
Towards Graph Foundation Models:
Learning Generalities Across Graphs via Task-Trees

Zehong Wang 1 Zheyuan Zhang 1 Tianyi Ma 1 Nitesh V Chawla 1 Chuxu Zhang 2 Yanfang Ye 1 *

Abstract
Foundation models are pretrained on large-scale
corpora to learn generalizable patterns across
domains and tasks—such as contours, textures,
and edges in images, or tokens and sentences in
text. In contrast, discovering such generalities
in graph-structured data, especially across het-
erogeneous graph tasks, remains an open chal-
lenge. To address this, we propose a novel ap-
proach to cross-task generalization in graphs via
task-trees, which serve as unified learning in-
stances aligning node-, edge-, and graph-level
tasks. We theoretically analyze the stability, trans-
ferability, and generalization properties of task-
trees, showing that pretraining a graph neural net-
work (GNN) on diverse task-trees with a recon-
struction objective induces transferable knowl-
edge. This enables efficient adaptation to down-
stream tasks with minimal fine-tuning. To validate
our framework, we introduce Graph Generality
Identifier on Task-Trees (GIT), a graph founda-
tion model that demonstrates strong performance
on over 30 graphs across five domains via fine-
tuning, in-context learning, and zero-shot gener-
alization. Code and data are available at https:
//github.com/Zehong-Wang/GIT.

1. Introduction
Foundation models have emerged as a cornerstone of
general-purpose machine learning, enabling cross-task and
cross-domain generalization. Representative examples in-
clude large language models (LLMs) for text (Achiam
et al., 2023; Touvron et al., 2023) and large vision mod-
els (LVMs) for images (He et al., 2022; Yuan et al., 2021).
Pretrained on massive datasets, these models capture trans-

1University of Notre Dame 2University of Connecticut. Corre-
spondence to: Zehong Wang <zwang43@nd.edu>, Yanfang Ye
<yye7@nd.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

ferable patterns—such as contours and textures in images, or
tokens and sentences in text—that reflect modality-specific
generalities. This broad knowledge base allows for efficient
adaptation to downstream tasks via in-context learning (Xie
et al., 2022; Chen et al., 2024c) and zero-shot generalization
(Wei et al., 2021).

Despite the success of foundation models in text and vision,
their extension to graph-structured data remains nascent
(Liu et al., 2024a), primarily due to the high variability
across graph datasets (Mao et al., 2024). Graphs from dif-
ferent domains often encode distinct phenomena—e.g., so-
cial networks model human relationships (Freeman, 2004),
whereas molecular graphs represent chemical structures
(Zeng et al., 2022)—leading to both feature (Wang et al.,
2024b) and structural heterogeneity (Qiu et al., 2020; Wang
et al., 2024c). Crucially, graph tasks operate on different
learning units, such as nodes, edges, or entire graphs, limit-
ing cross-task compatibility within a unified model (Wang
et al., 2024b). These challenges hinder the development
of graph foundation models capable of capturing transfer-
able generalities. In this work, we specifically address the
challenge of task heterogeneity.

Is it possible to identify cross-task generalities across
graphs? Despite inherent challenges, prior work has ex-
plored this question via two main approaches. (1) A graph-
theoretic perspective employs the concept of graphons (Ruiz
et al., 2020) to model transferable patterns across graphs.
If graphs are sampled from the same graphon, they are
expected to share structural properties, enabling effective
transfer (Ruiz et al., 2020; Cao et al., 2023). However,
graphon-based methods rely on strong generative assump-
tions that rarely hold in real-world settings (Levie et al.,
2021), and inferring a shared graphon from diverse graphs
remains computationally intractable. (2) A substructure-
based perspective seeks recurring motifs—such as triangles,
stars, or k-cliques—across domains (Zhao et al., 2023; Mao
et al., 2024). These motifs appear in various contexts (e.g.,
social, citation, and molecular networks), motivating meth-
ods that sample subgraphs consisting of substructures and
encode them via GNNs (Sun et al., 2023; Liu et al., 2024a).
However, message-passing GNNs are fundamentally lim-
ited in capturing such substructures (Garg et al., 2020; Esser

1

https://github.com/Zehong-Wang/GIT
https://github.com/Zehong-Wang/GIT

Title Suppressed Due to Excessive Size

et al., 2021; Zhang et al., 2024a), restricting their efficacy
in learning transferable subgraph representations.

Given the limitations of prior approaches, we introduce
a novel perspective centered on the learning dynamics of
message-passing GNNs (Kipf & Welling, 2017; Hamilton
et al., 2017). In such models, predictions are made based
on task-relevant nodes: the target node in node-level tasks,
edge endpoints in edge-level tasks, and all nodes in graph-
level tasks (Srinivasan & Ribeiro, 2020). Regardless of task
type, GNNs aggregate embeddings over these task-relevant
nodes, which can be conceptualized as introducing a virtual
task node connected to all task-relevant nodes. We define
the computation tree rooted at this virtual node as a task-
tree (Figure 1). Task-trees offer three key advantages: (1)
Learnability: tree-structured information can be effectively
captured by message-passing GNNs (Gupta et al., 2024); (2)
Uniformity: task-trees apply seamlessly across node-, edge-,
and graph-level tasks, mitigating task heterogeneity; (3) Effi-
ciency: encoding task-trees operationally equals to encoding
the virtual nodes appended to original graphs. Analogous to
images in vision or sentences in language, task-trees serve
as unified learning instances and may encode transferable
patterns across graph tasks, leading to the assumption:

Task-Tree Generality Assumption. The generalities shared
across graphs are (at least partially) preserved within the
task-trees of the involved graphs.

To evaluate this assumption, we conduct a theoretical anal-
ysis of task-trees with respect to stability, transferability,
and generalization. Our main result shows that pretraining
a GNN on diverse task-trees via a reconstruction objec-
tive yields transferable representations that adapt well to
downstream tasks with moderate fine-tuning. Furthermore,
the model can be specialized to specific domains via post-
training (Wei et al., 2021) on domain-specific task-trees.

To empirically validate our theoretical insights, we intro-
duce Graph Generality Identifier on Task-Trees (GIT), a
graph foundation model pretrained on task-trees extracted
from diverse graphs spanning multiple domains and tasks.
GIT is evaluated on 32 graphs across 5 domains under three
paradigms: fine-tuning, in-context learning (few-shot with-
out fine-tuning), and zero-shot learning. Results show that
pretraining on a small set of graphs significantly improves
performance on a broad range of downstream tasks, sup-
porting the hypothesis that task-trees capture transferable
generalities. Additionally, we propose an instruction tun-
ing method to adapt the general model to specific domains,
yielding performance comparable to or exceeding domain-
specific expert models. Our key contributions are:

• We introduce task-trees as unified learning instances
for aligning heterogeneous graph tasks, demonstrating
advantages over conventional units such as subgraphs.

• We present the first theoretical framework addressing
task heterogeneity in graph learning, establishing the
effectiveness of task-trees for cross-task generalization.

• We propose GIT, a graph foundation model pretrained
on task-trees to acquire generalizable knowledge and
support domain specialization.

• Extensive experiments across 32 graphs and five do-
mains validate the effectiveness of GIT under fine-
tuning, in-context, and zero-shot settings.

2. Task-Trees: Rethinking Basic Learning
Instances on Graphs

2.1. Preliminary

We begin with a brief introduction to message-passing
GNNs and some related concepts. Let G = (V, E) rep-
resent a graph with node set V and edge set E , where each
node v ∈ V is associated with a feature vector x ∈ Rd.
A GNN encoder ϕ takes the graph as input and performs
message passing to learn node embeddings Z = ϕ(V, E).
Specifically, a GNN encoder can be defined as:

z
(l)
i = σ

(
W1z

(l−1)
i +W2ρ

(∑
j∈N (i) g(z

(l−1)
j)

))
, (1)

where Ni denotes the 1-hop neighbors of node i, z(l) rep-
resents the node embedding at the l-th GNN layer with
z(0) = x, and W1,W2 are learnable matrices. The func-
tions σ, ρ, and g are the activation function, aggregation
function and update function, respectively. To simplify the
analysis, we assume ρ is an averaging operation and g is the
identity function. Without loss of generality (WLOG), these
functions can be replaced with any permutation-invariant
and Lipschitz-continuous functions, respectively, without
affecting the analysis in the paper.

Definition 2.1 (Task-Relevant Nodes). Graph tasks can be
roughly categorized into node-level, edge-level, and graph-
level tasks, where the basic learning instances are nodes,
edges, and entire graphs, respectively. For node classifica-
tion, the task-relevant node vti is the node to be classified.
In edge classification, the task-relevant nodes are the start
and end nodes {vti , vtj} of the target edge eij . For graph

classification, the task-relevant nodes {vti}
|V|
i=1 include all

nodes in the target graph G.

For any graph task instance, the prediction relies solely on
the embeddings of the corresponding task-relevant nodes.
These node embeddings capture the surrounding subtree
structures, which are also known as computation trees.

Definition 2.2 (Computation Trees (Chuang & Jegelka,
2022)). Given a node v in graph G, the L-layer compu-
tation tree TLv is constructed by recursively expanding the
subtrees of its neighboring nodes, starting with T 1

v = v.

2

Title Suppressed Due to Excessive Size

2.2. Task-Tree Construction and Encoding

The learning process of message-passing GNNs can be in-
terpreted as recursive aggregation over computation trees,
where the representation of a node v produced by an L-layer
GNN corresponds to the embedding of its L-hop computa-
tion tree TLv . Since predictions in graph tasks rely exclu-
sively on the embeddings of task-relevant nodes, and those
embeddings are determined by their respective computation
trees, we construct a unified task-tree for each learning in-
stance—whether a node, edge, or entire graph—by merging
the relevant computation trees, as illustrated in Figure 1.
Definition 2.3 (Task-Trees). For any graph instance—
whether a node, edge, or graph—we have a set of task-
relevant nodes {vt1, ..., vtn} and their corresponding L-layer
computation trees {T1, ..., Tn}. These computation trees
can be reformulated into a larger task-tree T t by introduc-
ing a virtual node that connects all task-relevant nodes.

To encode a task-tree, we adopt a simple yet effective ag-
gregation strategy. Given a task-tree T t composed of a
virtual node vt and task-relevant nodes {vt1, . . . , vtn}, we
compute its representation using a MEAN aggregator over
the embeddings of the individual computation trees:

zt = ϕ(T t) = 1
n

∑n
i=1 ϕ(Ti), (2)

where Ti denotes the computation tree rooted at vti , and
ϕ is a shared GNN encoder. This representation serves as
the input for downstream objectives such as reconstruction,
classification, or alignment.

2.3. Comparison to Existing Works

Unlike our proposed task-trees, several existing approaches
(Qiu et al., 2020; Sun et al., 2023; Huang et al., 2023; Liu
et al., 2024a; He & Hooi, 2024) utilize k-hop subgraphs
extracted from graphs as the basic learning instances. For
instance, in node classification, ego-graphs are constructed
around each node, where the label of the central node is
assigned to the induced subgraph, effectively reformulat-
ing node classification as a subgraph classification task.
A similar transformation can be applied to edge-level and
graph-level tasks by converting them into subgraph-level
learning problems. This method involves: (1) extracting
ego-graphs centered around task-relevant nodes and (2) ap-
plying GNNs to learn graph-level embeddings for classifi-
cation. However, this subgraph extraction process incurs
substantial computational overhead, increasing both time
and memory requirements due to the necessity of storing
and processing induced subgraphs. Moreover, information
within these subgraphs is not always effectively captured by
message-passing GNNs, as GNNs may struggle to learn es-
sential substructures preserved in graphs (Garg et al., 2020;
Chen et al., 2020; Zhang et al., 2024a), thereby limiting the
efficacy of subgraphs as learning instances.

Node Property: ?

Edge Exist: ?

Graph Property: ?

Node Task

Graph Task

Edge Task

?

Append Task Nodes

What’s the property of task-trees?

… … …

Task Node Virtual Link

?

?

Task-Tree Space
(Derived by Encoding Task Nodes via GNNs)

Figure 1: The formulation of task-trees.

In contrast, our proposed task-trees offer both greater ef-
ficiency and improved learnability (Table 1). Specifically,
encoding task-trees for node, link, or graph-level tasks in-
volves: (1) augmenting the original graph by adding virtual
task nodes and connecting them to task-relevant nodes and
(2) applying GNNs over the augmented graph to encode the
embeddings of these virtual nodes for prediction. For exam-
ple, in node classification, we first introduce virtual nodes
connected to each node in the original graph and subse-
quently apply GNNs to this augmented structure, allowing
virtual node embeddings to be learned for classification.
Consequently, our method requires only the addition of
nodes and edges to the existing graph, making it signifi-
cantly more efficient than extracting and storing subgraphs.
Furthermore, encoding task-trees is equivalent to directly
encoding virtual nodes through message passing, ensuring
that task-tree information remains fully learnable by stan-
dard GNNs. Empirically, task-trees consistently outperform
subgraphs in both effectiveness and efficiency (Section 5.6
and Appendix I).

The most closely related work to our task-tree framework is
GFT (Wang et al., 2024b), which introduces computation
trees to align heterogeneous graph tasks. While both ap-
proaches share the core intuition of structuring task-specific
trees, GFT adopts a model-centric perspective, featuring
a learnable vocabulary, a multi-faceted reconstruction ob-
jective, and specialized adaptation classifiers. In contrast,
our task-tree framework is theory-driven and emphasizes
the design of learning instances rather than model complex-
ity. Notably, GFT empirically demonstrates the potential of
computation trees for transferability, while our work com-
plements it with a formal theoretical foundation, offering a
principled understanding of task alignment in graph learning.
Together, these works represent complementary advances to-
ward general-purpose graph foundation models. We present
additional discussions on related work in Appendix A.

3

Title Suppressed Due to Excessive Size

Table 1: Comparison of task alignment methods on graphs.

Without Task Alignment Alignment via Subgraph Tasks Alignment via Task-Tree Tasks (Ours)

Edge Exist: ?

Edge Task

?

Node Property: ?

Node Task

?

Graph Property: ?

Graph Task
?

(Sub)graph Property: ?

Edge Task
?

Node Task
?

Graph Task
?

Task-Tree Property: ?

Edge Task
?

Node Task
?

Graph Task
?

Task Node Virtual Link

Input Original graphs Extracted subgraphs Original graphs with task nodes

Pre-processing N/A Extract subgraphs for each learning
instance (node/link/graph)

Append task nodes to the original graphs,
connecting each to task-relevant nodes

Encoding Apply GNNs to learn node embeddings Apply GNNs on induced subgraphs to
obtain subgraph embeddings

Apply GNNs directly on original graphs
to learn task node embeddings

Prediction Use node embeddings to derive
node/link/graph representations

Use subgraph embeddings as
representations for corresponding

instances (node/link/graph)

Use task node (task-tree) embeddings as
instance representations

(node/link/graph) for predictions

Learnability - GNNs struggle to capture fundamental
substructures preserved in (sub)graphs

GNNs inherently learn from tree
structures, such as computation trees

Efficiency - Storing and encoding subgraphs
introduce additional computational

overhead

Encoding task-trees involves encoding
augmented virtual nodes in the original
graphs with minimal computational cost

Theoretical Basis - Lack of a well-established theoretical
foundation

Supported by a rigorous theoretical
framework

3. Theoretical Analysis of Task-Trees
In this section, we present a theoretical analysis of task-trees,
focusing on their stability, transferability, and generalization
as foundational learning instances. This analysis provides
formal support for the Task-Tree Generality Assumption,
which posits that transferable patterns across graph tasks are
preserved within task-tree structures.

Our goal is not to assert the universal superiority of task-
trees over other learning units such as subgraphs, but rather
to establish the theoretical plausibility of using task-trees to
capture cross-task generalities. By grounding the construc-
tion and use of task-trees in formal guarantees, we lay the
foundation for principled pretraining and transfer learning
across heterogeneous graph tasks.

We begin by examining the stability of GNNs in learning
task-tree representations, showing that task-trees with sim-
ilar subtree structures produce analogous embeddings. To
facilitate this analysis, we first define the notation for de-
scribing subtree information:

x
(l)
i =

1

|Ni|
∑
j∈Ni

x
(l−1)
j , (3)

where x
(0)
i = xi denotes the original node feature, and x(l)

denotes the subtree information of nodes in l-th layer, as
illustrated in Figure 2. In this figure, for l = 1, only the
nodes in the first layer of the tree are considered, and for
l = 2, only the nodes in the second layer are considered.
Theorem 3.1 (Stability on Task-Trees). Given two L-layer

task-trees T 1
t and T 2

t , with task-relevant nodes {v1, ..., vn}
and {v1, ..., vm}, respectively. The distance between task-
trees is defined as ∆ := ∥ϕ(T t1)− ϕ(T t2)∥ with

∆ = ∥ϕ(T t1)− ϕ(T t2)∥ = ∥ 1
n

n∑
i=1

ϕ(Ti)−
1

m

m∑
j=1

ϕ(Tj)∥

≤ 1

nm

n∑
i=1

m∑
j=1

(
C1∥x(0)

i − x
(0)
j ∥+ ... (4)

+ C1CL−1
2 ∥x(L−1)

i − x
(L−1)
j ∥

)
≤ 2Bx · C1

CL2 − 1

C2 − 1
,

where ϕ is the GNN encoder, Ti is the computation tree
corresponding to node i, and C1, C2 are constants related to
the encoder, and Bx represents the bounded norm of x.

Theorem 3.1 (proved in Appendix D.1) suggests that two
task-trees are likely to have similar representations if their
subtrees are similar. This theorem highlights the signifi-
cance of similarity between pairs of subtrees, while down-
playing the impact of the number of subtrees (i.e., the width
of the task-trees), despite having more subtrees could poten-
tially increase diversity and thus magnify discrepancy. The
theorem also implies that increasing the number of GNN
layers may lead to a loose bound, which aligns with previous
analyses (Garg et al., 2020; Ju et al., 2023a).

Illustration 3.2. This theorem provides theoretical support
for using task-trees as basic learning instances in graph
tasks. Consider two task-trees: one representing a node
(with a single subtree) and the other representing a graph

4

Title Suppressed Due to Excessive Size

Avg.

𝑥(") 𝑥($)
Avg.

Avg.Avg.

𝑥!
(#) 𝑥%

(#) 𝑥&
(#) 𝑥!

(!) 𝑥%
(!) 𝑥&

(!)

𝑥!
(#) 𝑥%

(#) 𝑥&
(#) 𝑥'

(#)

Figure 2: subtree information examples.

(with multiple subtrees). While the widths of these task-trees
differ significantly, if their subtrees share some degree of
similarity, they can produce similar representations. Thus,
this theorem ensures that task-trees of nodes, edges, or
graphs can potentially be similar, making it possible to use
a GNN encoder to capture the shared patterns among them.

We now examine the transferability of task-trees. Specif-
ically, assuming a model is pretrained on a task-tree re-
construction task1, we aim to quantify how the knowl-
edge acquired during pretraining can be transferred to
downstream tasks. The pretraining objective is defined
as LP(g ◦ ϕ) := E(T̂ ,T)∼P∥g(ϕ(T̂)) − ϕ(T)∥2, where
P represents the task-tree distribution used for pretrain-
ing, ϕ ∈ Φ and g ∈ G are the GNN encoder and the
reconstruction head, respectively. T denotes the task-tree
and T̂ is the corrupted version of T , generated using ar-
bitrary augmentations. Note that the reconstruction head
g is used only during pretraining and is discarded during
fine-tuning. Then, we define the risk on downstream task
as RT (f ◦ ϕ) := E(T,y)∼T κ(f(ϕ(T)), y), where f ∈ F is
a linear head for predictions, T represents the downstream
task distribution with task-tree T and label y, and κ denotes
the loss function.

