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ABSTRACT

We study reinforcement learning in the presence of an unknown reward perturbation.
Existing methodologies for this problem make strong assumptions including reward
smoothness, known perturbations, and/or perturbations that do not modify the
optimal policy. We study the case of unknown arbitrary perturbations that discretize
and shuffle reward space, but have the property that the true reward belongs to
the most frequently observed class after perturbation. This class of perturbations
generalizes existing classes (and, in the limit, all continuous bounded perturbations)
and defeats existing methods. We introduce an adaptive distributional reward
critic and show theoretically that it can recover the true rewards under technical
conditions. Under the targeted perturbation in discrete and continuous control
tasks, we win/tie the highest return in 40/57 settings (compared to 16/57 for the
best baseline). Even under the untargeted perturbation, we still win an edge over
the baseline designed especially for that setting.

1 INTRODUCTION

The use of reward as an objective is a central feature of reinforcement learning (RL) that has been
hypothesized to constitute a path to general intelligence (Silver et al., 2021). The reward is also
the cause of a substantial amount of human effort associated with RL, from engineering to reduce
difficulties caused by sparse, delayed, or misspecified rewards (Ng et al., 1999; Hadfield-Menell et al.,
2017; Qian et al., 2023) to gathering large volumes of human-labeled rewards used for tuning large
language models (LLMs) (Ouyang et al., 2022; Bai et al., 2022). Thus, the ability of RL algorithms
to tolerate noisy, perturbed, or corrupted rewards is of general interest (Romoff et al., 2018; Wang
et al., 2020; Everitt et al., 2017; Moreno et al., 2006; Corazza et al., 2022; Zheng et al., 2014).

Different reward correction methods have been proposed to enhance the performance of RL algorithms.
Flow chart Fig 8 in Appendix A is to help understand the pipeline. However, many of these existing
approaches rely on strong assumptions regarding perturbed rewards. For instance, the reward
estimation (RE) method (Romoff et al., 2018) assumes that continuous perturbations do not impact
the optimal policy, a condition satisfied in limited cases, such as when the reward undergoes an
affine transformation. On the other hand, the surrogate reward (SR) method introduced in (Wang
et al., 2020) can handle perturbations beyond affine transformations, but it presupposes discrete
rewards and a readily inferable perturbation structure. Nevertheless, it remains unclear how to infer
the confusion matrix in the general scenario where rewards, states, and actions are continuous. We
provide a detailed discussion about these works and other related works in Sec. 2.

Contributions In this paper, we aim to address these limitations by proposing methods that can
handle a wider range of perturbations. Our contributions can be summarized as follows.

• A distribution reward critic (DRC) architecture Inspired by recent successes in distributional
reinforcement learning (Dabney et al., 2018b; Bellemare et al., 2017; Dabney et al., 2018a; Rowland
et al., 2018), we propose a distributional reward critic (DRC) that models the distribution of
perturbed rewards for each state-action pair using a neural network. Compared with the SR (Wang
et al., 2020) which relies only on the observed reward, our approach can leverage the correlations
between different state-action pairs to guide the estimation of the true rewards from perturbed ones.
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Our approach also formulates the estimation as classification instead of regression, by leveraging
the common observation that training on the cross-entropy loss results in better performance
(Stewart et al., 2023).

• Theoretical analysis under generalized confusion matrix. We conduct a theoretical study of
the proposed DRC under a generalized confusion matrix (GCM) perturbation model. Our GCM
generalizes the confusion matrix perturbation of (Wang et al., 2020) by accommodating continuous
rewards Under GCM, we show that the DRC can recover the distribution of the perturbed reward
under technical conditions. Thus, DRC can recover the true rewards if mode-preserving is satisfied,
i.e., the most frequently observed reward for each state-action pair is the true reward, which is also
the assumption used in previous works. We provide a comparison with other approaches in Tab. 1.

• Experimental performance. We compare the distributional reward critic to methods from the
literature for handling perturbed rewards under a wide selection of reward perturbations. Under
our targeted perturbation, we win/tie (95% of the winning performance) the highest return in 40/57
sets (compared to 16/57 for the best baseline). Even under the untargeted one, we still win an edge
over the baseline that is designed for that setting.

Table 1: The comparison of the methods from different perspectives. The bolded methods are
introduced in this paper. Blue is a strength, and orange is a weakness. Required Information is the
less the better. Under the Reward Estimator Property group, variance concerns the estimated rewards
for different samples of any state-action pair (s, a). Under the Required Perturbation Property group,
Optimal-Policy-Unchanged means the optimal policy in expectation of the perturbed rewards stays
unchanged, the details of Assumption will be discussed soon.

Required Information Reward Estimator Property Required Perturbation Property

R̃ nr Reward Reduces Leverages Optimal-Policy- Assumption
Method Range Variance (s, a) Unchanged

Standard × × × × × ✓
Clean

Environment

SR W ✓ ✓ ✓ × × × Mode-
Preserving

SR × ✓ ✓ × × × Mode-Preserving
Smooth Reward

RE × × × ✓ ✓ ✓
E(r̃) = ω0 · r + ω1(ω0 > 0,

(ω0 · r + ω1) · r > 0)

DRC × ✓ ✓ ✓ ✓ × Mode-
Preserving

GDRC × × × ✓ ✓ × Mode-
Preserving

2 RELATED WORK

Perturbation of RL systems have been extensively studied (Rakhsha et al., 2020; Huang et al., 2017;
Kos & Song, 2017; Lin et al., 2017b;a; Behzadan & Munir, 2017; Pattanaik et al., 2017; Pinto et al.,
2017; Choromanski et al., 2020). Closest to ours are (Romoff et al., 2018) and (Wang et al., 2020).

Continuous Perturbation And The Reward Estimation (RE) Method (Romoff et al., 2018)
focus on variance reduction in the case of continuous perturbations that do not affect the optimal
policy, i.e., maximizing the return in the perturbed reward MDP also maximizes rewards in the original
MDP. This occurs, for instance, when the reward perturbation applies an affine transformation to the
expected reward with a non-negative scale factor, i.e., E[R̃(s, a)] = w0R(s, a) + w1 and w0 > 0.
In this setting, the perturbation can slow training by increasing the reward variance. They propose
a reward estimation (RE) method by introducing a reward critic that predicts R̃(s, a) from s and a
that aims to reduce this variance. This critic replaces observed rewards from the environment and is
trained to predict the observed reward to minimize mean-squared error, converging to the expectation
of the perturbed rewards.
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Confusion Matrix Perturbation And The Surrogate Reward (SR) Method (Wang et al., 2020)
study the setting where the clean rewards are discretized and then perturbed by a confusion matrix C,
where C(i, j) represents the probability that the samples with rewards ri are with rewards rj after the
perturbation. This perturbation leads to the changed optimal policy in expectation of the perturbed
rewards because the perturbation distributions are different for different clean rewards compared with
the continuous perturbation in (Romoff et al., 2018), which influences the optimal policy measured
by the observed and noisy rewards. They propose a surrogate reward (SR) method by inverting the
estimated/known confusion matrix and computing the predicted rewards as R̂ = C−1 ·R, where R

represents the vectorized, clean, and discrete rewards and R̂ represents the vectorized and predicted
rewards, replacing each perturbed reward with an unbiased estimate of the true reward because
C · R̂ = R. Their approach comes with a strong informational cost in the form of a known or
easily estimable confusion matrix. SR can learn the matrix within a simple environment space (e.g.
Pendulum), but SR W needs to know the matrix before being applied.

Distributional RL The distributional reward critic approach we propose is inspired by distributional
RL (Dabney et al., 2018b; Bellemare et al., 2017; Dabney et al., 2018a; Rowland et al., 2018), where
the value function is modeled distributionally rather than as a point estimate. We model the reward
function as a distribution but encounter issues that do not arise in distributional RL, where ground truth
rewards are directly observable. However, standard quantile regression techniques divide probability
density into fixed-sized bins, rendering them unsuitable for peak identification. Instead, we use a
fixed-width discretization, through which we adaptively control the granularity while extracting the
mode.

