
Published at the ICLR 2022 workshop on Objects, Structure and Causality

INDUCTIVE BIASES FOR RELATIONAL TASKS

Giancarlo Kerg1 ∗ Sarthak Mittal 1 David Rolnick 2,4 Yoshua Bengio 1,3,4

Blake Richards 2,4 Guillaume Lajoie 1,4

Mila, Quebec AI Institute

ABSTRACT

Current deep learning approaches have shown good in-distribution performance but
struggle in out-of-distribution settings. This is especially true in the case of tasks
involving abstract relations like recognizing rules in sequences, as required in many
intelligence tests. In contrast, our brains are remarkably flexible at such tasks, an
attribute that is likely linked to anatomical constraints on computations. Inspired by
this, recent work has explored how enforcing that relational representations remain
distinct from sensory representations can help artificial systems. Building on this
work, we further explore and formalize the advantages afforded by “partitioned”
representations of relations and sensory details. We investigate inductive biases
that ensure abstract relations are learned and represented distinctly from sensory
data across several neural network architectures and show that they outperform
existing architectures on out-of-distribution generalization for various relational
tasks. These results show that partitioning relational representations from other in-
formation streams may be a simple way to augment existing network architectures’
robustness when performing relational computations.

1 INTRODUCTION

Human cognition is heavily dependent on the ability to understand relationships between different
entities in the world, regardless of their sensory attributes (Kriete et al., 2013). This ability allows us to
excel at a number of tasks which require understanding of abstract rules that govern the relationships
between objects in a matter that surpasses the purely perceptual qualities of those objects (see
e.g. (Jones & Love, 2007)).

Ongoing work in neuroscience aims to understand how our brains represent such abstract relationships.
Early results identified cognitive maps (Tolman, 1948) and so-called relational memories (Cohen &
Eichenbaum, 1993) which seem to encode abstract relational information invariant to some perceptual
features (see also (Sedda & Scarpina, 2012; Goodale & Milner, 1992)). While this abstraction of
relational knowledge from memory is not entirely disconnected from sensory modality (Barsalou
et al., 2003), there is evidence that isolated perceptual features alone are not principally driving
relational reasoning, and that complex interdependence of processed features and memory gives rise
to abstraction (Goldstone et al., 1989).

Consistent with this neuro-cognitive picture, AI systems which work well on a variety of domains
like machine translation (Vaswani et al., 2017; Dehghani et al., 2018; Devlin et al., 2018), image
classification (Dosovitskiy et al., 2020), etc. do not perform as well on tasks that explicitly require
inference of relational structure between entities (Webb et al., 2021; Johnson et al., 2017; Yi et al.,
2019). An example of such a task is Raven’s Progressive Matrices (Raven & Court, 1938) which,
given a sequence of objects, tests the ability to infer the relations between objects and to use it for
prediction of possible objects that satisfy the underlying relational structure. In response to this
shortcoming, a number of AI elements inspired from neuroscience have been proposed to tackle
relational abstraction (Santoro et al., 2018; Graves et al., 2014; Mittal et al., 2020; Pritzel et al., 2017;
Hill et al., 2020; Fortunato et al., 2019; Webb et al., 2021; Whittington et al., 2019).
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A working hypothesis we explore here is that most artificial systems do not work well on relational
reasoning because they do not encode an explicit notion of relations between different objects, and
rather rely too much on representations of object features. In contrast, in our brains, relational
dependencies across high-level entities form a key ingredient to our understanding of the world and
augment our ability to reason in potentially unseen scenarios (Whittington et al., 2019), and this
has been reflected in a large body of machine learning approaches exploiting relational structure
(Scarselli et al., 2008; Veličković et al., 2017; Kipf et al., 2018; Battaglia et al., 2018; Bengio et al.,
2019; Webb et al., 2020; Zhang et al., 2019).

However, recent work aims to address this shortcoming by explicitly focusing on encoding relational
information between objects. Emergent Symbols through Binding in Memory (ESBN) (Webb et al.,
2021) leverages the abstract nature of relations by explicitly preventing sensory information from
informing relational encoding. While showcasing the importance of separate sensory and relational
encoding, ESBN also includes a number of architectural design choices that may or may not be
important for out-of-distribution generalization in purely relational tasks.

In this work, we explore the inductive bias of separating sensory information from abstract, relational
representations. In doing so, we distill a minimal set of inductive biases which allow for superior
generalization than ESBN. Through a series of numerical experiments involving purely relational
tasks on data with scaled input size and variable context, we demonstrate and analyze why the simple
act of building similarity relations between objects irrespective of sensory encoding is enough to
improve a range of different model architectures. Thus, our results confirm the importance of abstract
relational encoding and establish minimal inductive biases to enhance other system architectures. We
find that focusing on these inductive biases to design new and simpler architectures considerably
improves out of distribution generalization across all settings tested, and thus is a promising approach
for other machine learning researchers to adopt.