Theorem 3.3 (Transferability on Task-Trees). Given two
task-tree encoders ϕ, ϕ′ ∈ Φ, we have

min
f∈F

RT (f ◦ ϕ)− min
f ′∈F

RT (f
′ ◦ ϕ′)

≤ Cδ
(
min
g∈G

LP(g ◦ ϕ)− min
g′∈G

LP(g
′ ◦ ϕ′)

)δ
, (5)

where Cδ ≈ O(1) and δ = 1
2 .

The proof is provided in Appendix D.2. In summary, Theo-
rem 3.3 demonstrates that knowledge gained through pre-
training on task-tree reconstruction tasks is transferable to
downstream tasks, and it quantifies the extent of this transfer.
The left-hand side (LHS) of the theorem shows how dif-
ferent representations impact performance on downstream
tasks, while the right-hand side (RHS) reflects the difference
in pretraining losses between two encoders. Therefore, if

1The scope of reconstruction task is large. We consider con-
trastive learning is also a kind of reconstruction.

two encoders exhibit similar losses during pretraining, their
transferability to a new task should be comparable.

Illustration 3.4. To give a better understanding on why The-
orem 3.3 imply the model pretrained on task-trees can bring
transferable information to downstream tasks, we present an
example. Let’s consider the case where ϕ is the pretrained
encoder and ϕ′ is a randomly initialized encoder. The LHS
term minf∈F RT (f ◦ϕ)−minf ′∈F RT (f

′ ◦ϕ′) measures
the amount of knowledge that is acquired during pretraining
and is capable to be transferred to downstream tasks, and
the RHS term ming∈G LP(g ◦ ϕ) − ming′∈G LP(g

′ ◦ ϕ′)
measures the total knowledge acquired during pretraining.
Thus, the constants Cδ and δ quantify how much of this
knowledge is transferable to downstream tasks. Since both
Cδ and δ are reasonably small, we conclude that pretrain-
ing on task-trees provides sufficient knowledge to benefit
downstream tasks.

To further explain why the task-tree-based pretraining and
fine-tuning framework is effective for downstream tasks, we
derive the following generalization bound.

Theorem 3.5 (Generalization on Task-Trees). Given two
task-tree distributions, P for pretraining and T for fine-
tuning, suppose the encoder ϕ is pretrained on a set of
task-trees {Ti}mi=1 sampled from P and finetuned on task-
trees {Ti}ni=1 sampled from T , the generalization bound of
the finetuned model, with probability at least 1− v, is

RT (f ◦ ϕ) ≤ min
f ′∈F

RT (f
′ ◦ ϕ∗)

+ 2C2
(∑
x∈Xϕ

∥∥∥Tϕ(x)− Pϕ(x)
∥∥∥+ 2

√
log(1/v)

n

)

+ Cδ
(
EP(g, ϕ)

)δ
+

4C1
n

√√√√ n∑
i=1

∥∥∥ϕ(Ti)∥∥∥2, (6)

where ϕ∗ = argminϕ∈Φ ming∈G LP(g ◦ ϕ) is the optimal
task-tree encoder obtained on P , EP(g, ϕ) = LP(g ◦ h)−
ming′∈G,ϕ′∈Φ LP(g

′ ◦ ϕ′) defines the excess risk during
pretraining. Constants C1 and C2 are related to downstream
tasks, while Cδ ≈ O(1) and δ = 1

2 are the same as The-
orem 3.3. Xϕ denotes the distribution of task-tree embed-
dings encoded via ϕ, and ∥Tϕ(x) − Pϕ(x)∥ measures the
distance between task-tree distributions of pretraining and
fine-tuning data.

The proof can be found in Appendix D.3. This theo-
rem outlines key factors affecting model generalization on
downstream tasks, such as the transferability of task-trees
(Cδ(EP(g, ϕ))δ) and the quality of the pretrained encoder
(EP(g, ϕ)). With regard to the number of task-trees, we find
that while increasing the number of fine-tuning samples con-
tributes to more stable optimization (4C1

n

√∑n
i=1 ∥ϕ(Ti)∥2),

it does not significantly reduce the generalization bound

5

Title Suppressed Due to Excessive Size

(2
√

log(1/v)
n). This provides theoretical evidence that a rea-

sonable number of fine-tuning samples can be sufficient
for training a model with strong generalization capabili-
ties. Moreover, the discrepancy between the pretraining
and fine-tuning distributions (

∑
x∈Xϕ

∥Tϕ(x)− Pϕ(x)∥) is
crucial—smaller distribution gaps lead to better general-
ization. This highlights the importance of increasing the
diversity of pretraining data, which provides a boarder pre-
training distribution P . It also supports the potential of
developing specialized models for specific domains based
on a pretrained general model, discussed in Section 4.2.

4. Graph Generality Identifier on Task-Trees
The theoretical analysis establishes the feasibility of con-
structing graph foundation models based on task-trees.
Building on these insights, we develop the GIT model to
empirically validate the Task-Tree Generality Assumption.

To focus on aligning task spaces across heterogeneous graph
tasks, we adopt widely used text-attributed graph bench-
marks (Chen et al., 2024b; Zhang et al., 2024b; Feng et al.,
2024), which simplify feature alignment across datasets.
Specifically, we follow Liu et al. (2024a) and encode all
node features into a shared 768-dimensional embedding
space using Sentence-BERT (Reimers & Gurevych, 2019).
This design allows us to isolate and examine the effect of
task-tree-based pretraining while holding node features con-
sistent across domains.

4.1. GIT-G: Pretraining to Acquire General Knowledge

We propose a task-tree reconstruction task as a pretext for
pretraining. The key is to use two corrupted task-trees
to reconstruct each other, thereby capturing corruption-
invariant semantics. Given a set of task-trees {T t1 , ..., T tn}
sampled from a graph database, we apply corruption tech-
niques to generate two views of each task-tree, denoted
as {T̂ t1 , ..., T̂ tn} and {T̃ t1 , ..., T̃ tn}. For corruption, we use
random edge masking and random attribute masking (Zhu
et al., 2020; Wang et al., 2025c) due to its computational
efficiency. We then use an encoder ϕ to obtain embeddings
for the corrupted task-trees, resulting in {ẑ1, ..., ẑn} and
{z̃1, ..., z̃n}. Inspired by (Thakoor et al., 2022), we perform
reconstruction as

L =
1

2n

n∑
i=1

[
∥ρ(g(ẑi))− sg[ρ(z̃i)]∥2

+ ∥ρ(g(z̃i))− sg[ρ(ẑi)]∥2
]
+

n∑
i=1

DKL(h∥zi), (7)

where g is a non-linear MLP projector, ρ(z) = (z/∥z∥)
serves for normalization, sg is the stop-gradient operation,
and h is the average of all instances z. The reconstruction

loss captures the semantics of the task-trees in a predictive
manner, while the KL regularizer ensures the embeddings
are projected into a shared space by minimizing the KL
divergence between individual instances and their center.

4.2. GIT-S: Specification via Instruction Tuning

Theorem 3.5 highlights the relationship between model gen-
eralization and the distribution gap between pretraining data
P and fine-tuning data T , showing that a smaller gap leads
to better generalization. Based on this finding, it is feasible
to develop a specialized model for specific domains from
a pretrained general model. This is based on the mild as-
sumption that graphs from the same domain have similar
task-tree distributions {T1, .., Tn}. If the pretrained model
is post-trained on a task-tree distribution Ppost sampled
from {T1, .., Tn}, the pretraining data distribution P can be
adjusted towards these task-tree distributions. This reduces
the discrepancy

∑
x∈Xϕ

∥Tϕ(x)−Pϕ(x)∥ in Theorem 3.5,
thereby improving model generalization on the target do-
main. To achieve this, we propose an instruction-tuning
method for post-training the pretrained model.

Instruction tuning is a supervised fine-tuning (SFT) tech-
nique designed to enhance the capabilities of a pretrained
model by post-training it on a small dataset. Our goal is to
fine-tune the model using instructions to specialize it for a
particular domain of interest. Given a pretrained model ϕ∗

and a set of task-trees {T1, ..., Tn} from the target domain,
we post-train the model using the SFT loss:

LSFT =
1

n

n∑
i=1

κ(ϕ∗(Ti), ψ(Ti)), (8)

where ψ is the instruction generation function for each task-
tree, and κ is the corresponding loss function. In this paper,
as we use text-attributed graphs in our experiments, we de-
fine instructions as the embeddings of label descriptions
encoded by a LLM, which is similar to Liu et al. (2024a),
and we use mean squared error as the loss function κ. Addi-
tional model analysis is provided in Appendix B.

5. Experiment
5.1. Experimental Setup

Datasets. We conduct experiments on over 30 text-
attributed graphs spanning five domains: academic net-
works, e-commerce networks, knowledge graphs, molecular
graphs, and temporal graphs. Pretraining is performed on
a diverse subset including Arxiv (academic), Products
(e-commerce), WN18RR and FB15K237 (knowledge), and
Chemblpre and PCBA (molecular). Specialization is eval-
uated on representative datasets for each domain: Arxiv,
Products, FB15K237, and PCBA. For temporal graphs,
which are e-commerce temporal graphs, we also use

6

Title Suppressed Due to Excessive Size

Table 2: We report the model performance across five graph domains: academia, e-commerce, knowledge base, molecular,
and temporal graphs, with results averaged over all graphs within each domain. Note that -G and -S represent the general
and specialized versions of GIT, respectively. The comprehensive results can be found in Appendix F.

Domain Academic E-commerce KG Molecule Temporal Held-out Avg. Avg.

0-shot

Sup. GNN - - - - - - -
GraphMAE 15.42 8.19 - 47.19 - 26.67 25.11
OFA 13.98 8.73 - 50.49 - 27.20 26.14

GIT - G 14.88 8.79 - 53.34 - 28.56 27.50
GIT - S 23.45 17.06 - 62.83 - 35.19 36.32

3-shot

Sup. GNN - - - - - - -
GraphMAE 49.25 48.20 56.56 56.01 40.31 50.15 52.07
OFA 45.93 57.06 56.97 57.03 38.92 51.84 53.70

GIT - G 54.00 57.22 67.55 55.96 39.95 56.09 57.82
GIT - S 55.18 58.01 67.80 62.82 41.38 58.69 60.15

Finetune

Sup. GNN 73.57 78.21 66.86 73.65 62.61 71.14 72.25
GraphMAE 73.81 76.57 72.61 71.41 62.75 71.37 72.79
OFA 72.18 76.64 72.38 74.03 62.31 71.48 73.08

GIT - G 75.82 78.55 75.73 74.57 64.59 73.84 75.37
GIT - S 75.88 78.83 76.15 75.20 64.68 74.19 75.72

C
ite

se
er

C
or

a

Pu
bm

ed

D
B

LP

A
rx

iv

A
rx

iv
23

70

72

74

76

78

80

82

84

M
od

el
 P

er
fo

rm
an

ce

ACADEMIA

GIT
Best Baseline

C
od

ex
-S

C
od

ex
-M

C
od

ex
-L

W
N

18
R

R

N
EL

L9
95

FB
15

K
23

7

IC
EW

S1
81

9

G
D

EL
T

10

20

30

40

50

60

70

80

90

100
KG

C
YP

45
0

PC
B

A

B
A

C
E

H
IV

TO
X2

1

M
U

V

B
B

B
P

TO
XC

A
ST

60

65

70

75

80

85

90
MOLECULE

Sp
or

ts
fit

C
om

pu
te

r

Pr
od

uc
ts

Ph
ot

o

H
is

to
ry

C
hi

ld
re

n

R
at

in
gs
20

30

40

50

60

70

80

90

100
E-COMMERCE

En
ro

n

G
oo

gl
em

ap
 C

T

60

61

62

63

64

65

66

67

68
TEMPORAL

Figure 3: The model performance on all datasets in the fine-tuning setting. For GIT, the best result is selected between
GIT-G and GIT-S, while the best baseline performance is chosen among GCN/GAT/GIN, BGRL, GraphMAE, and OFA.

Products for SFT to assess robustness under temporal
distribution shifts. We provide the full dataset details in
Appendix E.1.

Baselines. We compare against a broad spectrum of base-
lines, including supervised GNNs (GCN (Kipf & Welling,
2017), GAT (Veličković et al., 2018), GIN (Xu et al.,
2019)), self-supervised models (BGRL (Thakoor et al.,
2022), GraphMAE (Hou et al., 2022)), and graph foun-
dation models (OFA (Liu et al., 2024a), GraphPrompt+ (Liu
et al., 2023), All in One (Sun et al., 2023), OpenGraph (Xia
et al., 2024), AnyGraph (Xia & Huang, 2024)). We also
include domain-specific expert models for comparison. See
Appendix E.2 for full descriptions.

Experimental Protocols. We use GraphSAGE (Hamilton
et al., 2017) as the encoder and repeat each experiment

five times with different random seeds. We evaluate three
paradigms: fine-tuning, in-context learning, and zero-shot
learning. Fine-tuning updates all model parameters on down-
stream data. In in-context learning (few-shot without fine-
tuning), we randomly sample k instances per class, compute
prototype embeddings via averaging, and classify using
nearest-prototype inference. Following Liu et al. (2024a);
He & Hooi (2024), we sample 500 5-way 3-shot tasks; if
the number of classes is fewer than 5, we use the actual
number of classes as the number of ways. Zero-shot learn-
ing replaces prototypes with class description embeddings
generated by an LLM. For evaluation, we report accuracy
for node classification and edge classification, and AUC for
graph classification and link prediction. Additional details
are provided in Appendix E.

7

Title Suppressed Due to Excessive Size

Table 3: Performance comparison to SOTA methods.

Academic KG Molecule

GraphPrompt+ 74.80 74.78 72.99
All in one 75.25 74.92 71.87
OpenGraph 74.64 71.38 72.84
AnyGraph 75.01 74.30 72.49
GIT - G 75.82 75.73 74.57

5.2. Main Results

Domain-Wise Performance. Table 2 reports average per-
formance across five domains, with detailed per-dataset
results provided in Appendix F. The “held-out avg.” de-
notes the average score on all graphs excluded from pre-
training and specialization, offering an unbiased evaluation
of generalization. Notably, the general-purpose model GIT-
G already outperforms strong baselines in several domains.
With domain-specific specialization, GIT-S achieves fur-
ther gains—especially in zero-shot and in-context settings—
highlighting the benefits of post-training in adapting pre-
trained models to specific domains. These results align with
our theoretical findings, demonstrating enhanced adaptabil-
ity through specialization.

Dataset-Wise Performance. Figure 3 shows fine-tuning
performance across all datasets. GIT consistently outper-
forms the strongest baseline in the majority of cases, validat-
ing the effectiveness of task-trees as generalizable learning
units across heterogeneous graph tasks.

Effect of Specialization. We summarize three key observa-
tions: (1) Specialization (GIT-S) enhances the performance
of GIT-G across most settings (Table 2). However, the
impact of specialization varies depending on the dataset
used (Appendix Figure 9 and Table 25). (2) Specialization
does not significantly degrade model performance on other
domains (Table 27). (3) Applying the proposed special-
ization approach to other models also yields performance
improvements in specific domains (Table 4), showing the
generalization of post-training in enhancing model capacity.

5.3. Comparison to State-of-The-Art Methods

To evaluate the effectiveness of GIT, we compare it against
recent graph foundation models, including GraphPrompt+
(Liu et al., 2023), All in One (Sun et al., 2023), OpenGraph
(Xia et al., 2024), and AnyGraph (Xia & Huang, 2024),
under the pretrain-then-finetune paradigm. As shown in
Table 3, we benchmark GIT-G and all baselines across three
representative domains: academic networks (node classifica-
tion), knowledge graphs (edge classification), and molecular
graphs (graph classification). GIT-G consistently outper-
forms all competing methods across tasks and domains.
While many existing models pursue broad generalization by

Table 4: Ablation study on training strategies, where the
performance is averaged across all academic networks.

Base Model Expert Model

0-shot 3-shot Finetune 0-shot 3-shot Finetune

GraphMAE 15.30 51.51 75.57 17.89 55.88 75.26
OFA 14.19 50.15 75.12 17.26 54.88 75.97
GIT 15.36 53.31 75.53 18.38 55.10 75.47

General Model Specialized Model

0-shot 3-shot Finetune 0-shot 3-shot Finetune

GraphMAE 15.42 49.25 73.81 20.31 51.21 74.05
OFA 13.98 45.93 72.18 20.05 46.87 73.04
GIT 14.88 54.00 75.82 23.45 55.18 75.88

addressing multiple aspects—e.g., domain shifts, modality
fusion, and prompt engineering—GIT adopts a targeted ap-
proach centered on task alignment. Its core innovation lies
in the use of task-trees, which provide a unified abstraction
across graph tasks.

5.4. Ablation on Training Strategies

We conduct an ablation study on academic networks to eval-
uate the impact of different training strategies. Specifically,
we examine four approaches: (1) Base Model: Pretrain-
ing on the target graph. (2) Expert Model: Pretraining on
all academic networks. (3) General Model: Pretraining
on the default pretraining datasets. (4) Specialized Model:
Pretraining on the default datasets followed by specializa-
tion on Arxiv. The results, averaged across all academic
graphs, are reported in Table 4. Notably, the general model
of GIT maintains stable performance relative to both the
base and expert models. In contrast, GraphMAE and OFA
exhibit performance degradation when transitioning from
the base and expert models to the general model. This find-
ing underscores the potential of task-trees in mitigating such
negative transfer. Furthermore, specialization in GIT allows
its performance to closely approximate that of expert models
trained exclusively on academic graphs.

5.5. Comparison to Domain Experts

We compare GIT to domain experts in molecular and knowl-
edge graphs, as these domains require domain-specific
knowledge. Our findings indicate that the specialized GIT
(GIT-S) closely approximates the performance of these ex-
perts. In molecular graphs, GIT-S achieves an average per-
formance of 62.83, ranking second to the state-of-the-art
GIMLET (64.15) (Zhao et al., 2023) while outperforming
other domain experts (Zeng et al., 2022; Su et al., 2022; Tay-
lor et al., 2022), whose best performance is 55.82 (Table 24).
Similarly, in knowledge graphs, GIT-S attains an average
score of 67.80, approaching the KG expert ULTRA (68.53)
(Galkin et al., 2024), as shown in Table 23 in Appendix.

8

Title Suppressed Due to Excessive Size

Table 5: Performance comparison between methods with
different basic learning instances.

Instances Subgraph Tree

Domains OFA GIT - SubG GIT - Tree

Academia 72.18 73.48 75.82
KG 72.38 73.59 75.73
Molecule 74.03 72.67 75.73

Held-out Avg. 71.31 70.88 73.81
Avg. 72.93 73.01 75.33

Table 6: Results on non-text-attributed graphs.

Setting GraphMAE GIT-G

w/o SVD + w/o pretrain 95.02 94.27
w. SVD + w/o pretrain 94.89 95.50
w. SVD + w. pretrain 95.10 95.70

5.6. Task-Trees vs. Subgraphs: Efficiency and
Performance

We compare the efficiency and effectiveness of task-trees
against subgraph-based learning units in the fine-tuning set-
ting, as shown in Figure 4 and Table 5. For a fair comparison,
we implement a subgraph-based variant of our model, de-
noted GIT-SubG, by substituting task-trees with subgraphs
while keeping all other components unchanged.

