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ABSTRACT

Due to the remarkable ability to capture long-term dependencies, Transformer-
based models have shown great potential in time series forecasting. However,
real-world time series usually present intricate temporal patterns, making fore-
casting still challenging in many practical applications. To better grasp inher-
ent dependencies, in this paper, we propose TwinsFormer, a Transformer-based
framework utilizing two interactive components for time series forecasting. Un-
like the mainstream paradigms of plain decomposition that train the model with
two independent branches, we design an interactive strategy around the attention
module and the feed-forward network to strengthen the dependencies via decom-
posed components. Specifically, we adopt dual streams to facilitate progressive
and implicit information interactions for trend and seasonal components. For the
seasonal stream, we feed the seasonal component to the attention module and
feed-forward network with a subtraction mechanism. Meanwhile, we construct
an auxiliary highway (without the attention module) for the trend stream by the
supervision of seasonal signals. Finally, we incorporate the dual-stream outputs
into a linear layer leading to the ultimate prediction. In this way, we can avoid
the model overlooking inherent dependencies between different components for
accurate forecasting. Our interactive strategy, albeit simple, can be adapted as a
plug-and-play module to existing Transformer-based methods with negligible ex-
tra computational overhead. Extensive experiments on various real-world datasets
show the superiority of TwinsFormer, which can outperform previous state-of-the-
art methods in terms of both long-term and short-term forecasting performance.

1 INTRODUCTION
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Figure 1: Performance of Twins-
Former. Average results (MAE) are
reported in Section 4.

As a ubiquitous and paramount task in many real-world scenarios
(e.g., weather (Wu et al., 2023b), energy (Yin et al., 2021), mar-
ket (Granger & Newbold, 2014), and transportation (Yin et al.,
2021)), time series forecasting has been explored with ongoing
passion. Generally, time series forecasting aims to predict future
temporal variations based on historical observations of time se-
ries, where the primary challenge is how to effectively capture
temporal patterns from observed data. Benefiting from the ad-
vancements in deep learning, various representative models with
well-designed architectures, such as MLP-based (Wang et al.,
2024; Zeng et al., 2023; Li et al., 2023), CNN-based (Wang et al.,
2023; Wu et al., 2023a; Liu et al., 2022a), and Transformer-
based (Liu et al., 2024; Zhang & Yan, 2023; Zhou et al., 2022)
methods, have been proposed to tackle time series forecasting
tasks and demonstrate impressive performance. Since the com-
plex and non-stationary nature of the real world or systems, the
observed series usually involves multitudinous variations, such as increasing, decreasing, and fluc-
tuating, making it still hard to grasp reliable and stable temporal dependencies.

To tackle intricate temporal patterns, series decomposition (Robert et al., 1990), utilizing the moving
average kernel to smooth out short-term fluctuations or noise in the time series, has been involved

1
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Figure 2: Trend-seasonal Decomposition. The top two subplots showcase the observed values of
Electricity and Traffic from two different channels. The lower four subplots present the decomposed
trend and seasonal components of the two datasets. Please zoom in for more details.

in deep models as a basic module. Empowered with various decomposition designs, existing meth-
ods (Wu et al., 2021; Zhou et al., 2022; Wang et al., 2023; Zeng et al., 2023) generally utilize two
independent branches to highlight seasonal and trend properties separately, then combine the sea-
sonal and trend representations for the final prediction. As seen in Figure 2, we decompose the
raw signals (i.e., observed values) of two different channels on Electricity and Traffic datasets into
trend and seasonal components for better understanding. Comparatively, the trend and seasonal
components exhibit different but indispensable characteristics for the observed time series. More
specifically, the former shows the overall variation while the latter presents the cyclical fluctuation.
Since trend-seasonal decomposition is an untrainable linear transformation, the decomposed com-
ponents obtained by the moving average kernel cannot directly reflect precise and intricate patterns
for the observed time series. Taking channel 11 on the Electricity dataset as an example, significant
variations and fluctuations of the observed series lag behind those of the trend and seasonal compo-
nents. Such inconsistencies lead to the learned trend and seasonal representations by independent
branches may not satisfy the temporal patterns of the observed series. Therefore, a more rational de-
composition design should consider the interactions between decomposed components to precisely
unravel inherent dependencies for observed values.

To fill this gap, we propose TwinsFormer, a Transformer-based framework that explicitly explores
inherent dependencies via two interactive components for time series forecasting. First, we de-
compose the observed time series rather than the time series embeddings into trend and seasonal
components better to capture the characteristics of the time series itself. Second, since the trend
components reflect the long-term fluctuations of the time series, we only feed the seasonal compo-
nents to the attention and feed-forward modules with a subtraction mechanism to alleviate redundant
coding. Most importantly, we regard the outputs of the attention and feed-forward modules as su-
pervision information to guide the model to capture the representation of the trend components. With
our interactive design, TwinsFormer can successfully aggregate seasonal and trend information to
learn inherent dependencies between different components for accurate forecasting. Experimentally,
our proposed TwinsFormer achieves state-of-the-art performance on seven real-world forecasting
scenarios shown in Figure 1 and effectively provides an interactive learning scheme for time series
forecasting. The primary contributions are summarized as follows:

• We delve into the existing decomposition designs for time series forecasting and figure out
that the interaction between different components is not explored: these designs simply
learn separate representations for trend and seasonal components and overlook non-linear
dependencies or significant noise levels among time series.

• We propose TwinsFormer, a Transformer-based framework (perhaps the first to our best
knowledge) that explicitly explores inherent dependencies by learning implicit and pro-
gressive interactions between different components for time series forecasting.

• Extensive experimental results on 13 real-world benchmarks show the superiority of our
TwinsFormer against previous state-of-the-art methods. Specifically, TwinsFormer ranks in
the top 1 among 11 models on 18 out of the 22 average settings including various prediction
lengths and metrics over long-term and short-term forecasting tasks.
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2 RELATED WORK

2.1 DECOMPOSITIONS FOR TIME SERIES FORECASTING

Due to the capacity of the moving average kernel to smooth out short-term fluctuations or noise
in the time series, Autoformer (Wu et al., 2021) initially proposed using the moving average ker-
nel to decompose complex temporal variations into seasonal and trend components. Since then,
trend-seasonal decomposition designs based on the moving average kernel have been frequently
introduced in time series forecasting works. For instance, SCINet (Liu et al., 2022a) devises a
downsample-convolve-interact architecture to extract dynamic temporal features at multiple resolu-
tions with two sub-sequences. DLinear (Zeng et al., 2023) utilizes the series decomposition as the
pre-processing before linear regression. MICN (Wang et al., 2023) adopts multi-scale branches to
model the local and global context by decomposing input series into seasonal and trend terms while
TimesNet (Wu et al., 2023a) designs a modular architecture to obtain decomposed components with
Fourier Transform. More recently, TimeMixer (Wang et al., 2024) mixes multiscale decomposable
components for time series forecasting. Due to the non-linear or non-stationary properties of time
series, however, a rudimentary moving averaging kernel may inadequately capture precise trends,
which impedes the model from learning inherent dependencies through two independent branches.

2.1.1 TRANSFORMERS FOR TIME SERIES FORECASTING

Benefiting from the ability to model long-term temporal patterns, Transformer-based methods (Li
et al., 2019; Zhou et al., 2021; Liu et al., 2022b) have shown significant success in time series fore-
casting. Since the quadratic complexity and redundant coding for the self-attention mechanism,
most existing Transformer-based approaches modify the attention module to reduce computational
overhead. Representative works include Informer (Zhou et al., 2021) introducing ProbSparse self-
attention and distilling techniques, Autoformer (Wu et al., 2021) incorporating series decomposition
with an auto-correlation mechanism, FEDformer (Zhou et al., 2022) implementing the attention
module with a Fourier-enhanced structure, etc. Without modifications to the Transformer, some
other attempts pay attention to the inherent processing of time series, such as stationarity (Liu et al.,
2022c; 2023), patching (Du et al., 2023), channel independence (Nie et al., 2023), and inverting
operations (Liu et al., 2024), bringing consistently improved performance for time series forecast-
ing. Besides, refurbishing Transformer in both aspects mentioned above, Crossformer Zhang &
Yan (2023) introduces a two-stage-attention mechanism and dimension-segment-wise embedding
strategy to capture cross-time and cross-variate dependencies.

Going beyond the designs in previous works, TwinsFormer devises an interactive dual-stream ar-
chitecture without modifying the native components of Transformer. Moreover, we replace the
observed series with trend and seasonal components, where the model can better learn inherent de-
pendencies with their interactions. To the best of our knowledge, TwinsFormer is the first attempt to
consider interactions between decomposed components on Transformer for time series forecasting.

3 TWINSFORMER

Preliminary Given the historical observation data X = {x1, x2, · · · , xM} ∈ RM×N with M
length look-back window and N variates, the goal of multivariate time series forecasting is to predict
the future time series Y = {xM+1, · · · , xM+τ} ∈ Rτ×N at next τ time steps (τ > 1). Following
the idea of decomposition (Robert et al., 1990; Wu et al., 2021), time series can be divided into
trend and seasonal parts by the moving average kernel. For length-M input series X ∈ RM×N , the
decomposition process can be formulated as

XT = AvgPool(Padding(X)),

XS = X −XT ,
(1)

where XT and XS denote the trend and seasonal components, respectively.