Noisy Label Learning We are additionally inspired by work in noisy label learning, e.g., (Song
et al., 2022; Ghosh et al., 2017; Zhang & Sabuncu, 2018; Ma et al., 2020; Liu et al., 2022), which show
that strong classification models can be constructed even under a large degree of label perturbation.

3 PROBLEM STATEMENT

Let ⟨S,A,R, P, γ, β⟩ be a Markov Decision Process (MDP) (Puterman, 2014), where S is the state
space, A is the action space, R : S × A → R is the reward function, P : S × A → ∆S is the
transition function, β ∈ ∆S is the initial state distribution, and γ ∈ [0, 1] is the discount factor. We
denote the state at timestep t as st, the action as at, and the reward as rt = R(st, at).

3.1 PERTURBED REWARD MDP

We define a perturbed reward MDP of the form
〈
S,A,R, R̃, P, γ, d0

〉
. This is a standard MDP

except the agent perceives perturbed rewards from R̃ instead of true rewards from R. Following prior
work, we assume that the distribution of the perturbed reward depends only on the true reward, i.e.,
r̃t ∼ R̃(R(st, at)). The objective is the same as in a standard MDP: we seek a policy π : S → ∆A
that maximizes the return, i.e., π∗ ∈ argmaxπ Eπ[

∑∞
t=0 γ

tR(st, at)].

3.2 GENERALIZED CONFUSION MATRIX PERTURBATIONS

We discretize the reward range into nr intervals, each with an equal length ℓr = (rmax − rmin)/nr,
where rmin and rmax represent the minimum and maximum rewards attainable from the environment.
Each reward r ∈ [rmin, rmax) has a label y ∈ Y = [0, nr − 1] with y = ⌊(r − rmin)/lr⌋. The
confusion matrix C is an nr by nr with C(i, j) ∈ [0, 1] and

∑
j∈Y C(i, j) = 1. The perturbed label

of sample y is ỹ, i.e., j with probability C(y, j). Then, we shift r by the signed distance between y
and ỹ, i.e., r̃ = r +D(ỹ, y), where D is the signed Euclidean distance between the interval centers
D(ỹ, y) = (ỹ − y) · ℓr. We provide an example of the application of a GCM perturbation in Fig. 9 in
Appendix A.

The GCM does not sparsify the input rewards, i.e., if the input rewards are continuous, the perturbed
rewards will be as well. It generalizes the confusion matrix perturbation of (Wang et al., 2020), which
produces a finite number of possible reward values if naively applied to a continuous reward signal.
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The GCM perturbation can represent perturbations with an arbitrary PDF that is different for each
interval—each row of the matrix is a perturbation PDF for rewards in that interval. Specifically, it
can represent perturbations that are optimal-policy-changed, i.e., the optimal policy in expectation of
perturbed rewards changes after perturbations. We term this ”optimal-policy-changed perturbation”,
which cannot be addressed by RE (Romoff et al., 2018).

We remark that the GCM can approximate any continuous perturbation with a bounded error that
diminishes with the increase of the number of intervals nr as shown in Proposition 1, whose proof is
in Appendix B.1.

Proposition 1. Consider a continuous perturbation model that for each reward r ∈ [rmin, rmax),
it can be perturbed to r̄ ∈ [rmin, rmax). Our confusion matrix represents r̄ with r̃ that satisfies
|r̃ − r̄| ≤ rmax−rmin

nr
.

Under GCM perturbations, we have the same mode-preserving assumption as SR. With this assump-
tion, we seek methods that can recover the perturbations breaking the optimal policy RE cannot
handle. For the perturbations people care about in RE, mode-preserving still holds, leaving the
possibility for our methods to work under another untargeted perturbation setting. It is because of the
weak mode-preserving assumption, our methods can work well under many kinds of perturbations.

4 THE DISTRIBUTIONAL REWARD CRITIC

In this section, we introduce the distributional reward critic. We begin with the simpler case where
the reward range and the number of intervals in the GCM are known in Sec. 4.1. Then, we study how
to infer the number of intervals and the reward range in Sec. 4.2.

4.1 DISTRIBUTIONAL REWARD CRITIC (DRC) WITH KNOWN DISCRETIZATION

Algorithm 1 Distributional Reward Critic (Known Discretization)

1: procedure UPDATE AND CRITIQUE SAMPLES
2: Notation: ỹt: noisy reward label; rmin: the minimum reward; rmax: the maximum reward; ℓr:

the length of each reward interval ℓr = (rmax − rmin)/nr; reward critic R̂θ

3: Input: samples {(st, at, r̃t)}
4: Output: samples with predicted rewards {(st, at, r̂t)}
5: Augment each sample with a discrete label ỹt = floor

(
(r̃t − rmin) /ℓr

)
6: Train R̂θ using Adam optimizer to minimize cross entropy1 ∑

t H(ỹt, R̂θ(st, at)).
7: For each sample, predict discrete reward label ŷt = argmaxy∈Y R̂θ(st, at) and compute

predicted reward value r̂t = r̃t + ℓr(ŷt − ỹt)
8: Return critiqued samples {(st, at, r̂t)}

We propose a distributional reward critic (DRC) (Alg. 1) that views the reward critic’s task as a
multi-class classification problem: given input (s, a, r̃) predict a discrete distribution over the reward
range that minimizes the cross-entropy loss, i.e., R̂θ : S ×A → ∆Y where Y = (0, 1, . . . , nr − 1).
Then, we select the most probable reward r̂ ≡ r̃ + ℓ(ŷ − ỹ), where ŷ is the highest probability label
from R̂θ(s, a). This DRC can be inserted into any RL algorithm. When new (s, a, r̃) tuples are
collected from the environment, they are used to train R̂θ. When the algorithm requires r, the reward
critic output r̂ is provided instead.

Comparison with SR and RE SR (Wang et al., 2020) relies solely on the observed reward,
computed as R̂ = C−1 ·R, when the confusion matrix C is either known or estimated. Consequently,
since different samples of the same state-action pair may yield distinct perturbed rewards, the SR
method might produce varying estimated rewards with significant variance. In contrast, our proposed
DRC, akin to RE (Romoff et al., 2018), addresses this issue by learning a reward prediction mapping

1With slight abuse of notation, H(ỹt, R̂θ(st, at)) denotes the cross entropy between R̂θ(st, at) and the
distribution with all zero probabilities except for the ỹt-th being 1 (i.e., the one-hot vector version of ỹt).
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for each state-action pair. This approach not only ensures a consensus in reward prediction (resulting
in zero variance) for different samples of a state-action pair, but also harnesses reward correlations
across different state-action pairs, facilitating collaborative prediction learning. However, the RE
method learns reward prediction via regression, aiming to capture the expectation of the perturbed
reward. This implies that the perturbations should be affine transformations (or optimal-policy-
unchanged) as discussed in Sec. 2 and Sec. 3.2. Conversely, our classification-based approach can
accommodate a wider range of perturbations.

Exact recovery of DRC under GCM Intuitively, if the confusion matrix perturbation can be
identified, the maximum probability label can be identified and thus the true reward can be recovered
with no reconstruction error, regardless of the underlying reward distribution, which is the result of
Thm. 1, whose proof is in Appendix B.2.
Theorem 1. With a sufficiently expressive neural network and GCM perturbations, the prediction
from DRC for a sample (st, at) is C(yt, :) (the yt-th row of C), which is the distribution of the
perturbed reward label, as the number of samples from each state-action pair approaches infinity.
Consequently, the correct reward can be exactly predicted if the perturbation is mode-preserving with
known discretization.

Note that this result applies even when the true reward distribution is continuous because the confusion
matrix always shifts rewards by an integer multiple of ℓr—if this multiple can be predicted, there
will be no reconstruction error.

The DRC’s requirement that the structure of the GCM will be met in tasks where the number of
different possible reward values is finite. Following prior work, we’d like to relax these assumptions
and allow the GCM structure to be learned from data and to be applicable to non-GCM rewards.

4.2 GENERAL DRC (GDRC) WITH UNKNOWN DISCRETIZATION

We begin with the case of an unknown number of reward intervals nr. In Section 4.2.2, we explain
how to handle the unknown reward range.