Experimental results across three domains—academic (node
classification), knowledge graphs (edge classification), and
molecular graphs (graph classification)—demonstrate that
task-trees consistently outperform subgraphs in both com-
putational efficiency (Figure 4) and predictive performance
(Table 5). This highlights the advantage of task-trees in serv-
ing as compact, expressive, and structurally aligned learning
instances, especially in cross-task and cross-domain gener-
alization scenarios.

5.7. Results on Non-Text-Attributed Graphs

While prior experiments use text-attributed graphs, GIT does
not inherently rely on textual information. We adopt text-
attributed datasets to isolate the impact of task heterogene-
ity, while sidestepping the confounding effects of feature
heterogeneity. Textual attributes enable feature alignment
across graphs via a shared encoder, allowing us to more
clearly assess the benefits of task-tree generalization. Im-
portantly, GIT is compatible with non-textual graphs. To
demonstrate this, we introduce a lightweight module that
addresses feature heterogeneity by applying SVD to project
features into a shared space. As shown in Table 6, we
pretrain GIT-G on non-text-attributed datasets—PubMed
(node classification), Citeseer (link prediction), and IMDB-

50

100

U
sa

ge
 (%

) Memory Usage

29 210 211 212 213 214 215

Batch Size (log)

200
250

S
ec

on
ds

Time (s) / Epoch

GIT (Task-Tree) GIT (Subgraph) GraphMAE

Figure 4: Training efficiency between task-tree and sub-
graph versions of GIT.

B (graph classification)—and fine-tune on Cora (link pre-
diction). Results, evaluated via AUC, confirm that GIT-G
remains effective without relying on textual information,
validating its broader applicability.

6. Conclusion and Limitations
We introduce task-trees as unified learning instances for
aligning heterogeneous graph-based tasks, supported by
both theoretical and empirical analyses. Based on this ab-
straction, we develop GIT, a pretrained graph foundation
model that leverages a small set of source graphs to general-
ize across over 30 datasets spanning five diverse domains.
Our results demonstrate that task-trees preserve transfer-
able patterns across tasks, offering a scalable and principled
pathway for cross-domain generalization in graph learning.

Limitations and Future Work. While task-trees serve as a
promising abstraction—analogous to images in vision and
sentences in language—several challenges remain. First,
although our results suggest that task-trees capture gen-
eralities across tasks, pinpointing the precise transferable
patterns remains an open question. Future work should ex-
plore this from both theoretical and empirical perspectives.
Second, transforming graph neighborhoods into tree struc-
tures may lead to information loss due to the limitations of
message-passing GNNs. This can affect model expressive-
ness, especially for graphs with complex higher-order struc-
tures. Incorporating more expressive architectures, such as
higher-order GNNs (Morris et al., 2019; 2023) or advanced
graph modeling (Wang et al., 2025b), may help mitigate this
issue. Finally, while GIT demonstrates strong performance
with a lightweight design, exploring more sophisticated
variants—e.g., incorporating attention mechanisms, graph
prompting, or task-conditioned decoders—offers exciting
directions for extending the generality and adaptability of
graph foundation models. We outline several of these op-
portunities in Appendix C.

9

Title Suppressed Due to Excessive Size

Acknowledgments
This work was partially supported by the NSF under grants
IIS-2321504, IIS-2334193, IIS-2340346, IIS-2217239,
CNS-2426514, and CMMI-2146076, and Notre Dame
Strategic Framework Research Grant (2025). Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the sponsors.

Impact Statement
From an industry perspective, we offer GIT as a founda-
tional tool for graph-structured data. Additionally, since
GIT can be quickly adapted to specific domains, we hope it
will support applications where label acquisition is difficult
and model training is time-consuming. There is no clear
ethical considerations on the model architecture itself.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv, 2023.

Cao, Y., Xu, J., Yang, C., Wang, J., Zhang, Y., Wang, C.,
Chen, L., and Yang, Y. When to pre-train graph neural
networks? from data generation perspective! In KDD,
2023.

Chen, R., Zhao, T., JAISWAL, A. K., Shah, N., and Wang,
Z. Llaga: Large language and graph assistant. In ICML,
2024a.

Chen, Z., Chen, L., Villar, S., and Bruna, J. Can graph
neural networks count substructures? In NeurIPS, 2020.

Chen, Z., Mao, H., Liu, J., Song, Y., Li, B., Jin, W., Fatemi,
B., Tsitsulin, A., Perozzi, B., Liu, H., et al. Text-space
graph foundation models: Comprehensive benchmarks
and new insights. arXiv, 2024b.

Chen, Z., Wang, S., Shen, C., and Li, J. Fastgas: Fast
graph-based annotation selection for in-context learning.
In ACL 2024 (Findings), 2024c.

Chuang, C.-Y. and Jegelka, S. Tree mover’s distance: Bridg-
ing graph metrics and stability of graph neural networks.
In NeurIPS, 2022.

Deng, Y., Hong, J., Zhou, J., and Mahdavi, M. On the
generalization ability of unsupervised pretraining. In
AISTATS, 2024.

Ding, K., Wang, J., Li, J., Shu, K., Liu, C., and Liu, H.
Graph prototypical networks for few-shot learning on
attributed networks. In CIKM, 2020.

Esser, P., Chennuru Vankadara, L., and Ghoshdastidar, D.
Learning theory can (sometimes) explain generalisation
in graph neural networks. In NeurIPS, 2021.

Fan, Y., Ju, M., Zhang, C., and Ye, Y. Heterogeneous
temporal graph neural network. In SDM, 2022.

Feng, J., Liu, H., Kong, L., Chen, Y., and Zhang, M. Taglas:
An atlas of text-attributed graph datasets in the era of
large graph and language models. arXiv, 2024.

Freeman, L. The development of social network analysis. A
Study in the Sociology of Science, 2004.

Galkin, M., Yuan, X., Mostafa, H., Tang, J., and Zhu, Z. To-
wards foundation models for knowledge graph reasoning.
In ICLR, 2024.

Garg, V., Jegelka, S., and Jaakkola, T. Generalization and
representational limits of graph neural networks. In ICML,
2020.

Guo, J., Du, L., and Liu, H. Gpt4graph: Can large language
models understand graph structured data? an empirical
evaluation and benchmarking. arXiv, 2023.

Gupta, M., Manchanda, S., Ranu, S., and Kodamana, H.
Mirage: Model-agnostic graph distillation for graph clas-
sification. In ICLR, 2024.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In NeurIPS, 2017.

Hashemi, M., Gong, S., Ni, J., Fan, W., Prakash, B. A.,
and Jin, W. A comprehensive survey on graph reduction:
Sparsification, coarsening, and condensation. In IJCAI,
2024.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick,
R. Masked autoencoders are scalable vision learners. In
CVPR, 2022.

He, Y. and Hooi, B. Unigraph: Learning a cross-domain
graph foundation model from natural language. arXiv
preprint arXiv:2402.13630, 2024.

Hou, Z., Liu, X., Cen, Y., Dong, Y., Yang, H., Wang, C.,
and Tang, J. Graphmae: Self-supervised masked graph
autoencoders. In KDD, 2022.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neural
networks. In ICLR, 2020.

Hu, Z., Fan, C., Chen, T., Chang, K.-W., and Sun, Y. Pre-
training graph neural networks for generic structural fea-
ture extraction. arXiv, 2019.

10

Title Suppressed Due to Excessive Size

Huang, Q., Ren, H., Chen, P., Kržmanc, G., Zeng, D., Liang,
P. S., and Leskovec, J. Prodigy: Enabling in-context
learning over graphs. In NeurIPS, 2023.

Jin, W., Derr, T., Liu, H., Wang, Y., Wang, S., Liu, Z.,
and Tang, J. Self-supervised learning on graphs: Deep
insights and new direction. arXiv, 2020.

Ju, H., Li, D., Sharma, A., and Zhang, H. R. Generalization
in graph neural networks: Improved pac-bayesian bounds
on graph diffusion. In AISTATS, 2023a.

Ju, M., Zhao, T., Wen, Q., Yu, W., Shah, N., Ye, Y., and
Zhang, C. Multi-task self-supervised graph neural net-
works enable stronger task generalization. In ICLR,
2023b.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Levie, R., Isufi, E., and Kutyniok, G. On the transferability
of spectral graph filters. In SampTA, 2019.

Levie, R., Huang, W., Bucci, L., Bronstein, M., and Ku-
tyniok, G. Transferability of spectral graph convolutional
neural networks. JMLR, 2021.

Li, Y., Wang, P., Li, Z., Yu, J. X., and Li, J. Zerog: Inves-
tigating cross-dataset zero-shot transferability in graphs.
In KDD, 2024.

Liu, H., Feng, J., Kong, L., Liang, N., Tao, D., Chen, Y.,
and Zhang, M. One for all: Towards training one graph
model for all classification tasks. In ICLR, 2024a.

Liu, Z., Yu, X., Fang, Y., and Zhang, X. Graphprompt:
Unifying pre-training and downstream tasks for graph
neural networks. In WWW, 2023.

Liu, Z., He, X., Tian, Y., and Chawla, N. V. Can we soft
prompt llms for graph learning tasks? In WWW, 2024b.

Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S.,
Chang, X.-W., and Precup, D. Revisiting heterophily for
graph neural networks. In NeurIPS, 2022.

Ma, T., Qian, Y., Zhang, C., and Ye, Y. Hypergraph con-
trastive learning for drug trafficking community detection.
In ICDM, 2023.

Ma, Y., Liu, X., Shah, N., and Tang, J. Is homophily a
necessity for graph neural networks? In ICLR, 2022.

Mao, H., Chen, Z., Tang, W., Zhao, J., Ma, Y., Zhao, T.,
Shah, N., Galkin, M., and Tang, J. Graph foundation
models are already here. In ICML, 2024.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman
go neural: Higher-order graph neural networks. In AAAI,
2019.

Morris, C., Geerts, F., Tönshoff, J., and Grohe, M. Wl meet
vc. In ICML, 2023.

Ni, B., Liu, Z., Wang, L., Lei, Y., Zhao, Y., Cheng, X., Zeng,
Q., Dong, L., Xia, Y., Kenthapadi, K., et al. Towards trust-
worthy retrieval augmented generation for large language
models: A survey. arXiv, 2025.

Qian, Y., Ma, T., Zhang, C., and Ye, Y. Dual-level hy-
pergraph contrastive learning with adaptive temperature
enhancement. In WWW, 2024.

Qian, Y., Ma, T., Zhang, C., and Ye, Y. Adaptive graph en-
hancement for imbalanced multi-relation graph learning.
In CIKM, 2025.

Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M.,
Wang, K., and Tang, J. Gcc: Graph contrastive coding
for graph neural network pre-training. In KDD, 2020.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence
embeddings using siamese bert-networks. In EMNLP,
2019.

Ruhe, A. Perturbation bounds for means of eigenvalues and
invariant subspaces. BIT Numerical Mathematics, 1970.

Ruiz, L., Chamon, L., and Ribeiro, A. Graphon neural
networks and the transferability of graph neural networks.
In NeurIPS, 2020.

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H.,
Raffel, C. A., Cubuk, E. D., Kurakin, A., and Li, C.-L.
Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. In NeurIPS, 2020.

Song, F., Yu, B., Li, M., Yu, H., Huang, F., Li, Y., and Wang,
H. Preference ranking optimization for human alignment.
In AAAI, 2024.

Srinivasan, B. and Ribeiro, B. On the equivalence between
positional node embeddings and structural graph repre-
sentations. In ICLR, 2020.

Su, B., Du, D., Yang, Z., Zhou, Y., Li, J., Rao, A., Sun, H.,
Lu, Z., and Wen, J.-R. A molecular multimodal foun-
dation model associating molecule graphs with natural
language. arXiv, 2022.

Sun, M., Zhou, K., He, X., Wang, Y., and Wang, X. Gppt:
Graph pre-training and prompt tuning to generalize graph
neural networks. In KDD, 2022.

Sun, X., Cheng, H., Li, J., Liu, B., and Guan, J. All in one:
Multi-task prompting for graph neural networks. In KDD,
2023.

Sun, Y., Zhu, Q., Yang, Y., Wang, C., Fan, T., Zhu, J., and
Chen, L. Fine-tuning graph neural networks by preserv-
ing graph generative patterns. In AAAI, 2024.

11

Title Suppressed Due to Excessive Size

Tan, Z., Wang, S., Ding, K., Li, J., and Liu, H. Transductive
linear probing: a novel framework for few-shot node
classification. In LoG, 2022.

Tang, J., Yang, Y., Wei, W., Shi, L., Su, L., Cheng, S., Yin,
D., and Huang, C. Graphgpt: Graph instruction tuning
for large language models. In SIGIR, 2024.

Taylor, R., Kardas, M., Cucurull, G., Scialom, T., Hartshorn,
A., Saravia, E., Poulton, A., Kerkez, V., and Stojnic, R.
Galactica: A large language model for science. arXiv,
2022.

Thakoor, S., Tallec, C., Azar, M. G., Azabou, M., Dyer,
E. L., Munos, R., Veličković, P., and Valko, M. Large-
scale representation learning on graphs via bootstrapping.
In ICLR, 2022.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation
language models. arXiv, 2023.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

Wang, H., Feng, S., He, T., Tan, Z., Han, X., and Tsvetkov,
Y. Can language models solve graph problems in natural
language? In NeurIPS, 2024a.

Wang, S., Chen, C., and Li, J. Graph few-shot learning with
task-specific structures. NeurIPS, 2022a.

Wang, S., Ding, K., Zhang, C., Chen, C., and Li, J. Task-
adaptive few-shot node classification. In KDD, 2022b.

Wang, Z., Zhang, Z., Chawla, N. V., Zhang, C., and Ye,
Y. Gft: Graph foundation model with transferable tree
vocabulary. In NeurIPS, 2024b.

Wang, Z., Zhang, Z., Zhang, C., and Ye, Y. Subgraph
pooling: Tackling negative transfer on graphs. In IJCAI,
2024c.

Wang, Z., Liu, S., Zhang, Z., Ma, T., Zhang, C., and Ye,
Y. Can llms convert graphs to text-attributed graphs? In
NAACL, 2025a.

Wang, Z., Zhang, Z., Ma, T., Chawla, N. V., Zhang, C., and
Ye, Y. Neural graph pattern machine. arXiv, 2025b.

Wang, Z., Zhang, Z., Zhang, C., and Ye, Y. Training mlps
on graphs without supervision. In WSDM, 2025c.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned language
models are zero-shot learners. arXiv, 2021.

Wen, Q., Ju, M., Ouyang, Z., Zhang, C., and Ye, Y.
From coarse to fine: enable comprehensive graph self-
supervised learning with multi-granular semantic ensem-
ble. In ICML, 2024.

Xia, L. and Huang, C. Anygraph: Graph foundation model
in the wild. arXiv, 2024.

Xia, L., Kao, B., and Huang, C. Opengraph: Towards open
graph foundation models. arXiv, 2024.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. In ICLR, 2022.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In ICLR, 2019.

Yu, X., Zhou, C., Fang, Y., and Zhang, X. Text-free multi-
domain graph pre-training: Toward graph foundation
models. arXiv, 2024.

Yuan, L., Chen, D., Chen, Y.-L., Codella, N., Dai, X., Gao,
J., Hu, H., Huang, X., Li, B., Li, C., et al. Florence: A
new foundation model for computer vision. arXiv, 2021.

Zeng, Z., Yao, Y., Liu, Z., and Sun, M. A deep-learning
system bridging molecule structure and biomedical text
with comprehension comparable to human professionals.
Nature communications, 2022.

Zhang, B., Gai, J., Du, Y., Ye, Q., He, D., and Wang, L.
Beyond weisfeiler-lehman: A quantitative framework for
gnn expressiveness. In ICLR, 2024a.

Zhang, C., Song, D., Huang, C., Swami, A., and Chawla,
N. V. Heterogeneous graph neural network. In KDD,
2019.

Zhang, J., Chen, J., Yang, M., Feng, A., Liang, S., Shao,
J., and Ying, R. Dtgb: A comprehensive benchmark for
dynamic text-attributed graphs. arXiv, 2024b.

Zhang, M., Li, P., Xia, Y., Wang, K., and Jin, L. Labeling
trick: A theory of using graph neural networks for multi-
node representation learning. NeurIPS, 2021.

Zhang, Z., Wang, Z., Hou, S., Hall, E., Bachman, L., White,
J., Galassi, V., Chawla, N. V., Zhang, C., and Ye, Y. Diet-
odin: A novel framework for opioid misuse detection
with interpretable dietary patterns. In KDD, 2024c.

Zhao, H., Liu, S., Chang, M., Xu, H., Fu, J., Deng, Z.,
Kong, L., and Liu, Q. Gimlet: A unified graph-text model
for instruction-based molecule zero-shot learning. In
NeurIPS, 2023.

Zhao, H., Chen, A., Sun, X., Cheng, H., and Li, J. All in one
and one for all: A simple yet effective method towards
cross-domain graph pretraining. In KDD, 2024a.

12

Title Suppressed Due to Excessive Size

Zhao, J., Mostafa, H., Galkin, M., Bronstein, M., Zhu, Z.,
and Tang, J. Graphany: A foundation model for node
classification on any graph. arXiv, 2024b.

Zhu, Q., Yang, C., Xu, Y., Wang, H., Zhang, C., and Han,
J. Transfer learning of graph neural networks with ego-
graph information maximization. In NeurIPS, 2021.

Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., and Wang, L.
Deep graph contrastive representation learning. In ICML
Workshop, 2020.

13

Title Suppressed Due to Excessive Size

A. Related Work
Graph Neural Networks. GNNs are a class of learning models specifically designed to operate on graph-structured data and
have demonstrated substantial success across a variety of domains. Their strength lies in their ability to perform relational
learning, where information from neighboring nodes is aggregated and used to enhance node representations. For instance,
GCN (Kipf & Welling, 2017) utilizes message-passing to aggregate information from neighboring nodes to central nodes.
Building on this, models such as GraphSAGE (Hamilton et al., 2017) and GAT (Veličković et al., 2018) introduce innovative
techniques like neighborhood sampling and attention mechanisms, respectively, further advancing performance on graph
learning tasks. However, these methods are limited to solving a single task by training from the scratch (Zhang et al., 2019;
Fan et al., 2022; Qian et al., 2025; Ma et al., 2023; Qian et al., 2024).

Transferability of GNNs. Existing works that analyze the shared concepts (generalities) across different graphs primarily
follow two approaches. The first is graphon theory, which provides bounds on the distance between graphs generated from
the same graphon. This method has been used to study transferability in pretraining and fine-tuning settings (Cao et al., 2023),
to develop more expressive fine-tuning techniques (Sun et al., 2024), and to design new model architectures (Ruiz et al.,
2020). However, despite its theoretical advantages, graphon-based approaches face practical challenges, particularly the
strong assumptions required and the difficulty of identifying graphons in large-scale graphs, which limits their applicability
in building graph foundation models. The second approach involves leveraging substructures within graphs to identify
transferable patterns (Mao et al., 2024). This method focuses on extracting subgraphs composed of meaningful substructures
for prediction tasks. While this approach offers theoretical insights into stability (Levie et al., 2019; Zhu et al., 2021), it
struggles to fully capture substructures that are beneficial for downstream tasks (Zhang et al., 2024a).

