
Under review as a conference paper at ICLR 2023

STEERING PROTOTYPES WITH PROMPT TUNING FOR
REHEARSAL-FREE CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Prototype, as a representation of class embeddings, has been explored to reduce
memory footprint or avoid bias towards the latest task for continual learning. How-
ever, prototype-based methods still suffer from performance deterioration due to
semantic drift and prototype interference. In this work, we propose a simple and
novel framework for rehearsal-free continual learning. We show that task-specific
prompt-tuning when coupled with a contrastive loss design can effectively ad-
dress both issues and largely improves the potency of prototypes. The proposed
framework excels at three challenging benchmarks, resulting in 3% to 6% absolute
improvements over state-of-the-art methods without usage of a rehearsal buffer or
a test-time oracle. Furthermore, the proposed framework largely bridges the perfor-
mance gap between incremental learning and offline joint learning, demonstrating
a promising design schema for continual learning.

1 INTRODUCTION

Task1 Task2 Task3

Se
m

an
tic

dr
ift

Pr
ot

ot
yp

e
in

te
rf

er
en

ce

: prototype : data sample : drift : interference

Figure 1: An illustration of semantic drift and pro-
totype interference in the latent space. Both phe-
nomena occur simultaneously in continual learning
and cause catastrophic forgetting. Different colors
represent different classes.

Continual learning (Thrun, 1995), the capabil-
ity of learning sequentially from a continuous
stream of correlated data, is crucial for mod-
ern intelligent systems as the world is non-
stationary (Hadsell et al., 2020). Yet, existing
deep neural networks are known to be prone
to catastrophic forgetting (McCloskey & Co-
hen, 1989): models suffer from dramatic per-
formance degeneration on earlier learned tasks
when learn new information. Prototype (i.e.,
the class mean embedding (Snell et al., 2017))
exhibits a promising functionality in continual
learning context as it can retain previous knowl-
edge in a data-efficient manner (Zhu et al., 2021)
and avoid bias towards the latest task (Rebuffi
et al., 2017) when coupled with a nearest class
mean (NCM) (Mensink et al., 2013) classifier.
However, prototypes themselves are also subject
to abrupt efficacy drop due to semantic drift and
prototype interference. Concretely, learning a
sequence of tasks with a single model can be viewed as generating a sequence of snapshots of the
model, and only the latest version is retained. Therefore, a data sample at inference and its corre-
sponding prototype is, in fact, encoded by different embedding functions (except for data samples
from the latest task). This inconsistency can cause severe drifts in latent space as shown in Fig. 1
(top). Besides, when new data samples that bear similar semantics with previous classes appear, their
encoded features can locate near previous prototypes in latent space, thus causing interference as
illustrated in Fig. 1 (bottom).

A recent transfer learning paradigm, namely prompt-tuning (Lester et al., 2021; Jia et al., 2022),
demonstrates a strong knowledge adaption ability. It allows a tiny portion of extra learnable tokens
to steer a frozen transformer-based architecture (Vaswani et al., 2017). Therefore, prompt-tuning
reuses the pre-trained network in a parameter efficient manner without hurting its feature extraction

1

Under review as a conference paper at ICLR 2023

ability. Inspired by the efficiency of prompt-tuning and the plug-and-play property of the token, we
propose a novel framework built upon the basis of task-specific prompt that can effectively address
both semantic drift and prototype interference described above.

In our method, we associate the prototype of each class with a task-specific prompt group and maintain
a collection of corresponding pairs in memory. During inference, we combine the task-specific
prompt group with a frozen embedding function to reemerge each snapshot of the model. As such, we
effectively eliminate the inconsistency between embedding functions used for prototypes generation
and samples prediction. The frozen embedding function here can be deemed as consolidated
global knowledge that keeps the system stable. Prompt groups, on the other hand, learn task-
level specializations and maintain the plasticity of the system. To avoid prototype interference in
embedding space, we train task-specific prompt groups with the designed contrastive prototypical
loss. It encourages in-class clustering and increases inter-class distances giving a mixture of data
embeddings and prototypes. Since we only maintain previous knowledge as prototypes and put
them as anchors in latent space, the trained prompt groups can effectively steer prototypes to
avoid interference without saving or replaying previous data samples. Furthermore, we propose
the multi-centroid prototype strategy that leverages a group of fictitious embeddings instead of a
mean embedding to characterize the distribution of a class in latent space. It helps to improve the
representation power of prototypes and further mitigate semantic drift and prototype interference.
The above schema effectively align both the space (i.e., the embedding space) and the embedding
functions that are used during learning and inference, hence effectively boosting the potency of
prototypes in continual learning.

