challenges. Unlike LLMs that solve specific 061

problems in an end-to-end manner, agents typically 062

decompose complex problems into distinct steps, 063

invoking multiple models sequentially for resolu- 064

tion. Due to the extended sequence of steps and 065

the accumulation of errors, traditional TTS meth- 066

ods (e.g., BoN) can significantly undermine the 067

final outcome, because they randomly generate N 068

responses at each step. 069

To address the aforementioned challenges, we 070

first conduct a systematic exploration of test-time 071

scaling methods for language agents. First, we 072

investigate the effectiveness of different parallel 073

sampling methods for agentic test-time scaling, in- 074

cluding variants of Best-of-N (BoN), beam search, 075

and tree search algorithms. We adapt and imple- 076

ment these parallel sampling mechanisms within 077

language agents and showing that despite simplic- 078

ity, BoN achieves the optimal performance. Subse- 079

quently, we investigate the effectiveness of various 080

sequential revision techniques, such as reflection 081

and self-refinement, for language agents. We in- 082

troduce a reflection agent to summarize and reflect 083
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based on the current state and recent actions/obser-084

vations to help the agent consistently progress to-085

ward accomplishing the task. Experimental results086

show that the direct gains from having the agent087

perform reflection at each step are not obvious.088

Instead, allowing the agent to perform reflection089

when it performs poorly in the current step brings090

certain benefits. This indicates that knowing when091

the agent should reflect is more important than092

having the agent perform reflection at every step093

directly. Finally, we conduct a detailed study on094

the impact of different verify and result merging095

methods, including voting (selection of the major-096

ity from all candidates), scoring (selection based097

on scores), and list-wise (comparative selection of098

the optimal item from candidates) approaches. Our099

experimental results demonstrate that whether for100

merge results methods or verify methods, using the101

list-wise method outperforms other methods. This102

provides an effective verification method reference103

for agentic frameworks. Finally, we test different104

strategies to expand the agent’s exploration space105

and enhance the diversity of different rollouts, and106

propose a multi-agent collaborative sampling strat-107

egy. Experimental results indicate that performance108

under multi-agent collaboration surpasses that of a109

single agent.110

Our core contributions are:111

• We explore the application of different paral-112

lel sampling strategies in agentic frameworks.113

Through parallel sampling strategies, agent114

performance can be significantly improved.115

• We study the impact of sequential revision116

techniques in agentic frameworks. In partic-117

ular, we point out that it is very important118

for agents to know when they should perform119

revision.120

• We also conduct detailed comparative analysis121

of different verify and result merge strategies.122

Experiments show that the list-wise method123

significantly outperforms other methods.124

2 Agentic Test-Time Scaling125

In this section, we describe and compare different126

strategies for agentic test-time scaling, including:127

(1) Parallel Sampling Algorithms; (2) Sequential128

Revision Strategies; (3) Verifier and Result Merg-129

ing Methods; (4) Strategies for Diversifying Roll-130

outs.131

2.1 Parallel Sampling Algorithms 132

To establish a comprehensive evaluation framework 133

for our proposed methods, we regard several paral- 134

lel sampling algorithms that are commonly used in 135

the test-time scaling (TTS) domain as baselines. 136

Best-of-N (BoN)(Faria and Smith, 2025): Give
a sample times N and question Q, the Best-of-N
(BoN) method samples N independent responses
from the LLMs:

{R1, R2, ..., RN} = BoN(Q),

Then selects the best answer by verifier. The ef- 137

fectiveness of BoN relies heavily on the quality 138

of the reward model and the diversity of sampled 139

candidates. 140

Step-wise-Best-of-N (BoN-wise)(Wu et al.,
2024a): BoN-wise generates N responses at
each step. Specifically, given the thoughts
{T1, T2, ..., Tt−1} from the previous step at time
t, BoN-wise generate N responses:

{R1, R2, ..., RN} = BoN-Wise(Q,T1, T2, ..., Tt−1),

Beam Search(Yao et al., 2023): Beam search
maintains a fixed-size beam K at each step. Specif-
ically, at time t, it generates N responses for each
leaf nodes LNi, then maintains the most suitable
K responses that :

