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Abstract Hyperparameter optimization (HPO) and neural architecture search (NAS) are methods of

choice to obtain the best-in-class machine learning models, but in practice they can be costly

to run. When models are trained on large datasets, tuning them with HPO or NAS rapidly

becomes prohibitively expensive for practitioners, even when efficient multi-fidelity methods

are employed. We propose an approach to tackle the challenge of tuning machine learning

models trained on large datasets with limited computational resources. Our approach,

named PASHA, is able to dynamically allocate maximum resources for the tuning procedure

depending on the need. The experimental comparison shows that PASHA identifies well-

performing hyperparameter configurations and architectures while consuming significantly

fewer computational resources than solutions like ASHA.

1 Introduction

Hyperparameter optimization (HPO) and neural architecture search (NAS) yield state-of-the-art

models, but are often a very costly endeavor, especially when working with large datasets and

models. For example, using the results of (Sharir et al., 2020) we can estimate that evaluating 10

configurations for a 340-million-parameter BERT model (Devlin et al., 2019) on the 15GB Wikipedia

and Book corpora would cost around $100,000. To make HPO and NAS more efficient, researchers

explored how we can learn from cheaper evaluations (e.g. on a subset of the data) to later allocate

more resources only to promising configurations. This created a family of methods often described

as multi-fidelity methods. Two well-known algorithms in this family are Successive Halving

(SH) (Jamieson and Talwalkar, 2016; Karnin et al., 2013) and Hyperband (HB) (Li et al., 2018).

Multi-fidelity methods significantly lower the cost of the tuning. Li et al. (2018) reported

speedups up to 30x compared to standard Bayesian Optimization (BO) and up to 70x compared to

random search. Unfortunately, the cost of current multi-fidelity methods is still too high for many

practitioners, also because of the large datasets used for training the model. As a workaround, they

need to design heuristics which can select a set of hyperparameters or an architecture with a cost

comparable to training a single configuration. For example, by training the model with multiple

configurations for a single epoch and then selecting the best-performing candidate.

Such heuristics lack robustness and need to be adapted to the specific use-cases in order to

provide good results. At the same time, they build on an extensive amount of practical experience

suggesting that multi-fidelity methods are often not sufficiently aggressive in leveraging early

performance measurements and that identifying the best performing set of hyperparameters (or the

best architecture) does not require training a model until convergence. For example, Bornschein

et al. (2020) show that it is possible to find the best hyperparameter – number of channels in

ResNet-101 architecture (He et al., 2015) for ImageNet (Deng et al., 2009) – using only 10% of the

data. We provide a broader overview of related work in Appendix A.

The aim of our work is to design a method that consumes fewer resources than standard multi-

fidelity algorithms such as Hyperband (Li et al., 2018) or ASHA (Li et al., 2020) and nonetheless is

able to identify configurations that produce models with a similar predictive performance after

being fully re-trained from scratch. In order to do this, we propose a variant of ASHA, called
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PASHA (Progressive ASHA), that starts with a small amount of initial maximum resources and

gradually increases them. ASHA in contrast has a fixed amount of maximum resources. Our

empirical evaluation shows that PASHA can save a significant amount of resources while finding

similarly well-performing configurations as conventional ASHA.

To summarize, our contributions are as follows: 1) We introduce a new approach called PASHA

that dynamically selects the amount of maximum resources to allocate for HPO or NAS (up to a

certain budget), 2) Our empirical evaluation shows the approach significantly speeds up HPO and

NAS without sacrificing the performance, and 3) We show the approach can be successfully com-

bined with sample-efficient strategies based on Bayesian Optimization, highlighting the generality

of our approach. Our implementation is based on the Syne Tune library (Salinas et al., 2022) and

the code is available at https://github.com/ondrejbohdal/pasha.

2 Method

The problem of selecting the best configuration of a machine learning algorithm to be trained is

formalized in Jamieson and Talwalkar (2016) as a non-stochastic bandit problem. In this setting the

learner (the hyperparameter optimizer) receives 𝑁 hyperparameter configurations and it has to

identify the best performing one with the constraint of not spending more than a fixed amount of

resources 𝑅 (e.g., total number of training epochs) on a specific configuration. Setting 𝑅 correctly

is easy in an academic benchmark where the maximum amount of resources for a configuration

is defined by the benchmark creator, but it becomes significantly harder in practical scenarios

because the optimal value is problem-dependent and varies significantly. If the value is too small,

the model performance will be sub-optimal, while if the budget is too large, the user will incur a

significant cost without any practical return. Our algorithm removes the necessity of setting this

hyperparameter, avoiding users overestimating it, and providing a significant speedup.

Our approach, named PASHA, is an extension of ASHA (Li et al., 2020) inspired by the “doubling

trick” (Auer et al., 1995). PASHA targets improvements for hyperparameter tuning on large datasets

by leveraging empirical observations that “crossing points” between learning curves are rare

(excluding noise) and almost always happen in the initial part of the training procedure. We discuss

more details about our problem setup in Appendix B.

PASHA starts by allowing a small initial amount of maximum resources and progressively

increases them if the ranking of the configurations in the top two rungs (rounds of promotion)

has not stabilized. The ability of our approach to stop early automatically is the key benefit. We

illustrate the approach in Figure 1, showing how we stop evaluating configurations for additional

rungs if their ranking is stable.

(a) The ranking of the configurations (displayed in-

side the circles) has stabilized, so we can select

the best configuration and stop the search.

(b) The ranking has not stabilized, so we continue.

Figure 1: Illustration of how PASHA stops early if the ranking of configurations has stabilized.
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We give a formal description of the PASHA algorithm in Algorithm 1. Given𝜂, a hyperparameter

used both in ASHA and PASHA to control how many configurations to prune, PASHA sets the

maximum resources to be used for evaluating a configuration using the reduction factor 𝜂 and

the minimum amount of resources 𝑟 to be used. In particular, PASHA starts with 𝑅0 = 𝜂2𝑟

maximum resources allocated to promising configurations and increases them by a factor of 𝜂

each time the ranking of configurations in the top two rungs becomes inconsistent, in principle

“unlocking” a new rung. For example, if we can currently train configurations up to rung 2 and the

ranking of configurations in rung 1 and rung 2 is not consistent, then we allow training part of

the configurations up to rung 3, i.e. one additional rung. Algorithm 1 uses get_job function that

returns the next promotable configuration and is defined in Algorithm 2 in Appendix C.