Graph Foundation Models. Foundation models are designed as general-purpose solvers capable of handling various
tasks across different domains. For instance, LLMs, the foundation models in natural language processing, are capable
of performing tasks such as summarization, translation, and entity recognition, as well as question-answering. However,
building such versatile foundation models for graphs presents unique challenges due to the inherent feature, structural, and
task heterogeneity across different graph domains and tasks. To address these challenges, Qiu et al. (2020) pretrained GNNs
using subgraphs as basic units, mitigating structural heterogeneity. Building on this, Sun et al. (2023) reformulated node-,
edge-, and graph-level tasks into subgraph-level tasks, tackling task heterogeneity. Additionally, Huang et al. (2023) and Liu
et al. (2024a) applied LLMs to unify the feature spaces of cross-domain graphs, addressing feature heterogeneity. These
approaches enable models to operate on cross-domain and cross-task graphs. Further advancements, such as He & Hooi
(2024) and Li et al. (2024), improve node embeddings by jointly optimizing GNN and LLM encoders, facilitating various
downstream tasks like few-shot learning and zero-shot learning. However, most of these approaches rely on subgraphs
as the primary learning instances, which can result in inefficient training and reduced expressiveness, as discussed in the
main paper. Other efforts to resolve feature heterogeneity include methods like singular vector decomposition (SVD) (Zhao
et al., 2024a; Yu et al., 2024), non-parametric encoders (Zhao et al., 2024b), or synthesizing text-attributed graphs (Wang
et al., 2025a). Notably, a recent study by Wang et al. (2024b) explores computation trees as transferable patterns in graphs.
However, our work differs in three key aspects: (1) While Wang et al. (2024b) focus on identifying transferable patterns
across graphs, our approach is centered on designing fundamental learning instances. (2) Our theoretical framework also
serves as a foundational basis for Wang et al. (2024b). (3) Our proposed GIT significantly simplifies the model proposed by
Wang et al. (2024b), demonstrating a minimally applicable design that retains effectiveness.

Another line of research focuses on designing GFMs for single tasks or domains, thereby avoiding the complexities of
feature, structural, or task heterogeneity. For example, Galkin et al. (2024) propose a foundation model for reasoning tasks
on knowledge graphs, using triplets as basic transferable patterns. Zhao et al. (2023) introduce a foundation model for
molecular graphs, employing LLMs to align semantics between datasets and encode key motifs. In node classification, Li
et al. (2024) propose a zero-shot learning foundation model, while Zhao et al. (2024a) present a feature alignment method
based on SVD for node-level graph foundation models. Recently, Zhao et al. (2024b) designed a foundation model for node
classification using a non-parametric classifier. Meanwhile, Chen et al. (2024a), Tang et al. (2024), Guo et al. (2023), Liu
et al. (2024b), and Wang et al. (2024a) have explored using LLMs as graph reasoners to solve graph tasks, similar to their
role in vision language models. While these methods excel at specific tasks or domains, they are not suitable as general
graph solvers across diverse tasks. In contrast to these approaches, our proposed GIT model is pretrained on diverse task
trees to acquire general reasoning capabilities, allowing it to quickly specialize in specific domains through instruction
tuning.

14

Title Suppressed Due to Excessive Size

CO
RA

PU
BM

ED

AR
XI

V

W
IK

IC
S

W
N1

8R
R

FB
15

K2
37

CH
EM

HI
V

CH
EM

PC
BA

CORA

PUBMED

ARXIV

WIKICS

WN18RR

FB15K237

CHEMHIV

CHEMPCBA

 = 0

CO
RA

PU
BM

ED

AR
XI

V

W
IK

IC
S

W
N1

8R
R

FB
15

K2
37

CH
EM

HI
V

CH
EM

PC
BA

 = 1

CO
RA

PU
BM

ED

AR
XI

V

W
IK

IC
S

W
N1

8R
R

FB
15

K2
37

CH
EM

HI
V

CH
EM

PC
BA

 = 10

0.0

0.2

0.4

0.6

0.8

1.0
MAX

MIN

(a) Similiarity between different datasets with varying weights. (b) w.o. Reg (c) w. Reg

CORA PUBMED ARXIV WIKICS WN18RR FB15K237 CHEMHIV CHEMPCBA
0.00

0.25

0.50

NM
I (

) =0 =1 =10

(d) The regularizer marginally affects the task structures for each dataset.

Figure 5: The domain regularizer controls the distance between datasets while preserving the structure within each of them.

Table 7: Model performance across settings with different scaling weights of domain regularizer.

λ = 0 λ = 1 λ = 10

0-shot 20.39 27.55 29.60
3-shot 53.10 57.53 60.21
Finetune 74.78 75.41 75.37

B. Additional Model Discussion
B.1. Why Does the General Model Need Specialization?

It is challenging for a single graph model to handle tasks across various domains due to pattern conflicts, where the same
structural pattern can have different meanings in different domains. To illustrate this issue, we provide an intuitive example2.
Consider a pretraining process involving datasets from multiple domains, such as social networks, molecular networks,
academic networks, and knowledge graphs. Suppose the model learns triangle structures during pretraining. In social
networks, the semantic meaning of these triangles is stable, following the principle of “the friend of my friend is my friend”.
However, in molecular graphs, the meaning of triangle patterns may be unstable due to chemical properties. This pattern
conflict can significantly degrade the performance of graph models (Cao et al., 2023; Mao et al., 2024). Specialization helps
resolve this issue by aligning the meanings of certain structural patterns with the semantics specific to the target domain.

B.2. More Analysis on Domain Regularizer

The Necessity of Domain Alignment. Datasets from multiple domains are often projected into different subspaces,
potentially due to misalignment of node attributes (Chen et al., 2024b) and the frequent patterns across domains. As a
result, the model may “memorize” information specific to each domain rather than learning transferable patterns. This can
lead to misunderstandings when the same pattern appeared across different graphs is projected into different subspaces.
Consequently, the model struggles to acquire transferable knowledge that would benefit unseen tasks and specialized
domains. Properly aligning the embedding spaces of different domains is crucial for obtaining transferable knowledge and
improving performance on unseen graphs and specialized domains.

2This example was first illustrated in Cao et al. (2023)

15

Title Suppressed Due to Excessive Size

How to Regulate Domain Distances? We propose a domain regularizer to control domain distances by projecting cross-
domain graphs with different characteristics into a shared embedding space. Specifically, we define a shared subspace across
domains and pull the subspaces of other domains into alignment with this defined space. The shared subspace should be
positioned at the center of the cross-domain datasets to minimize the effort required to adjust the subspaces of all domains.
In particular, the basis vector of the shared subspace is defined as the average of all instances:

hBasis = ED∼P (D)ETi∼P (TD)ϕ(Ti), (9)

where P (D) represents the domain distribution, TD is a distribution of task-trees within domain D, and ϕ(Ti) is the
embedding of the task-tree Ti. Given the shared subspace basis, we optimize the KL divergence between each instance and
the basis. However, obtaining the global basis vector hBasis directly is impractical due to dataset size, so we approximate it
by averaging the embeddings of all instances within a batch to compute the local basis ĥBasis. We then optimize the KL
divergence for all instances in the batch. To mitigate randomness, we empirically use a relatively large batch size (4,096).
Formally, the domain regularizer is defined as

Lalign = λ · 1

|B|
∑
i∈B

KL(H∥Zi) = −λ · 1

|B|
∑
i∈B

∑
j

H(j) log
(H(j)

Zi(j)

)
, (10)

where B denotes the batch, and H and Zi represent the distributions of the local basis vector ĥBasis and instance embedding
zi, respectively.

How the Domain Regularizer Works? To better understand how the domain regularizer functions, we conduct an
analysis to demonstrate its benefits in regulating domain distances while preserving task structures for each dataset. We use
eight datasets provided by Liu et al. (2024a) for pretraining: Cora, Pubmed, Arxiv, WikiCS, WN18RR, FB15K237,
CHEMHIV, and CHEMPCBA. The analysis results are presented in Figure 5.

In the figure, we display (a) a heatmap of similarity between different datasets with varying weights, and visualizations of
the embedding space before (b) and after (c) applying the domain regularizer. The results show that the domain regularizer
effectively adjusts the distances between datasets by pushing apart overly similar graphs and bringing closer those that
are too distinct. Furthermore, we show that the regularizer does not significantly alter the task structures of each dataset,
as illustrated in subfigure (d). In this subfigure, we apply k-means algorithm on each dataset, setting k to the number of
classes, and compare to the ground-truth by using NMI as the metric. The assumption is that if two sets of vectors yield
similar clustering results, the classification outcomes of the same classifier will be similar, indicating that the task structure
across the two sets is consistent. The results demonstrate that changing the regularizer weight does not significantly affect
task structures. This may be because the regularizer acts by translating vectors toward a central point without altering the
relationships between individual pairs of vectors. To further evaluate the impact of domain regularizer for the downstream
tasks, we present the model performance average over the used eight datasets across all settings in Table 7. We observe the
use of domain regularizer can boost the model performance, especially in in-context and zero-shot settings. In addition, we
empirically find that λ = 10 can lead to better performance. Thus, we set λ = 10 as the default weight in this paper.

B.3. Discussion on Homophily and Heterophily

In node-level tasks, it is important to consider both graph homophily and heterophily (Ma et al., 2022). Homophily describes
the close relationships between connected entities, while heterophily refers to distant relationships between connected
entities. Empirically, basic message-passing GNNs tend to perform well on homophily graphs but struggle with heterophily
graphs (Luan et al., 2022). Despite using GraphSAGE as the backbone in our GIT, it still performs well on heterophily
graphs, such as Children and Ratings3. The experimental results for node classification and link prediction on these
two graphs are presented in Table 17 and Table 18, where GIT generally achieves the best performance. We hypothesize that
the proposed task-tree structure captures not only homophily relationships but also heterophily relationships. A potential
question is whether our message-passing GNN can effectively capture these heterophily relationships, despite Ma et al.
(2022) suggesting that basic GNNs may handle heterophily graphs by memorizing the patterns between the target node
and its neighbors. We plan to use more advanced GNNs capable of encoding heterophily structures to further validate our
hypothesis.

3Our collected graphs include two heterophily graphs, Children and Ratings, with homophily ratios of 0.42 and 0.38, respectively,
whereas other graphs generally have a homophily ratio greater than 0.60 (Table 12, (Chen et al., 2024b)).

16

Title Suppressed Due to Excessive Size

B.4. Discussion on Model Expressiveness

Node-level Task. The task-tree structure is an approximation of the original graph structure, but converting graphs into tree
structures inevitably results in some loss of information. To better preserve the structural details of the original graph, one
could use more expressive or advanced GNNs, thereby expanding the potential tree vocabulary (Mao et al., 2024).

Edge-level Task. Existing message-passing GNNs struggle with the edge isomorphism problem (Srinivasan & Ribeiro,
2020). For instance, in Figure 6, the links (v1, v2) and (v3, v4) are isomorphic, while (v1, v2) and (v1, v3) are not. However,
when using a mean aggregator to learn edge embeddings, the embeddings of (v1, v2) and (v1, v3) become indistinguishable.
We consider that GIT may still encounter this issue, as the task-tree encoding currently averages the embeddings of task-
relevant nodes. Addressing this challenge could involve techniques like Zhang et al. (2021), which ensure that isomorphic
edges have distinct embeddings without impairing the model’s basic inductive learning capabilities.

Figure 6: Edge Isomorphic (Figure 1, (Zhang et al., 2021)).

Graph-level Task. Message-passing GNNs are limited by the 1-WL test (Xu et al., 2019), which can restrict their
performance on graph-level tasks. As we apply GraphSAGE as the backbone, our GIT also encounters this limitation. Zhang
et al. (2024a) analyze the ability of different GNNs to detect graph substructures and conclude that more expressive GNNs,
beyond the 1-WL test, can learn graph embeddings with richer information. Therefore, to improve model expressiveness,
one can employ more expressive GNNs in our GIT. Additionally, techniques like Zhang et al. (2021) can be used to further
enhance the model’s discriminative capabilities.

B.5. Scaling Law

Model Size. We evaluated the model’s performance with different hidden dimensions, with results by domain presented
in Figure 7. The results cover both basic fine-tuning and in-context learning, and comprehensive details are provided in
Appendix K. We observe that increasing the number of hidden dimensions from 128 to 2,048 significantly improves model
performance across all domains. We hypothesize that this improvement is due to the additional parameters, which enhance
the model’s ability to memorize shared patterns across graphs. The observation indicates the potential existence of scaling
laws when using task-trees as the basic learning instances.

128 512 1024 2048
Hidden Dimension

40

45

50

55

60

65

P
er

fo
rm

an
ce

Academia
E-commerce

KG
Molecule

(a) In-context Learning

128 512 1024 2048
Hidden Dimension

73

74

75

76

77

78

79

P
er

fo
rm

an
ce

Academia
E-commerce

KG
Molecule

(b) Finetune

Figure 7: The impact of model sizes on performance.

Data Size. We attempted to evaluate the scaling law by increasing the pretraining data, but unfortunately, we did not

17

Title Suppressed Due to Excessive Size

observe a clear trend where more data led to better performance. We consider there are three potential reasons. (1) From
a model perspective, we use a GraphSAGE encoder with limited layers and parameters, which may not fully capture the
knowledge contained in the pretraining data. Additionally, we apply basic mean pooling to derive task-tree embeddings from
task-relevant node embeddings, which may prevent the model from identifying the relative importance of task-relevant nodes,
thereby limiting its expressiveness. (2) From a training paradigm perspective, we employ a negative-free contrastive learning
framework similar to Thakoor et al. (2022), but this basic approach may not be expressive enough to extract meaningful
knowledge from the pretraining graphs. (3) From a data perspective, despite using over 30 graphs in this study, the number
of instances is still significantly lower than that of textual or visual instances extracted from the Internet. Furthermore,
the pretraining datasets may not be well-aligned. Although we used a textual encoder to align node features, we cannot
guarantee that the encoded node features are in the same embedding space (Chen et al., 2024b).

C. Potential Model Extensions
C.1. Pretraining

How to Design Reconstruction Tasks? Theorem 3.5 suggests that a well-designed encoder, capable of effectively handling
reconstruction tasks during pretraining, can improve the model’s generalization ability. One approach is to use more
powerful encoders to enhance reconstruction performance. Another approach is to introduce additional reconstruction losses
to further refine the encoder. For example, methods such as those proposed by Qiu et al. (2020), and Hou et al. (2022), Ju
et al. (2023b), and Wen et al. (2024), or designing more comprehensive reconstruction objectives could be explored.

How to Improve Transferability? The pretraining task, i.e., task-tree reconstruction, differs from the downstream task
of task-tree classification, as the task heterogeneity may hinder model transferability (Hu et al., 2020). To mitigate this,
one could develop more effective adaptation methods, such as graph prompt learning (Sun et al., 2022), to reduce task
heterogeneity.

C.2. Specialization via Instruction Tuning

How to Define Instructions? In this paper, as we focus on experiments with text-attributed graphs, we define instructions
as label descriptions encoded by LLMs. However, this approach is not applicable to non-textual graphs. Other methods
could be explored to define instructions, such as using proxy models (Hu et al., 2019) or graph heuristics (Jin et al., 2020) to
generate instructions.

How to Choose SFT Data? We manually select graphs as supervised fine-tuning datasets for each domain, though the
selected graphs may not be fully representative. Unlike textual data, evaluating the quality of graph datasets poses a
challenge. Improved dataset selection methods could enhance the SFT process by identifying more representative or diverse
data from graph databases. Additionally, while we perform instruction tuning over entire graphs, it is possible that only
specific subgraphs are beneficial (Hashemi et al., 2024). Developing data selection methods that focus on high-quality
subgraphs within a single SFT dataset could improve task-tree selection. Another worthy research line is to select SFT data
that aligns with user preferences (Song et al., 2024).

How to Leverage SFT Data? In scenarios with limited instructions, standard supervised fine-tuning may struggle to
capture sufficient knowledge of the target domain. To address this, methods could be proposed to better utilize the unlabeled
instances in the SFT dataset, thus enhancing model adaptation (Sohn et al., 2020; Ni et al., 2025).

How to Maintain General Inference Capability? While instruction tuning specializes the model for a specific domain, it
may compromise the model’s general inference capabilities across other domains. This could hinder the model’s performance
when it needs to function both as a domain expert and a general reasoner. To mitigate this, regularization techniques could
be designed to preserve the general knowledge encoded in the model during the instruction tuning process.

Why SFT Works on Graphs? Instruction tuning is a common post-training process in modern large language models (e.g.,
LLAMA, GPT) that significantly improves instruction-following capabilities. The success of this method in LLMs may
stem from the fact that natural language serves as an interface between humans and models (Wei et al., 2021). However, the
reason instruction tuning works for graphs remains an open question and presents a potential direction for future research.

18

Title Suppressed Due to Excessive Size

C.3. More Scenarios.

The paper leverages text-attributed graphs to align node features. However, the pre-processing of TAGs can be time-
consuming, raising the challenge of how to effectively apply the model to graphs without aligned node features. Furthermore,
while we primarily focus on homogeneous graphs in this work, most real-world applications involve heterogeneous graphs.
Addressing the question of how to design a single model capable of handling various types of graphs remains an open
challenge. Finally, applying the model to specific applications Zhang et al. (2024c), which may exhibit unique characteristics,
is another important consideration for future research.

D. Proof
D.1. Proof of Theorem 3.1

Proof. We begin by introducing the basic GNN architecture used in the proof. Given a GNN encoder ϕ(·) with parameters
W = (W1,W2), we use a GraphSAGE-like architecture, defined as follows (with some notation abuse):

zi = ϕ(TLi) = σ
(
W1xi +W2

1

|Ni|
∑
k∈Ni

ϕ(TL−1
k)

)
,

where σ is the non-linear activation function, xi is the node feature of node i, and Ni represents the neighbors of node i,
corresponding to its children in the computation tree. TLi denotes the computation tree of node iwith L layers. Neighborhood
information is incorporated by averaging the embeddings of neighboring nodes. WLOG, the averaging operation can be
replaced with any permutation-invariant set operation without affecting the analysis in this paper. For simplicity, we assume
all GNN layers share the same parameters; this assumption does not affect the validity of our proofs. Since these functions
and neural networks exhibit Lipschitz continuity, we denote the Lipschitz constant of σ(·) as Cσ . Additionally, we assume
the norm of node features is bounded by ∥x∥ ≤ Bx, and the model weights by ∥W1∥ ≤ BW1

and ∥W2∥ ≤ BW2
. While

real-world graphs typically exhibit varied node features, standard techniques (as employed in this paper) like normalization
can ensure that Bx remains a small value. We define the distance between task-trees T t1 with n task-relevant nodes
{v1, ..., vn} and T t2 with m task-relevant nodes {v1, ..., vm} as:

∆ :=

∥∥∥∥ϕ(T t1)− ϕ(T t2)

∥∥∥∥ =

∥∥∥∥ 1n
n∑
i=1

ϕ(Ti)−
1

m

m∑
j=1

ϕ(Tj)

∥∥∥∥,
where ∥ · ∥ is the L2 distance. Following, we expand the stability term ∆ as:

∆ =

∥∥∥∥ 1n
n∑
i=1

ϕ(Ti)−
1

m

m∑
j=1

ϕ(Tj)

∥∥∥∥
=

∥∥∥∥ 1n
n∑
i=1

σ
(
W1xi +W2

1

|Ni|
∑
k∈Ni

ϕ(TL−1
k)

)
− 1

m

m∑
j=1

σ
(
W1xj +W2

1

|Nj |
∑
k∈Nj

ϕ(TL−1
k)

)∥∥∥∥
≤ Cσ

∥∥∥∥ 1n
n∑
i=1

(
W1xi +W2

1

|Ni|
∑
k∈Ni

ϕ(TL−1
k)

)
− 1

m

m∑
j=1

(
W1xj +W2

1

|Nj |
∑
k∈Nj

ϕ(TL−1
k)

)∥∥∥∥
≤ Cσ

∥∥∥∥ 1n
n∑
i=1

W1xi −
1

m

m∑
j=1

W1xj

∥∥∥∥︸ ︷︷ ︸
(a)

+ Cσ
∥∥∥∥ 1n

n∑
i=1

W2
1

|Ni|
∑
k∈Ni

ϕ(TL−1
k)− 1

m

m∑
j=1

W2
1

|Nj |
∑
k∈Nj

ϕ(TL−1
k)

∥∥∥∥︸ ︷︷ ︸
(b)

.