{R1, R2, ..., RK} = BeamSearch(Q,LNi)

Most promising partial solutions at each gener- 141

ation step. This algorithm prunes less promising 142

candidates early in the generation process based on 143

cumulative log-probabilities or reward scores. 144

DVTS (Diverse Verifier Tree Search) (Beech-
ing et al., 2024a): DVTS decomposes the task into
K subtrees, where each subtree operates as an in-
dependent beam search algorithm. By exploring
multiple subtrees in parallel, DVTS achieves more
diverse search behavior. Under the same computa-
tional budget, it finds higher-quality solutions more
effectively than a single beam search with deep
exploration.

{R1, R2, ..., RK} = DVTS(Q,SubTreei)

2.2 Sequential Revision Strategies 145

Besides, given the previous steps {T1, T2, ..., Tt−1}
at time t, we leverage a reflection model RefM, to
summarize information:

Sumt = RefM(T1, T2, ..., Tt−1).
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Figure 1: Overview of our agentic test-time scaling framework with four key strategies: (1) Parallel Sampling:
BoN, BoN-wise, Beam Search, and DVTS;(2) Sequential Revision: Reflection model with threshold-driven
re-generation;(3) Verifiers and Result Merging Methods: Scoring, list-wise, and majority voting;(4) Diversifying
Rollouts: Sampling across heterogeneous agents.

To ensure the model understands when reflection146

is needed, we use a verify model to objectively147

score each step of the model to represent the quality148

of the current step action, and set different score149

Threshold. If and only if the model action score150

is less than the Threshold, the Sumt is added into151

the LLM to generate the responses for time t. The152

prompt for Sequential Revision can be found in153

Appendix A.154

2.3 Verifiers and Merging Methods155

Verifiers To enable agents to receive positive156

feedback signals during the sampling process, we157

have designed two different process-based reward158

functions that evaluate the value of each sampling159

action.160

scoring PRM: We score each thought steps161

at each intermediate step t to revise the final re-162

sponse. For N thought steps {T1, T2, ..., TN} gen-163

erated at step t, we utilize a LLM as Reward164

Model (RM), to obtain the score of each response165

Si = RM(Tcurrent_i). The prompt for scoring166

PRM can be found in Appendix A.167

list-wise PRM: Another commonly used ver-168

ify method is to select the optimal trajectory169

through direct comparison. For N thought steps170

{T1, T2, . . . , TN} generated at step t, we provide171

all candidate actions to the LLM, asking it to172

select the optimal trajectory from among them, 173

Si = RM(Tcurrent_i). The prompt for list-wise 174

PRM can be found in Appendix A. 175

Result Merging Methods We compare main- 176

stream Result Merging approaches(Wang et al., 177

2024), including voting: Directly select the ma- 178

jority from all candidates, scoring: using verify 179

for direct scoring, and list-wise: where the model 180

directly selects the optimal answer from candidate 181

responses. 182

2.4 Diversifying Rollouts 183

The efficiency of Parallel Sampling Algorithms is 184

influenced by diversifying rollouts—more diverse 185

rollouts mean the agent has a greater chance of ex- 186

ploring and discovering the correct answer. LLMs 187

generate diverse candidates by controlling hyper- 188

parameters such as temperature and top_p. 189

However, in agent frameworks, employing multi- 190

agents to collaboratively accomplish the same task 191

often enhances task performance. To further in- 192

crease diversity in the agents’ sampling process, 193

we utilize different LLMs as rollout models. Differ- 194

ent LLMs often exhibit distinct capability profiles; 195

some excel in coding, while others demonstrate 196

exceptional performance in tool using. We have 197

designed various agent combinations to maximize 198

rollout diversity. 199
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Figure 2: A case study: Given one question, the agent performs operations such as coding and tool calls during a
single rollout, and returns diverse results. The judge agent will merge the final result and output the best answer.