We term our method Contrastive Prototypical Prompt (CPP), a simple and novel continual learning
framework that explores embedding space holistically. In experiments, CPP excels at split CIFAR-
100, split ImageNet-subset and 5-datasets three challenging benchmarks, bringing around 3% to 6%
absolute improvements over state-of-the-art methods. Moreover, it largely bridges the gap between
incremental learning and offline joint learning1. The efficacy of proposed modules is thoroughly
studied both empirically and analytically. The main contributions can be summarized as follows:

• We propose CPP, a simple and novel framework for rehearsal-free continual learning. It
leverages contrastively learned task-specific prompt to effectively address both semantic
drift and prototype interference issues.
• We present multi-centroid prototype strategy which can better characterize the class distri-

bution and improves representativeness of prototypes. It is seamlessly merged into CPP and
exhibits an additive benefit.
• CPP significantly outperforms the state-of-the-art methods and largely bridges the perfor-

mance gap between incremental learning and offline joint-learning. The proposed modules
are comprehensively analyzed and demonstrate clear and additive benefits.

2 RELATED WORKS

Continual learning. The development trajectory of continual learning is the history of combating
against catastrophic forgetting (McCloskey & Cohen, 1989) issue. Existing algorithms can be mainly
categorized into three subsets. Regularization-based methods (Lopez-Paz & Ranzato, 2017; Li &
Hoiem, 2018) strike for a balance under stability–plasticity dilemma. They impose extra constraints
on the changeability of network parameters while maintaining a certain degree of plasticity to learn
new knowledge. Despite the succinct formulation, solely using regularization struggles when facing a
long sequence of tasks (Hadsell et al., 2020). Architectural methods manage to overcome forgetting by
allocating extra resources as learning progresses (Mallya & Lazebnik, 2018; Rusu et al., 2016; Pham
et al., 2020). However, most existing methods assume the existence of a test-time oracle and face
scalability issues. In practice, rehearsal-based methods (Buzzega et al., 2020; Cha et al., 2021) exhibit
the most versatility and robustness through saving and rehearsing previous samples. Nevertheless, this
strategy is sensitive to buffer size (Prabhu et al., 2020; Hadsell et al., 2020) and becomes infeasible
under restricted scenarios (e.g., on edge devices, for privacy-sensitive applications). The proposed
CPP here is a hybrid method. It combines merits from architectural and rehearsal-based methods
without inheriting their limitations (see a full discussion in Appendix D).

1Joint training on all classes with i.i.d. assumption is deemed as the upper-bound for continual learning.

2

Under review as a conference paper at ICLR 2023

Task 1 Task t (current). . .

Embedding Space

ViT

Fixed embedding
function

. . .

MLP

ViT ViT ViT

Task 0

MLP MLP

：key prototype

：value prototype

：pull force

：push force

：learnable prompt

：data sample

Training

0.5

0.45

0.6

0.2
ViT

Test
image

predicted
class

Inference : step 1, coarse retrieval
: step 2, fine-grained matching

: query vector

: distance

Memory Space

ViT

Figure 2: An overview of CPP. Different colors represent different classes. Left: along the learning
process, knowledge from earlier tasks are retained as prototypes and are used as anchors in embedding
space. Current prompt learn through avoiding interference. Right: during inference, a group of
candidate prompt groups are first retrieved followed by a fine-grained matching process.