Then, we separately analyze the term (a) and term (b). The term (a) can be bounded as follows:

Term (a) = Cσ
∥∥∥∥ 1n

n∑
i=1

W1xi −
1

m

m∑
j=1

W1xj

∥∥∥∥ ≤ CσBW1

∥∥∥∥ 1n
n∑
i=1

xi −
1

m

m∑
j=1

xj

∥∥∥∥.
19

Title Suppressed Due to Excessive Size

That is, term (a) is bounded by the distance between the average features of nodes in the first layer of the task-trees (i.e., the
nodes directly connected to the root). Next, we bound term (b):

Term (b) = Cσ
∥∥∥∥ 1n

n∑
i=1

W2
1

|Ni|
∑
k1∈Ni

ϕ(TL−1
k1)− 1

m

m∑
j=1

W2
1

|Nj |
∑
k2∈Nj

ϕ(TL−1
k2)

∥∥∥∥
≤ CσBW2

∥∥∥∥ 1n
n∑
i=1

1

|Ni|
∑
k1∈Ni

ϕ(TL−1
k1)− 1

m

m∑
j=1

1

|Nj |
∑
k2∈Nj

ϕ(TL−1
k2)

∥∥∥∥
= CσBW2

∥∥∥∥ 1n
n∑
i=1

1

|Ni|
∑
k1∈Ni

σ
(
W1xk1 +W2

1

|Nk1|
∑

s1∈Nk1

ϕ(TL−2
s1)

)
− 1

m

m∑
j=1

1

|Nj |
∑
k2∈Nj

σ
(
W1xk2 +W2

1

|Nk2|
∑

s2∈Nk2

ϕ(TL−2
s2)

)∥∥∥∥
≤ CσBW2CσBW1

∥∥∥∥ 1n
n∑
i=1

1

|Ni|
∑
k1∈Ni

xk1 −
1

m

m∑
j=1

1

|Nj |
∑
k2∈Nj

xk2

∥∥∥∥︸ ︷︷ ︸
(c)

+ CσBW2
CσBW2

∥∥∥∥ 1n
n∑
i=1

1

|Ni|
∑
k1∈Ni

1

|Nk1|
∑

s1∈Nk1

ϕ(TL−2
s1)− 1

m

m∑
j=1

1

|Nj |
∑
k2∈Nj

1

|Nk2|
∑

s2∈Nk2

ϕ(TL−2
s2)

∥∥∥∥︸ ︷︷ ︸
(d)

.

Term (c) describes the distance between the average features of nodes in the second layer of the task-trees, while term (d)
follows a recursive formula, similar to term (b). By combining terms (a) and (b), we have:

∆ ≤ CσBW1

∥∥∥∥ 1n
n∑
i=1

xi −
1

m

m∑
j=1

xj

∥∥∥∥
+ CσBW2

CσBW1

∥∥∥∥ 1n
n∑
i=1

1

|Ni|
∑
k1∈Ni

xk1 −
1

m

m∑
j=1

1

|Nj |
∑
k2∈Nj

xk2

∥∥∥∥
+ CσBW2CσBW2

∥∥∥∥ 1n
n∑
i=1

1

|Ni|
∑
k1∈Ni

1

|Nk1|
∑

s1∈Nk1

ϕ(TL−2
s1)− 1

m

m∑
j=1

1

|Nj |
∑
k2∈Nj

1

|Nk2|
∑

s2∈Nk2

ϕ(TL−2
s2)

∥∥∥∥.

We can extend the formula recursively through all layers until the final layer. The recursive nature of the formula allows us
to more easily reformulate the bound:

∆ ≤ C1∆1 + C2∆2 + ...+ CL−1∆L−1, (11)

where ∆l denotes the distance between task-trees at the l-th layer. For clarity, we can interpret C1∆1 as corresponding to
Term (a) and C2∆2 as corresponding to Term (c). Next, we explain how to determine Cl and ∆l for each layer.

By analyzing the recursive formula, we determine Cl as follows:

C1 = CσBW1 ,

C2 = CσBW2 × CσBW1 ,

...

Cl = (CσBW2
)l × CσBW1

.

20

Title Suppressed Due to Excessive Size

We then define the ∆l. For a concise definition, we introduce an additional notation for describing the subtree information:

x
(0)
i = xi,

x
(1)
i = 1

|Ni|
∑
j∈Ni

x
(0)
j ,

x
(2)
i = 1

|Ni|
∑
j∈Ni

x
(1)
j ,

...

x
(l)
i = 1

|Ni|
∑
j∈Ni

x
(l−1)
j .

By using the term, we can define the ∆l as:

∆1 =
∥∥∥ 1
n

∑n
i=1 x

(0)
i − 1

m

∑m
j=1 x

(0)
j

∥∥∥,
∆2 =

∥∥∥ 1
n

∑n
i=1 x

(1)
i − 1

m

∑m
j=1 x

(1)
j

∥∥∥,
...

∆l =
∥∥∥ 1
n

∑n
i=1 x

(l−1)
i − 1

m

∑m
j=1 x

(l−1)
j

∥∥∥.
By using a formulation like expression 11, we can decompose the impact of different layers, facilitating further analysis of
the upper bound on the distance between two task-trees. Next, we will analyze the upper bound of each term. To begin, we
first introduce a lemma.

Lemma D.1. Given two sets of random vectors S1 = {v1, ...,vn} and S2 = {v1, ...,vm}, the following holds:∥∥∥ 1
n

n∑
i=1

vi −
1

m

m∑
j=1

vj

∥∥∥ ≤ 1

nm

n∑
i=1

m∑
j=1

∥∥∥vi − vj

∥∥∥.
Proof. Let’s consider two sets A = {a1,a2} and B = {b1, b2}, and a = (a1 + a2)/2, b = (b1 + b2)/2. We have:

∥a− b∥ = ∥(a1 + a2)/2− (b1 + b2)/2∥
= ∥2a1 + 2a2 − 2b1 + 2b2∥/4
= ∥(a1 − b1) + (a1 − b2) + (a2 − b1) + (a2 − b2)∥/4
≤ (∥a1 − b1∥+ ∥a1 − b2∥+ ∥a2 − b1∥+ ∥a2 − b2∥)/4

WLOG, this analysis can be extended to cases where the size of A is n and the size of B is m.

Based on the Lemma, we have

∆ ≤ C1∥
1

n

n∑
i=1

x
(0)
i − 1

m

m∑
j=1

x
(0)
j ∥+ ...+ C1CL−1

2 ∥ 1
n

n∑
i=1

x
(L−1)
i − 1

m

m∑
j=1

x
(L−1)
j ∥

≤ 1

nm

n∑
i=1

m∑
j=1

(
C1∥x(0)

i − x
(0)
j ∥+ ...+ C1CL−1

2 ∥x(L−1)
i − x

(L−1)
j ∥

)
,

which is displayed in Theorem 3.1.

We then use the Lemma to bound the ∆l. For example, the upper bound of ∆1 is:

∆1 =
∥∥∥ 1
n

n∑
i=1

x
(0)
i − 1

m

m∑
j=1

x
(0)
j

∥∥∥
≤ 1

nm

n∑
i=1

m∑
j=1

∥x(0)
i − x

(0)
j ∥

≤ 1

nm

n∑
i=1

m∑
j=1

(∥x(0)
i ∥+ ∥x(0)

j ∥) ≤ 2Bx.

21

Title Suppressed Due to Excessive Size

Similarly, the upper bound of ∆2 is:

∆2 =
∥∥∥ 1
n

n∑
i=1

x
(1)
i − 1

m

m∑
j=1

x
(1)
j

∥∥∥
≤ 1

nm

n∑
i=1

m∑
j=1

∥∥∥x(1)
i − x

(1)
j

∥∥∥
=

1

nm

n∑
i=1

m∑
j=1

∥∥∥ 1

di

∑
k
(1)
i ∈Ni

x
(0)

k
(1)
i

− 1

dj

∑
k
(1)
j ∈Nj

x
(0)

k
(1)
j

∥∥∥
≤ 1

nm

n∑
i=1

m∑
j=1

1

didj

∑
k
(1)
i ∈Ni

∑
k
(1)
j ∈Nj

∥x(0)

k
(1)
i

− x
(0)

k
(1)
j

∥ ≤ 2Bx,

where di = |Ni| and dj = |Nj | represent the number of children (i.e., the degree) of nodes i and j, respectively. Thus, the
upper bound of ∆l is:

∆l ≤
1

nm

n∑
i=1

m∑
j=1

1

didj

∑
k
(1)
i ∈Ni

∑
k
(1)
j ∈Nj

1

d
k
(1)
i
d
k
(1)
j

∑
k
(2)
i ∈N

k
(1)
i

∑
k
(2)
j ∈N

k
(1)
j

...

︸ ︷︷ ︸
(l−1)×

∥x(0)

k
(l−1)
i

− x
(0)

k
(l−1)
j

∥ ≤ 2Bx.

Now we can have the highest upper bound of ∆ as:

∆ ≤ (C1 + C2 + ...+ CL)2Bx

= (CσBW1 + ...+ (CσBW2)
l × CσBW1)2Bx

= 2Bx · CσBW1

(CσBW2
)L − 1

CσBW2
− 1

.

Note that this upper bound is an extreme case; the bound can be tightened by adding supplementary information or
making additional assumptions. Additionally, the distance between task-trees can be reduced by applying techniques like
normalization, which lowers the values of the constants.

D.2. Proof of Theorem 3.3

Proof. We begin by restating the notations used in the theorem. Let P represent the task-tree distribution, T the downstream
task distribution, ϕ ∈ Φ the GNN encoder, g ∈ G the predictor head used during pretraining, and f ∈ F the predictor head
for the downstream task. The pretraining objective is defined as LP(g ◦ ϕ) := E(T̂ ,T)∼P∥g(ϕ(T̂))− ϕ(T)∥2, where T is

the task-tree and T̂ is the corresponding corrupted task-tree obtained via arbitrary corruption functions. The risk on the
downstream task is defined as RT (f ◦ ϕ) := E(T,y)∼T κ(f(ϕ(T)), y), where T is the task-tree, y is the associated label,
and κ denotes the loss function. Before we begin the proof, we present an additional helper proposition.

Proposition D.2 (Ruhe’s Trace Inequality (Ruhe, 1970)). If X and Y are positive semi-definite Hermitian matrices with
eigenvalues, x1 ≥ x2 ≥ ... ≥ xn ≥ 0 and y1 ≥ y2 ≥ ... ≥ yn ≥ 0, then

n∑
i=1

xiyn−i+1 ≤ tr(XY) ≤
n∑
i=1

xiyi.

Note that we are going to prove

min
f∈F

RT (f ◦ ϕ)− min
f ′∈F

RT (f
′ ◦ ϕ′) ≤ Cδ

(
min
g∈G

LP(g ◦ ϕ)− min
g′∈G

LP(g
′ ◦ ϕ′)

)δ
,

22

Title Suppressed Due to Excessive Size

where Cδ ≈ O(1) and δ = 1
2 . The proof involves deriving the upper bound for the term minf∈F RT (f ◦ ϕ) −

minf ′∈F RT (f
′ ◦ ϕ′), followed by the lower bound for ming∈G LP(g ◦ ϕ)−ming′∈G LP(g

′ ◦ ϕ′). To simplify the proof,
we assume the downstream task is a binary classification task, though this approach can be extended to multi-classification
scenarios.

We analyze the upper bound of minf∈F RT (f ◦ ϕ)−minf ′∈F RT (f
′ ◦ ϕ′) as follows:

min
f∈F

RT (f ◦ ϕ)− min
f ′∈F

RT (f
′ ◦ ϕ′) = min

f∈F
ET κ(f(ϕ(T)))− min

f ′∈F
ET κ(f

′(ϕ′(T))),

where (T, y) ∼ T and κ(f(ϕ(T))) is shorthand for κ(f(ϕ(T)), y) for notational convenience. Since we define f ∈ F as a
linear predictor for binary classification, we can rewrite this equation in the following form:

min
∥θ∥≤Bθ

ET κ(θ
⊤ϕ(T))− min

∥θ∥≤Bθ

ET κ(θ
′⊤ϕ′(T))

≤ min
∥θ∥≤Bθ

ET

∣∣∣θ⊤ϕ(T)− θ′⊤ϕ′(T)
∣∣∣

≤ min
∥θ∥≤Bθ

√
ET

(
θ⊤ϕ(T)− θ′⊤ϕ′(T)

)2

= min
∥θ∥≤Bθ

√
ET

(
θ⊤ϕ(T)ϕ(T)⊤θ + θ′⊤ϕ′(T)ϕ′(T)⊤θ′ − 2θ⊤ϕ(T)ϕ′(T)⊤θ′

)
= min

∥θ∥≤Bθ

√
θ⊤E[ϕ(T)ϕ(T)⊤]θ + θ′⊤E[ϕ′(T)ϕ′(T)⊤]θ′ − 2θ⊤E[ϕ(T)ϕ′(T)⊤]θ′

≤
√
θ′⊤Λθ′,Λ = E[ϕ(T)ϕ(T)⊤]− E[ϕ(T)ϕ′(T)⊤]

(
E[ϕ′(T)ϕ′(T)⊤]

)†
E[ϕ(T)ϕ′(T)⊤]

Note that in the previous formula, we define θ = (E[ϕ(T)ϕ(T)⊤])†(E[ϕ(T)ϕ′(T)⊤])θ′. Under the unconstrained setting,
the minimum of θ⊤E[ϕ(T)ϕ(T)⊤]θ + θ′⊤E[ϕ′(T)ϕ′(T)⊤]θ′ − 2θ⊤E[ϕ(T)ϕ′(T)⊤]θ′ reduces to θ′⊤Λθ′ (Deng et al.,
2024). We can select a sufficiently large Bθ to ensure an adequately large function space. Additionally, we define θ′ as the
optimal head for the encoder ϕ′. The expression

√
θ′⊤Λθ′ is equivalent to

√
tr(Λθ′⊤θ′), which can be further simplified

using Proposition D.2.

√
tr(Λθ′⊤θ′) ≤

√√√√ d∑
i=1

σi(Λ)σi(θ′θ′⊤) ≤
√
dσmax(Λ)σmax(θ′θ′⊤),

where σi is the i-th eigenvalue for the matrix and σmax denotes the maximum eigenvalue.

Then, we are going to demonstrate the lower bound of ming∈G LP(g ◦ ϕ)−ming′∈G LP(g
′ ◦ ϕ′).

min
g∈G

LP(g ◦ ϕ)− min
g′∈G

LP(g
′ ◦ ϕ′) = min

g∈G
EP∥g(ϕ(T̂))− ϕ(T)∥2 − min

g′∈G
EP∥g′(ϕ′(T̂))− ϕ′(T)∥2,

where (T̂ , T) ∼ P . Here we also consider the predictor g as a linear function, so that we have the following form:

min
∥W ∥∈BW

EP∥Wϕ(T̂)− ϕ(T)∥2 − min
∥W ′∥∈BW

EP∥W ′ϕ′(T̂)− ϕ′(T)∥2

= min
∥W ∥∈BW

EP∥Wϕ(T̂)−W ′ϕ′(T̂)∥2 + CP

≥
d∑
r=1

min
wr

EP∥w⊤
r ϕ(T̂)−w′⊤

r ϕ
′(T̂)∥2

≥
d∑
r=1

min
wr

EP(w
⊤
r ϕ(T̂)ϕ(T̂)

⊤wr +w′⊤
r ϕ

′(T̂)ϕ′(T̂)⊤w′
r − 2w⊤

r ϕ(T̂)ϕ
′(T̂)⊤w′

r)

≥
d∑
r=1

w′⊤
r Λw′

r,Λ = E[ϕ(T̂)ϕ(T̂)⊤]− E[ϕ(T̂)ϕ′(T̂)⊤]
(
E[ϕ′(T̂)ϕ′(T̂)⊤]

)†
E[ϕ(T̂)ϕ′(T̂)⊤].

23

Title Suppressed Due to Excessive Size

where CP = EP∥ϕ′(T)− ϕ(T)∥2 is a constant, and W ′ is defined as the optimal transformation matrix for the encoder ϕ′.
Based on this formula, we can further simplify the bound on

d∑
r=1

w′⊤
r Λw′

r = tr(Λ

d∑
r=1

w′
rw

′⊤
r) ≥ σmax(Λ)σmin(

d∑
r=1

w′
rw

′⊤
r).

Now that we have the upper bound for minf∈F RT (f ◦ϕ)−minf ′∈F RT (f
′ ◦ϕ′) and the lower bound for ming∈G LP(g ◦

ϕ)−ming′∈G LP(g
′ ◦ ϕ′), we can establish the relationship between them as follows:

min
f∈F

RT (f ◦ ϕ)− min
f ′∈F

RT (f
′ ◦ ϕ′)

≤ O

(√
dσmax(θ′θ′⊤)√

σmin(
∑d
r=1 w

′
rw

′⊤
r)

)
(min
g∈G

LP(g ◦ ϕ)− min
g′∈G

LP(g
′ ◦ ϕ′)).

Based on our definition, θ′ and W ′ are optimal heads for the encoder ϕ′, the complexity term O

(√
dσmax(θ′θ′⊤)√

σmin(
∑d

r=1 w′
rw

′⊤
r)

)
would be a constant which in the order of O(1).

D.3. Proof of Theorem 3.5

Proof. We begin by introducing some essential notations. Let P represent the pretraining task-tree distribution and T the
downstream task-tree distribution. The pair (T, y) ∼ T denotes a task-tree and its corresponding label, where we define
the labeling function as ψ, meaning y = ψ(T). The GNN encoder is ϕ ∈ Φ, the pretraining predictor is g ∈ G, and the
downstream predictor head is f ∈ F . As in the previous proof, we consider a binary classification task for simplicity, though
this can be extended to multi-class settings. The downstream risk is given by RT (f ◦ϕ) := E(T,ψ(T))∼T κ(f(ϕ(T)), ψ(T)),
where κ is a loss function.

Then, we define the excess risk on the downstream distribution T as

E(f, ϕ) =RT (f ◦ ϕ)− min
f ′∈F,ϕ′∈Φ

RT (f
′ ◦ ϕ′)

=
(
RT (f ◦ ϕ)− min

f ′∈F,ϕ′∈Φ
RT (f

′ ◦ ϕ′)
)
+

(
min
f ′∈F

RT (f
′ ◦ ϕ)− min

f ′∈F
RT (f

′ ◦ ϕ)
)

+
(
min
f ′∈F

RP(f
′ ◦ ϕ)− min

f ′∈F
RP(f

′ ◦ ϕ)
)
+

(
min
f ′∈F

RP(f
′ ◦ ϕ∗)− min

f ′∈F
RP(f

′ ◦ ϕ∗)
)

=RT (f ◦ ϕ)− min
f ′∈F

RT (f
′ ◦ ϕ)︸ ︷︷ ︸

(a)

+ min
f ′∈F

RT (f
′ ◦ ϕ)− min

f ′∈F
RP(f

′ ◦ ϕ)︸ ︷︷ ︸
(b)

+ min
f ′∈F

RP(f
′ ◦ ϕ)− min

f ′∈F
RP(f

′ ◦ ϕ∗)︸ ︷︷ ︸
(c)

+ min
f ′∈F

RP(f
′ ◦ ϕ∗)− min

f ′∈F,ϕ′∈Φ
RT (f

′ ◦ ϕ′)︸ ︷︷ ︸
(d)

,

where ϕ and f represent encoder obtained during pretraining and the prediction head learned in downstream task, respectively,
while ϕ′ and f ′ are the optimal encoder and predictor head on the downstream distribution. ϕ∗ is the optimal encoder
obtained during pretraining, defined as ϕ∗ = argminϕ∈Φ ming∈G LP(g ◦ ϕ). We will analyze these four terms separately.