3 Experiments200

3.1 Experiments Setting201

To thoroughly investigate the effects of TTS algo-202

rithms within the agentic framework, we conduct203

the following comparative experiments:204

Comparison of Different Parallel Sampling Al-205

gorithms In order to comprehensively compare206

different parallel sampling algorithms in the agentic207

framework, we select mainstream parallel sampling208

algorithms, including BON, BON-wise, Beam-209

Search, Tree search, and conduct comparative ex-210

periments under identical experimental settings.211

We ensure a sampling width of 4, and for Beam-212

Search and DVTS, we fix the beam size at 2.213

Comparison of Different Sequential Revision214

Strategies To investigate how self-reflection af-215

fects agent performance, focusing on when and216

how reflection should be applied. We set up the217

following two settings: Step-based Reflection: Re-218

flection is conducted at every step to enable con- 219

tinuous error correction. Score-based Reflection: 220

Initially, the Verify model scores each step of the 221

agent’s process. The agent performs reflection only 222

when a step’s score falls below a predefined thresh- 223

old. To further explore how the frequency of re- 224

flection affects performance, we conduct ablation 225

studies using three triggering thresholds: <8 (fre- 226

quent), <5 (moderate), and <2 (selective). 227

Comparison of Different Verifiers and Merging 228

Methods To investigate the impact of different 229

Verifiers and Merging Methods. First, we compare 230

the performance differences among three main- 231

stream result merging methods, and then, based 232

on the optimal result merging method, we compare 233

the effects of different verifiers. 234

Diversifying Rollouts We explore this influence 235

from two perspectives: on the one hand, we study 236

the differences in agent capabilities under differ- 237

ent sampling widths; on the other hand, we intro- 238
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duce multi-agent rollouts to explore the benefits239

of increasing rollout diversity. To further illustrate240

the impact of diversifying rollouts, we introduce241

the pass@K metric, which measures the proba-242

bility that at least one of K generated solutions243

for a problem is correct. This metric assesses the244

maximum capability a multi-agent collective can245

achieve when using different model compositions246

for its rollouts.247

3.2 Baseline248

We have compared the majority of existing agent249

frameworks(repository, 2022; Li, 2025; Liang et al.,250

2025; Hong et al., 2023) and selected Smola-251

gents(Face, 2025) as our baseline due to its sta-252

bility and superior performance. In this framework,253

agents take on different roles such as code actor and254

tool calling. In order to more intuitively compare255

the differences between various TTS algorithms,256

we remove the nesting of ToolAgent in the original257

smolagent framework and only use CodeAgent to258

directly call tools. We choose GPT-4.1(OpenAI,259

2025) as the baseline model for the majority of our260

experiments. Additionally, we select current state-261

of-the-art models including Claude-3-7(Anthropic,262

2025), Gemini-2.5-Pro(Google Cloud, 2025), and263

Claude-3-5(Anthropic, 2024) for comparative ex-264

periments involving mixed models.265

3.3 Benchmark266

We choose GAIA(Mialon et al., 2023) as our evalu-267

ation benchmark. The GAIA validation dataset con-268

tains 165 samples across three different difficulty269

levels. It primarily assesses agents’ capabilities in270

web search and handling multimodal files.271

4 Experimental Results272

4.1 Comparison of Different Parallel273

Sampling Algorithms274

Findings 1

The Parallel Sampling Algorithms signif-
icantly enhance agent performance.