2 BASIC RELATIONAL TASKS

(a) Same/different (b) RMTS

1 2 3 4

(c) Dist3

1 2 3 4

(d) Identity rules

Figure 1: Basic relational tasks. (a)
Same/different (answer: different). (b)
Relational match-to-sample (answer:
second target pair). (c) Distribution-of-
three (answer: 2). (d) Identity rules (an-
swer: 3).

We first describe the basic set of relational tasks to ana-
lyze inductive biases required for good OoD generaliza-
tion: same/different, relational match-to-sample (RMTS),
distribution-of-three and identity rules (Webb et al., 2021).
In Section 5, we define a suite of harder tasks to study if
these inductive biases extrapolate well.

In each of the tasks, a sequence of objects is provided
which are related through a specific abstract rule. The
models are tested for out-of-distribution (OoD) generaliza-
tion by preserving the abstract rule but using novel objects
unseen during training. We briefly recall the basic tasks:

Same/different. Two objects are shown, and the task is to
determine if they are same or different (Figure 1a).

Relational match-to-sample (RMTS). Three pairs of ob-
jects are presented: a source and two target pairs. The task
is to identify which target pair matches the source pair, i.e.,
if the source pair has two identical/different objects, the
task is to identify the target pair with two identical/different objects (Figure 1b).

Distribution-of-three (Dist3). Nine objects are presented, pictured as three rows (Carpenter, 1990).
The second row is a permuted version of the first row, but with the last object hidden. The task is to
identify the hidden object from the set of four choices shown in the third row (Figure 1c).

Identity rules. Nine objects are presented, pictured as three rows (G.F. Marcus, 1999). The first and
second row consist of three objects governed by the same pattern (e.g. ABA or ABB or AAA) with
the last object of the second row hidden. The task is to identify the hidden object from the set of four
choices shown in the third row, by inferring the underlying pattern (Figure 1d).

While these problems appear simple, deep neural network architectures (including LSTM (Hochreiter
& Schmidhuber, 1997), Transformers (Vaswani et al., 2017), Relation Networks (Santoro et al., 2017),
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Figure 2: Test accuracy on the four basic relational tasks for (left) different models, and (right) rela-
tional only models (ESBN and CoRelNet) vs relational + sensory input models (here we concatenate
the encoded sensory input vectors in both ESBN and CoRelNet). Results are averaged over 10 seeds
and displayed for the extreme OOD setting. See Figure 6 and Figure 7 in the Appendix for details.

Predi-Net (Shanahan et al., 2019), NTM (Graves et al., 2014), MNM (Munkhdalai et al., 2019)) fail
to generalize well in OoD settings in such relational tasks (Kim J, 2018; Webb et al., 2021).

3 MODELS

All models introduced in this section are directly inspired by ESBN (Emergent Symbol Binding
Network) introduced in (Webb et al., 2021), which constructs an external memory through a recurrent
controller and makes use of the inductive bias of separating sensory information from relations, and
hence factoring the model into two distinct information processes.
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Figure 3: Illustration of Relational Architecture.
(top) The backbone relational architecture describes
the common backbone present in all of the relational
architectures considered in this work, with a similarity
matrix with entries for each pair of input objects. (bot-
tom) ESBN considers a Recurrent Network to process
the similarity matrix obtained at the end of the backbone
while CoRelNet-T and CoRelNet use a Transformer and
an MLP respectively.

Similar to the ESBN architecture, all the
models introduced in this paper use an
encoder q applied to each of the inputs
{xt}Tt=1 followed by a temporal context
normalization (TCN) (Webb et al., 2020)
step, which has shown to improve out-
distribution generalization in relational rea-
soning tasks. We then apply self-attention
onto the vectors zt = TCN({q(xt)}),
yielding the matrix R ∈ RT×T which en-
codes the relational information between
the object representations zt. Note that self-
attention is computed via dot products and
hence can be interpreted as giving rise to a
similarity measure.

In our main model, CoRelNet, we simply
flatten the matrix R and feed it directly into
an MLP decoder. We acknowledge that
this architectural choice requires a hard-
coding of the sequence length T as the in-
put dimension to the MLP decoder is T 2.
In order to avoid hard-coding the sequence
length T explicitly, we also define a varia-
tion of CoRelNet, where the MLP decoder
is replaced by a transformer, which we denote by CoRelNet-T.