To bound the term (a), we need to introduce the empirical Rademacher complexity (Definition 1, (Deng et al., 2024)) as

R̂T := Eε∈{±1}n

[
sup
f∈F

1

n

n∑
i=1

εiκ(f ◦ ϕ(T), ψ(T))
]
,

where εi is i.i.d., and P(ε = 1) = P(ε = −1) = 1
2 .

24

Title Suppressed Due to Excessive Size

Using this definition, we can bound the term (a):

Term (a) = RT (f ◦ ϕ)− min
f ′∈F

RT (f
′ ◦ ϕ)

= RT (f ◦ ϕ)− R̂T (f ◦ ϕ)︸ ︷︷ ︸
(a.1)

+ R̂T (f
∗ ◦ ϕ)− min

f ′∈F
RT (f

′ ◦ ϕ)︸ ︷︷ ︸
(a.2)

+ R̂T (f ◦ ϕ)− R̂T (f
∗ ◦ ϕ)︸ ︷︷ ︸

(a.3)

,

where f∗ is the optimal predictor head over the distribution T , defined as f∗ = argminf∈F RT (f ◦ ϕ). The term (a.3)
represents the empirical risk gap between the learned head f and the best head f∗, which implies that the term is a constant
greater than or equal to 0. Term (a.1) and (a.2) describe the gap between the risk and the empirical risk. According to
uniform convergence, these two terms can be expressed in terms of empirical Rademacher complexity. Thus, term (a) can be
bounded as:

Term (a) ≤ 4R̂T + 4Bκ

√
log(1/v)

n
,

where Bκ is the bound of the Lipschitz of loss function κ. We then further simplify the empirical Rademacher complexity
for a more reasonable expression.

Term (a) ≤4Eε∈{±1}n

[
sup
f∈F

1

n

n∑
i=1

εiκ(f ◦ ϕ(Ti), ψ(Ti))
]
+ 4Bκ

√
log(1/v)

n

≤4CκEε∈{±1}n

[
sup
f∈F

1

n

n∑
i=1

εif ◦ ϕ(Ti)
]
+ 4Bκ

√
log(1/v)

n

≤4CκCfEε∈{±1}n

∥∥∥ 1
n

n∑
i=1

εiϕ(Ti)
∥∥∥+ 4Bκ

√
log(1/v)

n

≤ 4

n
CκCfEε∈{±1}n

√√√√∥∥∥ n∑
i=1

εiϕ(Ti)
∥∥∥2 + 4Bκ

√
log(1/v)

n
.

As the εi are i.i.d. with zero mean as our definition, we cancel the term, thus

Term (a) ≤ 4

n
CκCf

√√√√ n∑
i=1

∥∥∥ϕ(Ti)∥∥∥2 + 4Bκ

√
log(1/v)

n
.

Then, we bound the term (b). To do this, we introduce a notation f∗P = argminf ′∈F RP(f
′ ◦ h).

Term (b) = min
f ′∈F

RT (f
′ ◦ ϕ)− min

f ′∈F
RP(f

′ ◦ ϕ)

≤RT (f
∗
P ◦ ϕ)−RP(f

∗
P ◦ ϕ)

=ET∼T

[
κ(f∗P ◦ ϕ(T), ψ(T))

]
− ET∼P

[
κ(f∗P ◦ ϕ(T), ψ(T))

]
=Ex∼Tϕ

[
κ(f∗P(x), ψ(T))

]
− Ex∼Pϕ

[
κ(f∗P(x), ψ(T))

]
≤Bκ

∑
x∈Xϕ

∥∥∥Tϕ(x)− Pϕ(x)
∥∥∥,

where Bκ represents the upper bound of the Lipschitz constant of κ, and Xϕ denotes the distribution of task-tree embeddings
produced by the encoder ϕ. This term measures the distributional distance of task-trees between the pretraining and
downstream distributions.

25

Title Suppressed Due to Excessive Size

Following, we bound the term (c), as

Term (c) = min
f ′∈F

RP(f
′ ◦ ϕ)− min

f ′∈F
RP(f

′ ◦ ϕ∗)

≤Cδ
(
min
g′∈G

LP(g
′ ◦ h)− min

g′∈G
LP(g

′ ◦ ϕ∗)
)δ

≤Cδ
(
LP(g ◦ h)− min

g′∈G,ϕ′∈Φ
LP(g

′ ◦ ϕ′)
)δ
.

The term LP(g ◦ h)−ming′∈G,ϕ′∈Φ LP(g
′ ◦ ϕ′) describes the excess risk on pretraining task, which can be replaced by a

notation EP(g, ϕ).

Lastly, we bound the term (d),

Term (d) = min
f ′∈F

RP(f
′ ◦ ϕ∗)− min

f ′∈F,ϕ′∈Φ
RT (f

′ ◦ ϕ′)

= min
f ′∈F

RP(f
′ ◦ ϕ∗)− min

f ′∈F
RT (f ◦ ϕ∗) + min

f ′∈F
RT (f ◦ ϕ∗)− min

f ′∈F,ϕ′∈Φ
RT (f

′ ◦ ϕ′)

≤Bκ
∑
x∈Xϕ

∥∥∥Tϕ(x)− Pϕ(x)
∥∥∥+ min

f ′∈F
RT (f

′ ◦ ϕ∗)− min
f ′∈F,ϕ′∈Φ

RT (f
′ ◦ ϕ′).

By combining the four terms, we obtain the generalization bound for a model pretrained on task-tree distribution P and
fine-tuned on task-tree distribution T :

RT (f ◦ ϕ) ≤ Cδ
(
EP(g, ϕ)

)δ
+
4CκCf
n

√√√√ n∑
i=1

∥∥∥ϕ(Ti)∥∥∥2 + min
f ′∈F

RT (f
′ ◦ ϕ∗)

+2Bκ
(∑
x∈Xϕ

∥∥∥Tϕ(x)− Pϕ(x)
∥∥∥+ 2

√
log(1/v)

n

)
.

We can set C1 = CκCf and C2 = Bκ as two downstream task-related constants.

E. Experimental Settings
E.1. Datasets

Dataset Statistics. We utilize 32 datasets spanning five domains in this paper. Since these datasets are text-attributed graphs,
we use Sentence-BERT (Reimers & Gurevych, 2019) to align the node textual features into 768-dimensional vectors. The
dataset statistics are presented in Table 8. For the temporal graphs, we split each graph into 10 snapshots, with the statistics
shown in Figure 8. We classify Children and Ratings as heterophily graphs due to their relatively low homophily
ratios (Chen et al., 2024b).

Splitter. For each dataset, we use the same splitting strategy as provided in the original paper (Chen et al., 2024b; Galkin
et al., 2024; Feng et al., 2024; Zhang et al., 2024b). If multiple splits are provided, we evaluate model performance on
each split using different random seeds. For datasets with a single split, we repeat the experiments five times with different
random seeds. For GDELT and ICEWS1819, which are originally temporal knowledge graphs, we apply an 80%/10%/10%
split based on timestamps for train/validation/test settings. For the temporal graphs Enron and Googlemap CT used for
edge classification, we split each snapshot by timestamps, using the first 70% for training, the next 15% for validation, and
the remaining 15% for testing.

E.2. Baselines

BASELINES APPLICABLE FOR ALL GRAPHS

GCN (Kipf & Welling, 2017). A supervised message-passing GNN trained from scratch for each task. As a result, it cannot
be applied to in-context learning or zero-shot learning.

26

Title Suppressed Due to Excessive Size

Table 8: Statistics of 32 graphs used in the paper.

Dataset Domain Task # Nodes # Edges # Classes # Task-Trees Source

Products E-commerce Node, Link 316,513 19,337,745 39 316,513 (Chen et al., 2024b)
History E-commerce Node, Link 41,551 503,180 12 41,551 (Chen et al., 2024b)
Children E-commerce Node, Link 76,875 2,325,044 24 76,875 (Chen et al., 2024b)
Computer E-commerce Node, Link 87,229 1,256,548 10 87,229 (Chen et al., 2024b)
Photo E-commerce Node, Link 48,362 873,793 12 48,362 (Chen et al., 2024b)
Sportsfit E-commerce Node, Link 173,055 3,020,134 13 173,055 (Chen et al., 2024b)
Ratings E-commerce Node, Link 24,492 186,100 5 24,492 (Chen et al., 2024b)
Arxiv Academia Node, Link 169,343 2,315,598 40 169,343 (Chen et al., 2024b)
Cora Academia Node, Link 2,708 10,556 7 2,708 (Chen et al., 2024b)
Citeseer Academia Node, Link 3,186 8,450 6 3,186 (Chen et al., 2024b)
Pubmed Academia Node, Link 19,717 88,648 3 19,717 (Chen et al., 2024b)
Arxiv 23 Academia Node, Link 46,198 77,726 40 46,198 (Chen et al., 2024b)
DBLP Academia Node, Link 14,376 431,326 4 14,376 (Chen et al., 2024b)
WN18RR knowledge Base Link 40,943 93,003 11 93,003 (Galkin et al., 2024)
FB15K237 knowledge Base Link 14,541 310,116 237 310,116 (Galkin et al., 2024)
Codex Small knowledge Base Link 2,034 36,543 42 36,543 (Galkin et al., 2024)
Codex Median knowledge Base Link 17,050 206,205 51 206,205 (Galkin et al., 2024)
Codex Large knowledge Base Link 77,951 612,437 69 612,437 (Galkin et al., 2024)
NELL995 knowledge Base Link 74,536 153,039 200 153,039 (Galkin et al., 2024)
GDELT knowledge Base Link 5,849 943,956 237 943,956 (Zhang et al., 2024b)
ICEWS1819 knowledge Base Link 31,796 1,100,071 266 1,100,071 (Zhang et al., 2024b)
Chemblpre Molecule Graph 8,845,648 19,123,034 1,295 341,952 (Feng et al., 2024)
PCBA Molecule Graph 11,349,235 24,566,048 128 437,092 (Feng et al., 2024)
HIV Molecule Graph 1,049,163 2,259,376 1 41,127 (Feng et al., 2024)
BBBP Molecule Graph 49,068 105,842 1 2,039 (Feng et al., 2024)
BACE Molecule Graph 51,577 111,536 1 1,513 (Feng et al., 2024)
TOXCAST Molecule Graph 161,002 330,180 588 8,575 (Feng et al., 2024)
CYP450 Molecule Graph 414,367 895,886 5 16,896 (Feng et al., 2024)
TOX21 Molecule Graph 145,459 302,190 12 7,831 (Feng et al., 2024)
MUV Molecule Graph 2,255,846 4,892,252 17 93,087 (Feng et al., 2024)
Enron Temporal Link 42,712 797,907 10 797,907 (Zhang et al., 2024b)
Googlemap CT Temporal Link 111,169 1,380,623 5 1,380,623 (Zhang et al., 2024b)

GAT (Veličković et al., 2018). A supervised GNN that uses an attention mechanism to learn the importance of received
messages.

GIN (Xu et al., 2019). A supervised GNN specifically designed for graph-level tasks.

BGRL (Thakoor et al., 2022). A popular self-supervised learning framework for graphs that employs a contrastive learning
loss without negative samples.

GraphMAE (Hou et al., 2022). A graph learning framework pretrained in a masked auto-encoder fashion.

OFA (Liu et al., 2024a). A cross-task and cross-domain graph foundation model that treats subgraphs as the basic learning
instances. It introduces a graph prompt learning framework to enable in-context and zero-shot learning.

EXPERT MODELS DESIGNED FOR SPECIFIC DOMAINS

ULTRA (Galkin et al., 2024). A foundation model designed specifically for knowledge graphs, which we treat as the
domain expert for KGs.

KVPLM (Zeng et al., 2022). A language model based on SMILES representations of molecules, serving as an expert
model for molecular graphs.

MoMu (Su et al., 2022). Another expert model for molecules that leverages GNNs to improve molecular representations.

Galactica (Taylor et al., 2022). A foundation model for molecular graphs that utilizes multi-task learning with instructions.

27

Title Suppressed Due to Excessive Size

0 1 2 3 4 5 6 7 8 9
Snapshot Index

0

5000

10000

15000

No
de

s

0 1 2 3 4 5 6 7 8 9
Snapshot Index

0

100000

200000

Ed
ge

s

0 1 2 3 4 5 6 7 8 9
Snapshot Index

0.000

0.002

0.004

0.006

De
ns

ity

0 1 2 3 4 5 6 7 8 9
Snapshot Index

0

10000

20000

M
ax

_d
eg

re
e

(a) Enron

0 1 2 3 4 5 6 7 8 9
Snapshot Index

0

20000

40000

60000

No
de

s

0 1 2 3 4 5 6 7 8 9
Snapshot Index

0

100000

200000

Ed
ge

s

0 1 2 3 4 5 6 7 8 9
Snapshot Index

0.00000

0.00005

0.00010

De
ns

ity

0 1 2 3 4 5 6 7 8 9
Snapshot Index

0

100

200

300
M

ax
_d

eg
re

e

(b) Googlemap CT

Figure 8: The statistics of temporal graphs.

GIMLET (Zhao et al., 2023). A foundation model for molecules that incorporates advanced models and instruction-based
learning.

E.3. Evaluation Protocol

Pretraining Datasets. We select six datasets for pretraining, including Arxiv, Products, WN18RR, FB15K237,
Chemblpre, and PCBA, due to their diversity in domains and tasks. For self-supervised learning methods, these six
datasets are used for pretraining unless otherwise specified.

SFT Datasets. For specialization via SFT in each domain, we use Arxiv for academic networks, Products for e-
commerce networks, FB15K237 for knowledge graphs, and PCBA for molecular networks. For temporal graphs, which are
e-commerce-based, we also use Products for SFT to evaluate robustness under temporal distribution shifts.

Backbone. We use a GraphSAGE-like encoder (Hamilton et al., 2017). Following the encoding of task-trees, we add an
additional linear transformation as the projector. Note that we does not leverage edge features to make the task harder except
for Enron and Googlemap CT where node features are IDs and edge contains messages. As the edge information may
significantly benefit some tasks like knowledge graph completion and molecule property prediction.

E.4. Evaluation Settings

Finetune. This is the basic setting that directly finetune the full parameters of the pretrained model by appending a linear
classifier on the top of the model encoder.

28

Title Suppressed Due to Excessive Size

Table 9: The hyper-parameters used in the pretraining.

Hidden Dim Layers Dropout Activation Epochs LR

768 2 0.15 ReLU 10 1e-7

Feature Drop Edge Drop λ Decay BS Fanout

0.2 0.2 10 1e-8 4,096 10

Table 10: The hyper-parameters used in fine-tuning on academic networks.

Academia Cora Citeseer Pubmed Arxiv23 DBLP Arxiv

Normalize None BN None None None BN
Learning Rate 1e-4 1e-4 1e-5 1e-4 1e-4 1e-3
Weight Decay 0 0 1e-6 0 1e-6 1e-6
Epochs 1000 1000 1000 1000 1000 1000
Early Stop 200 200 200 200 200 200

SFT Learning Rate 1e-7 1e-4 1e-6 1e-5 1e-7 1e-6
SFT Epochs 100 100 100 100 100 100

Table 11: The hyper-parameters used in fine-tuning on e-commerce networks.

E-commerce History Children Computer Photo Sportsfit Ratings Products

Normalize None None None None BN BN BN
Learning Rate 1e-3 1e-4 1e-3 1e-4 1e-4 1e-4 1e-4
Weight Decay 0 1e-6 0 1e-6 1e-6 1e-6 1e-6
Epochs 1000 1000 1000 1000 1000 1000 1000
Early Stop 200 200 200 200 200 200 200

SFT Learning Rate 1e-5 1e-7 1e-7 1e-7 1e-8 1e-7 1e-7
SFT Epochs 100 100 100 100 100 100 100

In-context Learning. This is a kind of few-shot learning without fine-tuning the model parameters. We randomly select
k samples from a certain class, and average the selected samples to form prototypes, which is used for classification. We
follow existing GFM works (Liu et al., 2024a; He & Hooi, 2024) to conduct 500 randomly sampled 5-way 3-shot learning
tasks. If the number of classes is less than 5, the number of ways is set to the number of classes.

Zero-shot Learning. The zero-shot learning is similar to in-context learning, yet we use the LLM-encoded class description
embeddings as the prototypes for prediction. Similar to in-context learning, we also randomly sample 500 tasks for
evaluation. Another zero-shot setting involves using an additional LLM for zero-shot inference (Chen et al., 2024a). We
leave this in our future work.

E.5. Hyper-Parameters

Baselines. For the baseline methods, we follow the hyperparameters reported in (Liu et al., 2024a; Chen et al., 2024b).
If the hyperparameters are not provided, we set the number of epochs to 1,000, the batch size to 4,096, early stopping at
200, and the hidden dimension to 768, using a 2-layer GraphSAGE as the backbone with batch normalization and ReLU
activation. For optimization, we use AdamW with a weight decay of 1e-6 and tune the learning rate from 1e-3, 1e-4, 1e-5,
reporting the best performance. For methods with attention mechanisms, we set 4 attention heads.

GIT. The model architecture and pretraining parameters of our GIT are presented in Table 9. The specific fine-tuning

29

Title Suppressed Due to Excessive Size

Table 12: The hyper-parameters used in fine-tuning on knowledge graphs.

KG WN18RR Codex-S Codex-M Codex-L NELL995 GDELT ICEWS1819 FB15K237

Normalize BN BN BN BN BN BN BN BN
Learning Rate 1e-4 1e-4 1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
Weight Decay 1e-6 1e-6 1e-6 1e-6 0 0 1e-6 1e-6
Epochs 1000 1000 1000 1000 1000 1000 1000 1000
Early Stop 200 200 200 200 200 200 200 200

SFT Learning Rate 1e-8 1e-7 1e-5 1e-7 1e-8 1e-4 1e-8 1e-7
SFT Epochs 100 100 100 100 100 100 100 100

Table 13: The hyper-parameters used in fine-tuning on molecule graphs.

Molecule BBBP BACE TOXCAST TOX21 CYP450 HIV MIV PCBA

Normalize BN BN BN BN BN BN None BN
Learning Rate 1e-3 1e-4 1e-4 1e-4 1e-4 1e-5 1e-4 1e-5
Weight Decay 1e-6 0 1e-6 1e-6 1e-6 0 0 0
Epochs 300 300 300 300 300 300 300 300
Early Stop 30 30 30 30 30 30 30 30

SFT Learning Rate 1e-7 1e-6 1e-8 1e-7 1e-7 1e-7 1e-6 1e-7
SFT Epochs 10 10 10 10 10 10 10 10

Table 14: The hyper-parameters used in fine-tuning on temporal graphs.

Temporal Enron Googlemap CT

Normalize None None
Learning Rate 1e-3 1e-3
Weight Decay 1e-6 1e-6
Epochs 1000 1000
Early Stop 200 200

SFT Learning Rate 1e-6 1e-6
SFT Epochs 100 100

hyperparameters, categorized by domain, are shown in Tables 10, 11, 12, 13, and 14. For in-context learning and zero-shot
learning results without fine-tuning, the general model does not involve any hyperparameters. For the specialized model, we
tune the hyperparameters of SFT epochs from 10 to 500, in steps of 10, the SFT learning rate from 1e-4, 1e-5, 1e-6, 1e-7,
1e-8, and the normalization method from None, BN.