275

As shown in Table 1, we present a comparison of276

using different parallel sampling algorithms against277

a baseline without any sampling algorithm. The278

experimental results demonstrate that by applying279

parallel sampling algorithms, agents can achieve280

superior performance. First, when comparing our281

baseline with the current open-source agent frame- 282

work, our baseline achieved a score of 55.76, on 283

par with the best existing framework, TapeAgent. 284

FurthermoreCompared to the baseline, BoN, BoN- 285

wise, and Beam-Search achieve significant perfor- 286

mance gains, while DVTS performs similarly to the 287

baseline. These results demonstrate the general ef- 288

fectiveness of Parallel Sampling Algorithms in the 289

agentic framework. Meanwhile, different parallel 290

sampling algorithms exhibit varying performance 291

characteristics. 292

The BoN algorithm achieves the best perfor- 293

mance gains, with an eight-point improvement over 294

the baseline, and achieves SOTA results on level 295

1 and level 2. These two levels are heavily depen- 296

dent on the agent’s ability to call and use tools. 297

Under the BoN algorithm, the agent is given more 298

opportunities to repeatedly attempt similar tasks, 299

which enhances performance particularly on sim- 300

pler and mid-level difficult problems. BoN-wise 301

achieves the second-best results after BoN, with a 302

three-point improvement over the baseline. In par- 303

ticular, BoN-wise achieves the best performance 304

on the most difficult level3 problems, surpassing 305

both the baseline and BoN. BoN-wise allows for 306

the largest exploration space at each decision node, 307

further demonstrating that increasing step-wise ex- 308

ploration leads to better performance on complex 309

tasks. 310

Notably, Beam-search and DVTS show no signif- 311

icant improvement over baseline. This is because 312

although these algorithms can significantly increase 313

the agent’s exploration space, their exploration also 314

depends on the accuracy of signals provided by the 315

verify model, which prevents the agent from stably 316

approaching the correct answers. 317

4.2 The impact of different Sequential 318

Revision Strategies 319

Findings 2

Understanding the opportune moments
for reflection is key to its profound bene-
fit.

320

As shown in Table 2, we first compare the base- 321

line agent with the reflection-enabled agent to as- 322

sess the effectiveness of self-reflection. The base- 323

line achieves an overall score of 55.76, while the 324

reflection scores slightly lower at 55.15, suggesting 325

that reflection, while enabling error correction, may 326

also disrupt the model’s reasoning flow. At Level 327

5



Table 1: Comparison with Open-Source Agentic Models and Open-Source Agent Frameworks. For the
open-source models and frameworks, we adopt the results reported in their official papers. For our method, we
consistently use GPT-4.1 as the base model for benchmarking.

Framework Model Family Average Level 1 Level 2 Level 3

Agentic Model

Search-o1-32B (Li et al., 2025a) - 39.8 53.8 34.6 16.7
WebThinker-32B-RL (Li et al., 2025b) - 48.5 56.4 50.0 16.7

Open-Source Agent Frameworks

TapeAgents (Bahdanau et al., 2024) Claude-3-7 etc 55.76 71.70 53.49 30.77
AutoAgent (Tang et al., 2025) Claude-3-5 etc 55.15 71.70 53.40 26.92
Open Deep Research (AI, 2025) OpenAI o1 55.15 67.92 53.49 34.62
Magnetic-1 (Fourney et al., 2024) OpenAI o1 etc 46.06 56.60 46.51 23.08
FRIDAY (Wu et al., 2024c) GPT-4 turbo 34.55 45.28 34.88 11.54
Smolagents (Face, 2025) Openai o1 etc 53.33 62.26 54.65 30.77

Parallel Sampling Algorithms

Baseline GPT-4.1 55.76 66.04 58.14 26.92
BoN GPT-4.1 63.03 77.36 63.95 30.77
BoN-wise GPT-4.1 58.79 69.23 58.62 38.46
Beam-Search GPT-4.1 56.97 69.81 55.81 34.62
DVTS GPT-4.1 55.76 58.49 62.79 26.92

1, reflection significantly improves performance328

(71.7), indicating its benefit for simple tasks where329

minor errors can be quickly corrected. However,330

at Level 2, reflection underperforms compared to331

the baseline, suggesting that moderate-complexity332

tasks are more susceptible to disruption from exces-333

sive introspection. At Level 3, reflection leads to a334

moderate improvement (34.62), showing its value335

in preventing critical failures in complex scenarios.336

Table 2: Performance with reflection

Search type Score Level 1 Level 2 Level 3

Baseline 55.76 66.04 58.14 26.92
Reflection 55.15 71.7 51.16 34.62

Threshold(<8) 53.33 66.04 53.49 26.92
Threshold(<5) 52.12 69.81 50.0 23.08
Threshold(<2) 56.36 71.7 55.81 26.92