3.1 STRUCTURE OVERVIEW

Our proposed TwinsFormer illustrated on the left of Figure 3 adopts the encoder-only architec-
ture, renovating Transformer to a dual-stream structure with two decomposed components. Before

3
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Figure 3: Overall framework of TwinsFormer.

embedding the time series, we decompose the observed series into trend (T) and seasonal (S) com-
ponents in the channel dimension. Then, we feed seasonal embeddings ES to the attention module
and feed-forward network (FFN) with a subtraction mechanism, while feeding trend embeddings
ET to the interactive module with the supervision of seasonal information (i.e., AS and Fs). Finally,
we aggregate seasonal and trend representations for the ultimate prediction.

Embedding the decomposed series as tokens For convenience, we denote Xm,: as the simulta-
neously recorded values for all the variates at the m time point, while X:,n as the whole time series
of each variate indexed by n. Based on Equation 1, the trend and seasonal components of the time
series can be formulated as XT = AvgPool(Padding(X:,n)) and XS = X − XT , respectively.
Then, we utilize straightforward linear and dropout layers to create trend and seasonal embeddings
with global covariates Xmark as follows:

ET = Dropout(Linear(Concat(XT , Xmark))),

ES = Dropout(Linear(Concat(XS , Xmark))).
(2)

Note that, Concat(·) is used on the dataset containing Xmark information and different components
(i.e., XT and XS) through separate liner layers in our experiments. In this way, we map decomposed
series data XT , XS ∈ RN×M from the original space into a new space, where ET , ES ∈ RN×D

and D is the dimension of the linear layer.

Learning interactions with our TwinsBlock Unlike the existing Transformer variants that strug-
gle to come up with efficient attention mechanisms to learn multivariate correlation, our Twins-
Former incorporates interactive learning into Transformer block to explore the interactions between
decomposed components for better inherent dependencies. Thus, a bundle of efficient attention
mechanisms can be the plugins and our interactive strategy can promote the performance of existing
Transformer variants on time series forecasting, which are evaluated in Table 4.

3.2 DUAL-STREAM DESIGN WITH INTERACTIVE MODULE

Keeping the original modules (i.e., the self-attention and feed-forward network (FFN) modules)
of Transformer unchanged, our key design lies in the computationally efficient interactive module,
which can guide the model to learn and aggregate the effective representations of trend and seasonal
information. We provide the pseudo-code of our framework in Algorithm 1 of the Appendix.

Seasonal Branch Since the seasonal components obtained without the moving average kernel can
better highlight the intrinsic characteristics of the time series data, we feed the seasonal embeddings
to the attention and FFN modules to effectively capture the dependencies among the multivariates.
Following the attention process of iTransformer (Liu et al., 2024), we regard ES ∈ RN×D as N
D-dimension tokens and utilize queries, keys, and values Q,K, V ∈ RN×dk to obtain the attention-
weighted seasonal representations AS ∈ RN×D, where dk is the projected dimension

Q = EsW1 + b1,K = EsW2 + b2, V = EsW3 + b3, Wi ∈ Rdk×dk , bi ∈ R1×dk ,

AS = Softmax(
QKT

√
dk

)V.
(3)

According to Equation 1, the seasonal components can be regarded as the residual part of the ob-
served time series data. Intuitively, we adopt the idea of residual learning to implement a corrective
strategy by subtracting the outputs of the Attention and FFN modules from the corresponding inputs.

4
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The learning process can be formulated as follows:

H1 = LayerNorm(ES −AS),

H2 = H1 − FFN(H1).
(4)

Trend Branch Considering that untrainable moving average kernels lead to unreliable trend pat-
terns, we fuse seasonal information to assist the learning of the trend branch through our interactive
module (IM). On the one hand, attention-weighted AS well reflects the dependencies among mul-
tivariate, which can be converted into a coefficient matrix to update the trend embeddings. On the
other hand, the signals discarded by the seasonal branch can be regarded as meaningful information
to guide the representation of the trend embeddings. Our interactive module is illustrated on the
right of Figure 3, we only use simple structures to train and update the trend branch network:

E′
T = Sigmoid(Conv1×1(

∑
Multiconv(AS))) ∗ ET ,

FT = Concate(AS , FS , E
′
T ),

(5)

where we concatenate AS , FS , and E′
T in the embedding dimension and the kernel sizes of multi-

scale convolutions are 1× 1, 3× 3, and 5× 5, respectively.

Gate Mechanism Inspired by the inherent control of cells in RNNs (Zhao et al., 2017; Dey
& Salem, 2017), we devise a gate mechanism σ at the end of each block for both streams to au-
tonomously regulate the pace of information transmission. The gate mechanism for both seasonal
and trend streams can be formulated as

OS = Sigmoid(Conv1(H2)) · Conv2(H2),

OT = Sigmoid(Conv3(FT )) · Conv4(FT ),
(6)

where Conv1, Conv2, Conv3 and Conv4 are four 1 × 1 convolution operations with different pa-
rameters. Taking the output of the former TwinsBlock as the input of the latter TwinsBlock, we stack
L TwinsBlocks to learn seasonal and trend representations, and then add them together through a
linear projection for the ultimate predictive outcomes, i.e., {Y = Projection(OS+OT )} ∈ Rτ×N .

Rationality Analysis Given historical time series data X , we can obtain its trend and seasonal
components (i.e., Xt and Xs) by the moving average kernel. For existing time series forecasting
methods, we regard the models as F (·), while regarding the independent branches with decomposi-
tion designs as ft(·) and fs(·), then we can formulate the predictive outputs Y as

Y = F (ft(Xt) + fs(Xs)), where X = Xt +Xs. (7)

Similarly, we definite the attention module, FFN, interactive module, and gate mechanism of Twins-
Former as g(·), h(·), ϕ(·), and σ respectively. Then, the outcomes of TwinsFormer are:

Y = F (

interactive learning︷ ︸︸ ︷
σt(ϕ([Xt, g(Xs), h(Xs − g(Xs))]︸ ︷︷ ︸

=X′
t

)) +

residual learning︷ ︸︸ ︷
σs(Xs − g(Xs)− h(Xs − g(Xs))︸ ︷︷ ︸

=X′
s

)), (8)

where [·] indicates concatenation operation. By omitting the constraints from various functions on
variables and replacing ‘[·]’ with ‘+’ operation, our interactive components can be simplified as

X ′
s = Xs −X1 −X2, X ′

t = Xt +X1 +X2. (9)

Then, the sum of our two interactive components can be expressed as

X = X ′
s +X ′

t = Xs −ZZX1 −ZZX2 +Xt +ZZX1 +ZZX2 = Xs +Xt. (10)

Based on Equation (10), we can find that our interaction strategy perfectly fits the requirements of
the decomposition design without bringing in redundant signals. Furthermore, we can elaborate
on the practical implications of our TwinsFormer in mitigating the limitations of the trend-seasonal
decomposition. Since the untrainable moving average kernel does not accurately capture the trend
patterns, the decomposed trend and seasonal components are not completely disentangled. Twins-
Former adopts a dual-stream interaction strategy to implicitly and progressively promote the decou-
pling of both components by using residual learning and interactive learning. Concretely, we filter
out the coupled information (i.e., X1 and X2) from the seasonal components and compensate them
to the trend components by some transformation mechanisms, so that we can learn more robust and
reliable decomposed representations for accurate time series forecasting.

5
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4 EXPERIMENTS

We conduct extensive experiments to evaluate the performance of TwinsFormer, covering long-
term and short-term time series forecasting, including 13 real-world benchmarks and 10 well-
acknowledged baselines. Moreover, we dive into the effectiveness and generality of the proposed
framework to existing Transformer-based methods with indispensable ablation studies.

Benchmarks For long-term forecasting, we experiment on 9 well-established benchmarks:
ETT (Zhou et al., 2021) (Electricity Transformer Temperature) datasets including ETTm1, ETTm2,
ETTh1, and ETTh2, ECL (Wu et al., 2021) (Electricity Consuming Load), Exchange (Wu et al.,
2021), Traffic (Wu et al., 2021), Weather (Wu et al., 2021) and Solar-energy (Lai et al., 2018)
datasets. For short-term forecasting, we use 4 public traffic network PeMS (Liu et al., 2022a)
datasets, namely PEMS03, PEMS04, PEMS07 and PEMS08. We follow standard protocols like
(Wu et al., 2021; Liu et al., 2024) and split all datasets into training, validation and test sets in
chronological order by the ratio of 6:2:2 for the ETT dataset and 7:1:2 for the other datasets. De-
tailed dataset descriptions are provided in Table 5 of the Appendix.

Baselines We compare TwinsFormer with 10 representative baselines, including 1) Transformer-
based methods: iTransformer (Liu et al., 2024), PatchTST(Nie et al., 2023), Crossformer (Zhang
& Yan, 2023), FEDformer (Zhou et al., 2022); 2)Linear-based methods: TimeMixer (Wang et al.,
2024), DLinear (Zeng et al., 2023), TiDE (Das et al., 2023), and RLinear (Li et al., 2023); and 3)
TCN-based methods: TimesNet Wu et al. (2023a), SCINet (Liu et al., 2022a).