Prototypes for continual learning. It has been shown that embedding is less prone to information
loss (Davari et al., 2022) and a typical linear classifier is one of the critical sources for abrupt
forgetting due to the bias towards latest task (Zhang et al., 2021). As such, most prototype-related
approaches (Rebuffi et al., 2017; Yu et al., 2020; Zhu et al., 2021) leverage prototypes in combination
with a NCM classifier to discriminate data samples. Zhu et al. (2021), on the other hand, used
prototypes as anchors in latent space to avoid semantic overlap and thus improving discrimination
ability without forwarding explicit exemplars. Yu et al. (2020) managed to post-compensate semantic
drifts of previous prototypes through approximating drifts from current data. Herein, instead of
compensating drifts, CPP prevents drifts from the origin and handles prototype interference as well.
Moreover, CPP deploys the multi-centroid prototype instead of a class mean embedding to better
characterize the embedding distribution and improves representativeness of the prototype.

Prompt tuning. Initializing the model with pre-trained weights has become a de facto practice in
both computer vision and natural language processing communities. However, a typical fine-tuning
technique does not necessarily benefit when transferring models to downstream tasks (Kumar et al.,
2022). Prompt-tuning (Li & Liang, 2021; Lester et al., 2021) has emerged as an alternative to
reuse pre-trained knowledge. Jia et al. (2022) further adapted prompt-tuning to the vision domain.
It has recently also been introduced to continual learning. Both L2P (Wang et al., 2022c) and
DualPromt (Wang et al., 2022b) leveraged a prompt pool or global prompts that share across tasks to
learn incremental knowledge. S-prompts (Wang et al., 2022a) used domain-specific prompts to tackle
the domain-incremental learning. We here apply task-specific prompts to counteract semantic drifts
and prototype interference, and leverage prototypes as classifiers without projecting to logistic space.

3 METHODOLOGY

In this section, we start with describing the problem setup and, along the way, introduce the notations
(Sec. 3.1). Then we present a minimum feasible prototype-based framework which serves as a proof
of concept and the baseline model (Sec. 3.2). Afterwards, We introduce the proposed CPP upon the
baseline model (Sec. 3.3). At last, we describe multi-centroid prototype strategy (Sec. 3.4). Fig. 2
provides an overview of our framework.

3.1 PROBLEM SETUP AND NOTION

Supervised continual learning can be defined as learning a model over a sequence of T tasks
T1:T = {T1, T2...TT }. Each task Tt is associated to a dataset Dt = {(xti, yti)

nt
i=1} containing nt data

pairs where x is the input vector and y is its corresponding label. Each data pair (xti, y
t
i) ∈ (X t×Yt)

3

Under review as a conference paper at ICLR 2023

belongs to an unknown distribution (X t × Yt) and Yt ∩ Yt′ = ∅ while t 6= t′. Without loss
of generality, a neural network at session t can be decoupled into an embedding function fθt(·) :
RW×H×C → RD and a classifier gφt(·) : RD → RK that parameterized by θt and φt, respectively.
Then the overall learning target is to minimize:

arg min
Θ,Φ

1

T

T∑
t=1

nt∑
i=1

L(gφt(fθt(x
t
i)), y

t
i), (1)

where L is a loss measurement, Θ = {θ1...θT } and Φ = {φ1...φT }. Note that at each task Tt, only
dataset Dt is accessible. Most reigning methods assume an extra replay buffer to save samples from
previous tasks and augment current dataset with the replay buffer. In the rehearsal-free setup (Wang
et al., 2022c), we do not assume the existence of a replay buffer.

3.2 A TRAINING-FREE BASELINE

Let Dtk denote a set of samples belonging to class k at session t, we compute a prototype for each
class k as the mean embedding following Rebuffi et al. (2017):

µk =
1

|Dtk|
∑
x∈Dt

k

fθ(x), (2)

and save µk to memory. θ is initialized by a pre-trained ViT (Dosovitskiy et al., 2021) and kept
frozen across the whole process: θ1 = θ2 = · · · = θT . We maintain a collection of prototypes
U = {u1,u2...uK} forK classes that have been observed so far. Then we use the nearest-class-mean
(NCM) (Mensink et al., 2013) classifier for classification:

y∗ = arg min
y=1...K

{d(uy, fθ(x))}, (3)

where d : RD × RD → R is a distance function measuring the distance between two D-dimensional
embeddings. Here, we use the cosine distance following the common practice in self-supervised
representation learning (Chen et al., 2020). This simple and training-free baseline produces promising
results under a strong embedding function (see Table 4), confirming the crucial role played by the
embedding and effectiveness of prototypes in the continual learning context.