337

As reflection introduces both benefits and poten-338

tial disruptions, we examine how varying the fre-339

quency of reflection impacts task execution across340

different levels of complexity. Frequent reflec-341

tion (threshold <8) results in the lowest overall342

score (53.66), particularly hurting performance at343

Level 2 due to reasoning interruptions. Moder-344

ate reflection (<5) yields even lower performance 345

(52.12), whereas selective reflection (<2) achieves 346

the best result (56.36), outperforming other strate- 347

gies across all levels. This indicates that restrict- 348

ing reflection to only the most critical steps min- 349

imizes disruption while still allowing meaningful 350

error correction. These findings suggest that ef- 351

fective use of reflection depends heavily on its 352

application frequency and timing—low-frequency, 353

context-aware reflection is most beneficial, espe- 354

cially for maintaining coherence in multi-step rea- 355

soning processes. 356

4.3 The impact of different verifiers and 357

result merging methods 358

Findings 3

The list-wise approach outperforms alter-
native methods in both verification and
result merging.

359

The impact of different result merging methods 360

As shown in Table 3, we first compare common re- 361

sult merging methods. For these three algorithms - 362

BoN, Beam-Search, and Tree Search - the list-wise 363

approach outperforms other approaches. This is 364
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because: 1) compared to scoring that directly relies365

on standard scoring, list-wise has comparable stan-366

dards for reference, making evaluation more accu-367

rate; and 2) compared to voting methods, list-wise368

not only considers majority options in the answers,369

but can also select potentially correct answers from370

diverse candidates.

Table 3: Comparing performance of different result
merging methods thought BoN and Beam-Search.

Search type voting Scoring list-wise

BoN 56.8 59.39 63.03
Beam-Search 54.55 53.94 56.97

371

The impact of different verify methods As372

shown in Table 4, we compare the effects of dif-373

ferent verification methods on agent performance.374

The list-wise verify method scores 3 points higher375

on average than the scoring, which indicates that,376

whether in BoN-wise or Beam-Search, using list-377

wise comparison of candidates is superior to the378

scoring approach. This suggests that, compared to379

directly having PRM score the agent’s trajectory380

(scoring), using a list-wise approach to have PRM381

select the relatively optimal trajectory can bring382

more precise benefits.

Table 4: Performance with different verify methods
across various search methods.

Search type Verify method Score

BoN-wise
scoring
list-wise

56.36
58.79

Beam-Search
scoring
list-wise

53.94
56.97

Tree-Search
scoring
list-wise

50.91
55.76

383

4.4 The impact of Diversifying Rollouts384

Findings 4

Increasing diversifying rollouts enhances
agent performance.

385

Performance with different search size Fig-386

ure 3 presents the performance variations of the387

agent under different sampling widths. The ex-388

perimental results demonstrate that increasing the389

agent’s sampling width leads to significant perfor- 390

mance improvements, a finding that aligns with 391

test-time scaling phenomena observed in the LLM 392

domain. 393

Figure 3: Performance comparison of BoN and BoN-
wise algorithms across different search sizes.

Performance with different rollout models To 394

further explore the impact of different rollout 395

models on Diversifying Rollouts, we measure the 396

pass@1 performance of SOTA models and calcu- 397

late their pass@2 and pass@4 performance when 398

combined with the baseline model GPT-4.1. 399

As shown in Table 5, under the pass@1 setting, 400

GPT-4.1 achieves the highest score. Notably, under 401

the pass@2 and pass@4 settings, using other mod- 402

els mixed with GPT-4.1 yields higher results than 403

using GPT-4.1 alone, which further demonstrates 404

the effectiveness of using different rollouts mod- 405

els. Additionally, using all four different models 406

achieves a total score of 74.55 for pass@4, reach- 407

ing a level that surpasses the open-source SOTA. 408

5 Related Work 409

Language Agents In previous research work, 410

many mature agentic frameworks have been estab- 411

lished, such as Meta-GPT(Hong et al., 2024) which 412

enables GPT to assume different roles and collab- 413

oratively complete tasks, LangChain(repository, 414

2022) which uses natural language to describe 415

tools and solve complex tasks, and AGENTS(Zhou 416

et al., 2023c) which, in addition to supporting ba- 417

sic tool calling and long-term memory, also sup- 418

ports human-agent interaction and controllability 419

through symbolic plans (SOPs). Recently, with the 420

emergence of OPENAI’s deep research concept, 421

numerous agentic frameworks have appeared, such 422

as Manus(Liang et al., 2025), OWL(Li, 2025), and 423

SmoLAgents(Face, 2025). These agentic frame- 424
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Table 5: Performance with different rollout models evaluated by Pass@K. Under each setting, the best performance
is indicated with underlining.