4.2.1 KNOWN REWARD RANGE, UNKNOWN NUMBER OF INTERVALS

Our primary strategy is to guess the number of intervals from DRC differential cross-entropy loss as
the number of outputs no varies. We begin by studying the impact of no on the reconstruction error.
Then we study how to use the cross-entropy loss to select no to minimize reconstruction error.

Impact of number of intervals no on reconstruction error When no ̸= a · nr(a ∈ Z+), it is no
longer the case that ERRORr approaches 0 in the infinite sample limit. There is now an irreducible
source of reconstruction error that is caused by misalignment of the intervals in the reward critic
compared to the perturbation. The dynamics of this misalignment error are non-trivial—it is generally
smaller when no is larger.

Figure 1: The reconstruction
error initially decreases as no

increases, reaches 0 at no =
nr, and then oscillates.

To intuitively illustrate the misalignment error, we divide the range
[rmin, rmax] into no contiguous intervals of equal length ℓo =
(rmax − rmin)/no. In this case, the labeling set becomes Yo =
(0, 1, . . . , no − 1), and given a perturbed reward r̃ = r + ℓr(ỹ − y),
we select the most probable reward r̂ = r̃ + ℓo(ŷo − ỹo), where
ŷo = argmaxyo∈Yo R̂θ(s, a). Even if the network R̂θ is sufficiently
expressive and is trained to give a correct prediction of ŷo, r̂ is not
a correct prediction of r due to the misalignment between ℓr(ỹ − y)
and ℓo(ŷo − ỹo). In general, when no < nr, the misalignment
becomes more pronounced as the difference between no and nr in-
creases. When no > nr, the misalignment still exists, except for the
case that no is a multiple of nr wherein ŷo − ỹo is also a multiple of
y− ỹ. In Fig.1, we summarize this discussion about the impact of the
number of intervals on reconstruction error computed as ERRORr(R̂θ) =

1
|T |

∑
t∈T |r̂t − rt|, where

T represents the number of samples we use DRC for prediction. We provide a detailed discussion in
the Appendix C.
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Under the infinite samples assumption, a large no that is near a multiple of nr is preferred as errors in
estimating nr are less costly. Without this assumption, there is a tradeoff—a large no leads to worse
overfitting because of limited samples, but a small no leads to worse reconstruction error. We study
this interplay empirically in Section 5.2. For now, we focus our attention on setting no = nr, as it
achieves zero reconstruction error, and we show cross-entropy is an accessible metric to help estimate
it in the next part.

Figure 2: The minimum cross
entropy of the reward critic in-
creases as no increases until
no reaches nr.

Leveraging the training cross-entropy loss to select no During
reward critic training, we can view the cross-entropy loss of the
reward critic. We turn our attention to the dynamics of this loss as
no changes, and we will show that it can be used to estimate nr.

Consider a single state action pair (s, a) with a reward label of
y. Let pr→o represent the true distribution of perturbed reward
labels C(y) discretized into no equal length intervals, and let po
represent the reward critic distribution R̂θ(s, a) of reward labels.
Recall that H(pr→o, po) denotes the cross entropy loss between the
two distribution pr→o and po.
Theorem 2. Consider the infinite sample limit. When no ≤
nr, minpo

H(pr→o, po) is non-decreasing in no. Moreover, if
P (C(y) = y′) > 0 for ∀y, y′ ∈ Y , minpo

H(pr→o, po) is an increasing function of no. When
no ≥ nr, minpo H(pr→o, po) = H(pr→r), the entropy of pr.

Refer to Appendix B.3 for the proof of Thm. 2. Fig. 2 shows the simulation results of
minpo

H(pr→o, po) as no increases. Intuitively, the minimum cross entropy is influenced by the
interval length, with larger intervals fostering simpler distributions and consequently, reduced cross
entropy. This suggests that identifying when the reward critic cross entropy stops increasing as no

increases can guide identifying nr.

We propose training an ensemble of reward critics
{
R̂

(no)
θ

}
with uniform perturbation discretizations

no ∈ No. We use these critics to vote on where the rate of increase of cross entropy starts increasing.
We use the critic who has received the most votes with a discount factor as the sole reward critic
at each epoch. Specifically, let δH(no) = H(pr→o, po) − H(pr→o′ , po′), where no′ is the largest
element in No that is less than no. We then define the winning critic on epoch t ≤ Tvote as
argminno

{δH(no) > δH(no′ )}. See Appendix D for the pseudocode of the GDRC method.

4.2.2 UNKNOWN RANGE, UNKNOWN NUMBER OF INTERVALS

For an unknown reward range and an unknown number of intervals case, we use the “voting critics”
from the previous section plus an addition that updates the intervals based on the observed rewards
seen so far using a streaming technique to compute percentiles (Masson et al., 2019). We create
variables remin and remax to store the 5% percentile and 95% of the observed rewards across all
samples, which excludes the influence of outlier perturbation because of long-tail noise.

5 EXPERIMENTAL RESULTS

In this section, we experimentally demonstrate that DRC and GDRC methods outperform existing
approaches by attaining higher true rewards and exhibiting applicability across a broader spectrum of
environments and perturbations. Section 5.1 introduces the algorithms, environments, and pertur-
bations. The influence of no on reconstruction errors and cross-entropy, in line with the discussion
in Section 4.2.1, is substantiated in Section 5.2. In Section 5.3 and Section 5.4, we compare our
methods with baseline methods under the confusion matrix and continuous perturbations respectively.

5.1 EXPERIMENTAL SETUP

Algorithms The methods introduced for perturbed rewards in this paper and in the baselines we
consider can be applied to any RL algorithm. Thus, we compare all methods as applied to some
popular algorithms such as Proximal Policy Optimization (PPO) (Schulman et al., 2017), Deep
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Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015), and Deep Q Network (DQN) (Mnih
et al., 2013), covering on-policy and off-policy algorithms. The methods introduced by this paper are
DRC (with nr and reward range) and GDRC (without any information). For baselines, we compare
to the original algorithms mentioned above, RE (Romoff et al., 2018), and SR (SR and/or SR W)
(Wang et al., 2020). Each method has its reward averaged over 10 seeds and 20 random trials after
the training and +/- shows the standard error in Appendix F.

Environments We first consider two simple control tasks, Pendulum and CartPole (the environ-
ments tested by SR). Then we consider some more complex Mujoco environments: Hopper-v3,
HalfCheetah-v3, Walker2d-v3, and Reacher-v2 (Todorov et al., 2012) (the environments tested by
RE).

Perturbations We test two kinds of perturbations: GCM and the continuous perturbations. For
GCM perturbation, we vary two parameters: the number of intervals nr and the noise ratio ω. An
ω proportion of samples in the interval containing the true reward are perturbed into any interval at
random. For continuous perturbation, we test the same distributions as (Romoff et al., 2018). Gaussian
noise is an additive zero-mean Gaussian distribution: r̃t = rt +N (0, ω2). For uniform noise, with
a probability of ω, the reward is sampled uniformly from [−1, 1] and is unaltered otherwise. We
also consider a ”reward range uniform” noise, adjusting the range of the uniform distribution to
U(rmin, rmax), where rmin and rmax signify the minimum and maximum reward achievable by an agent
per environment.

5.2 IMPACT OF no ON RECONSTRUCTION ERRORS AND CROSS-ENTROPY

Here we study the impact of no on the reconstruction error, episode reward, and cross-entropy. Recall
a theoretical zero reconstruction error is achieved whenever no is a multiple of nr.

Figure 3: The episode reward for nr ∈ {5, 10, 20} as no varies for DRC in Hopper.

Figure 4: Cross entropy dur-
ing the training for different
values of no.

Fig. 3 compares the performance of DRC as no, nr, and ω vary in
Hopper. There is a tradeoff of two forces: one is the reconstruc-
tion error turns zero when no is a multiple of nr; the other one is
overfitting becomes worse as no increases because samples are not
infinite, which is discussed in Sec. 4.2.1. For small nr like 5 or 10,
the performance of DRC reaches the best when no = no, but it is
almost always worse when no is a multiple of nr. For large nr like
20, the performance of DRC decreases even when no is smaller than
nr. Fig. 3 verifies our strategy of shooting no = nr of GDRC.