We refer the readers to Figure 3, which describes the fundamental differences between the above
models. In the backbone of all the relational architectures, each object xt is independently encoded
into its representation zt, which is then used to construct a similarity matrix. The fundamental
difference between ESBN, CoRelNet and CoRelNet-T is the way this similarity matrix is processed
to provide a downstream prediction. In particular, ESBN employs a recurrent neural network with
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a writing procedure into external memory, while CoRelNet-T utilizes a transformer network and
CoRelNet utilizes just a simple MLP system to operate on the matrix directly and provide a prediction.

We will see in later experiments (section 5) that directly accessing the similarity matrix all at once,
as opposed to passing the relational information sequentially through the bottleneck of the hidden
state of a recurrent controller, will provide an advantage in more complex settings involving not only
unseen objects, but also unseen relations underlying those objects.

4 ALL YOU NEED IS THE SET OF SIMILARITY SCORES

Motivated by the results presented in ESBN, we want to evaluate the hypothesis that the relational
information between the images seen in the input sequence is all we need for OoD generalization on
these relational tasks. Hence, looking for a minimal set of inductive biases, we first investigate how
important for OoD generalization is the said disconnection from the sensory information.

We first note that given the structure of the basic tasks, the ground-truth prediction rule is defined as a
function of the relationships between the objects of the scene and is completely de-coupled from the
actual shapes of individual objects. In particular, the rules do not take into account the identity of the
objects but instead only rely on which objects are the same and which aren’t. Since this is the basis
for the ground-truth prediction rule, we hypothesize that if a model learns this function and ignores
any information regarding the absolute identity of the objects, then it will be able to generalize well
in the OoD settings where the only change performed is the identity of objects considered.

Our experiments indeed show that the models that make predictions solely on top of the similarity
scores between objects (ESBN, CoRelNet and CoRelNet-T) do exceptionally well on OoD general-
ization, as opposed to models that also rely on the sensory information about what the objects are
(Transformer, LSTM, RN, etc). This is illustrated in Figure 2 for our four tasks as well as in the results
outlined in ESBN. This clearly makes the point that just the relational information in the form of a
T × T similarity matrix between objects is sufficient to nail these tasks, where T is the number of
objects in the sequence.

Next, we also show experimentally that a complex architecture like ESBN or CoRelNet-T on top of
the similarity scores is not needed and that a simple MLP, like in CoRelNet, actually outperforms
the other models on OoD generalization (also see Figure 5). Thus, having stripped away all the
additional inductive biases regarding writing keys and recurrence from ESBN, we actually see better
performance and optimal OoD generalization.

As an additional evidence for the hypothesis of this section, we see in Figure 2 that the concatenation
of sensory information to the already present relational information in input to the classifier stage
degrades the OoD generalization capacity of the models. This is because overfitting on the sensory
information of objects cannot lead to generalization in the OoD settings, while memorizing the
similarity matrix patterns does generalize on unseen new shapes, since the prediction rule as a
function of the similarity matrix remains the same in as well as out of distribution.

5 DO THESE INDUCTIVE BIASES EXTRAPOLATE?

s

(a) RMTS3
(b) Same diff 6

1 2 3 4 5 6

(c) identity rules 4

Figure 4: Harder relational tasks. (a) Re-
lational match-to-sample 3 (answer: first
target pair) (b) Same/different 6 (answer:
different). (c) Identity rules 4 (answer:
4).

In this section, we study how the mentioned inductive
biases extrapolate to harder tasks. We construct harder
versions of the basic relational tasks by restricting not only
the set of objects but also the set of relations seen during
training, while testing on unseen objects as well as unseen
relations. We first describe the set of tasks that test the
model’s capacity for generalizing to both unseen objects
as well as relations.

RMTS 3. Similar to RMTS, we have a source triplet and
two target triplets. The task consists of identifying which
target triplet has the same relational structure as the source
triplet. A triplet can either consist of (a) a repetition of
the same object (AAA), or (b) two distinct objects (ABA,
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BAA or AAB), or (c) three distinct objects (ABC). For
training, only triplets of the form (AAA, ABA and BAA)
are shown, while testing only involves triplets of the form
(ABC, AAB). Hence, we test on both unseen objects and unseen relations.

Same/diff 6. The task consists of 6 objects (two triplets - first 3 objects and the last 3 objects). The
goal is to determine whether the two triplets are identical or not. Here, each triplet consists of at most
two distinct objects (thereby of forms AAA, AAB, ABA or BAA). During training, only triplets of
the form (AAA, ABA, BAA) are shown, while evaluation is done on examples that have at least
one triplet of the form (AAB).