Implementation details All the experiments are implemented in PyTorch (Paszke et al., 2019)
and conducted on one NVIDIA 4090 24GB GPU. We use the L2 loss to train the model with the
Adam (Kingma & Ba, 2015) optimizer, where the training process is early stopped within 10 epochs.
Our TwinsBlock is applicable to Transformer-based architectures without introducing any additional
hyperparameters. Following iTransformer (Liu et al., 2024), we use the Mean Square Error (MSE)
and Mean Absolute Error (MAE) as the core metrics for the evaluation.

4.1 MAIN RESULTS

Long-term forecasting As shown in Table 1, TwinsFormer achieves leading performance on most
benchmarks, covering various time series with different frequencies, variate numbers and real-world
scenarios. For example, TwinsFormer outperforms iTransformer by a considerable margin, with a
6.2% MSE reduction in ECL and a 5.1% MSE reduction in Traffic. On Weather and Solar-energy
datasets, although TimeMixer has a subtle advantage over TwinsFormer of 0.4% and 4.8% in MSE
reduction, Twinsformer achieves lower MAE scores than TimeMixer by 1.1% and 9.3% reduc-
tion, respectively. It is worth noting that TwinsFormer exhibits better performance than TimeMixer
among other datasets, which further highlights the superiority and robustness of TwinsFormer.

Table 1: Long-term forecasting results. The lookback length is set to T = 96 and all the results are
averaged from all predictions S ∈ {96, 192, 336, 720}. Avg means further averaged by subsets. A
lower MSE or MAE indicates a better prediction. See Table 6 in the Appendix for the full results.

Models TwinsFormer iTransformer TimeMixer PatchTST RLinear Crossformer TiDE TimesNet DLinear SCINet FEDformer
(Ours) (2024) (2024) (2023) (2023) (2023) (2023) (2023a) (2023) (2022a) (2022)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETT (Avg) 0.372 0.392 0.383 0.399 0.381 0.396 0.381 0.397 0.380 0.392 0.685 0.578 0.482 0.470 0.391 0.404 0.442 0.444 0.689 0.597 0.408 0.428

ECL 0.167 0.262 0.178 0.270 0.183 0.272 0.205 0.290 0.219 0.298 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327

Exchange 0.346 0.395 0.360 0.403 0.380 0.417 0.367 0.404 0.378 0.417 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429

Traffic 0.406 0.273 0.428 0.282 0.496 0.298 0.481 0.304 0.626 0.378 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376

Weather 0.246 0.271 0.258 0.278 0.245 0.274 0.259 0.281 0.272 0.291 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360

Solar-energy 0.227 0.254 0.233 0.262 0.216 0.280 0.270 0.307 0.369 0.356 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381

Short-term forecasting TwinsFormer also performs well in short-term forecasting on PeMS
datasets. Due to the complex spatiotemporal dependencies among citywide traffic networks in PeMS
benchmarks, many advanced models degenerate a lot in this task. For instance, TimeMixer adopts
the multiscale mixing architecture to model complex temporal variations, but its performance is not
as good as iTransformer which simply tokenizes the embedding of time series in the variate di-
mension. By contrast, TwinsFormer learns the inherent dependencies from the interactions between

6
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decomposed components, which can better capture accurate patterns for multivariate time series.
Although SCINet obtains the best performance on the PEMS04 dataset using hierarchical sample
convolution and interaction, it is inferior to TwinsFormer on other datasets. Remarkably, Twins-
Former achieves leading performance when averaging all the subsets, affirming the capacity of our
interactive strategy in modeling complex temporal dynamics.

Table 2: Short-term forecasting results on PEMS datasets. The lookback length is set to T = 96
and all the results are averaged from all predictions S ∈ {12, 24, 48, 96}. A lower MSE or MAE
indicates a better prediction. See Table 7 in the Appendix for the full results.

Models TwinsFormer iTransformer TimeMixer PatchTST RLinear Crossformer TiDE TimesNet DLinear SCINet FEDformer
(Ours) (2024) (2024) (2023) (2023) (2023) (2023) (2023a) (2023) (2022a) (2022)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PEMS03 0.109 0.219 0.116 0.226 0.145 0.253 0.180 0.291 0.495 0.472 0.169 0.281 0.326 0.419 0.147 0.248 0.278 0.375 0.114 0.224 0.213 0.327

PEMS04 0.111 0.219 0.121 0.232 0.162 0.268 0.195 0.307 0.526 0.491 0.209 0.314 0.353 0.437 0.129 0.241 0.295 0.388 0.092 0.202 0.231 0.337

PEMS07 0.094 0.196 0.100 0.204 0.152 0.248 0.211 0.303 0.504 0.478 0.235 0.315 0.380 0.440 0.124 0.225 0.329 0.395 0.119 0.234 0.165 0.283

PEMS08 0.133 0.222 0.151 0.234 0.209 0.296 0.280 0.321 0.529 0.487 0.268 0.307 0.441 0.464 0.193 0.271 0.379 0.416 0.158 0.244 0.286 0.358

Avg 0.112 0.214 0.122 0.224 0.167 0.266 0.217 0.305 0.514 0.482 0.220 0.304 0.375 0.440 0.148 0.246 0.320 0.394 0.121 0.222 0.224 0.327

4.2 ABLATION STUDIES

To verify the effectiveness of each main component of TwinsFormer, we provide indispensable
ablation studies for every possible design on decomposition and interactions. To be concrete, we
disable or replace certain designs as model variants and experiment on two long-term (i.e., ECL and
Traffic) and two short-term forecasting (i.e., PEMS03 and PEMS07) datasets. As seen in Table 3, we
conduct an insightful analysis of decomposition and interactions through the following observation.

Table 3: Ablation studies for TwinsFormer. We disable or replace each component of both decom-
position and interactions over four datasets. ✓ and ✗ indicate with and without certain components,
respectively. The average results of all predicted lengths are listed here. See Table 9 in the Appendix
for complete ablation results.

Design Decomposition Interactions ECL Traffic PEMS03 PEMS07

− E′
T AS FS σ MSE MAE MSE MAE MSE MAE MSE MAE

TwinsFormer ✓ ✓ ✓ ✓ ✓ ✓ 0.167 0.262 0.406 0.273 0.109 0.219 0.094 0.196

① ✗ ✓ ✓ ✓ ✓ ✓ 0.176 0.272 0.417 0.282 0.116 0.226 0.102 0.204
② swap ✓ ✓ ✓ ✓ ✓ 0.172 0.265 0.413 0.277 0.114 0.224 0.101 0.204
③ ✓ + ✓ ✓ ✓ ✓ 0.180 0.275 0.416 0.283 0.118 0.228 0.102 0.207
④ ✓ ✓ ✗ ✓ ✓ ✓ 0.185 0.278 0.418 0.283 0.122 0.232 0.105 0.210
⑤ ✓ ✓ ✓ ✗ ✓ ✓ 0.183 0.277 0.413 0.278 0.118 0.229 0.103 0.208
⑥ ✓ ✓ ✓ ✓ ✗ ✓ 0.176 0.271 0.412 0.281 0.121 0.228 0.104 0.210
⑦ ✓ ✓ ✓ ✓ ✓ ✗ 0.176 0.268 0.413 0.278 0.118 0.228 0.107 0.215

Ablation on decomposition Considering that the trend and seasonal components in the decom-
position design are fed to different network branches, we disable the decomposition by using two
original observed series as inputs (i.e., ①) and swap trend and seasonal components (i.e., ②) for abla-
tion analysis. In ablation ① and ②, we can find significant decreases in forecasting performance for
both long and short-term predictions, which demonstrates that our integration of the decomposition
into Transformer architecture is reasonable and effective.

Ablation on interactions For the interactions, we verify the effectiveness by removing or replacing
components gradually. In ablation ③, we replace the subtraction mechanism (i.e., −) with original
addition skip connections (i.e., +), and the results on ③ show a decline in forecasting accuracy.
This illustrates that decomposed components can better satisfy the requirements of Transformer ar-
chitecture by using the subtraction mechanism. Meanwhile, the results in ③ further highlight the
rationality of the decomposition design, which is consistent with the rationality analysis in Section
3.2. In ablations ④, ⑤, ⑥, and ⑦, we eliminate the impact of E′

T , AS , FS , and gate mechanism
σ for interactive learning, respectively. These four ablations all cause serious drops in forecasting
performance, which indicates that all inputs for interactive learning can effectively boost the perfor-
mance of TwinsFormer. The above observations highlight the substantial influence of our strategy
using residual and interactive learning in Transformer architecture.
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Table 4: Attention compatibility and performance promotion obtained by applying various efficient
attention mechanisms to our interactive framework. The average results of all predicted lengths are
listed here. See Table 10 in the Appendix for the full results.