The minimum amount of resources 𝑟 is a hyperparameter to be set by the user. It is significantly

easier to set compared to 𝑅 as 𝑟 is the minimum amount of resources required to see a meaningful

difference in the performance of the models, and it can be easily estimated empirically by running

a few small-scale experiments.

Algorithm 1 PASHA()

1: input minimum resource 𝑟 , reduction factor 𝜂

2: 𝑡 = 0, 𝑅0 = 𝜂
2𝑟 , 𝐾0 = ⌊log𝜂 (𝑅0/𝑟 )⌋

3: while desired do
4: for for each free worker do
5: (𝜃, 𝑘) = get_job()
6: run_then_return_val_loss(𝜃, 𝑟𝜂𝑘 )
7: end for
8: for completed job (𝜃 , 𝑘) with loss 𝑙 do
9: Update configuration 𝜃 in rung 𝑘 with loss 𝑙 .

10: if 𝑘 ≥ 𝐾𝑡 − 2 then
11: Σ𝑘 = configuration_ranking(𝑘)
12: end if
13: if 𝑘 = 𝐾𝑡 − 1 and Σ𝑘 . Σ𝑘−1 then
14: 𝑡 = 𝑡 + 1

15: 𝑅𝑡 = 𝜂
𝑡𝑅0

16: 𝐾𝑡 = ⌊log𝜂 (𝑅𝑡/𝑟 )⌋
17: end if
18: end for
19: end while

Given that deep learning algorithms typically rely on stochastic gradient descent, ranking

inconsistencies can occur between similarly performing configurations. Hence, we need some

benevolence in estimating the ranking. We propose to use a soft ranking approach (detailed in

Appendix D) where we group configurations based on their validation performance metric (e.g.,

accuracy). Configurations are considered equivalent if the performance difference is smaller than a

fixed value 𝜖 (or equal to it). For practical purposes we also set a boundary for maximum amount

of resources 𝑅 so that PASHA can default to ASHA if needed and avoid increasing the resources

indefinitely. While it is not generally reached, it provides a safety net in case some components are

misconfigured or the configurations do not reflect the expectations of the user.

3 Experiments
In this section we quantify the advantage provided by PASHA. Its goal is not to provide a model

with a higher accuracy, but to identify the best configuration in a shorter amount of time such that

we can then re-train the model from scratch. Overall, we target a significantly faster tuning time
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and on-par predictive performance when comparing with the models identified by state-of-the-art

optimizers like ASHA. Re-training after HPO or NAS is important because HPO and NAS in general

require to reserve a significant part of the data (often around 20 or 30%) to be used as a validation

set. Training with fewer data is not desirable because in practice it is observed that training a model

on the union of training and validation sets provides better results.

We tested our method on two different sets of experiments. The first set evaluates the algorithm

on NAS problems and employs NASBench201 (Dong and Yang, 2020), while the second set focuses

on hyperparameter optimization and is ran over two custom search spaces using public datasets.

Our HPO experiments are in Appendix E, and they show the speedup can be large, for example

taking only one fifth of the time compared to ASHA for large datasets with millions of examples.

3.1 Setup

Our experimental setup consists of two phases: 1) run the hyperparameter optimizer until 𝑁 = 256

candidate configurations are evaluated; and 2) use the best configuration identified in the first phase

to re-train the model from scratch. For the purpose of these experiments we re-train all the models

using only the training set. This avoids introducing an arbitrary choice on the validation set size

and allows us to leverage standard benchmarks such as NASBench201. In real-world applications

the model can be trained on both training and validation sets. All our results report only the

time invested in identifying the best configuration since the re-training time is comparable for all

optimizers. All results are averaged over multiple repetitions, with the details specified for each set

of experiments separately.

We use 4 workers to perform evaluations in parallel and asynchronously. The choice of 𝑅 is

sensitive for ASHA since it can make the optimizer consume too many resources and penalize the

performance of the algorithm. To have a fair comparison, we make 𝑅 dataset-dependent adopting

either the maximum amount of resources for tabulated benchmarks (i.e., for NASBench201) or

by performing some preliminary experiments and setting it to the value for which the loss curve

flattens. 𝑟 is also dataset dependent and 𝜂, the halving factor, is set to 3 unless otherwise specified.

The same values are used for both ASHA and PASHA. For the soft ranking in PASHA we selected

𝜖 = 2.5%, which consistently provides strong results across various scenarios.

We compare PASHA with ASHA (Li et al., 2020), a recent state-of-the-art approach for hyper-

parameter optimization already described earlier, and selected baselines described separately.

3.2 NAS experiments

For our NAS experiments we leverage the well-known NASBench201 (Dong and Yang, 2020)

benchmark. The task is to identify the network structure providing the best accuracy on three

different datasets (CIFAR-10, CIFAR-100 and ImageNet16-120) independently. We use 𝑟 = 1

epoch and 𝑅 = 200 epochs. We repeat the experiments using 5 random seeds for the scheduler

and 3 random seeds for NASBench201 (all that are available), resulting in 15 repetitions. Some

configurations in NASBench201 do not have all seeds available, so we impute them by averaging

over the available seeds. To measure the predictive performance we report the best accuracy on

the combined validation and test set provided by the creators of the benchmark.

We also report performance for two simple baselines: the “one-epoch baseline” that trains

all configurations for one epoch (the minimum available resources) and then selects the most

promising configuration, and “random baseline” that randomly selects the configuration. For our

one-epoch baseline we sample 𝑁 = 256 configurations, using the same scheduler and NASBench201

seeds as for PASHA and ASHA. For our random baseline we sample 𝑁 = 2560 configurations to

obtain a better performance estimate of a model with random configuration.

The results in Table 1 suggest that PASHA consistently leads to strong improvements in runtime,

while achieving similar accuracy values as the baseline algorithm ASHA. The one-epoch baseline

has noticeably worse accuracies than ASHA or PASHA, suggesting that PASHA does a good job of
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deciding when to continue increasing the resources – it does not stop too early. Random baseline

is a lot worse than the one-epoch baseline, so there is value in performing NAS. We also report the

maximum resources used to find how early the ranking becomes stable in PASHA.

It is important to observe that the time required to train a model is about 1.3h for CIFAR-10 and

CIFAR-100, and about 4.1h for ImageNet16-120, making the total tuning time required by PASHA

comparable with the one required for training.

