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Abstract

Scaling test-time compute has shown remark-
able success in improving the reasoning abili-
ties of large language models (LLMs). In this
work, we conduct the first systematic explo-
ration of applying test-time scaling methods to
language agents and investigate the extent to
which it improves their effectiveness. Specif-
ically, we explore different test-time scaling
strategies, including: (1) parallel sampling al-
gorithms; (2) sequential revision strategies; (3)
verifiers and merging methods; (4) strategies
for diversifying rollouts. We carefully ana-
lyze and ablate the impact of different design
strategies on applying test-time scaling on lan-
guage agents, and have the following findings:
1. Scaling test time compute could improve
the performance of agents. 2. Knowing when
to reflect is important for agents. 3. Among
different verification and result merging ap-
proaches, the list-wise method performs best.
4. Increasing diversified rollouts exerts a pos-
itive effect on the agent’s task performance.
All code are available at https://anonymous.
4open.science/r/ATTS-D74F.

1 Introduction

Language agents demonstrate exceptional capa-
bilities in various domains (Tang et al., 2025;
Zhou et al., 2023b; Hong et al., 2023; Face,
2025; Zhou et al., 2023c, 2024). For example,
LangChain(repository, 2022) connects LLMs with
various tools to solve different tasks in an end-to-
end manner, while Meta-GPT(Hong et al., 2023)
enables multiple Al Agents to take on different
roles and collaborate to accomplish tasks. Recently,
long-thinking models like O1 (Jaech et al., 2024)
and R1 (Guo et al., 2025) showcase excellent rea-
soning abilities of Large Language Models (LLMs).
Recent approaches (Li, 2025; Liang et al., 2025)
leverage the extended thinking capabilities of long-
activation models for planning, code writing, tool
calling, and completing complex tasks. However,

despite the strong capabilities of LLMs, they still
struggle to match human performance in complex
search and reasoning tasks (Zhou et al., 2023a; Koh
et al., 2024a). This occurs due to remaining limita-
tions in model capabilities, errors in task planning
and question answering, and issues with complex
tool calling abilities.

Increasing computational resources during the
inference phase greatly enhances LLMs’ perfor-
mance. Some works (Liu et al., 2025a,b) improve
model exploration during inference through differ-
ent sampling strategies, achieving excellent scores
in challenging areas like mathematical reasoning.
(Snell et al., 2024) investigate the effects of scaling
test-time computate, while (Xiong et al., 2025) fo-
cus on enhancing model performance through self-
correction methods. However, directly applying
TTS methods to the Agentic Framework presents
many challenges. Unlike LLMs that solve specific
problems in an end-to-end manner, agents typically
decompose complex problems into distinct steps,
invoking multiple models sequentially for resolu-
tion. Due to the extended sequence of steps and
the accumulation of errors, traditional TTS meth-
ods (e.g., BoN) can significantly undermine the
final outcome, because they randomly generate N
responses at each step.

To address the aforementioned challenges, we
first conduct a systematic exploration of test-time
scaling methods for language agents. First, we
investigate the effectiveness of different parallel
sampling methods for agentic test-time scaling, in-
cluding variants of Best-of-N (BoN), beam search,
and tree search algorithms. We adapt and imple-
ment these parallel sampling mechanisms within
language agents and showing that despite simplic-
ity, BoN achieves the optimal performance. Subse-
quently, we investigate the effectiveness of various
sequential revision techniques, such as reflection
and self-refinement, for language agents. We in-
troduce a reflection agent to summarize and reflect
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based on the current state and recent actions/obser-
vations to help the agent consistently progress to-
ward accomplishing the task. Experimental results
show that the direct gains from having the agent
perform reflection at each step are not obvious.
Instead, allowing the agent to perform reflection
when it performs poorly in the current step brings
certain benefits. This indicates that knowing when
the agent should reflect is more important than
having the agent perform reflection at every step
directly. Finally, we conduct a detailed study on
the impact of different verify and result merging
methods, including voting (selection of the major-
ity from all candidates), scoring (selection based
on scores), and list-wise (comparative selection of
the optimal item from candidates) approaches. Our
experimental results demonstrate that whether for
merge results methods or verify methods, using the
list-wise method outperforms other methods. This
provides an effective verification method reference
for agentic frameworks. Finally, we test different
strategies to expand the agent’s exploration space
and enhance the diversity of different rollouts, and
propose a multi-agent collaborative sampling strat-
egy. Experimental results indicate that performance
under multi-agent collaboration surpasses that of a
single agent.
Our core contributions are:

* We explore the application of different paral-
lel sampling strategies in agentic frameworks.
Through parallel sampling strategies, agent
performance can be significantly improved.

