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T2VIndexer: A Generative Video Indexer for Efficient Text-Video
Retrieval

Anonymous Author(s)

ABSTRACT
Current text-video retrieval methods mainly rely on cross-modal
matching between queries and videos to calculate their similar-
ity scores, which are then sorted to obtain retrieval results. This
method considers the matching between each candidate video and
the query, but it incurs a significant time cost and will increase
notably with the increase of candidates. Generative models are
common in natural language processing and computer vision, and
have been successfully applied in document retrieval, but their
application in multimodal retrieval remains unexplored. To en-
hance retrieval efficiency, in this paper, we introduce a model-based
video indexer named T2VIndexer, which is a sequence-to-sequence
generative model directly generating video identifiers and retriev-
ing candidate videos with constant time complexity. T2VIndexer
aims to reduce retrieval time while maintaining high accuracy.
To achieve this goal, we propose video identifier encoding and
query-identifier augmentation approaches to represent videos as
short sequences while preserving their semantic information. Our
method consistently enhances the retrieval efficiency of current
state-of-the-art models on four standard datasets. It enables base-
lines with only 30%-50% of the original retrieval time to achieve
better retrieval performance on MSR-VTT (+1.0%), MSVD (+1.8%),
ActivityNet (+1.5%), and DiDeMo (+0.2%). The code is available at
https://anonymous.4open.science/r/T2VIndexer-40BE.

CCS CONCEPTS
• Information systems→ Language models;Retrieval models
and ranking; Novelty in information retrieval.

KEYWORDS
Deep Learning, Multi-modal Learning, Video Retrieval, Generative
Model

1 INTRODUCTION
Given a query text description, text-video retrieval [26] aims to re-
trieve videos that are semantically relevant to the query. Text-video
retrieval is flexible to express the user’s intent and brings emerging
attention for web search with the dramatic increasing of videos
uploaded online every day. For a standard web search engine [20],
video retrieval and ranking are two core stages. The retrieval stage
first retrieves limited number of candidate videos from massive
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Figure 1: (a) Two streammethod with independent video and
text encoders. (b) Video sparse sampling for efficiency boost.
(c) Our generative video indexer for efficiency boost.

online videos, and the following ranking stage predicts accurate
ranking scores between per query and the candidate videos. Since
videos have much richer and more diverse visual content compared
with the query text, precise video ranking is costly for fine-grained
text-video matching. Therefore, the efficiency and recall perfor-
mance of video retrieval stage is essential to the fast and accurate
text-video search.

Existing text-video retrieval methods can be divided into two cat-
egories, namely one-stream and two-stream approaches. One-stream
approaches [32] [12] [16] adopts deep models for feature-level inter-
actions between each text-video pair to predict its similarity score,
which require online feature extraction and fail to be applied for
the time-sensitive retrieval stage. Thus, the efficient two-stream
approaches [9] [17] [23] are widely applied. As shown in Figure
1 (a), they encode each video and text independently into dense
embeddings and then adopt simple matching functions to measure
their similarity. Since there are no text-video interactions in the en-
coding stage, two-stream approaches allows offline data embedding
extraction and alleviating online computation. Some recent works
begin to focus on the issues of reducing the high computational
overload of dense video embedding by sparsely sampling a few clips
[12] (see Figure 1 (b)). However, all the existing solutions require to
measure the query-video similarities and then rank videos for the
entire video set (i.e., one-to-all retrieval framework). Thus, their
online retrieval time grows linearly with the increase of retrieved
videos, which limits their scalability on large-scale scenarios.
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To address the above issue, we explore to fundamentally change
the traditional one-to-all embedding retrieval framework by a gen-
erative deep model that directly generates video identifiers and
retrieves video candidates with constant time complexity. As il-
lustrated in Figure 1 (c), our target of this work is not to propose
a new model on text-video retrieval. We mainly investigate how
to design a model-based indexer that effectively retrieves query-
relevant video candidates, which shortens the overall retrieval time
while maintaining the retrieval accuracy of state-of-the-art ranking
models. To this end, we propose a sequence-to-sequence genera-
tive network that supports Text query to Video candidate Index,
named as T2VIndexer. The model is based on the encoder-decoder
that feeds the query into the encoder and generates the identifier
of the video candidate through the decoder. It is trained by query-
identifier pairs that supports controllable video recall at different
semantic grained. During inference, the top 𝐾 videos are directly
retrieved by beam search and identifier constrain.

To guarantee the effectiveness of T2VIndexer, we have proposed
several methods to tackle the key challenges. First, to get the se-
mantic representations and coarse-to-fine identifiers of videos for
controllable video recall, we utilize CLIP [19] to embed each video,
and then cluster and encode the semantic embeddings in a hier-
archical mode. Second, we propose to leverage the pre-trained
multi-modal large language model [28] to generate new queries
with diverse views of the video content, which augments the query-
identifier pairs during training for stronger generalization ability
during inference. Third, we propose to train a generative network
based on T5 [4] architecture to enable the deep interactions between
the query and video identifier, which enhances the cross-modal
correlation learning for precise identifier prediction.

The main contributions are summarized as follows: (1) We pro-
pose a novel sequence-to-sequence generative framework as a video
indexer for efficient video candidate retrieval. Our approach directly
predicts the candidate videos with constant time complexity that
significantly outperforms existing one-to-all embedding retrieval
solutions with linear time complexity. It demonstrates the effec-
tiveness of generative video index and sheds new light on the re-
search on generation-based text-video retrieval mechanism. (2) We
novelly propose the video identifier encoding and query-identifier
augmentation approaches for learning T2VIndexer with strong gen-
eralization ability. T2VIndexer is model-agnostic and universal to
cooperate with various independent-embedding approaches, which
remarkably improves their retrieval efficiency with even better re-
trieval performance. (3) Our T2VIndexer approach is consistently
effective for diverse text-video retrieval tasks. By cooperated with
T2VIndex, the state-of-the-art models cost merely 30% to 50% of
original retrieval time across four typical tasks. The time cost will
be further reduced with the increase of retrieved videos, which
impacts a broader range of text-video applications.