3.3 CONTRASTIVE PROTOTYPICAL PROMPT

Steering prototypes with prompt. Ideally, a perfect static embedding function can project embed-
dings to the places that locate nearest to their corresponding prototypes in the latent space, thus
preventing forgetting. However, in practice, an embedding function is ever-changing and samples
from different categories yet with similar semantics can interleave in the latent space and cause
interference. To this end, we leverage a group of extra learnable parameters (prompts) to adapt a fixed
embedding function to up-to-now information and reemerge different snapshots of the model through
combining it with different prompt groups. Specifically, we append a series of prompts pi ∈ RLp×D

to the existing tokens. Lp is the length of prompts, and D denotes the embedding dimensionality.
The information flow of a transformer layer i is defined as:

[ci, ei] = Ti([ci−1,pi−1, ei−1]), (4)

where Ti represents a multi-head self-attention block followed by a feed-forward block in the ith
layer. c ∈ R1×D denotes the class token and e ∈ RLe×D are existing tokens with length Le.
Operator [·] performs concatenation along the sequence length dimension. Here, we adopt deep
prompt (Jia et al., 2022) by adding prompts to all S layers. The prompt group for a task t is denoted
by P t = {pt1,pt2...ptS} and the embedding function can be rewritten as:

fθt(·)→ f{θ,P t}(·). (5)

We maintain a collection of prompt groups as learning progresses and each prompt group is associated
with a group of key and value prototypes that will be illustrated later in this section.

Contrastive prototypical loss. To effectively learn the prompt group and leverage it reduce prototype
interference, we use a contrastive formulation which explicitly encourages alignments between

4

Under review as a conference paper at ICLR 2023

embeddings and prototypes from the same class as well as pushing away embeddings and prototypes
from different classes. In session t, let I = {(x1, y1)...(xN , yN)} be a batch of N image pairs and
Z = {z1...zN} be their corresponding embeddings. We define z = mσt(f{θ;P t}(x)) where mσt(·)
is a multi-layer perception (MLP) parameterized by σt. Note that mσt(·) is re-initialized at each new
task and being disposed during inference. The learning objective for a target prototype (class) k is
then defined as one-versus-all:

Lk =
∑

zi∈P (i)

Lki =
∑

zi∈P (i)

−1

|P̂ (i)|

∑
zp∈P̂ (i)

log
exp(sim(zi, zp)/τ)∑

zn∈N(i)

exp(sim(zi, zn)/τ)
, (6)

where sim(·, ·) denotes the similarity function and i is the index of a data sample with label k in
the batch. P (i) = {zp ∈ Z : yp = yi = k} is a set of positive samples w.r.t. image i and
P̂ (i) = P (i) ∪ {uk} further includes the key prototype of class k; N(i) = {zn ∈ Z : yn 6=
yi} ∪ {µ′1...µ′k−1} is a collection of negative samples with u′ representing the value prototype of the
previously learned classes. Eq. 6 can be naturally generalized to a task-wise formulation by averaging
over all M classes within the current task: Ltask = 1

M

∑M
m=1 Lm. The embedding space in Fig. 2

illustrates the idea of the designed loss function. To better restrain the discrimination boundary, we
further adopt prototype augmentation (Zhu et al., 2021) when using prototypes as negative anchors in
denominator. Concretely, negative prototypes are randomly perturbed by a scaled Gaussian noise
e ∼ N (0, 1) with same dimension: µ̂k = µk + m ∗ e, where scale factor m is calculated as the
average variance of the corresponding class embeddings.