* We study the impact of sequential revision
techniques in agentic frameworks. In partic-
ular, we point out that it is very important
for agents to know when they should perform
revision.

* We also conduct detailed comparative analysis
of different verify and result merge strategies.
Experiments show that the list-wise method
significantly outperforms other methods.

2 Agentic Test-Time Scaling

In this section, we describe and compare different
strategies for agentic test-time scaling, including:
(1) Parallel Sampling Algorithms; (2) Sequential
Revision Strategies; (3) Verifier and Result Merg-
ing Methods; (4) Strategies for Diversifying Roll-
outs.

2.1 Parallel Sampling Algorithms

To establish a comprehensive evaluation framework
for our proposed methods, we regard several paral-
lel sampling algorithms that are commonly used in
the test-time scaling (TTS) domain as baselines.

Best-of-N (BoN)(Faria and Smith, 2025): Give
a sample times N and question (), the Best-of-N
(BoN) method samples N independent responses
from the LLMs:

{Rlv R?a ceey RN} = BON(Q)a

Then selects the best answer by verifier. The ef-
fectiveness of BoN relies heavily on the quality
of the reward model and the diversity of sampled
candidates.

Step-wise-Best-of-N (BoN-wise)(Wu et al.,,
2024a): BoN-wise generates N responses at
each step.  Specifically, given the thoughts
{T1,T2,...,T;_1} from the previous step at time
t, BoN-wise generate /N responses:

{Rl, Rg, ceey RN} = BON—WiSC(Q, Tl, TQ, ceey thl),

Beam Search(Yao et al., 2023): Beam search
maintains a fixed-size beam K at each step. Specif-
ically, at time ¢, it generates /N responses for each
leaf nodes L N;, then maintains the most suitable
K responses that :

{R1, Ry, ..., Rx'} = BeamSearch(Q, LN;)

Most promising partial solutions at each gener-
ation step. This algorithm prunes less promising
candidates early in the generation process based on
cumulative log-probabilities or reward scores.

DVTS (Diverse Verifier Tree Search) (Beech-
ing et al., 2024a): DVTS decomposes the task into
K subtrees, where each subtree operates as an in-
dependent beam search algorithm. By exploring
multiple subtrees in parallel, DVTS achieves more
diverse search behavior. Under the same computa-
tional budget, it finds higher-quality solutions more
effectively than a single beam search with deep
exploration.

{R1, Ra, ..., Rk} = DVTS(Q, SubTree;)

2.2 Sequential Revision Strategies

Besides, given the previous steps {74, 75, ..., Tt—1}
at time ¢, we leverage a reflection model RefM, to
summarize information:

Sumt = RefM(Tl, TQ, vy thl)-
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Figure 1: Overview of our agentic test-time scaling framework with four key strategies: (1) Parallel Sampling:
BoN, BoN-wise, Beam Search, and DVTS;(2) Sequential Revision: Reflection model with threshold-driven
re-generation;(3) Verifiers and Result Merging Methods: Scoring, list-wise, and majority voting;(4) Diversifying

Rollouts: Sampling across heterogeneous agents.

To ensure the model understands when reflection
is needed, we use a verify model to objectively
score each step of the model to represent the quality
of the current step action, and set different score
Threshold. If and only if the model action score
is less than the T'hreshold, the Sum; is added into
the LLM to generate the responses for time ¢. The
prompt for Sequential Revision can be found in
Appendix A.