We also ran additional experiments testing PASHAwith alternative ranking functions (Appendix

F), a reduction factor of 𝜂 = 2 and 𝜂 = 4 instead of 𝜂 = 3 (Appendix G), and the usage of PASHA

as a scheduler in MOBSTER (Klein et al., 2020) that uses Bayesian Optimization (Appendix H).

These experiments provided similar findings as the above and are described in the appendix. More

fundamentally, our MOBSTER experiments have shown we can successfully combine PASHA

with more advanced search strategies based on Bayesian Optimization to obtain improvements in

accuracy at a fraction of the time.

Table 1: NASBench201 results. PASHA leads to large improvements in runtime, while achieving similar

accuracy as ASHA. PASHA uses soft ranking and 𝜖 = 0.025 (2.5%).

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-10

ASHA 93.85 ± 0.25 3.0h ± 0.6h 1.0x 200.0 ± 0.0

PASHA 93.78 ± 0.31 2.3h ± 0.5h 1.3x 144.5 ± 59.4

One epoch baseline 93.30 ± 0.61 0.3h ± 0.0h 8.5x 1.0 ± 0.0

Random baseline 72.93 ± 19.55 0.0h ± 0.0h – 0.0 ± 0.0

CIFAR-100

ASHA 71.69 ± 1.05 3.2h ± 0.9h 1.0x 200.0 ± 0.0

PASHA 71.41 ± 1.15 1.5h ± 0.7h 2.1x 88.3 ± 74.4

One epoch baseline 65.57 ± 5.53 0.3h ± 0.0h 9.2x 1.0 ± 0.0

Random baseline 42.98 ± 18.34 0.0h ± 0.0h – 0.0 ± 0.0

ImageNet16-120

ASHA 45.63 ± 0.81 8.8h ± 2.2h 1.0x 200.0 ± 0.0

PASHA 46.01 ± 1.00 3.2h ± 1.0h 2.8x 28.6 ± 27.7

One epoch baseline 41.42 ± 4.98 1.0h ± 0.0h 8.8x 1.0 ± 0.0

Random baseline 20.97 ± 10.01 0.0h ± 0.0h – 0.0 ± 0.0

4 Limitations and broader impact

PASHA is an algorithm that is designed to make HPO and NAS more accessible to machine

learning practitioners as it significantly lowers the time and cost required to find well-performing

configurations. Its limitation is similar to that of ASHA and other multi-fidelity methods: it may

early prune configurations that would perform well if they were trained for longer before making

a stopping decision. Another limitation is that setting the 𝜖 parameter for soft ranking requires

some amount of domain expertise. We ran all our experiments using the same value (𝜖 = 0.025) and

found that it provides a good rule-of-thumb in practice.

5 Conclusions and future work

In this work we introduced a new variant of Successive Halving, called PASHA, that progressively

increases the resources allocated to promising configurations. PASHA considers their rankings

at successive rung levels and if the rankings have stabilized, stops the HPO procedure, returning

the best configuration found. Despite its simplicity, PASHA has led to strong improvements in the

tuning runtime. For example, it halves the time to find the best configuration compared to ASHA

without a noticeable impact on the quality of the found configuration. In the case of large datasets

with millions of examples, the speedup has been larger, for example taking only one fifth of the

time compared to ASHA.
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(b) Did you describe the limitations of your work? [Yes] We have a dedicated section that

discusses the limitations (and broader impact).

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We have a
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(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?
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2. If you are including theoretical results. . .
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include theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] Our work does not include

theoretical results.

3. If you ran experiments. . .
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(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txtwith explicit version), an instruc-
tive README with installation, and execution commands (either in the supplemental material

or as a url)? [Yes] We provide the code as an extension of the SyneTune library, making it

simple to use our proposed algorithm. To make the experiments easily reproducible, we

provide a Jupyter notebook that reproduces the main results (NASBench201). The code is

available at https://anonymous.4open.science/r/pasha.

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes] Our Jupyter notebook shows the raw results.

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes] Our

Jupyter notebook outputs LaTeX code used to generate the content of the tables in our

paper.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [Yes] We have detailed explanations in the Jupyter notebook,

the code is well-commented and docstrings for functions are provided. Unit tests are part of

the public repository. We also give detailed comments for the parts of the SyneTune library

extended in our work.

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [Yes] We specify all of the details

needed to reproduce the experiments. The main ones are reported in the experiments

section, the remaining ones are in the appendix (see details in the text).

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] All methods are evaluated in exactly the same way.

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] We have ablation studies that investigate a wide variety of ranking functions (and

hyperparameters for them), various reduction factor values and also the combination of

PASHA and ASHA with Bayesian Optimization.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] We have

tried to ensure the protocol is the same for all methods.

(i) Did you compare performance over time? [N/A] Performance over time is not an appropriate

way to compare PASHA with ASHA and other methods because the key idea behind PASHA

is to train all configurations only partially (e.g. for a few epochs) and identify the most

promising ones early using significantly fewer resources. PASHA prioritizes evaluating

more configurations rather than training them for longer, so the intermediate performance

of configurations (without retraining) will be worse in PASHA. It is only after retraining

that the performance should be comparable.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] We

have repeated our NASBench201 experiments 15 times, using combinations of 5 scheduler

seeds and 3 NASBench201 seeds. Our HPO experiments are repeated 10 times. The random

seeds are reported in the code for NASBench201.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes] We report the standard deviations for all our experiments.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] We used

NASBench201 for our main experiments.
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(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] We have a section in the appendix that

specifies the details about the compute we have used.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [Yes] We have a section in the appendix that

explains these details.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the creators of the

existing assets.

(b) Did you mention the license of the assets? [Yes] We have a dedicated section in the appendix

to discuss the license of the assets.

(c) Did you include any new assets either in the supplemental material or as a url? [Yes] We

provide the source code for PASHA in the supplemental material and PASHA has also been

open-sourced within SyneTune.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] The data that we use have already been open-sourced and so

additional consent is not required.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] The data that we use do not include personally

identifiable information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if ap-

plicable? [N/A] We did not use crowdsourcing and did not conduct research with human

subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] We did not use crowdsourcing and did not conduct

research with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] We did not use crowdsourcing and did not conduct

research with human subjects.
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A Related work

Machine learning systems used in real-world applications often rely on a large number of hyperpa-

rameters, and require testing many combinations of them in order to identify the optimal solution.