2 RELATEDWORK
Text-video retrieval. Existingmethods can be divided into two cat-
egories, called one-stream and two-stream approaches. One-stream
approaches are characterized by token-level interactions based on
cross-modal attention mechanisms, which are used for fine-grained
video-text matching [32] [12] [16] [24]. Two-stream approaches

aim to coordinate videos and text in a unified semantic space and
perform direct comparisons through distance metrics [9] [17] [23].
With the success of pre-trained image-text alignment model such
as CLIP [19], this method not only surpasses interactive embed-
ding methods in efficiency but also has significant advantages in
accuracy. In addition, efficiency enhancements have focused on
video sampling strategies. Some methods choose to sample the
frame sparsely [12] [17]. Besides, redundancy persists within the
vision tokens of each frame, diminishing the prowess of CLIP-style
retrieval. CenterCLIP [31] addressed this by refining patch sub-
division and selection via clustering. These innovations enhance
preprocessing efficiency but do not alleviate the inherent online
retrieval latency due to similarity computations and ranking cost.
Generative Model in Retrieval. In unimodal retrieval tasks, the
same efficiency issues are faced. With the success of generative
models in various visual and language tasks, they have demon-
strated powerful capabilities. In document retrieval, models like
DSI [21] demonstrate the ability to generate identifiers using Trans-
former architectures, while approaches like SEAL [3] innovate by
substituting string identifiers with document n-grams. The NCI
[22] further refines this approach by integrating positional infor-
mation into the decoding process. Image-to-image retrieval tasks
have transformed these methods into visual modality. For example,
IRGen [30] tokenizes images to identifiers and uses a generative
model to map queries to these identifiers for direct localization,
thereby improving retrieval efficiency. These methods have demon-
strated powerful capabilities in unimodal retrieval. However, videos
contain rich target and event. There is an obvious many-to-many
problem, which means one video corresponds to multiple different
descriptions from different perspectives, and a summary description
corresponds to multiple different videos.

3 METHODOLOGY
The text-video retrieval involves a text query 𝑡 and a gallery of
videos 𝑉 . The objective is to retrieve videos {𝑣 𝑗 } ∈ 𝑉 that are se-
mantically relevant to the query. As shown in Figure 2, our goal is
to directly retrieve targeted videos by generating the video identi-
fiers based on natural language queries. To this end, we design a
sequence-to-sequence generative model that takes query 𝑡 as input
and outputs the video identifier for video index. We first propose
a semantic-aware tree structure to encode video identifiers, called
SemID, which encodes the multi-grained semantics of videos by
a sequence for controllable recall while maintaining the sequence
length as short as possible for fast encoding. To augment the se-
mantic expression of queries for more generalized model learning,
we propose to utilize a Multi-modal Large Language Model (MLLM)
[28] to generate a set of multi-view queries for each video, thereby
enriching the contextual semantics encapsulated by the SemIDs
for diverse queries. The model architecture, training and inference
strategies are introduced in the end.

3.1 Vi-SemTree for Video Identifying
The purpose of our work is to locate videos by taking query 𝑡 as
input and outputting the most relevant video identifier. Therefore,
finding a suitable identifier as the basis for video location is crucial.
The identifier needs to have semantic prior information so that it
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Figure 2: An overview of our T2VIndexer. T2VIndexer uses two different strategies for the training and inference stages. For
the training stage, as shown in (a), the process of dividing the training set into a tree structure is illustrated. Training stage
(b) shows the process of achieving multi-view query expansion through MLLM. (c) presents the pipeline for model training.
For the inference stage, the new video is first inserted into the semantic tree and assigned a SemID, and the baseline model
provides the precise retrieval results.

can reflect the content of the video, and similar semantic videos
are also similar in the identifier. Moreover, the sequence length
should be short enough to reduce the difficulty and complexity of
model generation. Based on this consideration, we first extract the
representation of each video, and construct a Video Semantic Tree
(Vi-SemTree) based on the semantics of the video, and provide a
SemID as an identifier for each video based on the tree structure.
This approach ensures the semantic consistency of locating videos
and guarantees the recall rate of the generation phase.
Video Semantic Representation. To construct Vi-SemTree and
obtain a sequence representation of SemID, we first extract the
representation of the video. Compared with pixel-level information,
Vi-SemTree requires the integration of semantic-level information,
which is more seamlessly integrated with the structure of natu-
ral language. To meet this requirement, we chose the image en-
coder of CLIP [19], which is famous for its multimodal pretraining
ability, as the basic tool for our video encoding. Given a video’s
sequence of frames 𝑣 𝑓 = {𝑓 1, 𝑓 2, ..., 𝑓 𝑁 }, where 𝑁 is the number
of frames. We derive the corresponding frame representation as
𝑓 = {𝑓 1, 𝑓 2, ..., 𝑓 𝑁 }, culminating in the overall video representation
𝐹 , obtained through mean pooling of the individual frame repre-
sentations. Conforming to the methodologies laid out by ViT [7]
and CLIP [19], the output gleaned from the [class] token is utilized
to represent each frame.
Hierarchical Vi-SemTree Building.We use a tree structure to
encode videos, which helps preserve semantic information and
ensures that similar semantic videos are also similar in the identifier.

Moreover, by controlling the depth 𝑑 of the tree, we can achieve
different levels of granularity and control the sequence length.
Following NCI[22], we use hierarchical 𝑘-means method for video
feature 𝐹 , as shown in the training stage (a) of Figure 2. First, we
use the 𝑘-means algorithm to divide the training set videos into 𝑘
clusters based on their representation similarity. Each cluster is a
tree node and contains a group of semantically similar videos, which
serves as a layer of the tree structure. For each cluster, if the number
of videos is greater than 𝑐 , we use the 𝑘-means algorithm to further
divide the cluster, generating the next layer of the tree, which is
more granular at the semantic level. We repeat this process until
we obtain a tree structure 𝑇 with the root 𝑟 , where semantically
similar videos are located in the same path.
Vi-SemTree for SemID Encoding. To directly retrieve a video
set, we introduce SemID, a unique identifier derived from the Vi-
SemTree, which serves as a pivotal reference for our generative
model. We define the SemID as the path 𝐿path = {𝑙0, 𝑙1, ..., 𝑙𝑑 },
traversing from the root node 𝑟 down to a leaf node with 𝑑 marking
tree depth. Specifically, the root node is represented as 0, serving
as the start symbol. Each edge branching out from each node is
numbered starting from 0, with values ranging from 0 to 𝑘 . From
top to bottom, this sequence serves as the SemID 𝐿𝑝𝑎𝑡ℎ .