2.3 Verifiers and Merging Methods

Verifiers To enable agents to receive positive
feedback signals during the sampling process, we
have designed two different process-based reward
functions that evaluate the value of each sampling
action.

scoring PRM: We score each thought steps
at each intermediate step ¢ to revise the final re-
sponse. For N thought steps {71, T%, ..., Ty} gen-
erated at step ¢, we utilize a LLM as Reward
Model (RM), to obtain the score of each response
S; = RM (Teyrrent i) The prompt for scoring
PRM can be found in Appendix A.

list-wise PRM: Another commonly used ver-
ify method is to select the optimal trajectory
through direct comparison. For N thought steps
{T1, Ty, ..., Tn} generated at step ¢, we provide
all candidate actions to the LLM, asking it to

select the optimal trajectory from among them,
Si = RM(Tiurrent i)- The prompt for list-wise
PRM can be found in Appendix A.

Result Merging Methods We compare main-
stream Result Merging approaches(Wang et al.,
2024), including voting: Directly select the ma-
jority from all candidates, scoring: using verify
for direct scoring, and list-wise: where the model
directly selects the optimal answer from candidate
responses.

2.4 Diversifying Rollouts

The efficiency of Parallel Sampling Algorithms is
influenced by diversifying rollouts—more diverse
rollouts mean the agent has a greater chance of ex-
ploring and discovering the correct answer. LLMs
generate diverse candidates by controlling hyper-
parameters such as temperature and top_p.

However, in agent frameworks, employing multi-
agents to collaboratively accomplish the same task
often enhances task performance. To further in-
crease diversity in the agents’ sampling process,
we utilize different LLMs as rollout models. Differ-
ent LLMs often exhibit distinct capability profiles;
some excel in coding, while others demonstrate
exceptional performance in tool using. We have
designed various agent combinations to maximize
rollout diversity.
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Figure 2: A case study: Given one question, the agent performs operations such as coding and tool calls during a
single rollout, and returns diverse results. The judge agent will merge the final result and output the best answer.

3 Experiments

3.1 Experiments Setting

To thoroughly investigate the effects of TTS algo-
rithms within the agentic framework, we conduct
the following comparative experiments:

Comparison of Different Parallel Sampling Al-
gorithms In order to comprehensively compare
different parallel sampling algorithms in the agentic
framework, we select mainstream parallel sampling
algorithms, including BON, BON-wise, Beam-
Search, Tree search, and conduct comparative ex-
periments under identical experimental settings.
We ensure a sampling width of 4, and for Beam-
Search and DVTS, we fix the beam size at 2.

Comparison of Different Sequential Revision
Strategies To investigate how self-reflection af-
fects agent performance, focusing on when and
how reflection should be applied. We set up the
following two settings: Step-based Reflection: Re-

flection is conducted at every step to enable con-
tinuous error correction. Score-based Reflection:
Initially, the Verify model scores each step of the
agent’s process. The agent performs reflection only
when a step’s score falls below a predefined thresh-
old. To further explore how the frequency of re-
flection affects performance, we conduct ablation
studies using three triggering thresholds: <8 (fre-
quent), <5 (moderate), and <2 (selective).

Comparison of Different Verifiers and Merging
Methods To investigate the impact of different
Verifiers and Merging Methods. First, we compare
the performance differences among three main-
stream result merging methods, and then, based
on the optimal result merging method, we compare
the effects of different verifiers.

Diversifying Rollouts We explore this influence
from two perspectives: on the one hand, we study
the differences in agent capabilities under differ-
ent sampling widths; on the other hand, we intro-



duce multi-agent rollouts to explore the benefits
of increasing rollout diversity. To further illustrate
the impact of diversifying rollouts, we introduce
the pass@K metric, which measures the proba-
bility that at least one of K generated solutions
for a problem is correct. This metric assesses the
maximum capability a multi-agent collective can
achieve when using different model compositions
for its rollouts.

3.2 Baseline

We have compared the majority of existing agent
frameworks(repository, 2022; Li, 2025; Liang et al.,
2025; Hong et al., 2023) and selected Smola-
gents(Face, 2025) as our baseline due to its sta-
bility and superior performance. In this framework,
agents take on different roles such as code actor and
tool calling. In order to more intuitively compare
the differences between various TTS algorithms,
we remove the nesting of ToolAgent in the original
smolagent framework and only use CodeAgent to
directly call tools. We choose GPT-4.1(OpenAl,
2025) as the baseline model for the majority of our
experiments. Additionally, we select current state-
of-the-art models including Claude-3-7(Anthropic,
2025), Gemini-2.5-Pro(Google Cloud, 2025), and
Claude-3-5(Anthropic, 2024) for comparative ex-
periments involving mixed models.