The proposed contrastive prototypical loss deviates from the canonical supervised contrastive
loss (Khosla et al., 2020) in following aspects. 1) We add prototypes as positive and negative
anchors to avoid prototype interference in latent space. For instance, new data sample can locate
at a position in the latent space where it is preoccupied with other samples from previous classes.
In this case, positive anchors can prevent the distribution from being over-squeezed and shifted,
while negative anchors can retain spaces for previous data. 2) We only use a single view for each
data sample, i.e., we do not transform a sample into multiple different views. 3) The designed loss
function only focuses on alignments of positive embeddings and does not constrain the intra-class
uniformity, which is considered as one of the pivot properties that attributes to the success of con-
trastive representation learning Wang & Isola (2020). Concretely, we do not pair samples from the
same category as negative pairs in the denominator. Since NCM classifier discriminates by selecting
the closest prototype, and increasing intra-class uniformity can enlarge the distance between a sample
and its corresponding prototype which is against the classification policy. (see an analysis from the
energy perspective in Appendix. B). We refer to Appendix A for an analysis of gradients.

Class mean Multi-centroids

Figure 3: Two toy cases for
average embedding prototype
and multi-centroid prototype.

Inference by reemerging model snapshots. To effectively
reemerge each snapshot of the model, we decouple the prototype of
a class into two-fold: a key prototype and a value prototype. The
key prototype µ is generated using the Eq. 2 at the beginning of a
task. The value prototype µ′ is produced with Eq. 2 after inserting
the learned prompt group by the end of the task. And we maintain a
collection of key prototypes U = {u1, ..,uk} and value prototypes
U ′ = {u′1, ..,u′k} along the learning process. During inference, a
coarse query vector q : R1×D is first generated followed by a query
function q(q, U, r) to find r nearest key prototypes and retrieve their
corresponding prompt groups {P 1...P r}. Here, q is simply the
class token from the last layer and the query function measures the
pair-wise cosine similarity between q and key prototypes U . Then,
we leverage retrieved prompt groups to generate a set of fine-grained
queries Q′ = {q′1...q′r} where q′r is the generated in the same way
as q after inserting corresponding prompt group P r. At last, the
class of value prototype that poses the minimum distance among
Q′ will be the final prediction. Since the mismatched prompt group will increase distance between
samples and their corresponding value prototypes and the correct prompt group will behave in an
opposite way. Fig. 2 (right) depicts the information flow of the inference process. Please refer to
Algs. 1 and 2 in Appendix C for summarization and see a discussion about inference efficiency in
Appendix E.

5

Under review as a conference paper at ICLR 2023

3.4 MULTI-CENTROID PROTOTYPES

Existing literature in continual learning simply adopts the mean embedding when it comes to
prototypes (Yu et al., 2020; Zhu et al., 2021; Zhou et al., 2022). In this case, it implicitly assumes the
distribution in the latent space to be convex (e.g., a Gaussian distribution), and the distance function
belongs to Bregman divergence (Snell et al., 2017). This premise may not hold in practice as no strict
constraints are imposed on embedding distributions, and cosine similarity is not one of Bregman
divergences. Fig. 3 displays two toy cases where class mean embedding fails to be representative. To
this end, we propose to multi-centroid prototypes. Instead of using mean embedding, we generate
a group of fictitious embeddings to characterize the class distribution. Given a set of embeddings
from class k, we first calculate similarity matrix Sk : RN×N by measuring the pair-wise cosine
similarity between all samples. We then perform spectral clustering (Ng et al., 2001) with Sk as
affinity matrix to generate C centroids {uk,c}Cc=1, where C is a hyper-parameter. To deploy this
strategy, we substitute each prototype uk to its corresponding multi-centroid prototype {uk,c}Cc=1
(for both key and value prototypes) in its existence during both training and inference process.

4 EXPERIMENTS

4.1 DATASETS

Split CIFAR-100 is a commonly used benchmark in continual learning. Following the standard setup,
we evenly split CIFAR-100 into 10 disjoint tasks. Existing literature also explores split CIFAR-100
under multiple different splits. As such, we also report detailed session-wise results under 5, 10, 20
splits in Appendix I.

5-datasets is a collection of CIFAR-10 (Krizhevsky, 2009), MNIST (Lecun et al., 1998), Fashion-
MNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011), and notMNIST (Bulatov, 2011). Each dataset
containing 10 classes is treated as one learning task. 5-datasets serves as a fair analog of real-word
scenarios where inter-task diversity is large.