Identity rules for 4 elements. Similar to the original identity rules task, we consider three rows
of object as shown in Figure 4c. The task consists of predicting the fourth element in the
second row (from the set of options in the last row) such that the relational structure is pre-
served between the first two rows. During training, only quadruples with at most two distinct
objects are shown, while testing relies only on quadruples with exactly three distinct objects.
Similar to RMTS 3, we are not only testing on unseen objects, but also on unseen relations.

same_diff 6 RMTS 3 id_rules 4 id_rules 4 (missing)
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Figure 5: Performances on the 4 harder
tasks with unseen relations. Results are
displayed for the most extreme OOD
case and reflect test accuracies averaged
over 10 random seeds. For full details
see Figure 8 in the appendix.

Identity rules for 4 elements (with missing variations).
This task is similar to identity rules for 4 elements de-
scribed above. The only difference is that the training
set does not include quadruples of the form (ABAA,
ABAB).

Results. We see that CoRelNet outperforms ESBN and
Transformer on all four tasks (Figure 5), with near per-
fect accuracy on RMTS 3 and identity rules 4, confirming
that it is not only able to generalize to unseen objects in
more complex settings, but also to unseen relations. We
hypothesize that the drop in performance of all models in
the identity rules for 4 elements (with missing variations)
task is due to the fact that the “essential base elements”
that span the space of all possible abstract relations are
left out. We specifically set up this task in order to see a
substantial drop in performance. We also note that leaving
out either ABAA or ABAB is not sufficient for CoRelNet
to experience a drop in performance, both classes of quadruples need to be removed from the training
set.

6 CONCLUSION

We conclude that for purely relational tasks, the relational information between the objects is all
that is needed for OoD generalization. In particular, disconnecting the said relational information
from the sensory input is an essential inductive bias for OoD generalization on unseen inputs. This is
further strengthened by the fact that after removing additional inductive biases in the decoder, we
still achieve good OoD generalization as long as prediction is driven solely by relational information.
In other words, OoD performance on purely relational tasks without spurious inputs is a direct
reflection of how well the decoder translates the relational information contained in the similarity
matrix to the correct output. It turns out that a simple MLP decoder does the job, accomplishing
good OoD generalization not only on unseen objects but also on unseen relations. We also note that
OoD performance for unseen inputs and unseen relations can deteriorate if certain crucial classes of
training examples are withheld. Finally let us emphasize that the MLP requires a hardcoding of the
sequence length.

Future work includes understanding how to deal with tasks where multiple abstract rules are at play
and need to be inferred. Secondly, one could explore how to improve performance in more real world
settings involving a variety of spurious features. Finally, one could investigate key inductive biases
that enable artificial systems to generalize to more complex unseen relations from a minimal set of
training examples.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

7

https://www.sciencedirect.com/science/article/pii/S0010028506000715
https://www.sciencedirect.com/science/article/pii/S0010028506000715
https://doi.org/10.1098/rsfs.2018.0011
https://www.pnas.org/content/110/41/16390


Published at the ICLR 2022 workshop on Objects, Structure and Causality

Taylor W. Webb, Zachary Dulberg, Steven M. Frankland, Alexander A. Petrov, Randall C. O’Reilly,
and Jonathan D. Cohen. Learning representations that support extrapolation. Proceedings of the
37th International Conference on Machine Learning, 2020. URL https://arxiv.org/abs/
2007.05059.

Taylor W. Webb, Ishan Sinha, and Jonathan D. Cohen. Emergent symbols through binding in
external memory. The International Conference on Learning Representations (ICLR), 2021. URL
https://arxiv.org/abs/2012.14601.

James CR Whittington, Timothy H Muller, Shirley Mark, Guifen Chen, Caswell Barry, Neil Burgess,
and Timothy EJ Behrens. The tolman-eichenbaum machine: Unifying space and relational memory
through generalisation in the hippocampal formation. BioRxiv, pp. 770495, 2019.

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B
Tenenbaum. Clevrer: Collision events for video representation and reasoning. arXiv preprint
arXiv:1910.01442, 2019.

Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A dataset for relational
and analogical visual reasoning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 5317–5327, 2019.