3.3 Benchmark

We choose GAIA(Mialon et al., 2023) as our evalu-
ation benchmark. The GAIA validation dataset con-
tains 165 samples across three different difficulty
levels. It primarily assesses agents’ capabilities in
web search and handling multimodal files.

4 Experimental Results

4.1 Comparison of Different Parallel
Sampling Algorithms

Findings 1

The Parallel Sampling Algorithms signif-
icantly enhance agent performance.

As shown in Table 1, we present a comparison of
using different parallel sampling algorithms against
a baseline without any sampling algorithm. The
experimental results demonstrate that by applying
parallel sampling algorithms, agents can achieve
superior performance. First, when comparing our

baseline with the current open-source agent frame-
work, our baseline achieved a score of 55.76, on
par with the best existing framework, TapeAgent.
FurthermoreCompared to the baseline, BoN, BoN-
wise, and Beam-Search achieve significant perfor-
mance gains, while DVTS performs similarly to the
baseline. These results demonstrate the general ef-
fectiveness of Parallel Sampling Algorithms in the
agentic framework. Meanwhile, different parallel
sampling algorithms exhibit varying performance
characteristics.

The BoN algorithm achieves the best perfor-
mance gains, with an eight-point improvement over
the baseline, and achieves SOTA results on level
1 and level 2. These two levels are heavily depen-
dent on the agent’s ability to call and use tools.
Under the BoN algorithm, the agent is given more
opportunities to repeatedly attempt similar tasks,
which enhances performance particularly on sim-
pler and mid-level difficult problems. BoN-wise
achieves the second-best results after BoN, with a
three-point improvement over the baseline. In par-
ticular, BoN-wise achieves the best performance
on the most difficult level3 problems, surpassing
both the baseline and BoN. BoN-wise allows for
the largest exploration space at each decision node,
further demonstrating that increasing step-wise ex-
ploration leads to better performance on complex
tasks.

Notably, Beam-search and DVTS show no signif-
icant improvement over baseline. This is because
although these algorithms can significantly increase
the agent’s exploration space, their exploration also
depends on the accuracy of signals provided by the
verify model, which prevents the agent from stably
approaching the correct answers.

4.2 The impact of different Sequential
Revision Strategies

Findings 2

Understanding the opportune moments
for reflection is key to its profound bene-
fit.

As shown in Table 2, we first compare the base-
line agent with the reflection-enabled agent to as-
sess the effectiveness of self-reflection. The base-
line achieves an overall score of 55.76, while the
reflection scores slightly lower at 55.15, suggesting
that reflection, while enabling error correction, may
also disrupt the model’s reasoning flow. At Level



Table 1: Comparison with Open-Source Agentic Models and Open-Source Agent Frameworks. For the
open-source models and frameworks, we adopt the results reported in their official papers. For our method, we
consistently use GPT-4.1 as the base model for benchmarking.

Framework Model Family Average Levell Level2 Level3
Agentic Model

Search-01-32B (Li et al., 2025a) - 39.8 53.8 34.6 16.7
WebThinker-32B-RL (Li et al., 2025b) - 48.5 56.4 50.0 16.7
Open-Source Agent Frameworks

TapeAgents (Bahdanau et al., 2024) Claude-3-7 etc 55.76 71.70 53.49 30.77
AutoAgent (Tang et al., 2025) Claude-3-5 etc  55.15 71.70 53.40 26.92
Open Deep Research (Al 2025) OpenAl ol 55.15 67.92 53.49 34.62
Magnetic-1 (Fourney et al., 2024) OpenAlol etc  46.06 56.60 46.51 23.08
FRIDAY (Wu et al., 2024c) GPT-4 turbo 34.55 45.28 34.88 11.54
Smolagents (Face, 2025) Openai ol efc 53.33 62.26 54.65 30.77
Farallel Sampling Algorithms

Baseline GPT-4.1 55.76 66.04 58.14 26.92
BoN GPT-4.1 63.03 77.36 63.95 30.77
BoN-wise GPT4.1 58.79 69.23 58.62 38.46
Beam-Search GPT-4.1 56.97 69.81 55.81 34.62
DVTS GPT-4.1 55.76 58.49 62.79 26.92

1, reflection significantly improves performance
(71.7), indicating its benefit for simple tasks where
minor errors can be quickly corrected. However,
at Level 2, reflection underperforms compared to
the baseline, suggesting that moderate-complexity
tasks are more susceptible to disruption from exces-
sive introspection. At Level 3, reflection leads to a
moderate improvement (34.62), showing its value
in preventing critical failures in complex scenarios.