3.2 Multi-view Textual Query Expansion
Due to the characteristics of the video modality, it has rich semantic
information, and different descriptions can be generated from dif-
ferent perspectives based on different events. Therefore, a video can
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Figure 3: Overview of the generative model of T2VIndexer.

correspond to multiple different queries. However, the existing one
video corresponds to only few descriptions, which is insufficient to
cover the content of the video, making it difficult for the model to
understand the semantic information of each SemID correspond-
ing to the video group. To overcome this challenge, we designed
a multi-view query expansion strategy, as shown in the Training
stage (b) of Figure 2, aimed at enhancing the semantic richness.

To comprehensively capture the different elements such as tar-
gets, events, and themes that appear in the video and generate
natural language descriptions that correspond to the relevant infor-
mation as additional queries, Multimodal Large Language Model
(MLLM) is an important tool. Unlike the single and coarse descrip-
tions provided by dense video caption models, MLLM can generate
multi-angle descriptions according to different prompts, capturing
various information that appears in the video. Based on MLLM, we
generated 50 different queries from different perspectives for each
video, achieving coverage of semantic information.

Based on the query 𝑡 provided in the dataset and the extended
query 𝑡 , the query set𝑄𝑖 = {𝑡𝑖 , 𝑡𝑖 } is associated with each video 𝑖 in
the training set 𝐷 . We can represent the training data pairs for the
generation model as{(𝑞, 𝑆𝑒𝑚𝐼𝐷𝑖 ), 𝑞 ∈ 𝑄𝑖 , 𝑖 ∈ 𝐷}, where 𝑆𝑒𝑚𝐼𝐷𝑖

is the 𝐿𝑝𝑎𝑡ℎ = {𝑙0, 𝑙1, ..., 𝑙𝑑 } of the node where video 𝑖 is located.
However, as the tree structure deepens, the semantic information
of videos in different nodes becomes increasingly similar. This may
lead to a decrease in the recall effect of relatively coarse-grained
Queries. To merge more videos with similar semantics and simplify
the generation process, we choose the truncated version of the path
as SemID, represented as 𝐿𝑡

𝑝𝑎𝑡ℎ
= {𝑙0, 𝑙1, ..., 𝑙𝑑−𝑡 }, to ensure efficient

and semantically consistent grouping.

3.3 Generative Retrieval Model
To achieve direct positioning of the target video through SemID, we
chose to use a sequence-to-sequence generative model to directly
generate the corresponding SemID based on the input query, as
shown in Figure 3. First, the input query is added with position
embedding and input into the transformer encoder to obtain the
representation 𝑓𝑡 . The probability of generating the SemID sequence
as follows to construct,

𝑝 (𝐿𝑡
𝑝𝑎𝑡ℎ

|𝑓𝑡 ) =
∏
𝑖=1

𝑝 (𝑙𝑖 |𝑓𝑡 , 𝑙0, 𝑙1, ..., 𝑙𝑖−1) (1)

which means the next token is generated according to the sequence
of previously generated tokens. This probability problem can be
solved by the traditional transformer encoder-decoder structure.

The input of the encoder and the output of the decoder can be
regarded as two different semantic spaces, corresponding to the
natural language space and the video semantic tree space.

However, unlike standard decoding tasks, the same token ap-
pearing at different positions in the video semantic tree space has
different meanings because they are in different layers of the Vi-
SemTree. For example, as shown in the framework Figure 2, for
SemID ‘00 − 01 − 02’, the token ‘01’ in the first layer represents the
semantic of the category “sports”, while ‘02’ in the second layer only
represents “basketball”. In addition, even if they are in the same
layer, the same token ‘02’ in SemID ‘00 − 01 − 02’ and ‘00 − 21 − 02’
expresses different concept due to their different prefixes. In order
to identify different representations at different positions during
decoding, we were inspired by NCI [22] in document retrieval and
used the Prefix-Aware Weight-Adaptor (PAWA) decoder, as shown
in Figure 3.

Unlike the standard transformer decoder, the PAWA decoder uses
different parameters when generating tokens at different positions,
and the parameters between different steps are not shared. The
specific settings are as follows. First, the encoder encodes the query
to obtain the encoding 𝑥 , and decoder output 𝐸 as follows,

𝐸𝑖 = Decoder(𝑥, 𝑙0, 𝑙1, ..., 𝑙𝑖−1;𝜃𝑖 ) (2)

where 𝜃𝑖 represents the parameters of each decoding step, and the
parameters of each step are different, distinguishing the semantic of
different position tokens. In addition, to further enhance the prefix
information as the basis for generation, the PAWA decoder further
modifies the linear classification layers based on the prefix sequence.
Specifically, instead of using the same projection weight𝑊 in the
linear classification layer, the PAWA decoder uses an additional
decoder to generate different weights for each position,

𝐸′𝑖 = Decoder’(𝑙0, 𝑙1, ..., 𝑙𝑖−1;𝜃 ′𝑖 ) (3)

𝑊𝑖 = Linear(𝐸′𝑖 ) (4)
where 𝜃 ′

𝑖
represents the parameters of the decoder that generates

the weights, and𝑊𝑖 is the generated weight matrix for the cor-
responding classifier. Finally, the i-th token is represented as 𝑙𝑖 ,
calculated by softmax(𝐸𝑖𝑊𝑖 ).