This makes data-inefficient techniques such as Grid Search or Random Search (Bergstra and Bengio,

2012) very expensive in most practical scenarios. Various approaches have been proposed to find

good parameters more quickly, and they can be classified into two main families: 1) Bayesian

Optimization: evaluate the most promising configurations by modelling their performance. The

methods are sample-efficient but they are often designed for environments with limited amount of

parallelism; 2) Multi-fidelity: sequentially allocate more resources to configurations with better

performance and allow high level of parallelism during the tuning. From these two families, multi-

fidelity methods have typically been faster when run at scale and are the focus of this work. It is

also possible to combine ideas from the two families together, for example as done in BOHB by

Falkner et al. (2018), and we test a similar method in our experiments.

Successive halving (Karnin et al., 2013; Jamieson and Talwalkar, 2016) is conceptually the

simplest multi-fidelity method. Its key idea is to run all configurations using a small amount of

resources, which depend on the minimum resources and the minimum early stopping rate, and

then successively promote only a fraction of the most promising configurations to be trained using

more resources. Another popular multi-fidelity method, called Hyperband (Li et al., 2018), performs

successive halving with different early stopping rates. ASHA (Li et al., 2020) extends the simple

and very efficient idea of successive halving by introducing asynchronous evaluation of different

configurations, which leads to further practical speedups thanks to better resource allocation.

Related to the problem of efficiency in HPO, cost-aware HPO explicitly accounts for the cost of

the evaluations of different configurations. Previous work on cost-aware HPO for multi-fidelity

algorithms such as CAHB (Ivkin et al., 2021) keeps a tight control on the budget spent during the

HPO process. This is different from our work, as we reduce the budget spent by terminating the

HPO procedure early instead of allocating the compute budget in its entirety. Moreover, PASHA

could be combined with CAHB to leverage the cost-based resources allocation.

Recently, work considered dataset subsampling to speedup the search of the best hyperparame-

ters or architectures. Shim et al. (2021) have combined coresets with PC-DARTS (Xu et al., 2020)

and showed that they can find well-performing architectures using only 10% of the data and 8.8x

less search time. Similarly, Visalpara et al. (2021) have combined subset selection methods with the

Tree-structured Parzen Estimator (TPE) for hyperparameter optimization (Bergstra et al., 2011).

With a 5% subset they obtained between an 8x to 10x speedup compared to standard TPE. However,

in both cases it is difficult to say in advance what subsampling ratio to use. For example, the 10%

ratio in (Shim et al., 2021) incurs no decrease in accuracy, while reducing further to 2% leads to a

substantial (2.6%) drop in accuracy. In practice, it is difficult to find a trade-off between the time

required for tuning (proportional to the subset size) and the loss of performance for the final model

because these change, sometimes wildly, between datasets. We approach this issue in a principled

way using our PASHA algorithm.

Further, Zhou et al. (2020) have observed that for a fixed number of iterations, rank consistency

is better if we use more training samples and fewer epochs rather than fewer training samples and

more epochs. This observation gives further motivation for using the whole dataset for HPO/NAS

and using approaches like PASHA to save computational resources.

B Problem setup – additional discussion

The considered setting introduced in (Jamieson and Talwalkar, 2016) can be extendedwith additional

assumptions based on empirical observation, removing some extreme cases and leading to a more

practical setup. In particular, when working with large datasets we observe that the curve of the

loss for configurations (called arms in the bandit literature) continuously decreases (in expectation).
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Moreover, “crossing points” between the curves are rare (excluding noise), and they are almost

always in the initial part of the training procedure. For example, analysis from Domhan et al.

(2015) suggests that crossings between curves at later stages of training are relatively rare. Further,

Viering and Loog (2021); Mohr and van Rijn (2022) provide an analysis of learning curves and note

that in practice most learning curves are well-behaved, with Bornschein et al. (2020) reporting

similar findings.

More formally, let us define 𝑅 as the total number of resources needed to train an ML algorithm

to convergence, given Σ𝑚 (𝑖) the ranking of configuration 𝑖 after using𝑚 resources for training,

∃𝑅∗ ≪ 𝑅 : ∀𝑖 ∈ [𝑛],∀𝑟 > 𝑅∗, Σ𝑅∗ (𝑖) = Σ𝑟 (𝑖). The existence of such a quantity, limited to the best

performing configuration, is also assumed by Jamieson and Talwalkar (2016), and it is leveraged to

quantify the budget required to identify the best performing configuration. If we knew 𝑅∗, it would
be sufficient to run all configurations with exactly that amount of resources to identify the best one

and then just train the model from scratch with all the data using that configuration. Unfortunately

that quantity is unknown and can only be estimated during the optimization procedure.

C Algorithm – additional details
We describe get_job function that returns the next promotable configuration in Algorithm 2.

Algorithm 2 get_job()

// Check if there is a promotable config.

for 𝑘 = 𝐾𝑡 − 1, . . . , 1, 0 do
candidates = top_k(rung 𝑘, |rung 𝑘 |/𝜂)
promotable = {𝑐 ∈ candidates : 𝑐 not promoted}
if |promotable| > 0 then

return promotable[0], 𝑘 + 1

end if
// If not, grow bottom rung.

Draw random configuration 𝜃 .

return 𝜃, 0
end for

D Soft ranking
In soft ranking, configurations are still sorted by predictive performance but they are considered

equivalent if the performance difference is smaller than a fixed value 𝜖 (or equal to it). Instead

of producing a sorted list of configuration, this provides a list of lists where for every position of

the ranking there is a list of equivalent configurations. The concept is explained graphically in

Figure 2, and we also provide a formal definition. For a set of 𝑛 configurations 𝑐1, 𝑐2, · · · , 𝑐𝑖 , · · · , 𝑐𝑛
and performance metric 𝑓 (e.g. accuracy) with 𝑓 (𝑐1) ≤ 𝑓 (𝑐2) ≤ · · · ≤ 𝑓 (𝑐𝑖) ≤ · · · ≤ 𝑓 (𝑐𝑛), soft
rank at position 𝑖 is defined as

soft rank𝑖 = {𝑐 ∈ configurations : |𝑓 (𝑐𝑖) − 𝑓 (𝑐) | ≤ 𝜖} .

We tested different ranking functions and reported the results in the appendix, but in most

cases the simple soft-ranking solution with 𝜖 set to 0.025 provides solid results.