Table 2: Performance with reflection

Search type Score Levell Level2 Level3
Baseline 55.76  66.04 58.14 26.92
Reflection 55.15 71.7 51.16 34.62
Threshold(<8) 53.33  66.04 53.49 26.92
Threshold(<5) 52.12  69.81 50.0 23.08
Threshold(<2) 56.36  71.7 55.81 26.92

As reflection introduces both benefits and poten-
tial disruptions, we examine how varying the fre-
quency of reflection impacts task execution across
different levels of complexity. Frequent reflec-
tion (threshold <8) results in the lowest overall
score (53.66), particularly hurting performance at
Level 2 due to reasoning interruptions. Moder-

ate reflection (<5) yields even lower performance
(52.12), whereas selective reflection (<2) achieves
the best result (56.36), outperforming other strate-
gies across all levels. This indicates that restrict-
ing reflection to only the most critical steps min-
imizes disruption while still allowing meaningful
error correction. These findings suggest that ef-
fective use of reflection depends heavily on its
application frequency and timing—Ilow-frequency,
context-aware reflection is most beneficial, espe-
cially for maintaining coherence in multi-step rea-
soning processes.

4.3 The impact of different verifiers and
result merging methods

Findings 3

The list-wise approach outperforms alter-
native methods in both verification and
result merging.

The impact of different result merging methods
As shown in Table 3, we first compare common re-
sult merging methods. For these three algorithms -
BoN, Beam-Search, and Tree Search - the list-wise
approach outperforms other approaches. This is



because: 1) compared to scoring that directly relies
on standard scoring, list-wise has comparable stan-
dards for reference, making evaluation more accu-
rate; and 2) compared to voting methods, list-wise
not only considers majority options in the answers,
but can also select potentially correct answers from
diverse candidates.

Table 3: Comparing performance of different result
merging methods thought BoN and Beam-Search.

Search type voting Scoring list-wise
BoN 56.8 59.39 63.03
Beam-Search  54.55 53.94 56.97

The impact of different verify methods As
shown in Table 4, we compare the effects of dif-
ferent verification methods on agent performance.
The list-wise verify method scores 3 points higher
on average than the scoring, which indicates that,
whether in BoN-wise or Beam-Search, using list-
wise comparison of candidates is superior to the
scoring approach. This suggests that, compared to
directly having PRM score the agent’s trajectory
(scoring), using a list-wise approach to have PRM
select the relatively optimal trajectory can bring
more precise benefits.

Table 4: Performance with different verify methods
across various search methods.

Search type  Verify method Score
e
s
2

4.4 The impact of Diversifying Rollouts

Findings 4

Increasing diversifying rollouts enhances
agent performance.

Performance with different search size Fig-
ure 3 presents the performance variations of the
agent under different sampling widths. The ex-
perimental results demonstrate that increasing the

agent’s sampling width leads to significant perfor-
mance improvements, a finding that aligns with
test-time scaling phenomena observed in the LLM
domain.
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Figure 3: Performance comparison of BoN and BoN-
wise algorithms across different search sizes.

Performance with different rollout models To
further explore the impact of different rollout
models on Diversifying Rollouts, we measure the
pass@1 performance of SOTA models and calcu-
late their pass@2 and pass @4 performance when
combined with the baseline model GPT-4.1.

As shown in Table 5, under the pass@1 setting,
GPT-4.1 achieves the highest score. Notably, under
the pass@2 and pass @4 settings, using other mod-
els mixed with GPT-4.1 yields higher results than
using GPT-4.1 alone, which further demonstrates
the effectiveness of using different rollouts mod-
els. Additionally, using all four different models
achieves a total score of 74.55 for pass @4, reach-
ing a level that surpasses the open-source SOTA.