In Fig. 4, we study the empirical impact of no on cross entropy over
the course of training. We see that, indeed, cross-entropy increases
rapidly for small no and stops increasing when no = nr, which
proves the simulation results in Fig. 2 in real experiments. This suggests that identifying when cross
entropy stops increasing can be a viable strategy for selecting no as discussed in Section 4.2.1.

5.3 GCM PERTURBATIONS

Discrete Control Tasks In Pendulum, the reward range [−17, 0) is discretized into nr = 17 bins. In
CartPole, apart from +1 rewards, −1 rewards are introduced for perturbations by (Wang et al., 2020).
GDRC is not needed in CartPole because rewards are discrete. As depicted in Fig. 5, DRC is always
the best performing for all levels of noise. GDRC is the second strongest performer in Pendulum.
Gaps between the methods become larger as the amount of noise increases. Despite the fact that
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SR W knows the confusion matrix a priori, it is not able to achieve a strong performance because it
only uses the observed reward to condition to estimate the true reward and does not condition on the
observed state and action. RE is a weaker performer because optimal-policy-unchanged does not
hold.

Figure 5: The results of Pendulum and CartPole
under GCM perturbations. Solid line methods can
be applied without any information. DRC and
GDRC are our methods. The x-axis represents ω.

Mujoco Environments It is not clear how to
apply SR in these settings because the confu-
sion matrix must be estimated. Therefore, only
SR W with a known confusion matrix is tested.
Fig. 6 reveals DRC outperforming/tying with
PPO, RE, and SR W in 35/48 instances. Sim-
ilarly, GDRC outperforms/ties in 33/48 cases
against PPO and RE given the absence of pre-
knowledge of perturbations, markedly surpass-
ing the second-best performer at 12/48. Both
DRC and GDRC demonstrate comprehensive
robustness across varied environments, reward
discretizations nr, and noise ratios ω.

Figure 6: The results of Mujoco environments under GCM perturbations. Solid line methods can be
applied without any information. DRC and GDRC are our methods. The x-axis represents ω.
Performance generally diminishes with increasing ω across all environments, except for Hopper,
which is because of the more exploration introduced by small perturbations as observed by (Wang
et al., 2020). Benchmark performance in clean and totally perturbed (with ω = 1.0 and nr → ∞)
environments is provided for reference: 1844.2 and 1089.7 for Hopper, 1948.5 and -365.6 for
HalfCheetah, 1286.6 and 756.7 for Walker, and -5.1 and -129.9 for Reacher. The agents in Hopper
and Walker2d are encouraged to live longer because of the positive expectation of perturbed rewards
because the perturbed and clean reward ranges are the same conditioned by (Wang et al., 2020).

One interesting phenomenon is that GDRC outperforms DRC in some settings, particularly in
HalfCheetah. We perform further analysis in Fig. 10 in Appendix A, where we graph the reward critic
training cross-entropy in the first row and true clean reward label distribution in the second row. We
see that in DRC, the reward critic achieves very low cross-entropy and receives a highly imbalanced
distribution of true rewards. We hypothesize that the reward critic has collapsed and is predicting the
same value for all reward observations, essentially terminating the training prematurely as the few
samples from the other class that are being received are not enough to shift the critic output. This
collapse appears not to happen in GDRC—it is possible that the incorrect selection of no leads to
more random behavior initially, which allows escaping the region of the initially dominant reward
class. In DRC in Hopper, we do not see signs of critic collapse. In the top left figure, we see a spike
in the reward critic cross-entropy as the policy shifts and new rewards are observed, but such jumps
are not always present (upper right). We discuss possible remedies to the collapse issue in Future
Work.
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5.4 CONTINUOUS NOISE

We compare GRDC to PPO and RE on continuous noise distributions because SR W, SR, and DRC
cannot be applied without the concept of confusion matrices. In Fig. 7, GRDC wins/ties in 27/48
whereas RE wins/ties in 24/48 combinations. Even under non-GCM perturbations, GDRC has a small
edge over RE. RE especially targets this kind of perturbation by making the stringent assumption that
E(r̃) = ω0 · r + ω1(ω0 > 0, (ω0 · r + ω1) · r > 0).

We attribute GDRC’s advantage to two factors. First, the continuous noise distributions are weakly
mode-preserving in the sense that they have a peak in the observed reward distribution at true rewards.
Second, we hypothesize that the distributional aspect of GDRC leads to more stable reward estimation.

Figure 7: The results in Mujoco tasks under continuous perturbations. The x-axis represents ω.

6 CONCLUSION

We study the impact of arbitrary mode-preserving reward perturbations in RL. We introduce a new
definition of confusion matrix reward perturbations that generalizes past definitions. We propose a
distributional reward critic method and analyze its behavior along key axes in the infinite sample
case. We find that it achieves higher rewards than existing methods in a majority of domains and
perturbations that we tested. It is indeed possible for a uniform reward estimation method to perform
well across a large variety of reward perturbations.

Future Work We find that environments where the reward distribution is highly skewed, such as
HalfCheetah, are challenging for the reward critic methods due to sample class imbalance. Unlike in
a classification setting where the true class labels are observable, it is not possible to directly perceive
the true rewards. It is unclear whether it is possible to reweight the samples using state-action pairs,
similar to Prioritized Experience Replay (PER) (Krishnamachari et al., 2019). Another approach to
this problem would be to try to prevent the reward critic from converging on a single value, e.g., by
adding an entropy bonus to its outputs.

Due to consecutive sample collections, a strong correlation exists among samples concerning states
and actions, relaxing the issue of finite samples discussed in Section 5.2. Inspired by the concept of
the replay buffer (Liu & Zou, 2018), originally aimed at decoupling sample correlation, we propose
storing samples for reward critic fitting to further relax this assumption. More critically, the end goal
is to achieve a balanced pace between two processes: the sample collection for reward critic fitting
and the policy update, utilizing all available information during training. This approach is anticipated
to alleviate the issue of imbalanced samples, ensuring the policy is updated before the collapse of the
reward critic with the samples.
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learning with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018b.

Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, and Shane Legg. Reinforcement
learning with a corrupted reward channel. arXiv preprint arXiv:1705.08417, 2017.

Aritra Ghosh, Himanshu Kumar, and P Shanti Sastry. Robust loss functions under label noise for
deep neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 31,
2017.

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse
reward design. Advances in neural information processing systems, 30, 2017.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks
on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

Jernej Kos and Dawn Song. Delving into adversarial attacks on deep policies. arXiv preprint
arXiv:1705.06452, 2017.

Bhaskar Krishnamachari, Arash Tavakoli, and Hamidreza Hassanzadeh. Mobile robot navigation
using prioritized experience replay q-learning. In 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2036–2041. IEEE, 2019.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min Sun. Tactics
of adversarial attack on deep reinforcement learning agents. arXiv preprint arXiv:1703.06748,
2017a.

Yen-Chen Lin, Ming-Yu Liu, Min Sun, and Jia-Bin Huang. Detecting adversarial attacks on neural
network policies with visual foresight. arXiv preprint arXiv:1710.00814, 2017b.

Ruishan Liu and James Zou. The effects of memory replay in reinforcement learning. In 2018 56th
annual allerton conference on communication, control, and computing (Allerton), pp. 478–485.
IEEE, 2018.

10



Under review as a conference paper at ICLR 2024

Sheng Liu, Zhihui Zhu, Qing Qu, and Chong You. Robust training under label noise by over-
parameterization. In International Conference on Machine Learning, pp. 14153–14172. PMLR,
2022.

Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano, Sarah Erfani, and James Bailey. Nor-
malized loss functions for deep learning with noisy labels. In International conference on machine
learning, pp. 6543–6553. PMLR, 2020.