E HPO experiments
E.1 Overview

To validate the effectiveness of PASHA in different scenarios, we designed a set of experiments

where the search spaces are defined over the hyperparameters used to train aMulti-Layer Perceptron
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Figure 2: Illustration of soft ranking. There are three lists with the first two containing two items

because the scores of the two configurations are closer to each other than 𝜖 .

(MLP). Two different search spaces were defined, and we trained the MLP on three different public

datasets: Codes (Zavadskyy, 2017), LendingC (George, 2019) and CoverType (Blackard et al., 1998) –

all of which are tabular datasets with a classification task. The hyperparameters considered include

for example the number of layers, their size, minibatch size, learning rate, type of the optimizer

and the use of a residual connection. The goal is to demonstrate that the speedup improvements

brought by PASHA are not tied to a specific benchmark but generalize to different HPO tasks.

E.2 Search spaces

We have considered two search spaces, defined in Table 2 and 3. In search space #1, the neural

network is a small fully-connected multi-layer perceptron, where the precise architecture is consid-

ered a hyperparameter. We consider seven different types of architecture, ranging from a single

layer neural network up to a neural network with three layers. The number of units in each layer

is variable, but it is relatively small in the range 50 to 300 units per layer. In all cases we use Adam

(Kingma and Ba, 2015) optimizer. This search space can be considered as easier compared to the

second search space, which we define in Table 3. We always use a two-layer fully-connect neural

network in search space #2. In the second search space the range of batch size values is from 256

to 1024 examples for Codes and LendingC datasets, while it is from 8 to 128 for the significantly

smaller CoverType dataset.

Table 2: Search space #1 for our HPO experiments – can be considered as simpler.

Hyperparameter Options

Learning rate log-uniform(10−6, 10−2)
Batch size rand-int(128, 512)
Dropout uniform(0.25, 0.5)
Architecture 7 variations

Weight decay log-uniform(10−12, 10−2)
Residual connection Yes or no

E.3 Datasets

We have used three publicly available tabular datasets, Codes (Zavadskyy, 2017), LendingC (George,

2019) and CoverType (Blackard et al., 1998). Both Codes and CoverType are multi-way classification

problems, while LendingC is a binary classification problem. We show the total number of examples

and dataset size after feature-processing of each dataset in Table 4. We can see these are larger-scale

datasets with many datapoints. We randomly split the dataset into training, validation and test

sets using 80/10/10 split. Feature-processing is generally kept to minimum and includes only the
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Table 3: Search space #2 for our HPO experiments – can be considered as more challenging.

Hyperparameter Range

Number of units in layer 1 rand-int(4, 1024)
Number of units in layer 2 rand-int(4, 1024)
Batch size rand-int(256, 1024) or rand-int(8, 128)
Dropout in layer 1 uniform(0, 0.99)
Dropout in layer 2 uniform(0, 0.99)
Learning rate log-uniform(10−6, 1.0)
Weight decay log-uniform(10−8, 1.0)
Momentum uniform(0, 0.99)
Optimizer SGD or Adam

Activation ReLU, Leaky ReLU, Sigmoid, Tanh or ELU

standard steps such as converting categorical variables into one-hot representation
1
. The datasets

are not balanced, so we report F1 macro score in our experiments.

Table 4: Datasets that we used for HPO.

Dataset 𝑁 GB

Codes (Zavadskyy, 2017) 22,889,691 15.9

LendingC (George, 2019) 1,760,668 29.3

CoverType (Blackard et al., 1998) 581,012 2.5

E.4 Experiments

Since in this case we are running training jobs for every experiment instead of levering a tabulated

benchmark, we have the flexibility to define rung levels in terms of the number of datapoints

processed rather than the number of epochs. Minimum resources are defined as 1% of the data

for Codes and LendingC, while it is 2% for CoverType. Maximum resources are defined as the

equivalent of 10 epochs for Codes, 1 epoch for LendingC and 10 epochs for CoverType. These

values were selected to reflect the respective sizes of the datasets.

We also define a simple baseline, PASHA – no increase, that corresponds to training each

configuration with the minimum resources, doing one round of promotion and then selecting the

best configuration (PASHA with no resource increases). This baseline was introduced to mimic the

behaviour of the “one-epoch baseline” in a benchmark where resources are not measured in epochs.

We give the results of our experiments in Table 5 and 6, across 10 repetitions. We see that in most

cases PASHA is able to obtain similar F1 macro score as ASHA, with a significant improvement in

the runtime. The speed improvement is most notable in the case of the Codes dataset that includes

almost 23 million examples – more than 5x speedup, highlighting that PASHA can make the biggest

impact for large-scale datasets where we can find a strong configuration even before seeing all

datapoints. PASHA – no increase is usually not sufficient to obtain similarly good accuracy as ASHA.

F NAS experiments with alternative ranking functions

We have considered a variety of alternative ranking functions, among them simple ranking (equiv-

alent to soft ranking with 𝜖 = 0.0), Rank Biased Overlap (RBO) (Webber et al., 2010), our own

reciprocal rank regret metric (RRR) that considers the objective values of configurations, and also

1
The implementation of the feature processors is available at https://github.com/aws/

sagemaker-scikit-learn-extension
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Table 5: Results of the comparison of various tabular datasets on search space #1.

Dataset Approach F1 macro (%) Runtime Speedup factor

Codes

ASHA 76.56 ± 0.49 15.1h ± 6.0h 1.0x

PASHA 76.64 ± 0.63 2.9h ± 0.5h 5.2x

PASHA – soft ranking 2𝜎 74.98 ± 1.92 2.0h ± 0.8h 7.6x

PASHA – no increase 70.22 ± 5.60 1.5h ± 0.0h 9.9x

LendingC

ASHA 97.70 ± 0.95 1.3h ± 0.1h 1.0x

PASHA 86.22 ± 9.85 1.0h ± 0.5h 1.3x

PASHA – soft ranking 2𝜎 98.28 ± 0.40 1.1h ± 0.2h 1.2x

PASHA – no increase 97.00 ± 1.73 0.4h ± 0.0h 2.9x

CoverType

ASHA 79.04 ± 1.16 1.0h ± 0.3h 1.0x

PASHA 77.19 ± 12.09 0.5h ± 0.1h 2.0x

PASHA – soft ranking 2𝜎 78.52 ± 1.20 0.5h ± 0.1h 1.9x

PASHA – no increase 59.72 ± 14.31 0.2h ± 0.0h 5.7x

Table 6: Results of the comparison of various tabular datasets on search space #2.