Model all level1 level2 level3

GPT-4.1 55.76 66.04 58.14 26.92
Claude-3-5 42.42 50.94 46.51 11.54
Claude-3-7 50.30 54.72 50.00 42.31
Gemini-2.5-PRO 41.82 54.72 41.86 15.38

Pass@2

GPT-4.1 only 60.49 70.59 60.00 42.31
GPT-4.1,Claude-3-5 64.24 71.70 69.77 30.77
GPT-4.1,Claude-3-7 64.24 71.70 63.95 50.00
GPT-4.1,Gemini-2.5-PRO 62.42 79.25 60.47 34.62

Pass@4

GPT-4.1 only 69.14 82.35 71.76 34.62
GPT-4.1,Claude-3-5, Gemini-2.5-PRO,Claude-3-7 74.55 86.79 74.42 50.00

works support collaborative work among various425

agents, decompose task inputs, conduct multi-step426

task planning, and invoke diverse tools to complete427

complex tasks. However, current agentic frame-428

works predominantly employ a single linear work-429

flow to solve problems and have not yet conducted430

an in-depth exploration of Test-Time-Scaling (TTS)431

capabilities.432

LLM Test-Time Scaling (Snell et al., 2024)433

propose that scaling LLMs Test-time Compute434

(Wu et al., 2025; Yu et al., 2025) optimally can435

be more effective than scaling model parameters.436

OpenAI’s o1 model1 is designed to spend more437

time reasoning before they respond for the sake438

of obtaining better performance. Recently, vari-439

ous TTS algorithms have emerged, such as Best-440

Of-N, Beam-Search, Tree-Search, and Majority-441

Vote (Liu et al., 2025c; Faria and Smith, 2025; Koh442

et al., 2024b). Moreover, (Kumar et al., 2024) and443

(Xiong et al., 2025) investigate enabling LLMs to444

perform self-reflection through self-rewarding and445

self-correlation mechanisms to enhance their per-446

formance.447

Besides, Some works(Snell et al., 2024; Wu448

et al., 2024b; Beeching et al., 2024b) design reward449

models to guide the trajectory selection process in450

LLM test-time scaling . (Chen et al., 2025) incor-451

porates deep thinking into reward models, while452

(Qian et al., 2025) uses RM for complex tool se-453

lection. (Liu et al., 2025b) and (Wu et al., 2024a)454

1https://openai.com/o1/

provide a comprehensive experimental analysis of 455

the LLM test-time scaling. However, test-time scal- 456

ing strategies have not yet been fully discussed 457

within agentic frameworks. 458

In this work, we investigate four key aspects 459

of test-time scaling strategies: parallel sampling 460

algorithms, sequential revision strategies, verifiers 461

and merging methods, and diversifying rollouts, 462

and conduct comprehensive ablation experiments 463

comparing various strategies within each aspect. 464

6 Conclusion 465

Test Time Scaling (TTS) can significantly enhance 466

LLM inference performance by increasing compu- 467

tational resources during the inference phase. How- 468

ever, the application of Test Time Scaling in the 469

agentic domain still needs to be explored. In this 470

paper, we explore four different aspects of test-time 471

scaling strategies: Parallel Sampling Algorithms; 472

Sequential Revision Strategies; Verifiers and Merg- 473

ing Methods; Strategies for Diversifying Rollouts. 474

We conduct detailed comparative ablation experi- 475

ments for strategies in each aspect. Our experimen- 476

tal results indicate: 1. Applying parallel sampling 477

algorithms to scale agent test time compute could 478

improve agent performance; 2. For sequential re- 479

vision, it is important to know when to revise; 3. 480

Among different verify and result merge methods; 481

list-wise methods perform best; 4. Increasing di- 482

versified rollouts exerts a positive benefit on agent, 483

which aligns with test-time scaling phenomena ob- 484

served in the LLM domain. 485
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Limitations486