Models Transformer Informer Autoformer Flowformer Periodformer
(2017) (2021) (2021) (2022) (2023)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL
Original 0.277 0.372 0.311 0.397 0.227 0.338 0.267 0.359 0.219 0.328
+Twins 0.167 0.262 0.168 0.261 0.176 0.267 0.168 0.262 0.170 0.262

Promotion 39.7% 29.6% 46.0% 43.7% 22.5% 21.0% 37.1% 27.0% 22.4% 20.1%

Traffic
Original 0.665 0.363 0.764 0.416 0.628 0.379 0.750 0.421 0.608 0.373
+Twins 0.406 0.273 0.431 0.282 0.433 0.288 0.424 0.280 0.439 0.287

Promotion 38.9% 24.8% 43.6% 32.2% 31.1% 24.0% 43.5% 33.5% 27.8% 23.1%

PEMS03
Original 0.137 0.237 0.193 0.290 0.667 0.601 0.140 0.245 0.265 0.368
+Twins 0.109 0.219 0.105 0.214 0.110 0.220 0.109 0.219 0.111 0.220

Promotion 20.4% 7.6% 45.6% 26.2% 83.5% 63.4% 22.1% 10.6% 58.1% 40.2%

PEMS07
Original 0.178 0.243 0.194 0.259 0.367 0.451 0.178 0.240 0.200 0.318
+Twins 0.094 0.196 0.092 0.194 0.096 0.200 0.096 0.198 0.098 0.201

Promotion 47.2% 19.3% 52.6% 25.1% 73.8% 55.7% 46.1% 17.5% 51.0% 36.8%

4.3 MODEL ANALYSIS

Compatibility and promotion We evaluate TwinsFormer by applying our interactive strategy to
original Transformer (Vaswani et al., 2017) and its variants, which generally address the quadratic
complexity of the self-attention mechanism, including Informer (Zhou et al., 2021), Autoformer (Wu
et al., 2021), Flowformer (Wu et al., 2022) and Periodformer (Liang et al., 2023). As seen in Ta-
ble 4, our framework can be adapted to various attention mechanisms with promoted performance
for Transformer-based forecasters. On the one hand, the performance under different attention
mechanisms illustrates the favorable attention compatibility of TwinsFormer. On the other hand,
the performance promotion for different Transformer-based architectures exhibits the superiority of
TwinsFormer. Overall, it achieves averaged 28.4% promotion on Transformer, 39.4% on Informer,
46.9% on Autoformer, 29.7% on Flowformer and 34.9% on Periodformer.
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Figure 4: Forecasting performance with different lookback lengths on three datasets.

Lookback length sensitivity As argued in (Zeng et al., 2023) and (Nie et al., 2023), most of
the Transformer-based models will not improve the forecasting performance with an increasing
lookback length due to the distracted attention on the longer input (Liu et al., 2024). However,
our TwinsFormer reduces the MSE scores with enlarged historical information to be utilized, which
is consistent with the theoretical analysis by statistical methods (Box & Jenkins, 1968). As seen
in Figure 4, the forecasting results keep improving in most cases where the prediction length S
belongs to {96, 192, 336, 720} as the receptive field increases. These improvements confirm that
our TwinsFormer can effectively capture inherent dependencies from a longer lookback window.

Visualization analysis To provide an intuitive understanding of the learned representations by our
dual-stream framework, we visualize the multivariate correlations, the corresponding representa-
tions, and prediction results in Figure 5. It can be observed that the multivariate correlations learned
by iTransformer are less distinct than those of TwinsFormer in the gold dashed box. Accordingly, the
learned representations obtained by TwinsFormer have more abundant variate and temporal infor-
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Figure 5: Analysis of multivariate correlations and series representations. Zoom in for more details.

mation than those of iTransformer, which we highlight with the gold and red dashed boxes in (b) of
Figure 5. Consequently, TwinsFormer has better accuracy than iTransformer in forecasting perfor-
mance, which is circled with a red line in the (c) part. Those observations indicate that TwinsFormer
can better learn inherent dependencies among time series to achieve more accurate forecasting.
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Figure 6: Model efficient comparison on Traffic.

Efficiency analysis Our TwinsFormer is
a Transformer-based architecture with dual-
stream interactions, where the trend branch is
composed of linear layers and sigmoid acti-
vation functions. Therefore, like other Trans-
former models, the main complexity of Twins-
Former is O(N2), which comes from the
seasonal branch with the attention module.
Note that, the N for TwinsFormer is related
to the number of variates, while the N for
most Tansformer-based models is affected by
the lookback length. Going further, the ef-
ficiency of TwinsFormer exceeds most Trans-
former Variants in datasets with a relatively small number of variates (i.e., N < 96). Although the
memory cost of TwinsFormer is not dominant when N ≫ 96, we can choose only a part of the
variates based on the correlations among variates to improve the training efficiency. As shown in
Figure 6, TwinsFormer can obtain the best performance compared with 8 baselines on Traffic dataset,
since the multivariate correlations can be well explored. Meanwhile, our efficient TwinsFormer-E
(trained with 20% variates and prediction for all variates) can achieve comparable forecasting per-
formance while substantially reducing the memory footprint.

5 CONCLUSION AND FUTURE WORK

Considering that the decomposition design can mine temporal patterns and the attention mechanism
can capture multivariate correlations, we propose TwinsFormer, a Transformer-based framework
revisiting inherent dependencies via two interactive branches for time series forecasting. Empow-
ered with our interactive module, TwinsFormer handily incorporates the idea of decomposition into
Transformer architectures and effectively learns time series representations. Experimentally, Twins-
Former achieves state-of-the-art performances in both long-term and short-term forecasting tasks.
Furthermore, the detailed visualization, ablations, and analysis illustrate the effectiveness and gen-
erality of our framework. Benefiting from the multivariate correlations learned with variate tokens,
TwinsFormer demonstrates favorable run-time efficiency for high-dimension channel datasets. In
the future, we will explore more efficient interaction design with decomposed components in the
MLP architectures and analyze the performance of the interaction design in more time series tasks.
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A IMPLEMENTATION DETAILS

Benchmarks details We evaluate the performance of TwinsFormer compared with various base-
lines on 13 well-established benchmarks 1, which are detailed in Table 5.
Table 5: Detailed descriptions of benchmarks. Channel denotes the number of variates in each
dataset. Prediction length points out four prediction settings. The dataset size is split in (Train,
Validation, Test). Frequency denotes the sampling interval of time points.

Tasks Benchmarks Channels Prediction Length Dataset Size Frequency Information

Long-term
Forecasting

ETTm1 7

{96, 192, 336, 720}

(34465, 11521, 11521) 15min Electricity
ETTm2 7 (34465, 11521, 11521) 15min Electricity
ETTh1 7 (8545, 2881, 2881) Hourly Electricity
ETTh2 7 (8545, 2881, 2881) Hourly Electricity
ECL 321 (18317, 2633, 5261) Hourly Electricity

Traffic 862 (12185, 1757, 3509) Hourly Transportation
Exchange 8 (5120, 665, 1422) Daily Economy
Weather 21 (36792, 5271, 10540) 10min Weather

Solar-energy 137 (36601, 5161, 10417) 10min Electricity

Short-term
Forecasting

PEMS03 358

{12, 24, 48, 96}

(15617, 5135, 5135) 5min Transportation
PEMS04 307 (10172, 3375, 3375) 5min Transportation
PEMS07 883 (16911, 5622, 5622) 5min Transportation
PEMS08 170 (10690, 3548, 3548) 5min Transportation

Metrics details Regarding evaluation metrics, we utilize the mean square error (MSE) and mean
absolute error (MAE) for long-term and short-term forecasting:

MSE =
1

L

L∑
i=1

(Xi − X̂i)
2, MAE =

L∑
i=1

|Xi − X̂i|,

where X, X̂ ∈ RL×N denote the ground truth and prediction results for N variates in the future L
time steps. |·| means the absolute value operation.

Algorithm details We provide the pseudo-code of TwinsFormer in Algorithm 1.
Algorithm 1 Workflow of our TwinsFormer.

Input: Input lookback time series X ∈ RT×N ; Input length T , prediction length L, and variates
number N ; Token dimension D, TwinsBlock number M , and moving average kernel size k.

Output: The prediction results X̂ ∈ RL×N .
1: ▷ Using the moving average kernel and padding operations to decompose time series.
2: XT = AvgPool(Padding(X)), XS = X −XT ▷ XT , XS ∈ RT×N

3: ▷ Embedding series into variate tokens by Multi-layer Perceptron.
4: E0

T = EmbedT (XT .transpose), E
0
S = EmbedS(XS .transpose) ▷ E0

T , E
0
S ∈ RN×D

5: ▷ Running through TwinsFormer blocks.
6: for m in {1, · · · ,M} do
7: ▷ Self-attention mechanism and feed-forward network are applied for the seasonal branch.
8: Em−1

S = LayerNorm(Em−1
S − Self-Attn(Em−1

S )) ▷ Em−1
S ∈ RN×D

9: Em
S = Em−1

S − Feed-Forward(Em−1
S ) ▷ Em

S ∈ RN×D

10: ▷ Interactive module (IM) is utilized for the trend branch.
11: Em−1

T = Sigmoid(Conv(
∑

Multiconv(Self-Attn(Em−1
S )))) · Em−1

T ▷ Em−1
T ∈ RN×D

12: Em
T = Concate([Self-Attn(Em−1

S ),Feed-Forward(Em−1
S ), Em−1

T ]) ▷ Em
T ∈ RN×3×D

13: ▷ Adding gate mechanism to seasonal and trend branches.
14: Em

S = LayerNorm(Sigmoid(Conv(Em
S )) ∗ Em

S ) ▷ Em
S ∈ RN×D

15: Em
T = Sigmoid(Conv(Em

T )) ∗ Em
T ▷ Em

T ∈ RN×D

16: end for
17: X̂ = Projector(Em

S + Em
T ) ▷ X̂ ∈ RN×L

18: X̂ = X̂.transpose ▷ X̂ ∈ RL×N

19: return X̂

1All the datasets are publicly available at https://github.com/thuml/iTransformer
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B BASELINE METHODS

We provide brief descriptions for the selected baselines as follows:

• iTransformer (Liu et al., 2024) is a Transformer-based model that captures multivari-
ate correlations on the variate dimension for forecasting. The source code is available
at https://github.com/thuml/iTransformer.