Dataset Approach F1 macro (%) Runtime Speedup factor

Codes

ASHA 76.59 ± 1.11 18.3h ± 8.1h 1.0x

PASHA 76.31 ± 1.78 5.4h ± 1.4h 3.4x

PASHA – soft ranking 2𝜎 74.19 ± 3.69 3.3h ± 0.8h 5.6x

PASHA – no increase 68.22 ± 5.84 2.0h ± 0.1h 9.1x

LendingC

ASHA 98.19 ± 0.15 1.5h ± 0.9h 1.0x

PASHA 87.66 ± 21.09 1.1h ± 0.7h 1.3x

PASHA – soft ranking 2𝜎 93.07 ± 15.87 1.2h ± 0.4h 1.3x

PASHA – no increase 90.05 ± 20.68 0.4h ± 0.0h 3.5x

CoverType

ASHA 77.70 ± 3.20 1.5h ± 1.0h 1.0x

PASHA 78.18 ± 3.93 0.9h ± 0.3h 1.7x

PASHA – soft ranking 2𝜎 75.14 ± 15.46 0.4h ± 0.1h 4.1x

PASHA – no increase 53.52 ± 14.12 0.2h ± 0.0h 6.6x

further variations of soft ranking, for example with automatic selection of 𝜖 based on the standard

deviation of objective values in the previous rung.

F.1 Description

PASHA employs a ranking function whose choice is completely arbitrary. For the purpose of

our experiments, we just considered the ranking of the candidates up to some precision in the

evaluation. In this set of experiments we would like to evaluate different criteria to define the

ranking of the candidates. We describe the functions considered next.

F.1.1 Direct ranking. As a baseline, we study if we can use the simple ranking of configurations by

predictive performance (e.g., sorting from the ones with the highest accuracy to the ones with

the lowest). If any of the configurations change their order, we consider the ranking unstable and

increase the resources.

F.1.2 Rank biased overlap (RBO) (Webber et al., 2010). A score that can be broadly interpreted as a

weighted correlation between rankings. We can specify how much we want to prioritize the top
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of the ranking using parameter 𝑝 that is between 0.0 and 1.0, with a smaller value giving more

priority to the top of the ranking. The best value is 1.0, while it gives value of 0.0 for rankings

that are completely the opposite. We compute the RBO value and then compare it to the selected

threshold 𝑡 , increasing the resources if the value is less than the threshold.

F.1.3 Reciprocal Rank Regret (RRR). A key insight is that configurations can be very similar to each

other and differences in their rankings will not affect the quality of the found solution significantly.

To account for this we look at the objective values of the configurations (e.g. accuracy) and compute

the relative regret that we would pay at the current rung if we would have assumed the ranking at

the previous rung correct.

We define reciprocal rank regret (RRR) as:

RRR =

𝑛−1∑︁
𝑖=0

(𝑓𝑖 − 𝑓 ′𝑖 )
𝑓𝑖

𝑤 𝑖 ,

where 𝑓 represents the ordered scores in the top rung, 𝑓 ′ represents the reordered scores from

the top rung according to the second rung, 𝑛 is the number of configurations in the top rung and 𝑝

is the parameter that says how much attention to give to the top of the ranking. The weights𝑤𝑖

sum to 1 and can be selected in different ways to e.g. give more priority to the top of the ranking.

For example, we could use the following weights:

𝑤𝑖 =
𝑝𝑖∑𝑛−1
𝑖=0 𝑝

𝑖

The metric has an intuitive interpretation: it is the average relative regret with priority on top

of the ranking. The best value of RRR is 0.0, while the worst possible value is 1.0.

We also consider a version of RRR which considers the absolute values of the differences in the

objectives - Absolute RRR (ARRR).

F.1.4 Soft ranking variations. We consider several variations of soft ranking. The first variation is to

modify the value of the 𝜖 parameter. We have considered values 0.01, 0.02, 0.025, 0.03, 0.05. The

second set of variations aim to estimate the value of 𝜖 automatically, using various heuristics. The

heuristics we have evaluated include:

• Standard deviation: calculate the standard deviation of the considered performance measure (e.g.

accuracy) of the configurations in the previous rung and set a multiple of it as the value of 𝜖 –

we tried multiples of 1, 2 and 3.

• Mean distance: value of 𝜖 is set as the mean distance between the score of the configurations in

the previous rung.

• Median distance: similar to the mean distance, but using the median distance.

We have evaluated these additional ranking functions using NASBench201 benchmark.

F.2 Results

We report the results in Table 7, 8 and 9. We see there are also several other variations that

achieve strong results across a variety of datasets within NASBench201, most notably soft ranking

2𝜎 and variations based on RRR. In these cases we obtain similar performance as ASHA, but at

a significantly shorter time. We also see that simple ranking is not sufficiently robust – some

benevolence is needed. Due to its simplicity and strong performance, we have selected soft ranking

with fixed value of 𝜖 as our main ranking function.
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Table 7: NASBench201 – CIFAR-10 results for a variety of ranking functions.