In this work, due to resource constraints, we do487

not investigate the test-time scaling capabilities of488

open-source models within language agents. This489

work employs multiple LLMs to implement BoN490

(N=4), but how to more effectively expand the491

search space remains an open question for future492

research.493

Ethics Statement494

The dataset used in our research is constructed us-495

ing publicly available data sources, ensuring that496

there are no privacy concerns or violations. We497

do not collect any personally identifiable informa-498

tion, and all data used in our research is obtained499

following legal and ethical standards.500
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A Appendix 691

PRM-score Evaluation Prompt

Evaluation Guidelines:

• Objective:

– You will evaluate a candidate ActionStep node, which includes the following fields:

* step_number: Depth of this step within the TTS search tree.
* observations: Observations recorded after executing this action.
* action_output: Direct output resulting from this action.
* model_output: Raw LLM output that led to this action.
* error: Any encountered errors (can be None).
* score: Previously assigned score (for reference only).
* previous_steps: The history of earlier steps, including TaskStep and PlanningStep, along with the

trajectory of ActionSteps leading to the current state.
– Your goal is to judge how promising this ActionStep is for advancing toward the user’s task, using your

independent judgment while considering the continuity and logical flow of the ActionStep sequence,
including the historical context.

• Evaluation Criteria:

– Progress Toward Goal:
* Assess whether the action_output clearly and tangibly advances the overall task.
* Reward meaningful progress or valuable new information.
* Penalize irrelevant actions or weak impact.

– Error and Stability:
* Penalize based on the severity of errors:

· Fatal/blocking errors: 0-1 points.
· Significant errors: 1-3 points.
· Minor or recoverable errors: 3-5 points.

* Reduce the score if the model_output is ambiguous or unstable.
– TTS Efficiency:

* Reward actions that contribute efficiently toward reaching the goal.
* Penalize redundant or repetitive actions without meaningful progress.

– Reflection Usage:
* Reward active utilization of reflection to improve upon past mistakes.
* Penalize ignoring reflection insights.

– Loop Detection:
* Detect loops or repetitions compared to previous steps.
* Identify true loops and penalize based on severity.

– Contextual Awareness:
* Infer alignment with previous PlanningStep and TaskStep.
* Ensure consistency with the TTS strategy and penalize deviations.

• Scoring Criteria:

– 9-10: Clearly advances the goal; highly efficient; strong reflection use; no loops.
– 7-8: Good advancement; minor inefficiencies; clear reflection use; minimal loop risk.
– 5-6: Moderate progress; limited efficiency; moderate reflection use; mild repetition risks.
– 3-4: Poor advancement; inefficient; weak reflection use; noticeable loop risks.
– 1-2: Minimal advancement; repetitive actions; true loops; significant errors.
– 0: Severe issues: explicit loops, critical errors, or complete irrelevance to the task context.

• Final Evaluation Output: You must provide your evaluation in valid JSON format with the following structure:

{ "analysis": "Detailed analysis addressing progress, TTS efficiency, reflection
usage, loop detection, contextual alignment with PlanningStep/TaskStep, error
severity, and overall action quality.", "score": [integer between 0-10] }

692
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PRM-list Evaluation Prompt

Evaluation Guidelines:

• Objective:

– You will evaluate N candidate trajectories, each representing a series of nodes in a search tree. Each
trajectory contains the following:

* step_number: Depth of the node in the trajectory.
* observations: Observations recorded at each step of the trajectory.
* action_output: Direct action output at each step.
* model_output: Raw model output (LLM).
* error: Any errors encountered (can be None).
* score: Previously calculated score (if available).
* previous_steps: The history of earlier steps, including TaskStep and PlanningStep, with the trajectory

of ActionSteps leading to the current state.
– Your goal is to evaluate each trajectory holistically, considering how well it progresses toward solving the

user’s task. Select the trajectory that most effectively achieves this goal.