F. Comprehensive Model Results
F.1. Domain: Academia

Node Classification. We perform node classification on academic networks across three settings: basic fine-tuning, 3-shot
in-context learning, and zero-shot learning. The comprehensive node classification results on academic networks, measured
in terms of accuracy, are presented in Table 15. Notably, the specialized model (GIT-S) does not always outperform the
general model (GIT-G). This may be because the manually selected SFT data does not adequately capture the underlying
distribution of the domain. It would be valuable to explore dataset selection or instance selection methods to better optimize
the choice of SFT data.

30

Title Suppressed Due to Excessive Size

Table 15: Node classification results on academic networks in terms of accuracy.

Cora Citeseer Pubmed Arxiv23 DBLP Arxiv Avg.

0-shot

GCN - - - - - - -
BGRL 14.37 ± 0.38 15.09 ± 0.40 33.94 ± 0.46 2.44 ± 0.23 25.53 ± 0.27 2.10 ± 0.14 15.58
GraphMAE 13.88 ± 0.41 13.48 ± 0.83 32.62 ± 0.67 2.51 ± 0.37 27.83 ± 0.40 2.17 ± 0.26 15.42
OFA 14.58 ± 0.43 13.28 ± 0.12 30.89 ± 0.10 2.08 ± 0.03 21.00 ± 0.27 2.05 ± 0.18 13.98

GIT - G 15.31 ± 0.27 16.04 ± 0.31 29.66 ± 0.60 2.89 ± 0.25 21.80 ± 0.35 3.57 ± 0.18 14.88
GIT - S 18.26 ± 0.29 20.35 ± 0.29 39.12 ± 0.55 9.08 ± 0.32 36.40 ± 0.58 17.50 ± 0.66 23.45

3-shot

GCN - - - - - - -
BGRL 61.24 ± 0.50 44.97 ± 0.43 54.55 ± 0.81 43.17 ± 0.93 42.89 ± 0.61 59.09 ± 0.24 50.99
GraphMAE 62.02 ± 0.58 44.08 ± 0.59 55.98 ± 0.68 31.64 ± 0.28 38.16 ± 0.54 63.62 ± 0.79 49.25
OFA 55.92 ± 0.40 41.57 ± 0.32 40.89 ± 0.79 37.01 ± 0.41 43.08 ± 0.51 57.08 ± 0.48 45.93

GIT - G 60.93 ± 0.47 48.32 ± 0.53 60.30 ± 0.76 45.62 ± 0.35 44.76 ± 0.54 64.07 ± 0.50 54.00
GIT - S 63.23 ± 0.29 49.55 ± 0.33 59.62 ± 0.54 47.21 ± 0.31 47.40 ± 0.43 64.06 ± 0.58 55.18

Finetune

GCN 77.40 ± 1.36 80.19 ± 1.30 72.44 ± 2.08 71.61 ± 0.02 68.15 ± 0.14 71.65 ± 0.02 73.57
BGRL 71.06 ± 2.84 80.56 ± 1.59 68.75 ± 3.69 69.23 ± 0.19 55.66 ± 2.00 67.62 ± 0.19 68.81
GraphMAE 76.34 ± 1.49 79.19 ± 1.32 73.88 ± 1.16 70.46 ± 0.04 71.18 ± 0.13 71.82 ± 0.05 73.81
OFA 70.63 ± 1.03 79.13 ± 2.53 70.95 ± 1.02 70.43 ± 0.12 70.67 ± 0.21 71.28 ± 0.24 72.18

GIT - G 78.74 ± 1.12 81.03 ± 0.78 75.26 ± 2.81 72.49 ± 0.07 74.42 ± 0.15 72.99 ± 0.10 75.82
GIT - S 78.90 ± 1.44 81.97 ± 0.80 76.17 ± 1.70 71.50 ± 0.08 73.59 ± 0.08 73.13 ± 0.11 75.88

Link Prediction. We present the link prediction results, measured by AUC, on academic networks in Table 16. The
train/val/test sets are randomly split in a 70%/15%/15% ratio. GIT outperforms all baselines across all settings. Additionally,
the specialized GIT surpasses the general GIT, highlighting the potential of specialization to enhance performance on other
tasks within the same domain. This finding underscores the cross-task transferability of the proposed specialization process.

Table 16: Link prediction results on academic networks in terms of AUC.

Cora Citeseer Pubmed Arxiv23 DBLP Arxiv Avg.

GCN 87.34 ± 0.88 87.52 ± 0.98 84.41 ± 0.17 89.67 ± 0.24 98.29 ± 0.07 97.50 ± 0.08 90.79
BGRL 83.96 ± 0.36 81.51 ± 0.85 84.01 ± 0.60 86.42 ± 0.08 97.24 ± 0.06 96.80 ± 0.04 88.32
GraphMAE 85.57 ± 0.27 84.55 ± 0.69 89.83 ± 0.35 91.45 ± 0.44 98.05 ± 0.06 96.31 ± 0.02 90.96
OFA 82.82 ± 0.72 81.52 ± 1.16 84.78 ± 1.08 85.40 ± 0.62 97.23 ± 0.14 96.46 ± 0.05 88.04

GIT - G 87.79 ± 2.07 87.59 ± 0.96 84.35 ± 0.26 91.47 ± 0.46 98.25 ± 0.09 97.14 ± 0.06 91.10
GIT - S 88.58 ± 1.88 88.50 ± 1.15 87.78 ± 0.13 91.86 ± 0.38 98.27 ± 0.05 97.30 ± 0.05 92.05

F.2. Domain: E-Commerce

Node Classification. The comprehensive node classification results on e-commerce datasets are presented in Table 17. Our
proposed GIT model outperforms the baselines in most settings, particularly for the specialized version. Specialization
significantly improves performance in zero-shot and in-context learning, highlighting the advantages of using task-trees
as the basic learning instances. In the basic fine-tuning setting, we also observe that supervised methods (GCN and GAT)
generally outperform self-supervised methods, such as GraphMAE (Hou et al., 2022) and OFA (Liu et al., 2024a), indicating
the occurrence of negative transfer. However, GIT surpasses these supervised methods on 5 out of 7 datasets, further
demonstrating the benefits of task-trees as basic learning instances. It it important to note that we consider Children and
Ratings as heterophily graphs (Chen et al., 2024b) due to their low homophily ratio.

Link Prediction. The link prediction results on e-commerce networks (History, Photo, Ratings) are presented in
Table 18. We randomly select 70% of the edges for training, 15% for validation, and the remaining 15% for testing. Our GIT
model achieves the best average performance across these three e-commerce graphs. However, other baselines like BGRL,

31

Title Suppressed Due to Excessive Size

Table 17: Node classification results on e-commerce networks in terms of accuracy.

History Children Computer Photo Sportsfit Ratings Products Avg.

0-shot

GCN - - - - - - - -
GAT - - - - - - - -
BGRL 6.76 ± 0.18 4.26 ± 0.14 9.70 ± 0.39 6.32 ± 0.20 7.91 ± 0.31 17.50 ± 0.65 0.58 ± 0.19 7.58
GraphMAE 9.20 ± 0.23 4.25 ± 0.13 7.86 ± 0.23 8.02 ± 0.40 7.70 ± 0.34 20.26 ± 0.16 0.07 ± 0.03 8.19
OFA 8.84 ± 0.52 4.22 ± 0.19 10.83 ± 0.32 8.46 ± 0.34 7.28 ± 0.52 18.43 ± 0.50 3.02 ± 0.37 8.73

GIT - G 4.72 ± 0.31 4.34 ± 0.19 8.85 ± 0.30 11.78 ± 0.26 7.20 ± 0.18 21.00 ± 0.06 3.64 ± 0.25 8.79
GIT - S 9.94 ± 0.54 7.49 ± 0.12 14.87 ± 0.40 9.69 ± 0.22 9.23 ± 0.65 21.55 ± 0.31 46.62 ± 1.06 17.06

3-shot

GCN - - - - - - - -
GAT - - - - - - - -
BGRL 38.35 ± 0.51 32.93 ± 0.75 50.90 ± 0.82 61.64 ± 0.51 42.99 ± 0.48 21.67 ± 0.21 71.71 ± 0.23 45.74
GraphMAE 42.28 ± 0.38 38.71 ± 0.49 58.24 ± 0.79 59.47 ± 0.25 46.57 ± 0.46 21.11 ± 0.56 71.01 ± 0.67 48.20
OFA 48.87 ± 0.26 47.13 ± 0.32 68.14 ± 0.49 75.73 ± 0.24 63.56 ± 0.57 21.38 ± 0.16 74.58 ± 0.33 57.06

GIT - G 50.78 ± 0.41 47.55 ± 0.26 66.64 ± 0.50 75.43 ± 0.26 64.56 ± 0.43 21.21 ± 0.37 74.35 ± 0.48 57.22
GIT - S 50.99 ± 0.64 47.65 ± 0.36 69.29 ± 0.48 76.32 ± 0.55 65.84 ± 0.53 21.17 ± 0.40 74.80 ± 0.54 58.01

Finetune

GCN 84.62 ± 0.06 58.08 ± 0.08 88.41 ± 0.06 86.39 ± 0.11 92.07 ± 0.02 50.99 ± 0.23 86.91 ± 0.05 78.21
GAT 84.54 ± 0.07 59.09 ± 0.05 89.00 ± 0.04 86.70 ± 0.07 91.12 ± 0.05 51.19 ± 0.15 87.22 ± 0.05 78.41
GraphMAE 82.51 ± 0.05 56.76 ± 0.09 84.31 ± 0.06 83.26 ± 0.06 90.47 ± 0.03 52.39 ± 0.29 86.30 ± 0.07 76.57
OFA 82.81 ± 0.11 55.43 ± 0.08 85.78 ± 0.13 83.21 ± 0.25 91.23 ± 0.07 51.79 ± 0.18 86.23 ± 0.07 76.64

GIT - G 84.94 ± 0.10 59.09 ± 0.15 87.81 ± 0.10 85.66 ± 0.06 92.17 ± 0.06 52.45 ± 0.26 87.75 ± 0.04 78.61
GIT - S 85.18 ± 0.11 59.73 ± 0.12 88.05 ± 0.18 85.66 ± 0.05 92.44 ± 0.02 52.56 ± 0.29 88.20 ± 0.05 78.83

GraphMAE, and OFA fail to outperform the basic GCN. This may be because they struggle to acquire useful knowledge
during pretraining for tasks that require structural insight, such as link prediction. These results underscore the advantages
of using task-trees as the basic learning instances.

Table 18: Link prediction results on e-commerce networks in terms of AUC.

History Photo Ratings Avg.

GCN 97.87 ± 0.06 97.37 ± 0.03 97.77 ± 0.07 97.67
BGRL 96.40 ± 0.08 97.58 ± 0.04 98.05 ± 0.04 97.34
GraphMAE 97.59 ± 0.06 98.09 ± 0.05 95.35 ± 0.15 97.01
OFA 95.86 ± 0.09 97.05 ± 0.06 97.79 ± 0.12 96.90

GIT - G 96.55 ± 0.07 96.24 ± 0.05 98.45 ± 0.07 97.08
GIT - S 97.08 ± 0.05 97.80 ± 0.06 98.49 ± 0.10 97.79

F.3. Domain: Knowledge Base

Edge Classification. The edge classification results on knowledge graphs are presented in Table 19. In this domain, our
GIT model significantly outperforms the existing baselines, demonstrating the advantages of using task-trees as the basic
learning instances for knowledge bases, even though these KGs represent different scenarios. We hypothesize that this
improvement stems from the nature of relation triplets in KGs, where each relation inherently describes the aggregation of
the head and tail nodes, aligning with the concept of task-trees.

F.4. Domain: Molecule

Graph Classification. We evaluate fine-tuning, in-context learning, and zero-shot learning in this domain. The fine-tuning
and in-context learning settings are consistent with those used in previous domains. For zero-shot learning, however, we
follow the approach of Zhao et al. (2023) by assessing zero-shot performance on the original test set. The graph classification
results are presented in Table 20. Our GIT model achieves the best average performance across the three evaluated settings.
We also observe that specialization consistently improves performance across different graphs, aligning with our theoretical

32

Title Suppressed Due to Excessive Size

Table 19: Edge classification results on knowledge graphs in terms of accuracy.

WN18RR Codex-S Codex-M Codex-L NELL995 GDELT ICEWS1819 FB15K237 Avg.

3-shot

GCN - - - - - - - - -
GraphMAE 55.20 ± 0.52 61.41 ± 0.86 54.30 ± 0.42 61.01 ± 0.55 86.42 ± 0.53 32.43 ± 0.48 31.58 ± 0.39 70.15 ± 0.75 56.56
OFA 55.27 ± 0.64 55.14 ± 0.34 50.20 ± 0.68 62.40 ± 0.46 88.41 ± 0.38 30.23 ± 0.50 34.94 ± 0.32 79.15 ± 0.45 56.97

GIT - G 55.80 ± 0.32 76.96 ± 0.43 73.79 ± 0.43 78.54 ± 0.51 89.13 ± 0.48 34.30 ± 0.68 42.07 ± 0.75 89.78 ± 0.46 67.55
GIT - S 57.90 ± 0.97 77.19 ± 0.32 72.14 ± 0.84 76.99 ± 0.72 90.80 ± 0.51 34.85 ± 0.69 42.02 ± 0.65 90.49 ± 0.32 67.80

Finetune

GCN 86.77 ± 0.30 93.56 ± 2.11 85.73 ± 1.84 84.45 ± 0.18 79.06 ± 0.32 11.72 ± 0.05 27.53 ± 0.06 66.07 ± 0.26 66.86
GraphMAE 93.87 ± 0.35 97.09 ± 0.72 94.07 ± 0.60 94.18 ± 0.19 86.10 ± 0.42 13.12 ± 0.04 28.91 ± 0.06 73.52 ± 0.12 72.61
OFA 93.10 ± 0.31 90.78 ± 5.46 93.83 ± 3.28 93.26 ± 0.59 86.91 ± 1.50 14.48 ± 0.03 30.60 ± 0.63 76.08 ± 1.95 72.38

GIT - G 94.16 ± 0.11 98.08 ± 0.08 97.89 ± 0.04 96.85 ± 0.03 90.10 ± 0.23 14.86 ± 0.12 33.49 ± 0.06 80.39 ± 0.13 75.73
GIT - S 95.15 ± 0.07 99.19 ± 0.04 97.92 ± 0.04 96.83 ± 0.04 91.28 ± 0.41 14.89 ± 0.05 33.61 ± 0.10 80.32 ± 0.07 76.15

analysis.

Table 20: Graph classification results on molecule graphs in terms of AUC.

HIV BBBP BACE TOXCAST CYP450 TOX21 MUV PCBA Avg.

0-shot

GIN - - - - - - - - -
BGRL 55.27 53.72 33.74 49.00 60.99 46.40 39.90 42.39 47.68
GraphMAE 46.48 49.08 30.76 48.22 60.55 49.17 48.17 45.10 47.19
OFA 47.96 50.61 34.35 49.70 61.96 52.73 52.48 54.14 50.49

GIT - G 56.76 54.76 33.66 51.55 63.21 56.83 53.71 56.25 53.34
GIT - S 66.14 62.16 52.27 58.30 69.75 63.45 65.32 65.26 62.83

3-shot

GIN - - - - - - - - -
BGRL 52.72 ± 1.84 49.12 ± 0.78 59.58 ± 0.89 57.27 ± 0.05 67.49 ± 0.56 59.26 ± 0.19 52.61 ± 0.23 51.48 ± 0.22 56.19
GraphMAE 54.40 ± 1.04 48.41 ± 1.34 60.78 ± 1.01 56.99 ± 0.06 66.93 ± 0.91 58.40 ± 0.22 51.95 ± 0.18 50.24 ± 0.23 56.01
OFA 56.04 ± 1.49 50.69 ± 1.36 60.21 ± 0.64 56.40 ± 0.05 68.76 ± 0.16 57.18 ± 0.29 56.17 ± 0.23 50.77 ± 0.30 57.03

GIT - G 52.42 ± 1.74 48.22 ± 1.14 59.32 ± 0.91 56.32 ± 0.04 66.77 ± 0.45 58.53 ± 0.36 55.98 ± 0.19 50.09 ± 0.30 55.96
GIT - S 54.12 ± 1.66 66.74 ± 1.34 61.76 ± 0.92 55.53 ± 0.03 81.50 ± 0.23 65.16 ± 0.27 66.14 ± 0.30 51.58 ± 0.30 62.82

Finetune

GIN 76.83 ± 1.32 67.36 ± 1.39 75.55 ± 2.91 62.92 ± 0.42 85.82 ± 0.77 72.26 ± 0.24 70.12 ± 0.39 78.34 ± 0.51 73.65
BGRL 72.18 ± 1.24 67.40 ± 1.45 73.75 ± 3.69 62.52 ± 0.10 83.10 ± 0.26 72.97 ± 0.54 68.46 ± 0.63 76.69 ± 1.40 72.13
GraphMAE 69.54 ± 2.59 66.43 ± 2.48 66.56 ± 4.73 62.52 ± 0.14 86.64 ± 0.27 74.13 ± 0.41 70.12 ± 0.40 75.34 ± 1.33 71.41
OFA 76.48 ± 2.11 65.79 ± 0.96 77.88 ± 1.08 63.49 ± 0.61 85.77 ± 0.32 73.00 ± 0.67 69.53 ± 0.56 80.31 ± 1.20 74.03

GIT - G 73.63 ± 0.77 68.33 ± 1.06 79.28 ± 2.71 63.00 ± 0.43 86.86 ± 0.22 73.81 ± 0.33 70.49 ± 0.51 81.13 ± 0.53 74.57
GIT - S 74.75 ± 0.42 68.72 ± 1.13 81.10 ± 0.61 63.63 ± 0.61 87.00 ± 0.37 73.78 ± 0.77 71.16 ± 0.51 81.43 ± 0.34 75.20

F.5. Domain: Temporal E-Commerce

Edge Classification. We report the experimental results on two temporal graphs, Enron and Googlemap CT, in Table 21
and Table 22, respectively. The original graph is split into ten snapshots based on timestamps, and the model performance
is evaluated separately on each snapshot. Since we fine-tuned the pretrained model on Products, these experiments
assess the model’s robustness to temporal distribution shifts. The results demonstrate GIT’s capability to effectively handle
temporal information in graphs.

Table 21: Edge classification results on temporal graph Enron.

Enron 1 Enron 2 Enron 3 Enron 4 Enron 5 Enron 6 Enron 7 Enron 8 Enron 9 Enron 10 Avg.