Charles Masson, Jee E Rim, and Homin K Lee. Ddsketch: A fast and fully-mergeable quantile sketch
with relative-error guarantees. arXiv preprint arXiv:1908.10693, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.
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Reward estimation for variance reduction in deep reinforcement learning. In Proceedings of The
2nd Conference on Robot Learning, 2018.

Mark Rowland, Marc Bellemare, Will Dabney, Rémi Munos, and Yee Whye Teh. An analysis
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A IMPORTANT FIGURES

Figure 8: The flow chart to help understand the pipeline of the problem and how people resolve it. P0
represents the general pipeline of RL. P1 represents the perturbation applied, of which Fig. 9 is a
concrete example to show how (generalized confusion matrix) GCM perturbation is introduced. P2
represents how people deal with the perturbation. Using our methods (DRC and GDRC) as examples,
Alg. 1 and Alg. 2 are what we do in P2.

B PROOFS

B.1 PROPOSITION 1

Proposition 1. Consider a continuous perturbation model that for each reward r ∈ [rmin, rmax),
it can be perturbed to r̄ ∈ [rmin, rmax). Our confusion matrix represents r̄ with r̃ that satisfies
|r̃ − r̄| ≤ rmax−rmin

nr
.

The Lipschitz constant L of a continuous and bounded perturbation distribution is defined as Equa-
tion 1.

|f(x2)− f(x1)| ≤ L · |x2 − x1| , ∀x1 andx2 within [rmin, rmax) (1)

As the probability within an interval stays unchanged while using a confusion matrix to model the
continuous perturbation, the error at most is L · rmax−rmin

N as shown in Equation 2.
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Figure 9: An example of the application of a GCM perturbation.

Figure 10: The results of the agents trained under the perturbation with nr = 6 and ω = 0.1. The two
rows represent the cross-entropy of the reward critic prediction after the training and the (inaccessible)
clean reward label (y = floor

(
(r − rmin) /ℓr

)
) distribution, and the three columns represent Hopper

with DRC, HalfCheetah with DRC, and HalfCheetah with GDRC respectively.

14



Under review as a conference paper at ICLR 2024

|f(a2)− f(a1)| ≤ L · |a2 − a1| ≤ L ·
∣∣∣∣a1 + rmax − rmin

N
− a1

∣∣∣∣ = L · rmax − rmin

N
, (2)

for a2 and a1 within the same interval.

B.2 THEOREM 1

Theorem 1. With a sufficiently expressive neural network and GCM perturbations, the prediction
from DRC for a sample (st, at) is C(yt, :) (the yt-th row of C), which is the distribution of the
perturbed reward label, as the number of samples from each state-action pair approaches infinity.
Consequently, the correct reward can be exactly predicted if the perturbation is mode-preserving with
known discretization.

This proof assumes an abundance of samples with identical state-action pairs and a distributional
reward critic powerful enough to generate any outputs. We define several notations. Ỹ (s, a) ∈ Z
represents the noisy reward labels of samples with identical (s, a). We denote R̂θ = fθ(s, a) ∈ RK ,
where K = nr, as the predicted reward distribution with constraints: R̂θ[k] ≥ 0 and

∑K
k=1 R̂θ[k] = 1.

The probability of samples with varying noisy reward label k is denoted by pk = P
(
Ỹ (s, a) = k

)
. ỹ

is the one-hot representation of Ỹ , and ỹk =

 0
...
1
0

 represents the sample with reward label k. The

global loss function of all collected samples is presented in Equation 3:

min
θ

∑
t

LCE
(
ỹ(t), R̂θ(t)

)
(3)

where ỹ(t) and R̂θ(t) correspond to the actual expressions for ỹ and R̂θ respective to sample (st, at).
Given the power of the distributional reward critic and the abundance of samples for each state-action
pair, the optimal solution of the local loss for a state-action pair decides the global one. Thus, we
focus on the local loss function for identical state-action pairs (s, a), neglecting subscript t, as in
Equation 4:

min
θ

LCE(ỹ, R̂θ) (4)

The Cross-Entropy loss is utilized, and we group samples by their noisy reward labels as in Equation 5:

min
θ

K∑
k=1

pk · LCE(ỹk, R̂θ) (5)

Referencing the definition of yk, we expand the term LCE(yk, R̂θ) as in Equation 6:

LCE(ỹk, R̂θ) = −
∑
j

ỹk[j] · log
(
R̂θ[j]

)
= − log

(
R̂θ[k]

)
(6)

Incorporating the final results of Equation 6 into Equation 5, we obtain Equation 7:

min
θ

K∑
k=1

−pk · log
(
R̂θ[k]

)
(7)

With the definition of the Cross-Entropy loss, Equation 7 can be compressed into Equation 8:
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min
θ

LCE(p, R̂θ), where p =

 p1
p2
..
pK

 (8)

Decomposing the cross-entropy in Equation 8 into entropy and KL-divergence results in Equation 9:

LCE(p, R̂θ) = H(p, R̂θ) = H(p) +DKL(p || R̂θ) (9)

Here, H(p) represents the entropy of p, unaffected by θ, and DKL(p || R̂θ) denotes the KL-divergence
between p and R̂θ. DKL(p || R̂θ) only reaches its minimum of zero if R̂θ = p is satisfied. Conse-
quently, the optimal solution is R̂θ = p, signifying that the post-training reward critic output is the
distribution of the perturbed reward labels.

B.3 THEOREM 2

Theorem 2. Consider the infinite sample limit. When no ≤ nr, minpo
H(pr→o, po) is non-

decreasing in no. Moreover, if P (C(y) = y′) > 0 for ∀y, y′ ∈ Y , minpo H(pr→o, po) is an
increasing function of no. When no ≥ nr, minpo H(pr→o, po) = H(pr→r), the entropy of pr.

With the optimal solution of the loss function we prove above, minpo H(pr→o, po) can be simplified
as H(pr→o). For simplicity in this proof, we replace nr and no with m and k respectively. The
central question here is to investigate the relationship between H(p) = −

∑K
k pk log pk and K,

where the original noise distribution is characterized by M intervals.

B.3.1 PROBLEM MODELING

For modeling the noisy rewards, the rewards are assumed to lie within the range [0,M) with M
intervals where each interval length is 1. For example, if r ∈ [0, 1), the perturbation is applied as
per r̃ = r +m for m ∈ [0,M), where m is an integer. The discrete probability distribution of r̃ is
denoted as q, where qm = P (r̃ = r +m).

For modeling the training, we are assumed to know the reward range [0,M), but we are not informed
about the number of discretization M . Instead, we fit the reward range with a discretized distribution
having K intervals. Given a noisy reward r̃, we compute ỹ =

⌊
r̃/M

K

⌋
correspondingly. The p is

defined in Equation 10, which captures the mapping from q to p.

pk = P [ỹ = k] = P [k · M
K

≤ r̃ ≤ (k + 1) · M
K

], k = 0, 1, . . . ,K − 1 (10)

B.3.2 WHEN K ≤ M

The expression for pk in terms of qm is given in Equation 11:

pk =
∑

m:kM
K ≤r+m≤(k+1)M

K

qm (11)

It is known that ∀q0, q1 ≥ 0, q0 + q1 ≤ 1, it follows that −(q0 + q1) log(q0 + q1) = −
(
q0 log(q0 +

q1)+ q1 log(q0+ q1)
)
≤ −(q0 log q0+ q1 log q1). Equality only holds if q0 = 0 or q1 = 0. However,

this is not possible in our confusion matrix cases because each cell has a value greater than 0.

As Fig. 11a illustrates, more qm get combined together for smaller K, resulting in a smaller H(p) =

−
∑K

k pk log pk. specifically, the number of qm that are combined equals M −K. Therefore, H(p)
is non-decreasing concerning K, satisfying the first part of Theorem 2.
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B.3.3 WHEN K > M

As illustrated in Fig. 11b, there are dimensions of p with zero probabilities because K > M , where the
number of those dimensions equals K −M . Hence, H(p) = −

∑K
k pk log pk = −

∑M
m qm log qm

remains constant with respect to K, corresponding to the second half of Theorem 2.

Moreover, this theorem can also be validated empirically through simulations under unlimited
samples, as presented in Fig. 2.