3.4 Model Training and Inference
Training Loss. The loss function for a set of training examplesD =

{(𝑞, 𝐿𝑝𝑎𝑡ℎ)}, consisting of queries (training queries and expansion
queries) and video SemID, can be expressed as follows,

L(𝜃 ) =
D∑︁

(𝑞,𝐿𝑝𝑎𝑡ℎ )
log(𝐿𝑝𝑎𝑡ℎ |𝑞, 𝜃 ) (5)

where log(𝐿𝑝𝑎𝑡ℎ |𝑞, 𝜃 ) represents the probability of generating SemID
based on 𝑞, and is a standard sequence-to-sequence cross-entropy
loss with teacher forcing.
Coarse-to-fine Inference. During the training stage, since the
videos in the test set are not visible, this part of the videos is not
assigned a SemID. In order to cover test set, a new video needs to
be assigned a SemID as its identifier as shown in Figure 2 Inference
Stage. The new video will get the representation in the same way as
the training set using CLIP encoder, and then the video similarity

4
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with the leaf nodes in the tree will be calculated. The video will be
inserted into the leaf node with the highest similarity and inherit
the SemID of the leaf node. For the input query 𝑞, the probability
𝑝 (𝐿𝑡

𝑝𝑎𝑡ℎ
|𝑞, 𝜃 ) is calculated by the generative model trained, and the

target SemID is obtained to achieve direct positioning of a group
of target videos. In the decoding process, considering the seman-
tic summarization ability of natural language query, which makes
videos that meet the description may not be in the same path, we
use the Beam Search algorithm for decoding. This enables us to
retrieve the top k SemIDs that meet the description, to adapt to
this one-to-many issue. Based on the generated SemIDs, we ob-
tain a small candidate set 𝑉𝑐𝑎𝑛𝑑 = {𝑉𝑆𝑒𝑚𝐼𝐷1 ,𝑉𝑆𝑒𝑚𝐼𝐷2 , ...,𝑉𝑆𝑒𝑚𝐼𝐷𝑘

}
containing the target videos, where 𝑆𝑒𝑚𝐼𝐷𝑖 represents a group of
videos corresponding to the i-th top SemID generated.

Due to the limitations of the first stage, it is currently not feasible
to achieve precise retrieval based on the query. In order to meet the
requirements of the task and achieve precise retrieval, fine-tuning
of 𝑉𝑐𝑎𝑛𝑑 is required. For this purpose, we introduce a two-stage
retrieval architecture and use the existing text-video retrieval model
for precise retrieval in𝑉𝑐𝑎𝑛𝑑 . T2VIndexer can be integrated with the
existing retrieval model without adjusting the training parameters.
For a text-video retrieval model𝑀𝑏𝑎𝑠𝑒 , the similarity 𝑠 between 𝑞
and each video 𝑣 in𝑉𝑐𝑎𝑛𝑑 is calculated, and the final retrieval result
is obtained by ranking 𝑠 . Overall, the entire retrieval process can
be divided into two main stages: Pre-select based on generative
models and Precise Recall based on contrastive learning models.

4 EXPERIMENTS
Datasets and Evaluation Metrics. We validate our model on
four dataset: MSR-VTT, MSVD, DiDeMo, and ActivityNet Caption.
MSR-VTT [26] encompasses 10,000 videos, paired with 200,000
captions. We employ the Training-9k variant, following the data
splits proposed by [10]. MSVD [5] contains 1,970 videos, and a
wealth of approximately 40 associated English sentences per video.
Train, validation and test splits contain 1,200, 100, and 670 videos,
respectively. DiDeMo [1] contains 10,000 videos annotated with
40,000 sentences. We evaluate video-paragraph retrieval following
[15], [13] and [2], where all sentence descriptions for a video are
concatenated into a single query. ActivityNet [11] consists of 20,000
YouTube video. We follow the setting from [29] to concatenate all
the descriptions of a video to form a paragraph and evaluate the
model with video-paragraph retrieval.

We adopt standard retrieval metrics, namely recall at rank K
(R@K), calculates the percentage of instances where the correct
result is successfully retrieved within top K.
Implementation Details. We utilized the image encoder from
the pre-trained CLIP (Vit B/32) model. For constructing the Vi-
SemTree, we opted for 𝑘-means algorithm [18], setting both k and
c to 30. SemID truncation length 𝑡 set to 2 and select top 11 beam
search results from generative model. The encoder parameters were
initialized using the T5 pre-trained model [4], while the decoder
parameters were randomly initialized. During training, the learning
rate was set to 2×10−4 for the encoder and 1×10−4 for the decoder.
We utilized 8 NVIDIA V100-32GB GPUs, with a batch size of 16 per
GPU and a dropout ratio of 0.1.

4.1 Efficiency of T2VIndexer
The purpose of T2VIndexer is to improve retrieval efficiency while
maintaining accuracy. In Table 1, we analyzed the accuracy and ef-
ficiency of T2VIndexer under different candidate sets with a single
RTX3090 GPU and 8255C CPU. In the efficiency analysis, we im-
posed some restrictions to simulate real application scenarios. First,
the time cost from receiving the query was calculated, without con-
sidering the offline phase, such as the construction of Vi-SemTree
and the allocation of SemID. Second, each query in the Test set
was retrieved one by one to return the target video, instead of ob-
taining all Queries and returning the overall results at once. From
the Table 1, it can be seen that T2VIndexer significantly reduces
inference time while maintaining the baseline effect. For exam-
ple, compared with the traditional method under 1000 candidate
videos, T2VIndexer reduces the time cost by 50%. The efficiency
improvement increases gradually with the size of the candidate
set. Under 10,000 candidate videos, the time compression reaches
30%. In addition, we also analyzed the performance of three other
datasets, as shown in Table 2.

Further analysis shows the efficiency improvement is due to the
structure of Vi-SemTree. When the candidate set expands 10,000,
the traditional method needs to process an additional 9000 data,
perform a large number of similarity calculations and sorting. For
T2VIndexer, the added 9000 videos will be distributed to each leaf
node, and cost of generative model generating SemID remains
unchanged, which ultimately improves efficiency. For example, if
Vi-SemTree has 100 leaf nodes, for 10,000 candidate videos, there
are an average of 100 target videos per leaf node, which significantly
reduces the retrieval pressure of the baseline. This means that the
T2VIndexer does not suffer from the same scalability issues as
traditional methods, and allows for a more distribution of data.

4.2 Evaluating on Large-Scale Dataset
To further investigate the effectiveness of T2VIndexer in real re-
trieval scenarios, we evaluate on larger scale data. Due to the limited
size of the existing dataset test sets, which mostly consist of 1000
candidate videos, we decided to redivide the TGIF dataset [14] into
50,000 training data and 50,000 testing data in a 5:5 ratio. Both
the baseline and the T2VIndexer generative model will be trained
solely on the 50,000 training data. Table 3 displays our test re-
sults, with each block representing a set of test results. It is evident
from the results that in large-scale retrieval scenarios, T2VIndexer
demonstrates more significant improvements in both efficiency and
accuracy compared to smaller-scale data.