• Evaluation Criteria:

– Progress Toward Goal:
* Assess how well each trajectory advances the task at hand, considering both the individual node’s

progress and the overall progression of the entire trajectory.
* Reward trajectories that demonstrate tangible and meaningful progress toward the goal.
* Penalize trajectories with weak actions or minimal/no advancement.

– Trajectory Efficiency:
* Evaluate how efficiently each trajectory progresses toward the goal, considering the depth and complex-

ity of the steps.
* Favor trajectories that achieve significant progress with fewer steps.
* Consider the overall value-to-depth ratio when comparing trajectories of different lengths.
* Reward efficient exploration of the search space.

– Loop Detection:
* Detect loops or repetitions within each trajectory, especially those related to previous steps.
* Loop types:

· Real Loops: Identical nodes (observations, action output, and model output) that do not add value
to the trajectory.

· Benign Repetitions: Similar strategies with variations yielding additional progress.
* Heavily penalize trajectories with real loops.
* Slight penalties for benign repetitions if they lead to meaningful improvements.

– Error and Stability:
* Evaluate the severity of errors encountered in each trajectory and penalize based on their impact on

progression.
* Error Severity:

· Fatal/Blocking Errors: Major penalty.
· Significant Errors: Moderate penalty.
· Minor/Recoverable Issues: Minor penalty.

* Penalize unstable or unclear model outputs.
* Consider how errors affect the overall trajectory’s ability to move toward the goal.

– Overall Trajectory Quality:
* Evaluate the coherence and overall quality of the trajectory.
* Consider the logical sequence of steps and the exploration-exploitation balance.
* Evaluate the final node’s closeness to achieving the goal.
* Reward trajectories that make consistent progress and demonstrate coherent planning.

• Final Output Format: Provide your evaluation in the following JSON format. Select the best trajectory and
provide a detailed analysis explaining why it is the most promising trajectory.

{ "index": [integer], # Index of the best trajectory "analysis": "Detailed
analysis addressing progress, efficiency, reflection usage, loop detection, error
severity, and overall trajectory quality." }
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Single Node Reflection Prompt

Node Information:

• step_number: The depth of the node within the BON/beam search tree.

• observations: The data or observations recorded during this step.

• action_output: The direct output resulting from an action taken at this step (e.g., API call, tool response).

• model_output: The raw output generated by the model at this step.

• error: Any errors encountered during this step (if applicable).

Goal:

• Summarize:

– Provide a brief overview of what occurred at this node.
– Describe the action taken and the results or new information that emerged as a result of this action.

• Reflect:

– Assess whether the action taken in this node was successful, partially successful, or unsuccessful.
– Identify any errors, issues, or incompleteness relevant to this step.
– Compare the node’s outcome with its assigned score, providing an evaluation of whether the score is aligned

with the actual result.

• Confidence:

– Evaluate your confidence in the action taken at this node (High/Medium/Low).
– If confidence is high, explicitly suggest continuing along this exploration path.
– If confidence is medium or low, recommend potential improvements or alternatives, while leaving room for

exploration to remain open.

• Suggest:

– Provide specific and focused suggestions for refining the current step.
– These should be based on the evaluation of the current node, with an emphasis on actionable changes that

can be made in the next attempt of a similar step.
– Focus exclusively on improvements that can be applied within this node. Avoid proposing changes that span

multiple steps or introduce larger, long-term strategies.
– Base your evaluation strictly on the provided fields—action_output, observations, error, etc. Do not infer

additional context or hypothesize about alternative paths or unknown factors.
– Only flag a step as unsuccessful or in need of improvement if there is clear, tangible evidence (e.g., explicit

errors, missing or incorrect outputs).
– Do not override factual results based on subjective judgment, even if the node’s score does not seem to

match the outcome.

• General Guidelines:

– Your suggestions should be conservative, focusing only on changes where there is a clear issue or opportunity
for improvement.

– If no significant issues are identified, provide minimal or no suggestions for improvement.

Output Format:

• experience_summary: A concise overview of the events at this node and the key outcomes.

• confidence_assessment: High/Medium/Low with a recommendation for future exploration.

• lessons_learned: Key takeaways or specific improvements based on the evaluation of the current node’s action.

• comments: Optional minor remarks, clarifications, or additional observations.
694
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