(a) How p fits q when K ≤ M (b) How p fits q when K > M

Figure 11: Illustration of the cross entropy as for different K.

C MORE ANALYSIS OF THE RECONSTRUCTION ERROR

The theoretical discussion on the reconstruction error, ERRORr, is detailed in Section 4.2.1, and
empirical evidence from simulation experiments is depicted in Fig.1. We want to extract several key
observations from Fig. 1 and correlate them with the theoretical discussions, as follows:

• In the cases presented in Fig. 1, nr is set to 10. It is apparent that the reconstruction error
converges to zero for no = 10, 20, 30, 40, 50 with a standard deviation of zero, suggesting
the noisy rewards can be reverted to the clean rewards exactly when no is a multiple of nr

under the premise of infinite samples.
• The value of ERRORr is lower when no < nr in comparison to when no > nr. This

suggests that choosing a larger value for no, without knowledge of nr, may be preferable.
However, an overly large value for no could lead to overfitting in practical cases, as detailed
in Section 4.2.1.

• In conjunction with Fig. 2, it is evident that cross-entropy provides a clear indication of an
optimal point when no = nr, In this situation, concerns about overfitting are minimized,
and we concurrently achieve a reconstruction error of zero.

D PSEUDOCODE OF GDRC

Alg. 2 presents the pseudocode for implementing GDRC with the known range, as discussed in
Section 4.2.1.

E EXPERIMENTAL HYPERPARAMETERS

In essence, our experimentation is conducted via both the Spinning Up and Stable Baselines3
frameworks, for which we detail their important hyperparameter configurations separately. The
source codes associated with this work will be released for public access upon acceptance.

Spinning Up The environments of Hopper-v3, HalfCheetah-v3, Walker2d-v3, and Reacher-v2
are trained using PPO-associated algorithms. Adam optimizers are employed for all neural network
training processes. A total of 4,000 steps per epoch is configured and the agents are trained across
250 epochs, resulting in an aggregate of 1,000,000 interactions. The maximum episodic length is
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Algorithm 2 General Distributional Reward Critic (GDRC)

1: procedure GDRC INITIALIZATION
2: Notations: [n1, n2, ..., nk]: the quantities of outputs from the set of DRC under consideration
3: Initialize k reward critics, denoted as DRCn, with output quantities n1, n2, . . . , nk.
4: Input: s× a
5: Output: [0, 1]n , n ∈ [n1, n2, . . . , nk]

6: procedure GDRC TRAINING
7: Notations: ỹn: noisy reward label regarding n; Stream Buf: the streaming buffer to store

the rewards of the collected samples; remin: the 5% percentile of the collected rewards; remax:
the 95% percentile of the collected rewards; ℓn: the length of each reward interval regarding n,
ℓn = (remax − remin)/n

8: Input: samples (s, a, r̃)s collected in an epoch
9: Objective: parallel training of the reward critics and execution of voting

10: Time the voted numbers by a discount factor.
11: Store (r)s into Stream Buf and set remin and remax to 5% and 95% percentiles respectively.
12: for n in [n1, n2, ..., nk] do
13: Calculate ℓn: ℓn =

(
(remax − remin) /n

)
14: Convert r̃ to ỹn by applying: ỹn = floor

(
(r̃ − remin) /ℓn

)
15: while training iterations threshold not reached do
16: Train DRCn using inputs (s, a) and labels (ỹn)
17: for n in [n1, n2, ..., nk] do
18: Perform prediction using DRCn and derive R̂θn

19: Compute cross entropy Hn = H(ỹn, R̂θn)
20: Compute dHn = Hn −Hn′, where n′ denotes the previous n
21: if dHn > dHn′ then
22: Cast vote for n′
23: Select DRCn that received the maximum votes, with n denoting the number of discretization

24: procedure GDRC PREDICTING(st, at, r̃t)
25: Notations: remin: the 5% percentile of the collected rewards; remax: the 95% percentile of

the collected rewards; reward critic R̂θ

26: Input: (st, at, r̃t)
27: Output: (st, at, r̂t)
28: Select DRCn that received the maximum votes, with n denoting the number of discretization
29: Compute the length of each reward interval ℓn = (remax − remin)/n
30: Associate each sample with a discrete label ỹt = floor

(
(r̃t − remin) /ℓn

)
31: Input (st, at) to DRCn, and obtain R̂θ(st, at).
32: Determine the predicted reward label ŷt: ŷt = argmax R̂θ(st, at)
33: Compute the predicted reward value r̂t: r̂t = r̃t + (ŷt − ỹt) · ℓn
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designated as 1,000. Learning rates of 3e-4 and 1e-3 are applied to the policy and the value function
respectively, with training conducted over 80 iterations per update. The clipping ratio, used in the
policy objective, is set at 0.2. The GAE-Lambda parameter is set at 0.97. For methods incorporating
the surrogate reward (SR) method, the reward critic has a learning rate of 1e-3 and trains over 80
iterations. For those involving a Distributional Reward Critic (DRC), the reward critic adopts a
learning rate of 1e-3 and trains over 40 iterations per update.

Pendulum-v1 is trained via DDPG-associated algorithms. Adam optimizers are employed for all
neural network training processes. Configured for 200 steps per epoch, the agents are trained over
750 epochs, resulting in a total of 150,000 interactions. The maximum episodic length is set at 200.
Learning rates of 1e-3 are assigned to both the policy and the Q-function, with updates occurring
every 200 steps. The size of the replay buffer is 10e5 and the batch size is set at 200. When a
surrogate reward (SR) method is employed, the hyperparameters are aligned with (Wang et al., 2020).
The hyperparameter settings for DRC-related methods remain unchanged.

Stable Baselines3 The hyperparameters utilized in Stable Baselines3 are derived from RL Base-
lines3 Zoo. CartPole-v1 is trained with DQN-associated algorithms. Adam optimizers are utilized for
all neural network training. The agent undergoes a total of 50,000 steps in training. The learning
rate for the optimizer is set at 0.0023. The fraction of the total training period during which the
exploration rate diminishes is set at 0.16, with the exploration probability dropping from 1.0 to 0.04.
The buffer size is sufficiently large to accommodate all samples. When SR or DRC-related methods
are applied, the hyperparameters remain unchanged as we discuss previously.

F EXPERIMENT RESULT TABLES

Table 2: Experiement Results in Pendulum Under GCM perturbations. Bolded methods are our
methods. Blue methods can be applied without any information about the perturbations.

ω Algs Pendulum
DDPG -149.7 +/- 6.1

RE -147.3 +/- 5.8
ω = 0.1 GDRC -149.8 +/- 5.8

SR W -138.4 +/- 6.3
SR -135.2 +/- 5.5

DRC -151.1 +/- 6.2
DDPG -149.9 +/- 6.5

RE -136.0 +/- 6.1
ω = 0.3 GDRC -148.2 +/- 6.0

SR W -142.0 +/- 5.3
SR -161.4 +/- 6.4

DRC -162.6 +/- 6.5
DDPG -144.3 +/- 6.0

RE -149.9 +/- 6.6
ω = 0.5 GDRC -144.5 +/- 6.3

SR W -184.4 +/- 15.1
SR -167.3 +/- 6.4

DRC -148.1 +/- 5.7
DDPG -244.9 +/- 14.0

RE -347.9 +/- 28.9
ω = 0.7 GDRC -137.5 +/- 6.0

SR W -215.7 +/- 12.6
SR -422.3 +/- 21.1

DRC -144.2 +/- 6.0
DDPG -843.7 +/- 31.9

RE -879.3 +/- 36.2
ω = 0.9 GDRC -621.7 +/- 35.5

SR W -1413.0 +/- 21.7
SR -992.9 +/- 31.7

DRC -320.9 +/- 30.9
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Table 3: Experiement Results in CartPole Under GCM perturbations. Bolded methods are our
methods. Blue methods can be applied without any information about the perturbations.