Finetune

GAT 81.36 ± 0.08 60.60 ± 0.88 62.40 ± 1.83 83.49 ± 0.25 45.88 ± 0.34 65.97 ± 1.07 48.14 ± 0.23 59.15 ± 0.65 82.39 ± 1.98 45.35 ± 0.43 63.47
GraphMAE 81.29 ± 0.01 59.52 ± 0.10 66.13 ± 1.42 82.84 ± 0.67 50.01 ± 0.34 64.46 ± 0.75 45.16 ± 0.15 67.25 ± 0.21 72.05 ± 3.27 48.00 ± 0.01 63.67

GIT - G 81.48 ± 0.28 61.25 ± 0.25 67.56 ± 2.16 84.50 ± 0.21 52.52 ± 0.80 67.69 ± 0.54 50.32 ± 0.17 68.35 ± 0.51 76.92 ± 1.16 48.28 ± 0.15 65.89
GIT - S 81.27 ± 0.12 61.42 ± 0.12 69.15 ± 0.43 84.51 ± 0.17 51.93 ± 0.48 66.74 ± 1.24 50.12 ± 0.32 68.89 ± 0.64 77.03 ± 2.05 48.35 ± 0.02 65.94

3-shot

GAT - - - - - - - - - - -
OFA 68.91 ± 0.31 58.27 ± 0.41 62.43 ± 0.60 55.48 ± 0.59 61.46 ± 0.22 50.35 ± 0.75 53.44 ± 0.37 49.01 ± 0.55 56.43 ± 0.70 59.01 ± 0.19 57.48
GraphMAE 73.23 ± 0.76 58.53 ± 0.66 61.66 ± 0.61 58.15 ± 0.52 59.81 ± 0.50 50.59 ± 0.60 56.89 ± 0.74 56.08 ± 0.45 59.69 ± 0.44 63.63 ± 0.62 59.83

GIT - G 71.67 ± 0.43 60.31 ± 0.49 61.46 ± 0.59 57.62 ± 0.56 59.60 ± 0.93 50.82 ± 0.40 54.02 ± 0.58 52.22 ± 0.32 60.61 ± 0.29 62.17 ± 0.34 59.05
GIT - S 73.73 ± 0.50 58.96 ± 0.43 60.08 ± 0.45 59.38 ± 0.56 61.84 ± 0.78 50.43 ± 0.72 54.92 ± 0.22 56.03 ± 0.43 61.99 ± 0.80 64.85 ± 0.50 60.22

33

Title Suppressed Due to Excessive Size

Table 22: Edge classification results on temporal graph Googlemap CT.

GCT 1 GCT 2 GCT 3 GCT 4 GCT 5 GCT 6 GCT 7 GCT 8 GCT 9 GCT 10 Avg.

Finetune

GAT 61.29 ± 0.04 56.29 ± 0.03 56.13 ± 0.08 57.32 ± 0.06 60.12 ± 0.08 61.65 ± 0.13 63.37 ± 0.06 64.71 ± 0.06 67.08 ± 0.06 69.46 ± 0.04 61.74
GraphMAE 64.60 ± 0.42 57.61 ± 0.32 55.63 ± 0.24 57.08 ± 0.25 60.36 ± 0.19 60.99 ± 0.08 62.90 ± 0.06 63.83 ± 0.09 66.89 ± 0.12 68.35 ± 0.06 61.82

GIT - G 64.21 ± 1.10 59.06 ± 0.20 57.12 ± 0.23 59.85 ± 0.20 61.92 ± 0.11 62.91 ± 0.10 64.02 ± 0.04 65.62 ± 0.14 67.66 ± 0.11 70.51 ± 0.10 63.29
GIT - S 66.52 ± 0.29 58.63 ± 0.69 56.82 ± 0.23 59.77 ± 0.46 61.93 ± 0.22 62.72 ± 0.18 64.08 ± 0.07 65.56 ± 0.11 67.49 ± 0.18 70.62 ± 0.11 63.41

3-shot

GAT - - - - - - - - - - -
OFA 20.62 ± 0.34 21.22 ± 0.56 20.10 ± 0.32 20.16 ± 0.21 20.25 ± 0.36 20.39 ± 0.50 20.13 ± 0.14 20.21 ± 0.25 19.90 ± 0.30 20.59 ± 0.22 20.36
GraphMAE 21.15 ± 0.44 21.03 ± 0.39 21.73 ± 0.23 21.60 ± 0.53 19.73 ± 0.41 20.38 ± 0.28 20.62 ± 0.22 20.51 ± 0.27 19.63 ± 0.43 21.38 ± 0.35 20.78

GIT - G 21.81 ± 0.29 21.94 ± 0.23 20.78 ± 0.31 20.61 ± 0.40 20.73 ± 0.37 20.33 ± 0.56 20.90 ± 0.32 20.57 ± 0.46 20.58 ± 0.33 20.28 ± 0.31 20.85
GIT - S 25.21 ± 0.53 24.21 ± 0.43 23.43 ± 0.44 22.41 ± 0.14 21.83 ± 0.59 21.65 ± 0.33 21.41 ± 0.50 21.76 ± 0.57 21.72 ± 0.22 21.72 ± 0.50 22.54

G. Comparison to Domain Experts
G.1. Domain: Knowledge Base

In addition to comparing GIT to standard baselines applicable for all graphs, we also evaluate it against ULTRA, a foundation
model specifically designed for knowledge graphs. As a domain expert, ULTRA is compared to Expert GIT (pretrained on
all KGs) and Specialized GIT (pretrained on default datasets and fine-tuned on FB15K237), with the results presented in
Table 23. We find that the two domain experts, ULTRA and Expert GIT, achieve comparable performance, though ULTRA
significantly outperforms Expert GIT in certain settings. This may be due to ULTRA learning more fine-grained relational
information within KGs. Notably, Specialized GIT also performs comparably to both domain experts, highlighting the
potential of specialization. We believe this is because the distributions of KGs are more similar to each other compared to
graphs from other domains.

Table 23: Comparison between GIT and ULTRA, a foundation model designed for knowledge graphs. The Expert GIT is
pretrained on all KGs used in the paper.

3-shot Finetune

ULTRA Expert GIT Specialized GIT ULTRA Expert GIT Specialized GIT

WN18RR 60.69 ± 0.82 55.83 ± 0.44 57.90 ± 0.97 96.35 ± 0.22 95.12 ± 0.05 95.15 ± 0.07
Codex-S 82.45 ± 0.53 76.07 ± 0.41 77.19 ± 0.32 98.27 ± 0.36 99.14 ± 0.07 99.19 ± 0.04
Codex-M 74.35 ± 0.23 73.54 ± 0.46 72.14 ± 0.84 96.90 ± 0.11 97.90 ± 0.06 97.92 ± 0.04
Codex-L 75.98 ± 0.48 78.13 ± 0.36 76.99 ± 0.72 96.22 ± 0.04 96.84 ± 0.04 96.83 ± 0.04
NELL995 90.22 ± 0.46 89.99 ± 0.24 90.80 ± 0.51 89.46 ± 0.28 90.55 ± 0.59 91.28 ± 0.41
GDELT 33.89 ± 0.33 34.92 ± 0.55 34.85 ± 0.69 14.63 ± 0.02 14.91 ± 0.10 14.89 ± 0.05
ICEWS1819 41.37 ± 0.53 42.42 ± 0.64 42.02 ± 0.65 35.95 ± 0.03 33.62 ± 0.13 33.61 ± 0.10
FB15K237 89.29 ± 0.40 90.83 ± 0.30 90.49 ± 0.32 82.28 ± 0.08 80.18 ± 0.29 80.32 ± 0.07

Average 68.53 67.72 67.80 76.26 76.03 76.15

G.2. Domain: Molecule

In addition to general GNN baselines applicable across various graphs, we compare our GIT model to domain experts
specifically designed for molecules, including KVPLM (Zeng et al., 2022), MoMu (Su et al., 2022), Galactica (Taylor et al.,
2022), and the recent SOTA model, GIMLET (Zhao et al., 2023). The results are presented in Table 24. We find that the
general model pretrained on large-scale graphs generally underperforms compared to these domain experts. However, after
specialization, the specialized model surpasses 3 out of 4 domain experts on average and outperforms the best expert model,
GIMLET, on 4 out of 8 datasets. This observation demonstrates that post-training the general model with a reasonable
number of domain-specific instances can enable it to match or even surpass expert models designed for that domain. These
results strongly support the effectiveness of task-trees in designing graph foundation models.

34

Title Suppressed Due to Excessive Size

Table 24: Comparison between our GIT and domain experts of molecule graphs in zero-shot setting.

HIV BBBP BACE TOXCAST CYP450 TOX21 MUV PCBA Avg.

KVPLM∗ 61.20 60.20 51.26 50.96 59.22 49.17 61.72 48.11 55.23
MoMu∗ 50.26 49.81 66.56 52.38 57.98 57.57 60.51 51.50 55.82
Galactica-1.3B∗ 33.85 53.94 56.48 51.23 46.86 49.46 57.15 52.02 50.12
GIMLET∗ 66.24 59.39 69.57 59.04 71.25 61.19 64.39 62.11 64.15

GIT - G 56.76 54.76 33.66 51.55 63.21 56.83 53.71 56.25 53.34
GIT - S 66.14 62.16 52.27 58.30 69.75 63.45 65.32 65.26 62.83

∗ indicates the results from paper (Zhao et al., 2023).

H. Ablation on Specialization (SFT)
Ablation Study on SFT Data used for Specialization. We also evaluate the impact of the SFT dataset used for specialization.
The model’s zero-shot performance is reported in Table 25, comparing the default SFT dataset PCBA with another SFT
dataset, HIV. We find that the model performance with HIV as the SFT data is lower than with PCBA. We hypothesize
that this is due to HIV having fewer graphs and tasks, which may provide less information for reducing the distribution
discrepancy. Nevertheless, HIV still improves the model’s performance over the general model on 5 out of 8 datasets.

Table 25: The impact of SFT datasets in zero-shot setting.

SFT Data HIV BBBP BACE TOXCAST CYP450 TOX21 MUV PCBA Avg.

PCBA 66.14 62.16 52.27 58.30 69.75 63.45 65.32 65.26 62.83

HIV 66.28 45.97 43.35 52.78 64.50 57.86 53.46 46.57 53.85

Ablation Study on SFT Data used for Specialization. We analyze the impact of SFT data in the experiments, as shown
in Figure 9. The results show that changes in SFT data do not significantly affect model performance, particularly in
fine-tuning and in-context learning settings. Even when the SFT and downstream data are the same, the model does not
necessarily outperform models fine-tuned on other SFT datasets. This observation supports the motivation behind our
proposed specialization method, which aims to shift the pretraining distribution P toward the distribution of target domains.
It also highlights the importance of designing an instance selection method to identify the most effective SFT data.

AR
XI

V

AR
XI

V2
3

CI
TE

SE
ER

CO
RA

DB
LP

PU
BM

ED

Downstream Datasets

ARXIV

ARXIV23

CITESEER

CORA

DBLP

PUBMED

SF
T

Da
ta

se
ts

72

74

76

78

80

82

(a) Finetune

AR
XI

V

AR
XI

V2
3

CI
TE

SE
ER

CO
RA

DB
LP

PU
BM

ED

Downstream Datasets

ARXIV

ARXIV23

CITESEER

CORA

DBLP

PUBMED

SF
T

Da
ta

se
ts

40

45

50

55

60

65

(b) In-context

AR
XI

V

AR
XI

V2
3

CI
TE

SE
ER

CO
RA

DB
LP

PU
BM

ED

Downstream Datasets

ARXIV

ARXIV23

CITESEER

CORA

DBLP

PUBMED

SF
T

Da
ta

se
ts

10

20

30

40

50

60

70

(c) Zero-shot

Figure 9: The impact of different SFT datasets used for specialization in academic networks.

35

Title Suppressed Due to Excessive Size

I. Efficiency Analysis on Industry-scale Data
In order to further evaluate the efficiency of task-trees over subgraphs, we conduct experiments on a synthetic graph, termed
as ogbn-products x50. This dataset is derived from the existing ogbn-products graph, which contains 316,513 nodes and
19,337,745 edges (we use a subset of original ogbn-products in our experiments). Specifically, we replicate the graph 50
times, reindex the nodes in each replicated graph, and combine them into a single dataset. This synthetic dataset contains
15,825,650 nodes (there are 111,059,956 nodes in ogbn-papers100M) and 966,887,250 edges (there are 1,615,685,872 edges
in ogbn-papers100M). To ensure connectivity among these replicated graphs, we randomly flip 5% of the edges to connect
the individual components, creating a more realistic large-scale graph structure.

We evaluated the time consumption per epoch on the ogbn-products x50 dataset and compared the efficiency of our
proposed method, GIT-task-tree, against GIT-SubG (a variation that replaces task-trees with subgraphs). With a batch size
of 512—selected to avoid out-of-memory issues in subgraph-based methods—the results are as follows:

Table 26: Efficiency comparison between subgraphs and task-trees in ogbn-products x50 (15,825,650 nodes and 966,887,250
edges).

GIT-SubG GIT-Task-Tree

Sampling 546s 546s
Subgraph/Tree Extraction 948s 0s
Encoding 5,717s 2,429s
All 7,211s 2,975s

These results underscore the significant efficiency advantages of our method. Notably, the efficiency gap between GIT-
task-tree and GIT-SubG on this dataset is larger than what we observed during pretraining (i.e., 208 seconds per epoch for
GIT-task-tree versus 280 seconds per epoch for GIT-SubG). We attribute this to the substantial overlap between subgraphs
in this dataset, which increases the space and time required for processing.

J. General Reasoning Capability of Specialized Models
We further analyze the performance of specialized models on general reasoning tasks beyond their specific domains. We
assess the model’s performance on other domains as a measure of its general reasoning ability. For example, if a model is
specialized for academic networks, its general reasoning capability refers to its performance on graphs from other domains,
such as e-commerce networks, knowledge graphs, and molecular graphs. The results are presented in Table 27. We report
in-context learning performance rather than basic fine-tuning due to computational efficiency. Additionally, we include the
performance of the pretrained general model without specialization as a baseline. If the specialized model performs worse
than the general model, it suggests that specialization may diminish GIT’s general reasoning capability. From the table,
it is clear that while specialized models excel in their specific domains, they struggle in other domains. This degradation
of general inference capability, often referred to as the specialization tax, is a common challenge in building specialized
large language models. The specialization tax can limit the model’s practicality in scenarios requiring both domain-specific
knowledge and the ability to handle general tasks. Thus, balancing domain-specific performance with maintaining general
reasoning capability is an important research direction.

Table 27: The in-context learning performance of GIT with different specialization datasets (SFT Data) on four domains.
The results of each domain is the average of all datasets within the domain.

SFT Data Academia E-commerce KG Molecule

General Model - 54.00 57.22 67.55 55.96

Specialized Model

Arxiv (academia) 55.18 57.63 66.80 54.42
Products (E-com) 50.09 58.01 65.06 55.75
FB15K237 (KG) 54.70 56.57 67.80 55.37
PCBA (Mol) 50.49 56.87 61.49 62.82

36

Title Suppressed Due to Excessive Size

K. More Parameters Enhance Model Performance
We present comprehensive results of general GIT with different hidden dimensions in Figure 10. For computational
efficiency, we does not report results on datasets needing intensive computing resources. We observe that increasing the
number of model parameters consistently improves performance across both basic fine-tuning and in-context learning
settings. Notably, the performance improvement is more pronounced in in-context learning as the model size increases. This
may be because, in in-context learning, the model is not fine-tuned on downstream tasks, making the knowledge retained in
the original model more crucial. Larger hidden dimensions allow the model to preserve more knowledge. However, when
the model is fine-tuned on downstream tasks, the pretraining knowledge is adapted to the specific task, reducing the reliance
on the original model’s knowledge and leading to a relatively smaller performance gap.

128 512 1024 2048
Hidden Dimension

35

40

45

50

55

60

65

M
od

el
 P

er
fo

rm
an

ce

ACADEMIA

Cora
Citeseer

Pubmed
Arxiv23

DBLP
Arxiv

128 512 1024 2048
Hidden Dimension

20

30

40

50

60

70

M
od

el
 P

er
fo

rm
an

ce

E-COMMERCE

History
Children

Computer
Photo

Ratings
Products

128 512 1024 2048
Hidden Dimension

30

40

50

60

70

80

90

M
od

el
 P

er
fo

rm
an

ce

KG

WN18RR
Codex-S
Codex-M

Codex-L
NELL995
GDELT

ICEWS1819
FB15K237

128 512 1024 2048
Hidden Dimension

58

60

62

64

66

68

M
od

el
 P

er
fo

rm
an

ce

MOLECULE

HIV
BBBP

BACE
CYP450

TOX21

(a) In-context Learning

128 512 1024 2048
Hidden Dimension

66

68

70

72

74

76

78

80

82

M
od

el
 P

er
fo

rm
an

ce

ACADEMIA

Cora
Citeseer

Pubmed
Arxiv23

DBLP
Arxiv

128 512 1024 2048
Hidden Dimension

50

60

70

80

90

M
od

el
 P

er
fo

rm
an

ce

E-COMMERCE

History
Children
Computer

Photo
Sportsfit

Ratings
Products

128 512 1024 2048
Hidden Dimension

20

40

60

80

100

M
od

el
 P

er
fo

rm
an

ce

KG

WN18RR
Codex-S
Codex-M

Codex-L
NELL995
GDELT

ICEWS1819
FB15K237

128 512 1024 2048
Hidden Dimension

60

65

70

75

80

85

M
od

el
 P

er
fo

rm
an

ce

MOLECULE

HIV
BBBP

BACE
TOXCAST

CYP450
TOX21

(b) Finetune

Figure 10: The comprehensive results of the impact of hidden dimensions on model performance.

L. Comparison to Few-Shot Learning Methods
We compare the performance of GIT with methods designed for few-shot learning on Arxiv in Table 28. We include
a wide range of baselines: GPN (Ding et al., 2020) is a framework that leverages GNN and meta-learning to address
few-shot node classification by learning a transferable metric space. TENT (Wang et al., 2022b) introduces three levels
of adaptation—node-level, class-level, and task-level—to mitigate task variance and improve the model’s generalization
performance across different meta-tasks. GLITTER (Wang et al., 2022a) enhances few-shot node classification by learning
task-specific graph structures for each meta-task using node influence and mutual information. TLP (Tan et al., 2022)
transfers pretrained node embeddings fine-tunes a simple linear classifier on novel classes. Prodigy (Huang et al., 2023)
enables in-context learning over graphs by designing graph prompt learning template. It is important to note that we
implement an in-context version of few-shot learning without fine-tuning GIT on the few-shot task, whereas the other
methods require fine-tuning. Despite this, GIT achieves the second-best performance across all settings, outperforming 5 out
of 6 few-shot learning methods. This highlights GIT’s strong potential in scenarios with limited instances and labels.

37

Title Suppressed Due to Excessive Size

Table 28: The few-shot performance on Arxiv, comparing to few-shot learning methods.

5-way 3-way

5-shot 3-shot 1-shot 5-shot 3-shot 1-shot

GPN 50.53 ± 3.07 48.32 ± 3.80 38.58 ± 1.61 62.25 ± 4.94 58.52 ± 3.00 48.45 ± 5.60
TENT 60.83 ± 7.45 56.03 ± 8.90 45.62 ± 10.70 74.20 ± 9.93 70.48 ± 11.50 59.38 ± 13.55
GLITTER 56.00 ± 4.40 57.44 ± 4.90 47.12 ± 2.73 62.13 ± 10.85 60.93 ± 12.12 59.20 ± 5.48
TLP-BGRL 50.13 ± 8.78 46.21 ± 7.92 35.81 ± 8.58 62.93 ± 11.74 58.37 ± 11.34 46.30 ± 10.83
TLP-SURGL 77.89 ± 6.46 74.19 ± 7.55 61.75 ± 10.07 86.27 ± 7.54 83.75 ± 8.86 73.46 ± 12.68

Prodigy 61.09 ± 5.85 58.64 ± 5.84 48.23 ± 6.18 73.64 ± 6.93 71.43 ± 7.28 61.59 ± 8.53

GIT - G 70.50 ± 0.47 64.07 ± 0.50 49.18 ± 0.56 80.20 ± 0.67 74.65 ± 0.54 61.93 ± 0.18
GIT - S 70.70 ± 0.28 64.06 ± 0.58 50.94 ± 0.57 80.51 ± 0.68 76.05 ± 0.53 63.42 ± 0.46

38