• TimeMixer (Wang et al., 2024) is an MLP-based predictor that adopts Past-Decomposable-
Mixing and Future-Multipredictor-Mixing blocks to aggregate disentangled information.
The source code is available at https://github.com/kwuking/TimeMixer.

• PatchTST (Nie et al., 2023) is a Transformer-based model that utilizes patching design
and channel-independence to learn temporal patterns for forecasting. The source code is
available at https://github.com/yuqinie98/PatchTST.

• RLinear (Li et al., 2023) is an MLP-based model that employs linear mapping with re-
versible normalization and independent channel operations for forecasting. The source
code is available at https://github.com/plumprc/RTSF.

• Crossformer (Zhang & Yan, 2023) is a Transformer-based predictor capturing cross-time
and cross-dimension dependencies with dimension-segment-wise embedding. The source
code is available at https://github.com/Thinklab-SJTU/Crossformer.

• TiDE (Das et al., 2023) is an MLP-based predictor that handles covariates and non-
linear dependencies with the dense encoder. The source code is available at https:
//github.com/ZihangHLiu/TiDE.

• TimesNet (Wu et al., 2023a) is a CNN-based model that ravels out the complex tempo-
ral variations into multiple intraperiod- and interperiod-variations for general time series
analysis. The source code is available at https://github.com/thuml/TimesNet.

• DLinear (Zeng et al., 2023) is an MLP-based model that combines a decomposition
scheme with two one-layer linear layers for forecasting. The source code is available at
https://github.com/cure-lab/LTSFLinear.

• SCINet (Liu et al., 2022a) is a CNN-based model that conducts sample convolution and
interaction for temporal modeling and forecasting. The source code is available at https:
//github.com/cure-lab/SCINet.

• FEDformer (Zhou et al., 2022) is a Transformer-based model that utilizes the seasonal-
trend decomposition with frequency-enhanced blocks to learn temporal dependency for
forecasting. The source code of FEDformer is available at https://github.com/
MAZiqing/FEDformer.

• Transformer (Vaswani et al., 2017) utilizes self-attention mechanism to capture cross-
time dependency for forecasting. The source code of Transformer is available at https:
//github.com/zhouhaoyi/Informer2020.

• Informer (Zhou et al., 2021) is a Transformer-based model using the ProbSparse self-
attention to learn cross-time correlations for forecasting. The source code of Informer is
available at https://github.com/zhouhaoyi/Informer2020.

• Autoformer (Wu et al., 2021) is a Transformer-based predictor introducing decomposition
design and Auto-Correlation mechanism to capture temporal dependency. The source code
of Autoformer is available at https://github.com/thuml/Autoformer.

• Flowformer (Wu et al., 2022) is a Transformer-based model that replaces the self-attention
mechanism with the flow-attention. The source code is available at https://github.
com/thuml/Flowformer.

• Periodformer (Liang et al., 2023) is a Transformer-based predictor capturing the periodic-
ity of time series based on the relationship between different moments. The source code is
available at https://github.com/Anoise/Minusformer.

To ensure the fairness of comparison, all the baselines are reproduced with the same repository,
which is available at https://github.com/thuml/Time-Series-Library.
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C FULL MAIN RESULTS

Due to the space limitation, we provide the full multivariate forecasting results here. Specifically,
Table 6 contains the detailed results of all prediction lengths on 9 well-acknowledged benchmarks
for long-term forecasting, while Table 7 includes the full short-term forecasting results on 4 chal-
lenging citywide traffic datasets.

Table 6: Full results of the long-term forecasting task. We compare extensive competitive models
under different prediction lengths S ∈ {96, 192, 336, 720}. The input sequence length is set to 96
for all baselines. Avg means the average results from all four prediction lengths.

Models TwinsFormer iTransformer TimeMixer PatchTST RLinear Crossformer TiDE TimesNet DLinear SCINet FEDformer
(Ours) (2024) (2024) (2023) (2023) (2023) (2023) (2023a) (2023) (2022a) (2022)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.325 0.364 0.334 0.368 0.320 0.355 0.329 0.367 0.355 0.376 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419
192 0.372 0.390 0.377 0.391 0.362 0.382 0.367 0.385 0.391 0.392 0.540 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441
336 0.406 0.412 0.426 0.420 0.396 0.406 0.399 0.410 0.424 0.415 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459
720 0.467 0.448 0.491 0.459 0.458 0.445 0.454 0.439 0.487 0.450 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490

Avg 0.393 0.404 0.407 0.410 0.384 0.397 0.387 0.400 0.414 0.407 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452

E
T

T
m

2

96 0.173 0.256 0.180 0.264 0.176 0.259 0.175 0.259 0.182 0.265 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287
192 0.239 0.300 0.250 0.309 0.242 0.303 0.241 0.302 0.246 0.304 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328
336 0.298 0.339 0.311 0.348 0.303 0.339 0.305 0.343 0.307 0.342 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366
720 0.397 0.397 0.412 0.407 0.396 0.399 0.402 0.400 0.407 0.398 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415

Avg 0.277 0.323 0.288 0.332 0.279 0.325 0.281 0.326 0.286 0.327 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349

E
T

T
h1

96 0.385 0.401 0.386 0.405 0.384 0.400 0.414 0.419 0.386 0.395 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419
192 0.439 0.431 0.441 0.436 0.437 0.429 0.460 0.445 0.437 0.424 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448
336 0.480 0.452 0.487 0.458 0.472 0.446 0.501 0.466 0.479 0.446 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465
720 0.480 0.474 0.503 0.491 0.586 0.531 0.500 0.488 0.481 0.470 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507

Avg 0.446 0.440 0.454 0.447 0.470 0.451 0.469 0.454 0.446 0.434 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460

E
T

T
h2

96 0.292 0.345 0.297 0.349 0.297 0.348 0.302 0.348 0.288 0.338 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397
192 0.375 0.395 0.380 0.400 0.369 0.392 0.388 0.400 0.374 0.390 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439
336 0.417 0.429 0.428 0.432 0.427 0.435 0.426 0.433 0.415 0.426 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487
720 0.406 0.430 0.427 0.445 0.462 0.463 0.431 0.446 0.420 0.440 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474

Avg 0.373 0.400 0.383 0.407 0.389 0.409 0.387 0.407 0.374 0.398 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449

E
C

L

96 0.139 0.233 0.148 0.240 0.153 0.244 0.181 0.281 0.201 0.281 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308
192 0.158 0.252 0.162 0.253 0.168 0.259 0.188 0.274 0.201 0.283 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315
336 0.172 0.267 0.178 0.269 0.185 0.275 0.204 0.293 0.215 0.298 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329
720 0.200 0.293 0.225 0.317 0.227 0.312 0.246 0.324 0.257 0.331 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355

Avg 0.167 0.262 0.178 0.270 0.183 0.272 0.205 0.290 0.219 0.298 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327

E
xc

ha
ng

e 96 0.081 0.200 0.086 0.206 0.099 0.218 0.088 0.205 0.093 0.217 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278
192 0.172 0.295 0.177 0.299 0.196 0.313 0.176 0.299 0.184 0.307 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315
336 0.320 0.409 0.331 0.417 0.359 0.432 0.301 0.397 0.351 0.432 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427
720 0.812 0.677 0.847 0.691 0.864 0.703 0.901 0.714 0.886 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.195 0.695

Avg 0.346 0.395 0.360 0.403 0.380 0.417 0.367 0.404 0.378 0.417 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429

Tr
af

fic

96 0.382 0.260 0.395 0.268 0.473 0.287 0.462 0.295 0.649 0.389 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366
192 0.392 0.267 0.417 0.276 0.486 0.294 0.466 0.296 0.601 0.366 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373
336 0.410 0.276 0.433 0.283 0.488 0.298 0.482 0.304 0.609 0.369 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383
720 0.442 0.292 0.467 0.302 0.536 0.314 0.514 0.322 0.647 0.387 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382

Avg 0.406 0.273 0.428 0.282 0.496 0.298 0.481 0.304 0.626 0.378 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376

W
ea

th
er

96 0.161 0.201 0.174 0.214 0.163 0.209 0.177 0.218 0.192 0.232 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296
192 0.211 0.248 0.221 0.254 0.209 0.252 0.225 0.259 0.240 0.271 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336
336 0.266 0.291 0.278 0.296 0.264 0.293 0.278 0.297 0.292 0.307 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380
720 0.347 0.343 0.358 0.347 0.345 0.345 0.354 0.348 0.364 0.353 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428