The improvements in both efficiency and accuracy primarily
stem from the pre-select mechanism employed by T2VIndexer.
T2VIndexer operates with constant-time complexity to generate
an ID sequence, corresponding to a subset of videos on a small
scale. And the base model conducts similarity calculations and
sorting solely within this small-scale video subset, T2VIndexer sig-
nificantly reduces computational overhead by avoiding individual
matching, thus enhancing retrieval efficiency. Furthermore, the
pre-select mechanism aids in pinpointing the target video, elimi-
nating a majority of irrelevant videos in advance, thereby reducing
noise-induced interference on the baseline and effectively acting as
a filter to enhance retrieval accuracy.
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Table 1: Evaluation of the inference costs on MSR-VTT dataset. We report the R@1metric for the text-to-video task. Blue means
stage 1 generative time cost, and red means stage 2 time cost. The improvement of inference time refers to the compression
ratio of T2VIndexer, which is obtained by dividing the inference time with T2VIndexer by the inference time of the baseline.

#Candidate 1000 #Candidate 3000 #Candidate 5000 #Candidate 10000Method Inference Time(ms)↓ R@1↑ Inference Time(ms)↓ R@1↑ Inference Time(ms)↓ R@1↑ Inference Time(ms)↓ R@1↑
CLIP4Clip [17] 220 44.7 681 36.2 1139 31.6 2341 25.4
CLIP4Clip+T2VIndexer 105 (52+53) 47.8 218 (52+166) 40.3 336 (52+284) 35.1 639 (52+587) 27.3
Improvement 0.47 3.1 0.32 4.1 0.29 3.5 0.27 1.9
mPLUG [25] 189 53.0 562 44.7 961 38.3 1741 29.1
mPLUG+T2VIndexer 97 (52+45) 54.3 189 (52+137) 45.8 290 (52+238) 40.4 485 (52+433) 30.1
Improvement 0.51 1.3 0.34 1.1 0.30 2.1 0.28 1.0
CLIP-VIP [27] 192 54.1 579 48.4 968 40.1 1941 31.5
CLIP-VIP+T2VIndexer 98 (52+46) 55.1 194 (52+142) 49.3 295 (52+243) 41.3 537 (52+485) 33.1
Improvement 0.51 1.0 0.34 0.9 0.30 1.2 0.28 1.6

Table 2: Evaluation of the inference costs on MSVD, DiDeMo and ActivityNet dataset. We report the R@1 metric for the
text-to-video task. Blue means stage 1 generative time cost, and red means stage 2 time cost.

Method MSVD DiDeMo ActivityNet
Inference Time(ms)↓ R@1↑ Inference Time(ms)↓ R@1↑ Inference Time(ms)↓ R@1↑

CLIP4Clip [17] 209 45.1 225 43.4 1041 40.2
T2VIndexer+CLIP4Clip 106 (52+54) 47.4 102 (52+50) 46.3 311 (52+259) 42.6
Improvement 0.51 2.3 0.45 2.9 0.30 2.4
mPLUG [25] 193 53.6 201 56.4 923 52.2
mPLUG+T2VIndexer 102 (52+50) 55.4 98 (52+46) 56.6 292 (52+241) 53.5
Improvement 0.53 1.8 0.48 0.2 0.32 1.3
CLIP-VIP [27] 191 52.3 199 50.5 934 53.4
CLIP-VIP+T2VIndexer 101 (52+49) 54.0 97 (52+45) 51.9 299 (52+247) 54.9
Improvement 0.53 1.7 0.49 1.4 0.32 1.5

Table 3: Evaluation of the inference costs on large-scale
dataset split from TGIF [14]. We report the R@1 metric for
the text-to-video task. Blue means stage 1 generative time
cost, and red means stage 2 time cost.

Method Inference Time(ms)↓ R@1↑
Clip4Clip [17] 12322 13.4
Clip4Clip+T2VIndexer 3064(52+3012) 16.5
Improvement 0.25 3.1
mPLUG [25] 10249 18.2
mPLUG+T2VIndexer 2831(52+2779) 21.1
Improvement 0.27 2.9
CLIP-VIP [27] 10414 19.7
CLIP-VIP+T2VIndexer 2902(52+2850) 22.4
Improvement 0.28 2.7

4.3 State-of-the-Art Comparison
Table 4 is segmented into three blocks, each representing a dis-
tinct category of methods: Interactive embedding methods, Inde-
pendent embedding method, and ours T2VIndexer, which is im-
plemented based on different baselines. Observing the first two
blocks, two-stream approaches usually exhibit excellent perfor-
mance, which is mainly attributed to the powerful pretraining
ability of CLIP [19]. In the third block, we constructed T2VIndexer
based on CLIP4CLIP [17], mPLUG [25], and CLIP-VIP [27]. The orig-
inal performance of these three models improved in turn, providing
a basis for testing the effectiveness of T2VIndexer on different base-
lines with different degrees of effectiveness. As shown in Table 4,

T2VIndexer achieved significant improvement with the relatively
low-performance CLIP4CLIP model, increasing R@1 by 3.3% on
the MSR-VTT dataset. However, as the baseline model improved,
the accuracy gain of T2VIndexer decreased, and the maximum
improvement of the CLIP-VIP model was 1.0%.

This can be attributed to the candidates provided by T2VIndexer
to baseline models. T2VIndexer provides the same set of candidates
to the baseline models for a given query, effectively eliminating a
considerable number of irrelevant videos. For lower-performing
models, this removal of irrelevant videos is useful, significantly
reducing the input noise and enhancing accuracy. However, higher-
performing models are less sensitive to noise and can distinguish
relevant content more effectively, resulting in relatively lower im-
provements when assisted by T2VIndexer.

4.4 Ablation Study on Model Structure
To further investigate the impact of different components on the
model’s performance, we report the ablation results on the MSR-
VTT dataset in Table 5. (1)Without query expansion (w/o query
expansion)This part has themost significant impact on themodel’s
results. During the SemID generation process by T2VIndexer, the
original video is not seen. If the semantics of the original video are
not injected into SemID through queries during the training phase,
the model will fail to establish a relationship between the text and
SemID and will not be able to correctly generate SemID for queries
not seen during training. (2) Without Multi-view query expan-
sion (w/o Multi-view query expansion) This indicates not using
an MLLM (Multilingual Language Models) to generate multi-view
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Table 4: Comparison with Existing One-stream approaches and Two-stream approaches. Our Re-implemented methods are
denoted by the superscript ‘*’. The highest retrieval recall in each block is marked with underline. The recall of our models is
marked with blue color when it is better than the baseline model.