Split ImageNet-subset is typically deemed as a challenging and scaled-up benchmark for continual
learning. Following Douillard et al. (2022), we divide a subset (100 classes) of ImageNet (Deng et al.,
2009) into 10 tasks with 10 classes per task.

4.2 CONFIGURATION AND EVALUATION METRIC

Configuration. We use the following dataset-agnostic configuration for all experiments if not state
otherwise. We train CPP (initialized with ImageNet pre-trained ViT-B/16) for 50 epochs with a batch
size of 256 using the AdamW optimizer (Loshchilov & Hutter, 2019). The initial learning rate is set
to 1× 10−3 and anneals to 1× 10−6 according to the cosine scheduler. The prompt length Lp is set
to 8, and we use deep prompt as default. The multi-centroid number C and the number of nearest

Table 1: Comparison with state-of-the-art rehearsal and rehearsal-free methods on split CIFAR-100
and 5-datasets. All results are reported using a ImageNet pre-trained ViT-B/16 for fairness.

Method Buffer size Split CIFAR-100 Buffer size 5-datasets
Avg. Acc (↑) Forget (↓) Avg. Acc (↑) Forget (↓)

ER (Chaudhry et al., 2019b)

5000

82.53±0.17 16.46±0.25

500

84.26±0.84 12.85±0.62

BiC (Wu et al., 2019) 81.42±0.85 17.31±1.02 85.53±2.06 10.27±1.32

GDumb (Prabhu et al., 2020) 81.67±0.02 - - -
DER++ (Buzzega et al., 2020) 83.94±0.34 14.55±0.73 84.88±0.57 10.46±1.02

Co2L (Cha et al., 2021) 82.49±0.89 17.48±1.80 86.05±1.03 12.28±1.44

FT-seq

0

33.61±0.85 86.87±0.20

0

20.12±0.42 94.63±0.68

EWC (Lopez-Paz & Ranzato, 2017) 47.01±0.29 33.27±1.17 50.93±0.09 34.94±0.07

LwF (Li & Hoiem, 2018) 60.69±0.63 27.77±2.17 47.91±0.33 38.01±0.28

L2P (Wang et al., 2022c) 83.86±0.28 7.35±0.38 81.14±0.93 4.64±0.52

DualPrompt (Wang et al., 2022b) 86.51±0.33 5.16±0.09 88.08±0.36 2.21±0.69

CPP (ours) 89.43± 0.24 3.61±0.31 93.36±0.03 0.1±0.01

Upper-bound - 90.85±0.12 - - 93.93±0.18 -

6

Under review as a conference paper at ICLR 2023

Table 2: Comparison with architecture-based methods on Split CIFAR-100. Diff (lower is better)
measures how close the performance to the upper-bound of the used backbone. † reported from the
original papers. ‡ reported in DualPrompt (Wang et al., 2022b)

Method Backbone Avg. Acc (↑) Diff (↓) Pretrained Buffer size Additional Parameters
MB %

Upper-bound

ResNet18

80.41† - - - - -
SupSup (Wortsman et al., 2020) 28.34±2.45‡ 52.07 7 0 3.0 6.5%
DualNet (Pham et al., 2021) 40.14±1.64‡ 40.27 7 1000 5.04 10.9%
RPSNet (Rajasegaran et al., 2019) 68.60† 11.81 7 2000 181 404%
DynaER (Yan et al., 2021) 74.64† 5.77 7 2000 19.8 43.8%

Upper-bound ResNet152 88.54† - - - - -
DynaER (Yan et al., 2021) 71.01±0.58‡ 17.53 7 2000 159 68.5%

Upper-bound Customized ViT 76.12† - - - - -
DyTox (Douillard et al., 2022) 62.06±0.25† 14.06 7 2000 0.04 0.38%

Upper-bound

ViT-B/16

90.85±0.12‡ - - - - -
L2P (Wang et al., 2022c) 83.86±0.28‡ 6.99 X 0 1.94 0.56%
DualPrompt (Wang et al., 2022b) 86.51±0.33‡ 4.34 X 0 1.90 0.55%
CPP (ours) 89.43± 0.24 1.42 X 0 0.74 0.21%

neighbors r is set to 5 and 20, respectively. A 3-layer MLP with 2048 hidden units and 768 output
dimension is randomly initialized at each session. We adopt transformations used in Dino (Caron
et al., 2021) as our data augmentation, and all input images are resized to 224.