Approach Accuracy (%) Runtime Speed comparison Max resources

ASHA 93.85 ± 0.25 3.0h ± 0.6h 1.0x 200.0 ± 0.0

PASHA direct ranking 93.79 ± 0.26 2.7h ± 0.6h 1.1x 198.4 ± 6.0

PASHA soft ranking 𝜖 = 0.01 93.79 ± 0.26 2.6h ± 0.5h 1.1x 194.3 ± 21.2

PASHA soft ranking 𝜖 = 0.02 93.78 ± 0.31 2.4h ± 0.5h 1.2x 152.4 ± 58.3

PASHA soft ranking 𝜖 = 0.025 93.78 ± 0.31 2.3h ± 0.5h 1.3x 144.5 ± 59.4

PASHA soft ranking 𝜖 = 0.03 93.78 ± 0.32 2.2h ± 0.6h 1.3x 128.6 ± 58.3

PASHA soft ranking 𝜖 = 0.05 93.79 ± 0.49 1.8h ± 0.7h 1.6x 76.0 ± 66.0

PASHA soft ranking 1𝜎 93.75 ± 0.32 2.4h ± 0.5h 1.2x 186.4 ± 35.2

PASHA soft ranking 2𝜎 93.88 ± 0.28 1.9h ± 0.5h 1.5x 132.7 ± 68.7

PASHA soft ranking 3𝜎 93.56 ± 0.69 0.9h ± 0.3h 3.1x 16.2 ± 19.9

PASHA soft ranking mean distance 93.73 ± 0.52 2.3h ± 0.4h 1.3x 184.1 ± 40.5

PASHA soft ranking median distance 93.82 ± 0.26 2.3h ± 0.5h 1.3x 169.2 ± 51.2

PASHA RBO p=1.0, t=0.5 93.49 ± 0.78 0.7h ± 0.1h 4.2x 4.6 ± 6.0

PASHA RBO p=0.5, t=0.5 93.77 ± 0.35 2.2h ± 0.6h 1.3x 144.0 ± 71.2

PASHA RRR p=1.0, t=0.05 93.49 ± 0.78 0.7h ± 0.0h 4.4x 3.0 ± 0.0

PASHA RRR p=0.5, t=0.05 93.76 ± 0.31 2.1h ± 0.6h 1.4x 140.9 ± 69.7

PASHA ARRR p=1.0, t=0.05 93.71 ± 0.35 2.4h ± 0.4h 1.2x 179.0 ± 42.9

PASHA ARRR p=0.5, t=0.05 93.81 ± 0.30 2.5h ± 0.4h 1.2x 181.0 ± 40.9

One epoch baseline 93.30 ± 0.61 0.3h ± 0.0h 8.5x 1.0 ± 0.0

Random baseline 72.93 ± 19.55 0.0h ± 0.0h – 0.0 ± 0.0

Table 8: NASBench201 – CIFAR-100 results for a variety of ranking functions.

Approach Accuracy (%) Runtime (s) Speed comparison Max resources

ASHA 71.69 ± 1.05 3.2h ± 0.9h 1.0x 200.0 ± 0.0

PASHA direct ranking 71.69 ± 1.05 2.8h ± 0.7h 1.1x 200.0 ± 0.0

PASHA soft ranking 𝜖 = 0.01 71.55 ± 1.04 2.5h ± 0.7h 1.3x 198.3 ± 6.5

PASHA soft ranking 𝜖 = 0.02 70.94 ± 0.85 2.0h ± 0.5h 1.6x 160.5 ± 62.9

PASHA soft ranking 𝜖 = 0.025 71.41 ± 1.15 1.5h ± 0.7h 2.1x 88.3 ± 74.4

PASHA soft ranking 𝜖 = 0.03 71.00 ± 1.38 1.0h ± 0.5h 3.2x 39.4 ± 63.4

PASHA soft ranking 𝜖 = 0.05 70.71 ± 1.66 0.7h ± 0.0h 4.9x 3.0 ± 0.0

PASHA soft ranking 1𝜎 71.56 ± 1.03 2.5h ± 0.6h 1.3x 184.1 ± 40.5

PASHA soft ranking 2𝜎 71.14 ± 0.97 1.9h ± 0.7h 1.7x 136.4 ± 75.8

PASHA soft ranking 3𝜎 71.63 ± 1.60 1.0h ± 0.3h 3.3x 20.2 ± 25.3

PASHA soft ranking mean distance 71.51 ± 0.99 2.4h ± 0.5h 1.4x 189.8 ± 30.3

PASHA soft ranking median distance 71.52 ± 0.98 2.4h ± 0.6h 1.3x 189.5 ± 30.6

PASHA RBO p=1.0, t=0.5 70.69 ± 1.67 0.7h ± 0.1h 4.6x 3.8 ± 2.0

PASHA RBO p=0.5, t=0.5 71.51 ± 0.93 2.4h ± 0.7h 1.3x 180.5 ± 50.6

PASHA RRR p=1.0, t=0.05 70.71 ± 1.66 0.7h ± 0.0h 4.9x 3.0 ± 0.0

PASHA RRR p=0.5, t=0.05 71.42 ± 1.51 1.2h ± 0.5h 2.6x 39.3 ± 51.4

PASHA ARRR p=1.0, t=0.05 70.80 ± 1.70 0.8h ± 0.4h 3.8x 22.9 ± 51.3

PASHA ARRR p=0.5, t=0.05 71.41 ± 1.05 1.8h ± 0.6h 1.7x 110.0 ± 68.7

One epoch baseline 65.57 ± 5.53 0.3h ± 0.0h 9.2x 1.0 ± 0.0

Random baseline 42.98 ± 18.34 0.0h ± 0.0h – 0.0 ± 0.0

G NAS experiments with various reduction factors 𝜂
An important parameter for the performance of multi-fidelity algorithms like ASHA is the reduction

factor used in the algorithm. This hyperparameter controls the fraction of pruned candidates at
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Table 9: NASBench201 – ImageNet16-120 results for a variety of ranking functions.

Approach Accuracy (%) Runtime (s) Speedup factor Max resources

ASHA 45.63 ± 0.81 8.8h ± 2.2h 1.0x 200.0 ± 0.0

PASHA direct ranking 45.63 ± 0.81 8.3h ± 2.5h 1.1x 200.0 ± 0.0

PASHA soft ranking 𝜖 = 0.01 45.52 ± 0.89 7.0h ± 1.5h 1.3x 185.7 ± 36.1

PASHA soft ranking 𝜖 = 0.02 45.79 ± 1.16 4.4h ± 1.4h 2.0x 71.4 ± 50.8

PASHA soft ranking 𝜖 = 0.025 46.01 ± 1.00 3.2h ± 1.0h 2.8x 28.6 ± 27.7

PASHA soft ranking 𝜖 = 0.03 45.62 ± 1.48 2.4h ± 0.7h 3.6x 11.0 ± 10.0

PASHA soft ranking 𝜖 = 0.05 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

PASHA soft ranking 1𝜎 45.63 ± 0.89 6.5h ± 1.3h 1.4x 177.1 ± 44.2

PASHA soft ranking 2𝜎 45.39 ± 1.22 4.5h ± 1.4h 1.9x 91.2 ± 58.0

PASHA soft ranking 3𝜎 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

PASHA soft ranking mean distance 45.50 ± 1.12 6.2h ± 1.5h 1.4x 157.7 ± 54.7

PASHA soft ranking median distance 45.67 ± 0.95 6.3h ± 1.6h 1.4x 156.3 ± 52.2

PASHA RBO p=1.0, t=0.5 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

PASHA RBO p=0.5, t=0.5 45.24 ± 1.13 6.4h ± 1.3h 1.4x 148.3 ± 56.9

PASHA RRR p=1.0, t=0.05 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

PASHA RRR p=0.5, t=0.05 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

PASHA ARRR p=1.0, t=0.05 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

PASHA ARRR p=0.5, t=0.05 44.90 ± 1.42 1.8h ± 0.0h 5.0x 3.0 ± 0.0

One epoch baseline 41.42 ± 4.98 1.0h ± 0.0h 8.8x 1.0 ± 0.0

Random baseline 20.97 ± 10.01 0.0h ± 0.0h – 0.0 ± 0.0

every rung. The optimal theoretical value is 𝑒 and the most common values used in practice are

probably 2 and 3. The results in Table 10 show that the gains provided by PASHA are consistent

also for 𝜂 = 2 and 𝜂 = 4.