MSR-VTT 1k MSVD DiDeMo ActivityNet CaptionMethods R@1 R@5 R@10 R@sum R@1 R@5 R@10 R@sum R@1 R@5 R@10 R@sum R@1 R@5 R@10 R@sum
One-stream approaches

UniVL [16] 21.2 49.6 63.1 133.9 - - - - - - - - - - - -
ClipBERT [12] 22.0 46.8 59.9 128.7 - - - - 20.4 48.0 60.8 129.2 21.3 49.0 63.5 133.8
VLM [24] 28.1 55.5 67.4 151.0 - - - - - - - - - - - -

Two-stream approaches
MMT [9] 26.6 57.1 69.6 153.3 - - - - - - - - - 61.4 - -
Frozen [2] 31.0 59.5 70.5 161.0 33.7 64.7 76.3 174.7 34.6 65.0 74.7 174.3 28.8 60.9 - -
CLIP4Clip [17] 44.5 71.4 81.6 197.5 45.2 75.5 84.3 205.0 43.4 70.2 80.6 194.2 40.5 72.4 - -
CAMoE [6] 44.6 72.6 81.8 199.0 46.9 76.1 85.5 208.5 - - - - - - - -
CLIP2Video [8] 45.6 72.6 81.7 199.9 47.0 76.8 85.9 209.7 - - - - - - - -
Cap4Video [23] 51.4 75.7 83.9 211.0 51.8 80.8 88.3 220.9 52.0 79.4 87.5 218.9 - - - -
mPLUG [25] 53.1 77.6 84.7 215.4 - - - - 56.4 79.1 85.2 220.7 - - - -
CLIP-VIP [27] 54.2 77.2 84.8 216.2 - - - - 50.5 78.4 87.1 216.0 53.4 81.4 90.0 224.8

Ours
CLIP4Clip* 44.5 71.0 81.6 197.1 45.1 75.6 83.9 204.6 43.4 70.1 80.1 193.6 40.2 72.4 80.4 193.0
T2VIndexer+CLIP4Clip* 47.8 72.2 82.4 202.4 47.4 76.4 85.1 208.9 46.3 72.4 83.1 199.8 42.6 73.5 80.9 197.0
Improvement +3.3 +2.2 +0.8 +5.3 +2.3 +0.8 +1.2 +4.3 +2.9 +2.3 +1.0 +6.2 +2.4 +1.1 +0.5 +4.0
mPLUG* 53.0 77.4 82.3 212.7 53.6 81.4 88.3 223.3 56.4 79.0 84.3 219.7 52.2 80.8 89.3 222.3
T2VIndexer+mPLUG* 54.3 77.7 82.5 214.5 55.4 81.9 88.5 225.8 56.6 79.1 84.1 219.8 53.5 81.1 89.5 224.1
Improvement +1.3 +0.3 +0.2 +1.8 +1.8 +0.5 +0.2 +2.5 +0.2 +0.1 -0.2 +0.1 +1.3 +0.3 +0.2 +1.8
CLIP-VIP* 54.1 77.0 84.7 215.8 52.3 81.6 88.2 222.1 50.5 78.3 86.6 215.4 53.4 82.3 89.7 225.4
T2VIndexer+CLIP-VIP* 55.1 77.2 85.0 217.3 54.0 81.3 88.3 223.6 51.9 79.2 87.1 218.2 54.9 82.5 90.0 227.4
Improvement +1.0 +0.2 +0.3 +1.5 +1.7 -0.3 +0.1 +1.5 +1.4 +0.9 +0.5 +2.8 +1.5 +0.2 +0.3 +2.0

Table 5: Ablation Study on MSR-VTT-1kA

Method R@1 R@5 R@10
T2VIndexer+CLIP-VIP (full model) 55.1 77.2 85.0
w/o Query expansion 45.2 69.3 77.9
w/o Multi-view query expansion 52.8 75.3 83.1
w/o Vi-SemTree and SemID 54.0 76.9 84.6

Table 6: Ablation Study on MLLMs

MLLM R@1 R@5 R@10
mPLUG-owl 55.1 77.2 85.0
Minigpt-4 55.1 77.0 85.1
LLaVA 55.3 77.5 85.3

descriptions, and only using a dense caption model for generating
descriptions. The results suggest that the semantic expansion of
SemID allows the model to learn richer information, which can
better apply SemID to the test set. (3)Without Vi-SemTree and
SemID (w/o Vi-SemTree and SemID) Moreover, the experiment
without Vi-SemTree and SemID organization confirms our theo-
retical premise that structured pre-injection of prior knowledge
facilitates superior generalization.

4.5 Ablation Study on Different MLLMs
Utilizing Multi-Modal Large Language Models (MLLMs) for query
expansion effectively enhances the model’s generalization capabili-
ties. Various MLLMs show little difference in the quality of query
expansion, so the model’s effectiveness does not rely on a specific
MLLM. Apart from mPLUG-owl tested in the paper, we have also
conducted supplementary tests with Minigpt-4 and LLaVA. As evi-
dent from the results in Table 6 on the MSR-VTT dataset, different
MLLMs have a minor impact on retrieval accuracy.

Table 7: Ablation Study on different video feature extractors
on MSR-VTT with CLIP-VIP as baseline.

Feature Extractor R@1 R@5 R@10
S3D 51.3 72.4 81.6
CLIP image encoder 55.1 77.2 85.0
VideoMAE 55.4 77.8 85.6

4.6 Ablation Study on Video Feature Extractor
Different methods of video feature extraction will affect the struc-
ture of the Vi-Sem tree, thereby influencing the overall model’s
effectiveness. In Table7, we tested three different video feature ex-
traction methods: S3D based on pixel features, CLIP image encoder
based on semantic features of frames, and VideoMAE pre-trained
for video recognition. From the results comparison, it can be ob-
served that the method based on pixel features performs the worst,
even falling below the baseline model CLIP-VIP. This is mainly
because in this case, the tree structure reflects pixel information
rather than the more relevant semantic information associated with
natural language, resulting in poorer performance in the video pre-
select stage, failing to return clusters containing the correct videos
to the precise recall stage.