Evaluation metric. We report widely used average accuracy and forgetting from the end ses-
sion (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019a; Wang et al., 2022b). All experiments run
for 5 times with different seeds. We report the average and standard deviation for each metric. There
are also a set of works reporting average accuracy across all sessions. As such, we provide detailed
descriptions of evaluation metrics in Appendix H and results under both protocols in Appendix I.

4.3 COMPARISON WITH STATE OF THE ARTS

Rehearsal and rehearsal-free methods. We compare CPP to representative regularization-based
methods: EWC (Lopez-Paz & Ranzato, 2017), LwF (Li & Hoiem, 2018), advanced rehearsal-
based methods: ER (Chaudhry et al., 2019b), GDumb (Prabhu et al., 2020), BiC (Wu et al., 2019),
DER++ (Buzzega et al., 2020), Co2L (Cha et al., 2021), and state-of-the-art prompt-based methods:
L2P (Wang et al., 2022c), DualPrompt (Wang et al., 2022b). We report results from Wang et al.
(2022b) where all baseline methods are reproduced with a pre-trained ViT-B/16. FT-seq represents
typical sequential fine-tuning with a single linear classifier. As shown in Table 1, despite the rehearsal-
free property of regularization-based methods, their performances lag behind a lot. Rehearsal-based
methods, on the other hand, produce decent results under large memory budget. Prompt-based
methods achieve state-of-the-art performances without using a rehearsal buffer. Our method surpasses
existing approaches by a large margin on split CIFAR-100 and 5-datasets in terms of both classification
accuracy and forgetting.

Table 3: Comparison with prototype-related methods on split ImageNet-subset and split CIFAR-100.

Method Buffer size Split CIFAR-100 Split ImageNet-subset
Backbone Avg. Acc (↑) Backbone Avg. Acc (↑)

Upper-bound - ViT 90.85±0.12 MAE 94.22±0.18

iCaRL 2000 ResNet18 51.12 ±0.36 ResNet18 23.77±0.35

ProtoAug 0 ResNet18 36.32±0.33 ResNet18 27.16±0.24

iCaRL 2000 ViT 75.10±0.26 MAE 87.96±0.26

ProtoAug 0 ViT 64.1±0.20 MAE 72.72±0.31

CPP (ours) 0 ViT 89.43±0.24 MAE 93.90±0.12

Architecture-based methods. It is non-trivial to migrate ConvNet-based architectural methods to
transformer-based methods, so we adopt the metric from Wang et al. (2022b) to measure the difference
between the method and its corresponding upper bound. Table 2 shows that CPP largely bridges the
gap between incremental learning and joint learning on split CIFAR-100 dataset. Moreover, CPP
outperforms other prompt-based methods using less than 50% of trainable parameters, leading to a

7

Under review as a conference paper at ICLR 2023

Table 4: We ablate the proposed CPP and the multi-centroid prototypes with four different pre-
training methods on split CIFAR-100. When both CPP and multi-centroid are not applied, the model
is equivalent to the training-free baseline model.

Pretrain CPP Multi-centroids Split CIFAR-100
Avg. Acc (↑) Forgetting (↓)

Deit (Touvron et al., 2021)

71.9 9.97
X 80.32±0.6 8.36±0.74

X 74.6±0.18 8.42±0.13

X X 81.33±0.37 6.28±0.53

Dino (Caron et al., 2021)

76.69 8.91
X 80.82±0.22 6.16±0.09

X 79.71±0.09 7.72±0.04

X X 83.73±0.14 4.87±0.06

MAE (He et al., 2022)

74.65 8.6
X 80.26±0.46 8.74±0.25

X 76.71±0.17 8.21±0.05

X X 82.28±0.38 6.65±0.33

ViT (Dosovitskiy et al., 2021)

75.97 7.83
X 88.73±0.17 3.88±0.20

X 78.62±0.11 6.81±0.02

X X 89.43± 0.24 3.61±0.31

better memory efficiency which is one of the critical desiderata in continual learning (see Appendix F
for a detailed analysis of scalability).