5 Related Work

Language Agents In previous research work,
many mature agentic frameworks have been estab-
lished, such as Meta-GPT(Hong et al., 2024) which
enables GPT to assume different roles and collab-
oratively complete tasks, LangChain(repository,
2022) which uses natural language to describe
tools and solve complex tasks, and AGENTS(Zhou
et al., 2023c) which, in addition to supporting ba-
sic tool calling and long-term memory, also sup-
ports human-agent interaction and controllability
through symbolic plans (SOPs). Recently, with the
emergence of OPENAI’s deep research concept,
numerous agentic frameworks have appeared, such
as Manus(Liang et al., 2025), OWL(L1i, 2025), and
SmoL.Agents(Face, 2025). These agentic frame-



Table 5: Performance with different rollout models evaluated by Pass@K. Under each setting, the best performance

is indicated with underlining.

Model all levell level2 level3
GPT-4.1 55.76 66.04 58.14 26.92
Claude-3-5 4242 5094 4651 11.54
Claude-3-7 50.30 54.72 50.00 42.31
Gemini-2.5-PRO 41.82 5472 41.86 15.38
Pass@?2

GPT-4.1 only 6049 70.59 60.00 42.31
GPT-4.1,Claude-3-5 64.24 71.70 69.77 30.77
GPT-4.1,Claude-3-7 6424 7170 63.95 50.00
GPT-4.1,Gemini-2.5-PRO 6242 79.25 6047 34.62
Pass @4

GPT-4.1 only 69.14 8235 71.76 34.62
GPT-4.1,Claude-3-5, Gemini-2.5-PRO,Claude-3-7 74.55 86.79 74.42 50.00

works support collaborative work among various
agents, decompose task inputs, conduct multi-step
task planning, and invoke diverse tools to complete
complex tasks. However, current agentic frame-
works predominantly employ a single linear work-
flow to solve problems and have not yet conducted
an in-depth exploration of Test-Time-Scaling (TTS)
capabilities.

LLM Test-Time Scaling (Snell et al., 2024)
propose that scaling LLMs Test-time Compute
(Wu et al., 2025; Yu et al., 2025) optimally can
be more effective than scaling model parameters.
OpenAI’s ol model' is designed to spend more
time reasoning before they respond for the sake
of obtaining better performance. Recently, vari-
ous TTS algorithms have emerged, such as Best-
Of-N, Beam-Search, Tree-Search, and Majority-
Vote (Liu et al., 2025¢; Faria and Smith, 2025; Koh
et al., 2024b). Moreover, (Kumar et al., 2024) and
(Xiong et al., 2025) investigate enabling LLMs to
perform self-reflection through self-rewarding and
self-correlation mechanisms to enhance their per-
formance.

Besides, Some works(Snell et al., 2024; Wu
et al., 2024b; Beeching et al., 2024b) design reward
models to guide the trajectory selection process in
LLM test-time scaling . (Chen et al., 2025) incor-
porates deep thinking into reward models, while
(Qian et al., 2025) uses RM for complex tool se-
lection. (Liu et al., 2025b) and (Wu et al., 2024a)

'https ://openai.com/ol1/

provide a comprehensive experimental analysis of
the LLM test-time scaling. However, test-time scal-
ing strategies have not yet been fully discussed
within agentic frameworks.

In this work, we investigate four key aspects
of test-time scaling strategies: parallel sampling
algorithms, sequential revision strategies, verifiers
and merging methods, and diversifying rollouts,
and conduct comprehensive ablation experiments
comparing various strategies within each aspect.

6 Conclusion

Test Time Scaling (TTS) can significantly enhance
LLM inference performance by increasing compu-
tational resources during the inference phase. How-
ever, the application of Test Time Scaling in the
agentic domain still needs to be explored. In this
paper, we explore four different aspects of test-time
scaling strategies: Parallel Sampling Algorithms;
Sequential Revision Strategies; Verifiers and Merg-
ing Methods; Strategies for Diversifying Rollouts.
We conduct detailed comparative ablation experi-
ments for strategies in each aspect. Our experimen-
tal results indicate: 1. Applying parallel sampling
algorithms to scale agent test time compute could
improve agent performance; 2. For sequential re-
vision, it is important to know when to revise; 3.
Among different verify and result merge methods;
list-wise methods perform best; 4. Increasing di-
versified rollouts exerts a positive benefit on agent,
which aligns with test-time scaling phenomena ob-
served in the LLM domain.
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Limitations

In this work, due to resource constraints, we do
not investigate the test-time scaling capabilities of
open-source models within language agents. This
work employs multiple LLMs to implement BoN
(N=4), but how to more effectively expand the
search space remains an open question for future
research.