8

https://arxiv.org/abs/2007.05059
https://arxiv.org/abs/2007.05059
https://arxiv.org/abs/2012.14601


Published at the ICLR 2022 workshop on Objects, Structure and Causality

ACKNOWLEDGEMENTS

GK acknowledges UNIQUE PhD Excellence Scholarship. SM acknowledges UNIQUE Masters
Excellence Scholarship. The authors are grateful to Samsung Electronics Co., Ldt., CIFAR, and
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APPENDIX

A DETAILS OF IMPLEMENTATION

A.1 ENCODER

All inputs are 32×32 grayscale images containing a single Unicode character, except for the spurious
tasks, where the input is of shape 3× 32× 32. Each input is fed sequentially and separately to the
encoder. The encoder consists of 3 convolutional layers with 32 channels, a 4× 4 kernel and a stride
of 2, followed by two fully connected layers with 256 and 128 hidden units respectively. All layers
have ReLU nonlinearities. All weights were initialized using a Kaiming normal distribution (He et al.,
2015) and all biases were initialized to 0.

A.2 SIMILARITY MATRIX

The output dimension of the encoder is 128, and hence after applying temporal context normalization
(TCN, Webb et al. (2020)) the input dimension to the similarity matrix is 128. The output of the
similarity matrix is T × T , where T is the sequence length.

A.3 DECODER

For the CoRelNet model, only the lower triangular part of the matrix is being used and flattened into a
vector of size T · (T +1) which is fed to a simple MLP with one hidden layer of 256 units and ReLU
nonlinearity. For CoRelNet-T, again only the lower triangular part of the matrix is being used and
the (strict) upper triangular matrix is zeroed out. One then uses a multi-head attention architecture
similar to the one in section 2.1 in (Mittal et al., 2022), with 8 heads, 1 layer, and dimension 512.

A.4 TRAINING

All models were trained with a batch size of 32 using the ADAM optimizer (Kingma & Ba, 2014)
and a learning rate of 5e− 4, except on the same/different 6 task the batch size was 12 · 32 = 384,
on the RMTS 3 task the batch size was 6 · 32 = 192, on the identity rules 4 task the batch size as
7 · 32 = 224, and on the identity rules 4 with missing examples task the batch size was 5 · 32 = 160.
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B BASIC RELATIONAL TASKS AND MODELS

0 50 85 95 98
0

20

40

60

80

100

ac
cu

ra
cy

same_diff

model
ESBN
CoRelNet
CoRelNet-T
Transformer

(a) Same/different

0 50 85 95
0

20

40

60

80

100

ac
cu

ra
cy

RMTS

model
ESBN [tasksegmented]
CoRelNet
CoRelNet-T
Transformer [tasksegmented]

(b) RMTS

0 50 85 95
0

20

40

60

80

100

ac
cu

ra
cy

dist3

model
ESBN
CoRelNet
CoRelNet-T
Transformer

(c) Distribution-of-three

0 50 85 95
0

20

40

60

80

100

ac
cu

ra
cy

identity_rules

model
ESBN
CoRelNet
CoRelNet-T
Transformer

(d) Identity rules

Figure 6: Full detailed test accuracy results for the four basic relational tasks, across the full range
of values for m (the number of heldout shapes during training only shown at testing, displayed on
the x-axis). There are total of n = 100 shapes, hence 100−m of those are shown during training,
and the test set consists only of the other m shapes. The most extreme OoD case corresponds to
m = 98 for the same different task (98% of the possible combinations of shapes are in the test set
and not shown during training), and m = 95 for the 3 other tasks. The case m = 0 corresponds to
the in-distribution case, where the same 100 shapes are shown at testing and training. The test result
accuracies are averaged over 10 random seeds.
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C BASIC RELATIONAL TASKS WITH SENSORY INFORMATION ABLATION
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Figure 7: Full concatenation plots. Full detailed test accuracy results on the four basic relational tasks,
across the full range of values for m (the number of heldout shapes during training, displayed on the
x-axis). There are total of n = 100 shapes, hence 100−m of those are shown during training, and
the test set consists only of the other m shapes. The case m = 0 corresponds to the in-distribution
case, where the same 100 shapes are shown at testing and training. Here the suffix ”cat” stands for
concatenating the encoded input on top of the input of the decoder. The test result accuracies are
averaged over 10 random seeds.
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D HARDER TASKS WITH UNSEEN RELATIONS
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Figure 8: Full detailed test accuracy results on the harder relational tasks with unseen relations, across
the full range of values for m (the number of heldout shapes during training, displayed on the x-axis).
There are total of n = 100 shapes, hence 100−m of those are shown during training, and the test
set consists only of the other m shapes. The case m = 98 corresponds to the most extreme OoD
case for same/different 6, and m = 94 for the other three tasks. The case m = 0 corresponds to the
in-distribution case, where the same 100 shapes are shown at testing and training. The test result
accuracies are averaged over 10 random seeds.
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