4.7 Generative Result Visualization
We further demonstrated the ability of T2VIndexer to locate target
videos through visualization. Three examples are shown in Figure
4, where the SemID generated by T2VIndexer has a high semantic
similarity with the target SemID, even in wrong mapping cases.
Specifically, for the query “video game clip showing here differ-
ent characters”, the SemID generated by T2VIndexer, 0-9-21, has a
stronger matching relationship with the query than ground-truth
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Figure 4: Visualization of the difference between Generative
Results and Ground-truth. We show the top-3 Generated
SemIDs for each text query. The truly matched results are
marked in green boxes and the falsely matched results are
in red boxes.

video. This indicates that the model has effectively learned the map-
ping between natural language space and SemID space, achieving
retrieve target videos directly.

4.8 Parameter Analysis

Figure 5: Different truncation length and top k SemID for
T2VIndexer on MSR-VTT-1kA.

We studied the impact of different model configurations. Fig-
ure 5(a) shows the effect of the top 𝑘 SemIDs with the highest
probability by beam search at 𝑡 = 2 on recall and the number of
candidates. As 𝑘 increases, the Recall of the second stage gradually
decreases due to the increase in the number of candidate sets in the
second stage. The overall Recall shows an upward trend followed
by a downward trend, with the optimal recall of 55.1 achieved at

Table 8: Ensemble framework comparative analysis. Pre-
select size represents the number of videos pre-selected in
the first stage.

Ensemble framework Pre-select size 50 Pre-select size 265
Stage 1
Recall

Overall
R@1

Inference
Time (ms)

Stage 1
Recall

Overall
R@1

Inference
Time (ms)

mPLUG+CLIP-VIP 93.4 55.6 198(189+9) 97.2 57.8 235(189+46)
T2VIndexer+CLIP-VIP 42.9 21.4 61(52+9) 93.7 55.1 98(52+46)

𝑘 = 11. Figure 5(b) analyzes the effect of different 𝑡 on Recall and
the number of candidate sets when 𝑘 = 11. It also shows an upward
trend with the optimal effect achieved at 𝑡 = 2.

5 LIMITATION AND FUTUREWORK
Although T2VIndexer has achieved certain results in efficient text-
video retrieval, there still exists performance limitations. T2VIndexer
consists of two stages: pre-select and precise retrieval, which in-
volve different models. This approach is similar to the ensemble
architecture. To further analyze the effectiveness of T2VIndexer,
we built a two-stage ensemble architecture based on the existing
sota models mPLUG and CLIP-VIP for comparative analysis, as
shown in Table 8. It can be seen that for existing ranking-based
models, the ensemble form can improve the accuracy of retrieval
at the expense of efficiency, which is superior to the generative
method of T2VIndexer in terms of effect. However, existing mod-
els need to process all candidate sets when performing Pre-select,
while T2VIndexer can directly locate the candidate set, which has a
significant advantage in efficiency. In addition, the existing pipline
cannot efficiently retrieve new videos that have not been seen when
constructing Vi-SemTree. For each new video, it is necessary to
insert it into a leaf node to obtain the corresponding SemID. This
operation involves a large number of similarity calculations and
sorting, which has a significant time cost. For example, inserting
videos in the MSR-VTT test set into the tree takes an average of
200 ms per video to assign SemID, which reduce the flexibility.

To further improve the reliability, our future work will focus on
improving the accuracy of the generative stage to achieve more
precise localization. At the same time, we aim to reduce the time
cost of new data and improve flexibility.

6 CONCLUSION
In this paper, we propose T2VIndexer, a model-based video indexer
that generates video identifiers directly and retrieves candidate
videos with constant time complexity, in order to shorten the overall
retrieval time while maintaining the retrieval accuracy of the base
model. We use hierarchical clustering to organize videos into a
tree structure called Vi-SemTree, which contains multiple layers
corresponding to relationships from coarse to fine. We specifically
trained a generative model for Vi-SemTree paths, correctly mapping
natural language space and video semantic space. T2VIndexer is
model-independent and can be seamlessly integrated with existing
methods. However, the retrieval effect of the generative model is
currently limited, and our future work will focus on improving the
accuracy of the generative retrieval to achieve precise retrieval, and
further improve the flexibility of the model when receiving new
videos and reduce preprocessing time.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

T2VIndexer: A Generative Video Indexer for Efficient Text-Video Retrieval Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell,

and Bryan Russell. 2017. Localizing moments in video with natural language. In
Proceedings of the IEEE international conference on computer vision. 5803–5812.

[2] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. 2021. Frozen
in Time: A Joint Video and Image Encoder for End-to-End Retrieval. In 2021
IEEE/CVF International Conference on Computer Vision. 1708–1718.

[3] Michele Bevilacqua, Giuseppe Ottaviano, Patrick S. H. Lewis, Scott Yih, Sebastian
Riedel, and Fabio Petroni. 2022. Autoregressive Search Engines: Generating
Substrings as Document Identifiers. In NeurIPS.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems, Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.).

[5] David Chen and William B Dolan. 2011. Collecting highly parallel data for
paraphrase evaluation. In Proceedings of the 49th annual meeting of the association
for computational linguistics: human language technologies. 190–200.

[6] Xing Cheng, Hezheng Lin, Xiangyu Wu, Fan Yang, and Dong Shen. 2021. Im-
proving video-text retrieval by multi-stream corpus alignment and dual softmax
loss. arXiv preprint arXiv:2109.04290 (2021).

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. In 2021 9th
International Conference on Learning Representations.

[8] Han Fang, Pengfei Xiong, Luhui Xu, and Yu Chen. 2021. CLIP2Video: Mas-
tering Video-Text Retrieval via Image CLIP. CoRR abs/2106.11097 (2021).
arXiv:2106.11097 https://arxiv.org/abs/2106.11097

[9] Valentin Gabeur, Chen Sun, Karteek Alahari, and Cordelia Schmid. 2020. Multi-
modal Transformer for Video Retrieval. In Computer Vision - ECCV 2020 - 16th
European Conference, Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-
Michael Frahm (Eds.). 214–229.

[10] Valentin Gabeur, Chen Sun, Karteek Alahari, and Cordelia Schmid. 2020. Multi-
modal transformer for video retrieval. In Computer Vision–ECCV 2020: 16th
European Conference. Springer, 214–229.