Ethics Statement

The dataset used in our research is constructed us-
ing publicly available data sources, ensuring that
there are no privacy concerns or violations. We
do not collect any personally identifiable informa-
tion, and all data used in our research is obtained
following legal and ethical standards.
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A Appendix

PRM-score Evaluation Prompt

Evaluation Guidelines:
¢ Objective:

— You will evaluate a candidate ActionStep node, which includes the following fields:
% step_number: Depth of this step within the TTS search tree.

observations: Observations recorded after executing this action.

action_output: Direct output resulting from this action.

model_output: Raw LLM output that led to this action.

error: Any encountered errors (can be None).

score: Previously assigned score (for reference only).

previous_steps: The history of earlier steps, including TaskStep and PlanningStep, along with the

trajectory of ActionSteps leading to the current state.

— Your goal is to judge how promising this ActionStep is for advancing toward the user’s task, using your
independent judgment while considering the continuity and logical flow of the ActionStep sequence,
including the historical context.

L SR R

¢ Evaluation Criteria:

Progress Toward Goal:
# Assess whether the action_output clearly and tangibly advances the overall task.
+ Reward meaningful progress or valuable new information.
% Penalize irrelevant actions or weak impact.
Error and Stability:
+ Penalize based on the severity of errors:
- Fatal/blocking errors: 0-1 points.
- Significant errors: 1-3 points.
- Minor or recoverable errors: 3-5 points.
+ Reduce the score if the model_output is ambiguous or unstable.
— TTS Efficiency:
% Reward actions that contribute efficiently toward reaching the goal.
+ Penalize redundant or repetitive actions without meaningful progress.

Reflection Usage:
+ Reward active utilization of reflection to improve upon past mistakes.
+ Penalize ignoring reflection insights.
Loop Detection:
x Detect loops or repetitions compared to previous steps.
% Identify true loops and penalize based on severity.
Contextual Awareness:
+ Infer alignment with previous PlanningStep and TaskStep.
* Ensure consistency with the TTS strategy and penalize deviations.

¢ Scoring Criteria:

9-10: Clearly advances the goal; highly efficient; strong reflection use; no loops.

— 7-8: Good advancement; minor inefficiencies; clear reflection use; minimal loop risk.

— 5-6: Moderate progress; limited efficiency; moderate reflection use; mild repetition risks.
— 3-4: Poor advancement; inefficient; weak reflection use; noticeable loop risks.

— 1-2: Minimal advancement; repetitive actions; true loops; significant errors.

— 0: Severe issues: explicit loops, critical errors, or complete irrelevance to the task context.

 Final Evaluation Qutput: You must provide your evaluation in valid JSON format with the following structure:

{ "analysis": "Detailed analysis addressing progress, TTS efficiency, reflection
usage, loop detection, contextual alignment with PlanningStep/TaskStep, error
severity, and overall action quality."”, "score"”: [integer between 0-10] }
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PRM-list Evaluation Prompt

Evaluation Guidelines:
¢ Objective:

— You will evaluate N candidate trajectories, each representing a series of nodes in a search tree. Each

trajectory contains the following:
% step_number: Depth of the node in the trajectory.

observations: Observations recorded at each step of the trajectory.

action_output: Direct action output at each step.

model_output: Raw model output (LLM).

error: Any errors encountered (can be None).

score: Previously calculated score (if available).

previous_steps: The history of earlier steps, including TaskStep and PlanningStep, with the trajectory

of ActionSteps leading to the current state.

— Your goal is to evaluate each trajectory holistically, considering how well it progresses toward solving the
user’s task. Select the trajectory that most effectively achieves this goal.