Avg 0.246 0.271 0.258 0.278 0.245 0.274 0.259 0.281 0.272 0.291 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360

So
la

r-
E

ne
rg

y 96 0.193 0.224 0.203 0.237 0.189 0.259 0.234 0.286 0.322 0.339 0.310 0.331 0.312 0.399 0.250 0.292 0.290 0.378 0.237 0.344 0.242 0.342
192 0.223 0.250 0.233 0.261 0.222 0.283 0.267 0.310 0.359 0.356 0.734 0.725 0.339 0.416 0.296 0.318 0.320 0.398 0.280 0.380 0.285 0.380
336 0.246 0.268 0.248 0.273 0.231 0.292 0.290 0.315 0.397 0.369 0.750 0.735 0.368 0.430 0.319 0.330 0.353 0.415 0.304 0.389 0.282 0.376
720 0.245 0.272 0.249 0.275 0.223 0.285 0.289 0.317 0.397 0.356 0.769 0.765 0.370 0.425 0.338 0.337 0.356 0.413 0.308 0.388 0.357 0.427

Avg 0.227 0.254 0.233 0.262 0.216 0.280 0.270 0.307 0.369 0.356 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381

1st Count 22 30 0 0 18 6 2 2 4 9 0 0 0 0 0 0 0 0 0 0 0 0

TwinsFormer achieves the best forecasting performance among 11 models on various prediction
horizons for both long-term and short-term forecasting tasks. To be concrete, TwinsFormer outper-
forms all the baselines on 52 out of the 90 settings including different prediction lengths and metrics
over 9 long-term benchmarks. Meanwhile, TwinsFormer beats all the baselines on 29 out of the 40
settings of varying prediction lengths and metrics over 4 short-term datasets.
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Table 7: Full results of the short-term forecasting task. We compare extensive competitive models
under different prediction lengths S ∈ {12, 24, 48, 96}. The input sequence length is set to 96 for
all baselines. Avg means the average results from all four prediction lengths.

Models TwinsFormer iTransformer TimeMixer PatchTST RLinear Crossformer TiDE TimesNet DLinear SCINet FEDformer
(Ours) (2024) (2024) (2023) (2023) (2023) (2023) (2023a) (2023) (2022a) (2022)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

PE
M

S0
3

12 0.065 0.169 0.069 0.175 0.077 0.187 0.099 0.216 0.126 0.236 0.090 0.203 0.178 0.305 0.085 0.192 0.122 0.243 0.066 0.172 0.126 0.251
24 0.086 0.196 0.097 0.208 0.112 0.224 0.121 0.240 0.246 0.334 0.121 0.240 0.257 0.371 0.118 0.223 0.201 0.317 0.085 0.198 0.149 0.275
48 0.121 0.234 0.131 0.243 0.169 0.277 0.202 0.317 0.551 0.529 0.202 0.317 0.379 0.463 0.155 0.260 0.333 0.425 0.127 0.238 0.227 0.348
96 0.165 0.276 0.168 0.279 0.22 0.322 0.262 0.367 1.057 0.787 0.262 0.367 0.490 0.539 0.228 0.317 0.457 0.515 0.178 0.287 0.348 0.434

Avg 0.109 0.219 0.116 0.226 0.145 0.253 0.180 0.291 0.495 0.472 0.169 0.281 0.326 0.419 0.147 0.248 0.278 0.375 0.114 0.224 0.213 0.327

PE
M

S0
4

12 0.077 0.181 0.081 0.188 0.092 0.203 0.105 0.224 0.138 0.252 0.098 0.218 0.219 0.340 0.087 0.195 0.148 0.272 0.073 0.177 0.138 0.262
24 0.095 0.204 0.099 0.211 0.127 0.239 0.153 0.275 0.258 0.348 0.131 0.256 0.292 0.398 0.103 0.215 0.224 0.340 0.084 0.193 0.177 0.293
48 0.120 0.231 0.133 0.247 0.188 0.294 0.229 0.339 0.572 0.544 0.205 0.326 0.409 0.478 0.136 0.250 0.355 0.437 0.099 0.211 0.270 0.368
96 0.150 0.261 0.172 0.283 0.240 0.337 0.291 0.389 1.137 0.820 0.402 0.457 0.492 0.532 0.190 0.303 0.452 0.504 0.114 0.227 0.341 0.427

Avg 0.111 0.219 0.121 0.232 0.162 0.268 0.195 0.307 0.526 0.491 0.209 0.314 0.353 0.437 0.129 0.241 0.295 0.388 0.092 0.202 0.231 0.337

PE
M

S0
7

12 0.060 0.158 0.067 0.167 0.069 0.172 0.095 0.207 0.118 0.235 0.094 0.200 0.173 0.304 0.082 0.181 0.115 0.242 0.068 0.171 0.109 0.225
24 0.079 0.181 0.086 0.189 0.106 0.212 0.150 0.262 0.242 0.341 0.139 0.247 0.271 0.383 0.101 0.204 0.210 0.329 0.119 0.225 0.125 0.244
48 0.104 0.209 0.110 0.214 0.185 0.282 0.253 0.340 0.562 0.541 0.311 0.369 0.446 0.495 0.134 0.238 0.398 0.458 0.149 0.237 0.165 0.288
96 0.132 0.236 0.138 0.244 0.246 0.327 0.346 0.404 1.096 0.795 0.396 0.442 0.628 0.577 0.181 0.279 0.594 0.553 0.141 0.304 0.262 0.376

Avg 0.094 0.196 0.100 0.204 0.152 0.248 0.211 0.303 0.504 0.478 0.235 0.315 0.380 0.440 0.124 0.225 0.329 0.395 0.119 0.234 0.165 0.283

PE
M

S0
8

12 0.075 0.174 0.080 0.183 0.097 0.205 0.168 0.232 0.133 0.247 0.165 0.214 0.227 0.343 0.112 0.212 0.154 0.276 0.087 0.184 0.173 0.273
24 0.106 0.206 0.118 0.221 0.156 0.262 0.224 0.281 0.249 0.343 0.215 0.260 0.318 0.409 0.141 0.238 0.248 0.353 0.122 0.221 0.210 0.301
48 0.167 0.258 0.186 0.265 0.269 0.345 0.321 0.354 0.569 0.544 0.315 0.355 0.497 0.510 0.198 0.283 0.440 0.470 0.189 0.270 0.320 0.394
96 0.184 0.251 0.221 0.267 0.313 0.373 0.408 0.417 1.166 0.814 0.377 0.397 0.721 0.592 0.320 0.351 0.674 0.565 0.236 0.300 0.442 0.465

Avg 0.133 0.222 0.151 0.234 0.209 0.296 0.280 0.321 0.529 0.487 0.268 0.307 0.441 0.464 0.193 0.271 0.379 0.416 0.158 0.244 0.286 0.358

1st Count 14 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 5 0 0

D ERROR BARS

We obtain the standard deviation of TwinsFormer performance by training the model with 5 different
random seeds over 12 datasets. As seen in Table 8, the error bars of all the results are tiny, which
exhibits that the performance of TwinsFormer is robust and reliable.

Table 8: Robustness of TwinsFormer performance obtained from 5 random seeds on 12 benchmarks.

Dataset ETTm1 ETTm2 ETTh2 ECL

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

96 0.325 ± 0.001 0.364 ± 0.001 0.173 ± 0.001 0.256 ± 0.001 0.292 ± 0.001 0.345 ± 0.000 0.139 ± 0.000 0.233 ± 0.000
192 0.372 ± 0.001 0.390 ± 0.002 0.239 ± 0.001 0.300 ± 0.000 0.375 ± 0.002 0.395 ± 0.001 0.158 ± 0.001 0.252 ± 0.001
336 0.406 ± 0.002 0.412 ± 0.001 0.298 ± 0.000 0.339 ± 0.001 0.417 ± 0.004 0.429 ± 0.002 0.172 ± 0.002 0.267 ± 0.001
720 0.467 ± 0.002 0.448 ± 0.003 0.397 ± 0.002 0.397 ± 0.001 0.406 ± 0.003 0.430 ± 0.001 0.200 ± 0.004 0.293 ± 0.002

Dataset Traffic Exchange Solar-Energy Weather

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

96 0.382 ± 0.001 0.260 ± 0.000 0.081 ± 0.001 0.200 ± 0.001 0.193 ± 0.002 0.224 ± 0.002 0.161 ± 0.000 0.201 ± 0.000
192 0.392 ± 0.002 0.267 ± 0.001 0.172 ± 0.001 0.295 ± 0.001 0.223 ± 0.002 0.250 ± 0.002 0.211 ± 0.001 0.248 ± 0.001
336 0.410 ± 0.003 0.276 ± 0.003 0.320 ± 0.002 0.409 ± 0.001 0.246 ± 0.000 0.268 ± 0.001 0.266 ± 0.002 0.291 ± 0.001
720 0.442 ± 0.001 0.292 ± 0.001 0.812 ± 0.012 0.677 ± 0.005 0.245 ± 0.001 0.272 ± 0.001 0.347 ± 0.001 0.343 ± 0.001

Dataset PEMS03 PEMS04 PEMS07 PEMS08

Metrics MSE MAE MSE MAE MSE MAE MSE MAE

12 0.065 ± 0.000 0.169 ± 0.000 0.077 ± 0.003 0.181 ± 0.001 0.060 ± 0.000 0.158 ± 0.000 0.075 ± 0.000 0.174 ± 0.000
24 0.086 ± 0.000 0.196 ± 0.000 0.095 ± 0.001 0.204 ± 0.000 0.079 ± 0.000 0.181 ± 0.000 0.106 ± 0.000 0.206 ± 0.000
48 0.121 ± 0.001 0.234 ± 0.001 0.120 ± 0.002 0.231 ± 0.001 0.104 ± 0.001 0.209 ± 0.001 0.167 ± 0.001 0.258 ± 0.001
96 0.165 ± 0.000 0.276 ± 0.001 0.150 ± 0.001 0.261 ± 0.000 0.132 ± 0.001 0.236 ± 0.001 0.184 ± 0.002 0.251 ± 0.001

E FULL RESULTS FOR ABLATION STUDIES

To elaborate on the effectiveness of our TwinsFormer, we conduct detailed ablations covering dis-
abling (✗), swapping (swap), and replacing components (+). Due to the page limitation, we provide
detailed results and analysis here for ablation studies.