ω Algs CartPole
DQN 394 +/- 13
RE 372 +/- 13

ω = 0.1 DRC 455 +/- 9
SR W 264 +/- 13

SR 340 +/- 13
DQN 313 +/- 14
RE 436 +/- 9

ω = 0.2 DRC 455 +/- 9
SR W 382 +/- 11

SR 364 +/- 12
DQN 278 +/- 13
RE 385 +/- 11

ω = 0.3 DRC 435 +/- 13
SR W 352 +/- 13

SR 324 +/- 14
DQN 252 +/- 12
RE 285 +/- 13

ω = 0.4 DRC 332 +/- 13
SR W 228 +/- 13

SR 252 +/- 14
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Table 4: Experiement Results in Mujoco tasks Under GCM perturbations. Bolded methods are our
methods. Blue methods can be applied without any information about the perturbations.

nr ω Algs Hopper HalfCheetah Walker2d Reacher
PPO 1968.9 +/- 46.6 1809.6 +/- 45.0 1143.3 +/- 24.3 -16.7 +/- 0.5
RE 1904.1 +/- 43.3 1674.5 +/- 44.9 1351.3 +/- 35.7 -19.6 +/- 0.5

ω = 0.1 GDRC 2495.1 +/- 35.3 1840.8 +/- 54.0 1722.0 +/- 35.6 -16.3 +/- 0.3
SR W 1542.4 +/- 59.7 1172.7 +/- 64.0 1226.1 +/- 29.1 -19.1 +/- 0.3
DRC 2249.7 +/- 60.6 679.4 +/- 4.4 1368.1 +/- 35.0 -5.5 +/- 0.1
PPO 1827.8 +/- 64.0 1212.5 +/- 45.1 1141.0 +/- 40.8 -24.8 +/- 1.0
RE 2294.7 +/- 49.6 1424.7 +/- 39.8 1410.6 +/- 29.9 -34.3 +/- 1.3

ω = 0.3 GDRC 2855.8 +/- 22.6 1201.6 +/- 44.5 1178.3 +/- 43.6 -27.8 +/- 0.8
SR W 2053.9 +/- 46.4 748.2 +/- 66.4 995.5 +/- 17.8 -18.4 +/- 0.2

nr = 6
DRC 2208.4 +/- 66.9 689.1 +/- 4.0 1549.6 +/- 33.9 -5.5 +/- 0.1
PPO 2225.8 +/- 50.1 740.0 +/- 28.8 754.2 +/- 21.0 -36.4 +/- 2.4
RE 2180.3 +/- 47.7 990.8 +/- 40.7 1131.8 +/- 36.5 -40.6 +/- 2.2

ω = 0.5 GDRC 2541.3 +/- 37.5 1321.4 +/- 45.7 1419.6 +/- 28.4 -26.6 +/- 0.9
SR W 1600.6 +/- 60.9 252.7 +/- 45.0 673.7 +/- 15.4 -20.5 +/- 0.3
DRC 2633.0 +/- 10.8 692.2 +/- 3.5 1322.7 +/- 44.5 -5.6 +/- 0.1
PPO 1672.9 +/- 47.9 365.2 +/- 28.6 621.1 +/- 17.2 -66.6 +/- 3.5
RE 1536.1 +/- 50.9 595.5 +/- 14.5 755.0 +/- 34.2 -100.9 +/- 6.6

ω = 0.7 GDRC 2100.3 +/- 68.5 1064.1 +/- 61.0 856.9 +/- 36.1 -27.6 +/- 1.1
SR W 1455.1 +/- 45.6 -13.6 +/- 10.1 536.6 +/- 13.3 -20.7 +/- 0.3
DRC 1814.4 +/- 65.1 1069.2 +/- 52.9 1120.0 +/- 51.0 -7.1 +/- 0.2
PPO 1814.6 +/- 40.1 1882.8 +/- 44.6 1294.3 +/- 29.2 -13.9 +/- 0.2
RE 1829.1 +/- 30.6 1977.1 +/- 56.7 1729.9 +/- 34.9 -15.6 +/- 0.3

ω = 0.1 GDRC 2353.2 +/- 36.2 1685.5 +/- 47.8 1311.2 +/- 35.6 -15.7 +/- 0.2
SR W 2195.9 +/- 40.9 1605.7 +/- 42.7 1228.7 +/- 33.4 -15.0 +/- 0.2
DRC 2614.4 +/- 41.1 692.3 +/- 2.2 1278.3 +/- 11.7 -9.8 +/- 0.2
PPO 2895.3 +/- 32.6 1173.6 +/- 54.7 1201.2 +/- 27.0 -25.3 +/- 0.9
RE 2448.8 +/- 30.5 1587.6 +/- 54.5 1573.5 +/- 26.5 -39.6 +/- 1.7

ω = 0.3 GDRC 2899.2 +/- 11.2 1153.9 +/- 24.8 1342.7 +/- 54.8 -28.6 +/- 1.0
SR W 2017.1 +/- 70.8 1095.8 +/- 33.1 772.2 +/- 33.0 -17.2 +/- 0.3

nr = 10
DRC 2883.3 +/- 4.3 898.0 +/- 27.5 1211.0 +/- 23.6 -9.0 +/- 0.2
PPO 2378.5 +/- 55.7 434.1 +/- 36.4 1355.3 +/- 28.1 -41.6 +/- 1.8
RE 2670.9 +/- 36.2 871.3 +/- 67.9 1410.8 +/- 23.3 -37.7 +/- 1.9

ω = 0.5 GDRC 2219.3 +/- 56.3 1139.4 +/- 27.6 1427.4 +/- 40.7 -29.6 +/- 0.6
SR W 1534.0 +/- 75.5 479.7 +/- 19.9 632.9 +/- 26.0 -17.8 +/- 0.2
DRC 2849.5 +/- 9.6 886.6 +/- 27.5 1247.3 +/- 19.1 -6.5 +/- 0.1
PPO 1905.1 +/- 56.4 104.0 +/- 33.8 1041.2 +/- 22.0 -49.6 +/- 2.2
RE 2245.6 +/- 39.7 189.1 +/- 35.9 1028.3 +/- 20.4 -55.4 +/- 2.4

ω = 0.7 GDRC 2572.0 +/- 36.6 678.8 +/- 61.1 1137.3 +/- 32.2 -36.5 +/- 1.4
SR W 728.0 +/- 27.5 210.0 +/- 14.8 418.5 +/- 5.9 -20.1 +/- 0.5
DRC 2879.4 +/- 4.6 739.6 +/- 13.0 1199.2 +/- 35.5 -8.1 +/- 0.6
PPO 1901.1 +/- 36.9 1760.9 +/- 63.4 1239.8 +/- 34.6 -12.3 +/- 0.2
RE 2006.6 +/- 36.9 1928.1 +/- 57.5 1580.5 +/- 27.4 -17.0 +/- 0.3

ω = 0.1 GDRC 2416.8 +/- 40.6 1759.4 +/- 44.4 1678.1 +/- 37.6 -16.0 +/- 0.2
SR W 2397.3 +/- 45.7 1781.3 +/- 52.2 989.4 +/- 35.8 -12.6 +/- 0.1
DRC 2332.1 +/- 34.4 601.4 +/- 45.5 1235.6 +/- 29.9 -5.9 +/- 0.1
PPO 2266.0 +/- 55.5 1282.0 +/- 52.1 1195.7 +/- 22.9 -22.7 +/- 1.0
RE 2050.2 +/- 53.1 1504.6 +/- 54.7 1520.7 +/- 21.3 -41.7 +/- 1.4

ω = 0.3 GDRC 2732.5 +/- 10.8 893.1 +/- 28.1 1399.1 +/- 40.4 -60.3 +/- 4.9
SR W 1523.9 +/- 34.2 1258.9 +/- 54.3 718.8 +/- 23.2 -12.5 +/- 0.1

nr = 16
DRC 2554.0 +/- 22.1 486.3 +/- 43.5 1224.3 +/- 29.8 -11.5 +/- 1.0
PPO 2303.3 +/- 55.0 567.4 +/- 24.9 1182.5 +/- 31.1 -40.3 +/- 1.6
RE 2274.5 +/- 46.8 702.3 +/- 48.8 1337.1 +/- 28.6 -63.6 +/- 2.6