LI R

¢ Evaluation Criteria:

— Progress Toward Goal:
+ Assess how well each trajectory advances the task at hand, considering both the individual node’s
progress and the overall progression of the entire trajectory.
% Reward trajectories that demonstrate tangible and meaningful progress toward the goal.
+ Penalize trajectories with weak actions or minimal/no advancement.
— Trajectory Efficiency:
+ Evaluate how efficiently each trajectory progresses toward the goal, considering the depth and complex-
ity of the steps.
+ Favor trajectories that achieve significant progress with fewer steps.
+ Consider the overall value-to-depth ratio when comparing trajectories of different lengths.
+ Reward efficient exploration of the search space.
— Loop Detection:
x Detect loops or repetitions within each trajectory, especially those related to previous steps.
+ Loop types:
- Real Loops: Identical nodes (observations, action output, and model output) that do not add value
to the trajectory.
- Benign Repetitions: Similar strategies with variations yielding additional progress.
+ Heavily penalize trajectories with real loops.
x Slight penalties for benign repetitions if they lead to meaningful improvements.
— Error and Stability:
+ Evaluate the severity of errors encountered in each trajectory and penalize based on their impact on
progression.
+ Error Severity:
- Fatal/Blocking Errors: Major penalty.
- Significant Errors: Moderate penalty.
- Minor/Recoverable Issues: Minor penalty.
% Penalize unstable or unclear model outputs.
* Consider how errors affect the overall trajectory’s ability to move toward the goal.
— Opverall Trajectory Quality:
+ Evaluate the coherence and overall quality of the trajectory.
Consider the logical sequence of steps and the exploration-exploitation balance.
Evaluate the final node’s closeness to achieving the goal.
Reward trajectories that make consistent progress and demonstrate coherent planning.

¥ % %

 Final Output Format: Provide your evaluation in the following JSON format. Select the best trajectory and
provide a detailed analysis explaining why it is the most promising trajectory.

{ "index": [integer], # Index of the best trajectory "analysis”: "Detailed
analysis addressing progress, efficiency, reflection usage, loop detection, error
severity, and overall trajectory quality.” }
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Single Node Reflection Prompt

Node Information:
e step_number: The depth of the node within the BON/beam search tree.
* observations: The data or observations recorded during this step.
e action_output: The direct output resulting from an action taken at this step (e.g., API call, tool response).
e model_output: The raw output generated by the model at this step.
* error: Any errors encountered during this step (if applicable).
Goal:

¢ Summarize:

— Provide a brief overview of what occurred at this node.
— Describe the action taken and the results or new information that emerged as a result of this action.

¢ Reflect:

— Assess whether the action taken in this node was successful, partially successful, or unsuccessful.
— Identify any errors, issues, or incompleteness relevant to this step.

— Compare the node’s outcome with its assigned score, providing an evaluation of whether the score is aligned
with the actual result.

¢ Confidence:

— Evaluate your confidence in the action taken at this node (High/Medium/Low).
— If confidence is high, explicitly suggest continuing along this exploration path.

— If confidence is medium or low, recommend potential improvements or alternatives, while leaving room for
exploration to remain open.

¢ Suggest:

— Provide specific and focused suggestions for refining the current step.

— These should be based on the evaluation of the current node, with an emphasis on actionable changes that
can be made in the next attempt of a similar step.

— Focus exclusively on improvements that can be applied within this node. Avoid proposing changes that span
multiple steps or introduce larger, long-term strategies.

— Base your evaluation strictly on the provided fields—action_output, observations, error, etc. Do not infer
additional context or hypothesize about alternative paths or unknown factors.

— Only flag a step as unsuccessful or in need of improvement if there is clear, tangible evidence (e.g., explicit
errors, missing or incorrect outputs).

— Do not override factual results based on subjective judgment, even if the node’s score does not seem to
match the outcome.

¢ General Guidelines:

— Your suggestions should be conservative, focusing only on changes where there is a clear issue or opportunity
for improvement.

— If no significant issues are identified, provide minimal or no suggestions for improvement.
Output Format:
* experience_summary: A concise overview of the events at this node and the key outcomes.
 confidence_assessment: High/Medium/Low with a recommendation for future exploration.
¢ lessons_learned: Key takeaways or specific improvements based on the evaluation of the current node’s action.

e comments: Optional minor remarks, clarifications, or additional observations.
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