As shown in Table 8, we disable the decomposition and use the observed series as input for ①, where
the results indicate that decomposed components are more effective for model performance than the
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observed values as inputs. For ②, we swap the positions of the seasonal and trend components (i.e.,
feeding the trend components to the attention module while forcing the seasonal components as the
input for the interactive module.), and the results show that the multivariate correlations captured by
the attention module from the trend components are not effective as those obtained from the seasonal
components. For ③, we replace the subtraction mechanism with the addition operation, in which the
performance is inferior to TwinsFormer. This highlights that residual learning is more in line with
the idea of decomposition design. As for ③, ④, ⑤, and ⑥, we disable E′

T , AS , FS , and σ variants,
respectively. The performance of the four cases is worse than that of the full model, indicating that
each component is effective for the interactive module to capture inherent dependencies.

Table 9: Full ablation results on four benchmarks. We disable or replace each component of both
decomposition and interactions for TwinsFormer. ✓ and ✗ indicate with and without certain compo-
nents, respectively. H1, H2, H3, and H4 denote different prediction lengths, where prediction length
belongs to S ∈ {96, 192, 336, 720} for ECL and Traffic, while S ∈ {12, 24, 48, 96} for PEMS03
and PEMS07. Avg means the average results of all predicted lengths.

Design Decomposition Interactions Prediction
lengths

ECL Traffic PEMS03 PEMS07

− E′
T AS FS σ MSE MAE MSE MAE MSE MAE MSE MAE

TwinsFormer ✓ ✓ ✓ ✓ ✓ ✓

H1 0.139 0.233 0.382 0.260 0.065 0.169 0.060 0.158
H2 0.158 0.252 0.392 0.267 0.086 0.196 0.079 0.181
H3 0.172 0.267 0.410 0.276 0.121 0.234 0.104 0.209
H4 0.200 0.293 0.442 0.292 0.165 0.276 0.132 0.236

Avg 0.167 0.262 0.406 0.273 0.109 0.219 0.094 0.196

① ✗ ✓ ✓ ✓ ✓ ✓

H1 0.142 0.245 0.388 0.265 0.070 0.176 0.065 0.162
H2 0.160 0.258 0.405 0.278 0.093 0.204 0.083 0.185
H3 0.178 0.272 0.420 0.284 0.133 0.242 0.112 0.214
H4 0.224 0.312 0.456 0.301 0.169 0.283 0.146 0.254

Avg 0.176 0.272 0.417 0.282 0.116 0.226 0.102 0.204

② swap ✓ ✓ ✓ ✓ ✓

H1 0.140 0.238 0.389 0.263 0.069 0.175 0.061 0.160
H2 0.161 0.256 0.399 0.271 0.092 0.202 0.082 0.187
H3 0.175 0.268 0.414 0.279 0.128 0.239 0.115 0.217
H4 0.210 0.298 0.448 0.296 0.167 0.281 0.145 0.251

Avg 0.172 0.265 0.413 0.277 0.114 0.224 0.101 0.204

③ ✓ + ✓ ✓ ✓ ✓

H1 0.145 0.248 0.388 0.268 0.072 0.177 0.063 0.161
H2 0.168 0.263 0.402 0.271 0.095 0.204 0.081 0.186
H3 0.182 0.276 0.414 0.289 0.135 0.243 0.115 0.224
H4 0.223 0.311 0.458 0.304 0.171 0.286 0.147 0.255

Avg 0.180 0.275 0.416 0.283 0.118 0.228 0.102 0.207

④ ✓ ✓ ✗ ✓ ✓ ✓

H1 0.149 0.248 0.392 0.269 0.074 0.178 0.064 0.163
H2 0.172 0.265 0.407 0.275 0.099 0.207 0.083 0.189
H3 0.188 0.282 0.419 0.284 0.138 0.251 0.124 0.231
H4 0.229 0.318 0.452 0.303 0.176 0.290 0.149 0.257

Avg 0.185 0.278 0.418 0.283 0.122 0.232 0.122 0.210

⑤ ✓ ✓ ✓ ✗ ✓ ✓

H1 0.148 0.251 0.389 0.264 0.073 0.179 0.065 0.163
H2 0.172 0.263 0.399 0.270 0.095 0.205 0.084 0.192
H3 0.188 0.281 0.413 0.278 0.131 0.247 0.119 0.225
H4 0.222 0.311 0.449 0.300 0.173 0.284 0.143 0.251

Avg 0.183 0.277 0.413 0.278 0.118 0.229 0.103 0.208

⑥ ✓ ✓ ✓ ✓ ✗ ✓

H1 0.142 0.243 0.385 0.265 0.072 0.175 0.066 0.165
H2 0.163 0.257 0.396 0.273 0.096 0.203 0.084 0.194
H3 0.184 0.279 0.417 0.285 0.139 0.244 0.120 0.223
H4 0.215 0.303 0.451 0.302 0.177 0.288 0.147 0.259

Avg 0.176 0.271 0.412 0.281 0.121 0.228 0.104 0.210

⑦ ✓ ✓ ✓ ✓ ✓ ✗

H1 0.141 0.236 0.388 0.268 0.069 0.174 0.079 0.193
H2 0.160 0.255 0.404 0.271 0.094 0.204 0.084 0.190
H3 0.178 0.270 0.414 0.279 0.132 0.245 0.116 0.223
H4 0.223 0.310 0.445 0.294 0.178 0.289 0.147 0.254

Avg 0.176 0.268 0.413 0.278 0.118 0.228 0.107 0.215

In a nutshell, our decomposition design and interactive module are of importance for multivariate
time series forecasting. We take the intrinsic modules (i.e., attention module and feed-forward
network) as the cornerstone and utilize residual and interactive learning to better learn temporal and
multivariate correlations, thereby further enhancing the model capacity for forecasting performance.
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Table 10: Full results of promotion and attention compatibility on five Transformer-based models
for both long-term and short-term forecasting tasks.

Models Transformer Informer Autoformer Flowformer Periodformer
(2017) (2021) (2021) (2022) (2023)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL

Original

96 0.260 0.358 0.274 0.368 0.201 0.317 0.215 0.320 0.180 0.294
192 0.266 0.367 0.296 0.386 0.222 0.334 0.259 0.355 0.193 0.307
336 0.280 0.375 0.300 0.394 0.231 0.338 0.296 0.383 0.208 0.321
720 0.302 0.386 0.373 0.439 0.254 0.361 0.296 0.380 0.293 0.390

Avg 0.277 0.372 0.311 0.397 0.227 0.338 0.267 0.359 0.219 0.328

+Twins

96 0.139 0.233 0.138 0.232 0.151 0.242 0.140 0.234 0.142 0.235
192 0.158 0.252 0.156 0.248 0.161 0.253 0.159 0.252 0.157 0.249
336 0.172 0.267 0.170 0.264 0.176 0.269 0.171 0.267 0.173 0.267
720 0.200 0.293 0.208 0.301 0.215 0.303 0.201 0.293 0.207 0.298

Avg 0.167 0.262 0.168 0.261 0.176 0.267 0.168 0.262 0.170 0.262

Traffic

Original

96 0.647 0.357 0.719 0.391 0.613 0.388 0.691 0.393 0.562 0.343
192 0.649 0.356 0.696 0.397 0.616 0.382 0.729 0.419 0.587 0.356
336 0.667 0.364 0.777 0.420 0.622 0.337 0.756 0.423 0.612 0.370
720 0.697 0.376 0.864 0.472 0.660 0.408 0.825 0.449 0.672 0.423

Avg 0.665 0.363 0.764 0.416 0.628 0.379 0.750 0.421 0.608 0.373

+Twins

96 0.382 0.260 0.397 0.266 0.400 0.268 0.392 0.264 0.408 0.273
192 0.392 0.267 0.420 0.276 0.420 0.276 0.412 0.273 0.426 0.280
336 0.410 0.276 0.436 0.284 0.439 0.284 0.428 0.281 0.443 0.288
720 0.442 0.292 0.471 0.303 0.473 0.305 0.465 0.301 0.477 0.307