ω = 0.5 GDRC 2765.0 +/- 18.4 1182.2 +/- 25.6 1606.3 +/- 23.2 -33.4 +/- 1.1
SR W 1542.6 +/- 56.0 645.8 +/- 28.0 497.0 +/- 16.8 -14.1 +/- 0.1
DRC 2612.6 +/- 21.9 1004.5 +/- 47.8 1323.0 +/- 33.5 -44.2 +/- 5.6
PPO 1824.4 +/- 40.8 18.2 +/- 16.3 926.1 +/- 14.0 -43.7 +/- 2.2
RE 1919.6 +/- 48.5 82.8 +/- 24.4 931.2 +/- 14.9 -75.1 +/- 3.0

ω = 0.7 GDRC 2247.6 +/- 56.0 704.8 +/- 36.8 977.8 +/- 28.9 -33.8 +/- 0.9
SR W 663.2 +/- 23.6 196.2 +/- 12.8 371.0 +/- 3.0 -15.4 +/- 0.2
DRC 2666.8 +/- 39.3 962.5 +/- 47.0 1269.4 +/- 22.8 -6.1 +/- 0.2
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Table 5: Experiement Results in Mujoco tasks Under continuous perturbations. Bolded methods are
our methods.

Perturbation σ/ω Algs Hopper HalfCheetah Walker2d Reacher

Gaussian

σ = 0.1
PPO 1741.7 +/- 40.9 2111.2 +/- 46.8 1092.4 +/- 30.1 -5.6 +/- 0.1
RE 1912.7 +/- 38.6 2280.3 +/- 54.2 1407.4 +/- 55.0 -5.9 +/- 0.1

GDRC 2779.5 +/- 26.4 2111.5 +/- 63.8 1308.6 +/- 32.3 -9.4 +/- 0.1

σ = 0.2
PPO 1823.2 +/- 36.6 1953.3 +/- 48.0 1326.0 +/- 39.5 -6.0 +/- 0.1
RE 1575.6 +/- 22.0 2105.7 +/- 55.2 1157.9 +/- 30.8 -6.0 +/- 0.0

GDRC 2234.6 +/- 42.7 1862.7 +/- 55.6 1635.8 +/- 44.4 -11.7 +/- 0.1

σ = 0.3
PPO 1691.6 +/- 30.7 2147.3 +/- 51.3 1200.9 +/- 30.2 -6.4 +/- 0.1
RE 1927.9 +/- 34.0 2124.2 +/- 49.2 1666.0 +/- 38.8 -6.0 +/- 0.1

GDRC 2107.8 +/- 39.8 1883.3 +/- 57.2 1124.4 +/- 30.3 -7.8 +/- 0.1

σ = 0.4
PPO 1728.4 +/- 43.3 2103.2 +/- 49.1 1173.2 +/- 39.3 -6.6 +/- 0.1
RE 1682.5 +/- 28.4 2034.3 +/- 59.4 1264.5 +/- 35.1 -6.1 +/- 0.1

GDRC 2270.5 +/- 43.9 1818.7 +/- 50.4 1252.6 +/- 25.1 -8.5 +/- 0.1

Uniform

ω = 0.1
PPO 1889.6 +/- 39.7 1995.0 +/- 55.4 1475.9 +/- 39.5 -5.9 +/- 0.1
RE 2176.6 +/- 36.3 2067.2 +/- 57.5 1269.0 +/- 29.5 -6.1 +/- 0.1

GDRC 2527.7 +/- 27.7 1884.9 +/- 52.5 1342.6 +/- 42.0 -6.1 +/- 0.1

ω = 0.2
PPO 1863.2 +/- 43.0 2127.7 +/- 48.6 905.3 +/- 30.6 -7.0 +/- 0.1
RE 1703.6 +/- 30.7 1987.5 +/- 50.7 1134.1 +/- 33.4 -6.2 +/- 0.1

GDRC 2541.4 +/- 44.7 1883.7 +/- 47.1 1348.9 +/- 54.3 -6.3 +/- 0.0

ω = 0.3
PPO 2208.9 +/- 37.3 1934.5 +/- 57.3 1065.0 +/- 39.7 -7.3 +/- 0.1
RE 1743.2 +/- 43.8 1986.6 +/- 61.7 1300.8 +/- 21.9 -7.0 +/- 0.1

GDRC 2776.8 +/- 26.7 1986.6 +/- 54.0 1533.0 +/- 39.1 -7.2 +/- 0.1

ω = 0.4
PPO 1500.6 +/- 37.6 2085.7 +/- 49.7 771.5 +/- 41.3 -8.1 +/- 0.1
RE 1957.7 +/- 24.5 2063.2 +/- 54.4 1347.3 +/- 37.4 -7.3 +/- 0.1

GDRC 2498.0 +/- 26.9 1892.6 +/- 49.7 1534.3 +/- 43.5 -9.3 +/- 0.1

ω = 0.1
PPO 2009.4 +/- 34.9 1898.0 +/- 54.1 1260.2 +/- 35.4 -13.6 +/- 0.3
RE 2364.1 +/- 31.7 1977.2 +/- 54.3 1230.5 +/- 28.3 -18.0 +/- 0.6

GDRC 2327.4 +/- 39.5 1778.3 +/- 46.8 1303.8 +/- 41.7 -15.8 +/- 0.3

ω = 0.2
PPO 2475.0 +/- 43.4 1742.9 +/- 60.7 1418.2 +/- 36.1 -26.1 +/- 0.7
RE 2316.7 +/- 30.0 1822.5 +/- 62.1 1544.6 +/- 29.4 -21.5 +/- 0.5

Reward Range GDRC 2701.8 +/- 29.1 1200.9 +/- 30.4 1618.2 +/- 33.0 -20.1 +/- 0.6
Uniform

ω = 0.3
PPO 2260.1 +/- 24.4 1463.6 +/- 59.0 1024.5 +/- 23.7 -25.8 +/- 0.7
RE 2679.0 +/- 22.4 1633.8 +/- 48.8 1590.6 +/- 37.7 -33.7 +/- 1.1

GDRC 2841.4 +/- 9.9 1015.6 +/- 28.4 1724.9 +/- 31.4 -21.0 +/- 0.5

ω = 0.4
PPO 2763.7 +/- 29.8 1026.3 +/- 50.1 1064.7 +/- 29.1 -31.7 +/- 1.2
RE 2599.8 +/- 50.5 1530.3 +/- 42.9 1548.3 +/- 20.7 -44.9 +/- 1.1

GDRC 2642.7 +/- 51.5 1069.7 +/- 28.2 1462.6 +/- 36.6 -25.7 +/- 1.0
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G ADDITIONAL RESULTS

Figure 12: The results of Mujoco environments under GCM perturbations. DRC EX represents
using distributional reward critic by computing the expectation of the output. DRC is presented for
comparison. The x-axis represents ω. We keep the same scale of the y-axis as the previous charts for
easy comparison.

Figure 13: The results of Mujoco environments under GCM perturbations where the range of
perturbed rewards gets doubled than the one before perturbations. Solid line methods can be applied
without any information. DRC and GDRC are our methods. The x-axis represents ω. We keep the
same scale of the y-axis as the previous charts for easy comparison.

H LEARNING CURVES
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(a) Hopper (b) HalfCheetah (c) Walker2d (d) Reacher

Figure 14: GCM Perturbations nr = 6
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(a) Hopper (b) HalfCheetah (c) Walker2d (d) Reacher

Figure 15: GCM Perturbations nr = 10
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(a) Hopper (b) HalfCheetah (c) Walker2d (d) Reacher

Figure 16: GCM Perturbations nr = 16
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(a) Hopper (b) HalfCheetah (c) Walker2d (d) Reacher

Figure 17: Continuous Perturbations (Gaussian Noise)
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(a) Hopper (b) HalfCheetah (c) Walker2d (d) Reacher

Figure 18: Continuous Perturbations (Uniform Noise)
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(a) Hopper (b) HalfCheetah (c) Walker2d (d) Reacher

Figure 19: Continuous Perturbations (Reward Range Uniform Noise)
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