[11] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles.
2017. Dense-Captioning Events in Videos. In IEEE International Conference on
Computer Vision.

[12] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L. Berg, Mohit Bansal, and
Jingjing Liu. 2021. Less Is More: ClipBERT for Video-and-Language Learning via
Sparse Sampling. In IEEE Conference on Computer Vision and Pattern Recognition.
7331–7341. https://doi.org/10.1109/CVPR46437.2021.00725

[13] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg, Mohit Bansal, and
Jingjing Liu. 2021. Less is more: Clipbert for video-and-language learning via
sparse sampling. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 7331–7341.

[14] Yuncheng Li, Yale Song, Liangliang Cao, Joel R. Tetreault, Larry Goldberg, Ale-
jandro Jaimes, and Jiebo Luo. 2016. TGIF: A New Dataset and Benchmark on
Animated GIF Description. In 2016 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer
Society, 4641–4650. https://doi.org/10.1109/CVPR.2016.502

[15] Yang Liu, Samuel Albanie, Arsha Nagrani, and Andrew Zisserman. 2019. Use
What You Have: Video retrieval using representations from collaborative experts.
In 30th British Machine Vision Conference 2019. 279.

[16] Huaishao Luo, Lei Ji, Botian Shi, Haoyang Huang, Nan Duan, Tianrui Li, Jason
Li, Taroon Bharti, and Ming Zhou. 2020. Univl: A unified video and language
pre-training model for multimodal understanding and generation. arXiv preprint
arXiv:2002.06353 (2020).

[17] Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui
Li. 2022. CLIP4Clip: An empirical study of CLIP for end to end video clip retrieval
and captioning. Neurocomputing 508 (2022), 293–304.

[18] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[19] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
2021. Learning transferable visual models from natural language supervision. In
International conference on machine learning. PMLR, 8748–8763.

[20] Ruiyang Ren, Wayne Xin Zhao, Jing Liu, Hua Wu, Ji-Rong Wen, and Haifeng
Wang. 2023. TOME: A Two-stage Approach forModel-based Retrieval. In Proceed-
ings of the 61st Annual Meeting of the Association for Computational Linguistics,
Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (Eds.).

[21] Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen
Qin, Kai Hui, Zhe Zhao, Jai Prakash Gupta, Tal Schuster, William W. Cohen, and
Donald Metzler. 2022. Transformer Memory as a Differentiable Search Index. In
NeurIPS.

[22] Yujing Wang, Yingyan Hou, Haonan Wang, Ziming Miao, Shibin Wu, Qi Chen,
Yuqing Xia, Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Sun,
Weiwei Deng, Qi Zhang, and Mao Yang. 2022. A Neural Corpus Indexer for
Document Retrieval. In NeurIPS.

[23] Wenhao Wu, Haipeng Luo, Bo Fang, Jingdong Wang, and Wanli Ouyang. 2023.
Cap4Video: What Can Auxiliary Captions Do for Text-Video Retrieval?. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10704–10713.
https://doi.org/10.1109/CVPR52729.2023.01031

[24] Hu Xu, Gargi Ghosh, Po-Yao Huang, Prahal Arora, Masoumeh Aminzadeh,
Christoph Feichtenhofer, Florian Metze, and Luke Zettlemoyer. 2021. Vlm: Task-
agnostic video-language model pre-training for video understanding. arXiv
preprint arXiv:2105.09996 (2021).

[25] Haiyang Xu, Qinghao Ye, Ming Yan, Yaya Shi, Jiabo Ye, Yuanhong Xu, Chen-
liang Li, Bin Bi, Qi Qian, Wei Wang, Guohai Xu, Ji Zhang, Songfang Huang,
Fei Huang, and Jingren Zhou. 2023. mPLUG-2: A Modularized Multi-modal
Foundation Model Across Text, Image and Video. In International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 202), Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett (Eds.). 38728–38748.

[26] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. Msr-vtt: A large video description
dataset for bridging video and language. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 5288–5296.

[27] Hongwei Xue, Yuchong Sun, Bei Liu, Jianlong Fu, Ruihua Song, Houqiang Li,
and Jiebo Luo. 2022. Clip-vip: Adapting pre-trained image-text model to video-
language representation alignment. arXiv preprint arXiv:2209.06430 (2022).

[28] Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang
Wang, Anwen Hu, Pengcheng Shi, Yaya Shi, et al. 2023. mplug-owl: Modular-
ization empowers large language models with multimodality. arXiv preprint
arXiv:2304.14178 (2023).

[29] Bowen Zhang, Hexiang Hu, and Fei Sha. 2018. Cross-modal and hierarchical
modeling of video and text. In Proceedings of the european conference on computer
vision. 374–390.

[30] Yidan Zhang, Ting Zhang, Dong Chen, Yujing Wang, and Baining Guo. 2023.
IRGen: Generative Modeling for Image Retrieval. CoRR abs/2303.10126 (2023).
https://doi.org/10.48550/ARXIV.2303.10126 arXiv:2303.10126

[31] Shuai Zhao, Linchao Zhu, Xiaohan Wang, and Yi Yang. 2022. Centerclip: Token
clustering for efficient text-video retrieval. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
970–981.

[32] Linchao Zhu and Yi Yang. 2020. Actbert: Learning global-local video-text rep-
resentations. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 8746–8755.

9

https://arxiv.org/abs/2106.11097
https://arxiv.org/abs/2106.11097
https://doi.org/10.1109/CVPR46437.2021.00725
https://doi.org/10.1109/CVPR.2016.502
https://doi.org/10.1109/CVPR52729.2023.01031
https://doi.org/10.48550/ARXIV.2303.10126
https://arxiv.org/abs/2303.10126

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Vi-SemTree for Video Identifying
	3.2 Multi-view Textual Query Expansion
	3.3 Generative Retrieval Model
	3.4 Model Training and Inference

	4 Experiments
	4.1 Efficiency of T2VIndexer
	4.2 Evaluating on Large-Scale Dataset
	4.3 State-of-the-Art Comparison
	4.4 Ablation Study on Model Structure
	4.5 Ablation Study on Different MLLMs
	4.6 Ablation Study on Video Feature Extractor
	4.7 Generative Result Visualization
	4.8 Parameter Analysis

	5 Limitation and Future Work
	6 Conclusion
	References