Avg 0.406 0.273 0.431 0.282 0.433 0.288 0.424 0.280 0.439 0.287

PEMS03

Original

96 0.105 0.205 0.202 0.293 0.272 0.385 0.105 0.207 0.128 0.257
192 0.121 0.222 0.173 0.277 0.334 0.440 0.127 0.229 0.173 0.306
336 0.145 0.248 0.186 0.286 1.032 0.782 0.155 0.257 0.268 0.384
720 0.175 0.274 0.211 0.304 1.031 0.796 0.173 0.287 0.490 0.524

Avg 0.137 0.237 0.193 0.290 0.667 0.601 0.140 0.245 0.265 0.368

+Twins

96 0.065 0.169 0.064 0.167 0.066 0.171 0.065 0.169 0.065 0.169
192 0.086 0.196 0.084 0.193 0.087 0.196 0.085 0.195 0.086 0.195
336 0.121 0.234 0.115 0.228 0.122 0.235 0.120 0.233 0.121 0.234
720 0.165 0.276 0.157 0.269 0.165 0.277 0.164 0.277 0.170 0.280

Avg 0.109 0.219 0.105 0.214 0.110 0.220 0.109 0.219 0.111 0.220

PEMS07

Original

96 0.173 0.235 0.189 0.255 0.199 0.336 0.174 0.236 0.117 0.238
192 0.174 0.238 0.193 0.258 0.323 0.420 0.173 0.236 0.147 0.275
336 0.181 0.245 0.196 0.261 0.390 0.470 0.183 0.244 0.226 0.353
720 0.185 0.252 0.196 0.260 0.554 0.578 0.180 0.245 0.309 0.407

Avg 0.178 0.243 0.194 0.259 0.367 0.451 0.178 0.240 0.200 0.318

+Twins

96 0.060 0.158 0.060 0.157 0.061 0.160 0.060 0.158 0.061 0.159
192 0.079 0.181 0.078 0.181 0.082 0.186 0.079 0.181 0.080 0.184
336 0.104 0.209 0.103 0.207 0.108 0.214 0.105 0.209 0.109 0.215
720 0.132 0.236 0.128 0.232 0.134 0.239 0.140 0.245 0.140 0.245

Avg 0.094 0.196 0.092 0.194 0.096 0.200 0.096 0.198 0.098 0.201
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Figure 7: Hyperparameter sensitivity concerning the learning rate, the number of Twinsblock, and
the hidden dimension of variate tokens. The results are recorded with the input length T = 96 and
the prediction length S = 96 on four benchmarks.

F EXTRA RESULTS FOR MODEL ANALYSIS

We apply the proposed Twinsblocks to Transformer and its variants and compare the performance
with the original results. Specifically, we regard Transformer (Vaswani et al., 2017), Informer (Zhou
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Figure 8: Performance of generation on unseen variates, comparing with iTransformer on PEMS07
and Traffic datasets. We train the model with {20%, 40%, 60%, 80%, 100%} variates, and evaluate
the performance by forecasting all variates.

et al., 2021), Autoformer (Wu et al., 2021), Flowformer (Wu et al., 2022), and Periodformer (Liang
et al., 2023) as original models, and treat various combinations of attention mechanisms and our
interactive strategy as Twins variants. As shown in Table 8, our framework has robust performance
under various attention mechanisms for the same benchmark and obtains better forecasting accuracy
than original Transformer-based variants when using the same attention mechanism.

We evaluate the hyperparameter sensitivity of TwinsFormer in terms of the learning rate, the number
of Twinsblock, and the hidden dimension of variate tokens. As shown in Figure 7, The performance
fluctuates under different hyperparameter settings. We can observe that the learning rate, as the most
common hyperparameter, should be carefully selected for different datasets. In most cases, increas-
ing the number of the Twinsblock tends to strengthen the model performance, especially in datasets
with numerous varieties. For scenarios involving many attributes, the forecasting performance will
decrease when the hidden dimension of variate tokens is larger than 1024.

As seen in Figure 8, we set 5 variate proportions to explore the model generalization performance
for short-term and long-term forecasting. From the figure, we can observe that the prediction per-
formance is better as the number of variate increases for both forecasting tasks. Comparatively,
the performance of TwinsFormer is better than that of iTransformer under any variate proportion,
which demonstrates that our method has a more powerful generalization ability than iTransformer.
Notably, TwinsFormer can be naturally trained with 20% variates and learn transferable representa-
tions to achieve favorable forecasting on all varieties.

G SHOWCASES

G.1 VISUALIZATION OF REPRESENTATIONS

To better understand the representations learned by our model, we visualize the learned multivariate
correlations by the pre-Softmax scores. Following (Liu et al., 2024), we normalize each variate token
on its feature dimension and reveal the variate-wise correlation by the whole score map A ∈ RN×N

among N paired variate tokens. Meanwhile, we visualize the trend, seasonal, and weighted repre-
sentations by normalized operation. As shown in Figure 9, we visualize the learned representations
of iTranformer (Liu et al., 2024) for comparison to illustrate the superiority of our method. Based on
Figure 9, we can observe that the multivariate correlations learned by TwinsFormer are clearer than
those of iTransformer. Consequently, the learned representation via seasonal and trend branches
can capture more effective information than iTranformer without decomposition design. Taking the
representation in Figure 9 for example, (b), (c) and (d) contain more obvious information in the gold
dashed box, and (a) has no variations within the red dashed boxes in the corresponding positions of
(b), (c) and (d). Such differences show that TwinsFormer can better capture inherent dependencies
of time series than iTransformer for forecasting tasks.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

iTransformer

TwinsFormer

(a) Full time series representations (b) Seasonal + Trend representations

(c) Seasonal representations (d) Trend representationsVariates

E
m

b
e
d

d
in

g
s

Figure 9: Analysis of multivariate correlations and series representations, comparing with iTrans-
former on ECL dataset. The left part of the dashed line denotes the multivariate correlations learned
by iTransformer and TwinsFormer. Full series representations are obtained using iTransformer, and
the rest are extracted from TwinsFormer. Zoom in for more details.
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Figure 10: Analysis of multivariate correlations and series representations in different TwinsBlock
on ECL dataset. The attention map and decomposed components of Layer 1 and n are obviously dif-
ferent, which indicates that our dual-stream framework can learn the interactions between seasonal
and trend components, and thus better capture the multivariate dependencies.

In Figure 10, we provide the visualization of the attention maps and the decomposed components
in different layers. Naturally, the inputs fed to the first TwinsBlock are the initial decomposed
components obtained by the moving average kernel, while the inputs to the last TwinsBlock are
decomposed components learned by our dual-stream interaction structure. Accordingly, the atten-
tion map of Layer 1 captures the multivariate correlations among the initial seasonal components,
while the attention map of Layer n obtains the multivariate correlations among the learned seasonal
components. The attention map and decomposed components of Layer 1 and n are obviously dif-
ferent, which indicates that our dual-stream framework can learn the interactions between seasonal
and trend components, and thus better capture the multivariate dependencies.

In Figure 11-12, we present a detailed decomposed comparison of the moving average kernel and
our interactions. Note that, the decomposed components by the moving average kernel can be re-
garded as initial decomposed components, while the decomposed components by our interactions
are learned from our TwinsFormer. From these two figures, we can observe that the learned com-
ponents are different from the initial components, where especially the learned seasonal component
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Figure 11: Trend-seasonal decomposition results obtained by the moving average kernel and our
interactions on ECL. To better compare the variations of raw time series with the seasonal compo-
nents, we translate the seasonal components on the vertical axis.
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Figure 12: Trend-Seasonal Decomposition Results obtained by the moving average kernel and our
interactions on Traffic. To better compare the variations of raw time series with the seasonal com-
ponents, we translate the seasonal components on the vertical axis.

can better reflect the variations of the original time series than the initial seasonal component. Such
variations fully demonstrate that our dual-stream framework can better capture the inherent depen-
dencies of time series.
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Figure 13: ECL prediction cases among different models under the input-96-predict-96 setting.
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Figure 14: Traffic prediction cases among different models under the input-96-predict-96 setting.

G.2 VISUALIZATION OF PREDICTION RESULTS

For clarity and comparison among different models, we present supplementary forecasting show-
cases on four representative benchmarks in Figure 13, 14, 15, and 16. To be concrete, we provide
prediction cases for TwinsFormer, iTransformer (Liu et al., 2024), TimeMixer (Wang et al., 2024),
PatchTST (Nie et al., 2023), Crossformer (Zhang & Yan, 2023), and DLinear (Zeng et al., 2023)
over ECL, Traffic, Weather, and PEMS07 datasets. Among these models, TwinsFormer exhibits
superior forecasting performance with the most precise future series variations. Note that, all the
qualitative results of different models are obtained with a fixed input length T = 96 and forecasting
horizon S = 96 over four datasets.
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Figure 15: Weather prediction cases among different models under the input-96-predict-96 setting.
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Figure 16: PEMS07 prediction cases among different models under the input-96-predict-96 setting.
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