Table 10: NASBench201 results with various reduction factors 𝜂.

Dataset Reduction factor Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-10

𝜂 = 2

ASHA 93.88 ± 0.27 3.6h ± 1.1h 1.0x 200.0 ± 0.0

PASHA 93.77 ± 0.56 2.6h ± 0.6h 1.4x 134.9 ± 52.7

𝜂 = 3

ASHA 93.85 ± 0.25 3.0h ± 0.6h 1.0x 200.0 ± 0.0

PASHA 93.78 ± 0.31 2.3h ± 0.5h 1.3x 144.5 ± 59.4

𝜂 = 4

ASHA 93.75 ± 0.28 2.4h ± 0.6h 1.0x 200.0 ± 0.0

PASHA 93.72 ± 0.30 2.1h ± 0.5h 1.2x 154.7 ± 64.1

CIFAR-100

𝜂 = 2

ASHA 71.67 ± 0.84 3.8h ± 1.0h 1.0x 200.0 ± 0.0

PASHA 71.79 ± 1.38 2.1h ± 0.7h 1.8x 101.5 ± 55.0

𝜂 = 3

ASHA 71.69 ± 1.05 3.2h ± 0.9h 1.0x 200.0 ± 0.0

PASHA 71.41 ± 1.15 1.5h ± 0.7h 2.1x 88.3 ± 74.4

𝜂 = 4

ASHA 71.43 ± 1.13 2.7h ± 0.9h 1.0x 200.0 ± 0.0

PASHA 71.76 ± 1.20 1.1h ± 0.5h 2.4x 59.2 ± 74.8

ImageNet16-120

𝜂 = 2

ASHA 46.09 ± 0.68 11.9h ± 4.0h 1.0x 200.0 ± 0.0

PASHA 45.72 ± 1.36 4.2h ± 1.7h 2.8x 49.5 ± 44.2

𝜂 = 3

ASHA 45.63 ± 0.81 8.8h ± 2.2h 1.0x 200.0 ± 0.0

PASHA 46.01 ± 1.00 3.2h ± 1.0h 2.8x 28.6 ± 27.7

𝜂 = 4

ASHA 45.43 ± 0.98 7.9h ± 3.0h 1.0x 200.0 ± 0.0

PASHA 45.48 ± 1.36 3.2h ± 1.7h 2.4x 40.3 ± 49.8
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H NAS experiments with Bayesian Optimization

Bayesian Optimization combined with multi-fidelity methods such as Successive Halving can

improve the predictive performance of the final model (Klein et al., 2020). In this set of experiments,

we verify PASHA can speedup also these kinds of methods. Our results are reported in Table 11,

where we can clearly see PASHA obtains a similar accuracy result as ASHAwith significant speedup.

Table 11: NASBench201 results for ASHA with Bayesian Optimization searcher – MOBSTER (Klein

et al., 2020) and similarly extended version of PASHA. The results show PASHA can be

successfully combined with a smarter configuration selection strategy.

Dataset Approach Accuracy (%) Runtime Speedup factor Max resources

CIFAR-10

ASHA BO 94.10 ± 0.22 5.0h ± 1.3h 1.0x 200.0 ± 0.0

PASHA BO 94.17 ± 0.17 4.4h ± 1.7h 1.1x 156.7 ± 62.4

CIFAR-100

ASHA BO 72.76 ± 0.64 5.6h ± 2.0h 1.0x 200.0 ± 0.0

PASHA BO 72.07 ± 1.80 3.8h ± 1.7h 1.5x 157.9 ± 72.7

ImageNet16-120

ASHA BO 45.79 ± 1.18 13.8h ± 5.0h 1.0x 200.0 ± 0.0

PASHA BO 45.02 ± 1.15 6.2h ± 5.8h 2.2x 50.0 ± 75.4

I Additional information

I.1 Compute

NASBench201 experiments included in the Jupyter notebook can run on a laptop in about 1.5

hour – excluding the Bayesian Optimization experiments. NASBench201 experiments that use BO

benefit from using a cluster with multiple CPUs – we have used our own internal cluster with

CPUs. We have allocated 4 CPUs to each experiment. BO experiments take at least a few minutes to

run and parallelization across many nodes can significantly speedup the time it takes to complete

the multiple runs. For the HPO experiments we have utilized Amazon SageMaker (AWS cloud

provider), selecting instances with multiple CPUs (no GPUs were used).

I.2 Hyperparameter tuning

Most of the hyperparameters were selected by following the choices of hyperparameters in the

literature and also by using the default hyperparameters within SyneTune library. For our HPO

experiments we observed e.g. how many epochs are needed to obtain convergence and selected

the value accordingly. For our PASHA algorithm the main hyperparameter is the choice of the

ranking function and its details, and we have evaluated various choices as part of the ablation study

(trying out a few reasonable hyperparameters for these ranking functions). These experiments

required only a small amount of compute as we used a NASBench201 simulator backend available

in SyneTune.

For our larger-scale HPO experiments we did not perform extensive hyperparameter tuning

and selected options which worked well on NASBench201. When deciding on how to specify the

minimum resources, we used our judgement to decide what could be reasonable values.

I.3 Licensing

Information about licensing:

• SyneTune https://github.com/awslabs/syne-tune: Apache-2.0 license (our code is released
under the same license)

• NASBench201 (Dong and Yang, 2020): MIT license
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• Codes dataset (Zavadskyy, 2017): CC BY-SA 4.0 license

• LendingC dataset (George, 2019): CC0: Public Domain

• CoverType dataset (Blackard et al., 1998): unspecified, but the dataset has been donated for public

use
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