Prototype-related methods. Here, we compare our method with state-of-the-art prototype-based
methods, ProtoAug (Zhu et al., 2021) and iCaRL (Rebuffi et al., 2017), on split CIFAR-100 and split
ImageNet-subset. To be impartial and prevents information leakage, we reproduce both methods
using a ImageNet pre-trained ViT-B/16, whereas supervised pre-training method is used for split
CIFAR-100 and MAE pre-training method (self-supervised) is used for split ImageNet-subset. We
then carefully tune hyper-parameters to avoid reckless fail (see Appendix G for details). As shown in
Table 3, and in agreement with observations in Ramasesh et al. (2022), a pre-trained ViT backbone
indeed significantly boost performances of existing methods. Nevertheless, CPP displays a cutting-
edge performance under the same backbone, manifesting a systematic advantage of our method over
the existing prototype-based methods.

4.4 ABLATION STUDY

Effectiveness of proposed modules. Since embeddings are one of the key ingredients in our recipe,
it is crucial to analyze CPP upon different embedding functions. To this end, we implement CPP
on four up-to-date pre-training methods, ViT (Dosovitskiy et al., 2021), Deit (Touvron et al., 2021),
Dino (Caron et al., 2021) and MAE (He et al., 2022) that sweep supervised and self/un-supervised
learning as well as discriminative and generative models. As displayed in Table 4, both proposed
modules are robust w.r.t. all four pre-training methods, bringing around 10% absolute improvements
over the baseline models. Each design remains effective when being isolated, and the benefits
are additive when combined. An interesting observation is that different pre-training methods can
cause large performance variances from the prototype perspective and there is a positive correlation
(ρ = 0.60) between performances of the baseline models and final results. We deem this as an
informative discover that leaves further probe in future work.

Contrastive prototypical loss outperforms alternatives. In our framework, the designed asymmet-
ric contrastive loss explicitly aligns the optimization target with the classification problem, but it is
still critical to validate the design empirically. As such, we first compare our designed loss with two
widely-used alternatives: CE (cross-entropy) and SupCon (supervised contrastive loss) (Khosla et al.,
2020). Then we independently add uniformity (w/ uniformity), remove prototypes (w/o prototype)
and cancel prototype augmentation (w/o ProtoAug) to show the efficacy of each proposed component.
As shown in Table 5, the proposed loss consistently outperforms other loss functions by a clear
margin. Among different alternatives, SupCon is the most compatible, demonstrating the benefits
of unifying optimization and classification space. In agreement with our intuition and analysis in
Appendix B, encouraging uniformity results in a clear drop in performance, and removing prototypes

8

Under review as a conference paper at ICLR 2023

1 4 8 16
Prompt length

84

86

88

90

92
Av

er
ag

e
ac

c
(%

)
w/ deep prompt
w/o deep prompt

5 10 15 20
Top-r num

1
5

10
15M

ul
ti-

ce
nt

ro
id

s n
um

85.84 87.73 88.39 88.75

86.82 88.42 89.07 89.46

86.94 88.40 89.12 89.44

86.49 87.98 88.69 89.01
86

87

88

89

Figure 4: Left: ablation on prompt length and deep prompt. Middle: centroid number v.s. number
of query neighbors. Right: t-SNE visualizations for samples w/ (right) and w/o (left) prompt groups.

(both positive and negative anchors) leads to inferior space allocation in the latent space. In addition,
using prototype augmentation can also boost the performance.

Table 5: Ablation study on contrastive
prototypical loss and its alternatives.

Method Split CIFAR-100
Avg. Acc (↑) Forgetting (↓)

CE (w/o mlp) 37.12±2.54 10.01±1.63

CE 87.98±0.32 4.53±0.35

SupCon (w/o mlp) 48.03±6.97 7.37±2.42

SupCon 88.60±0.18 3.89±0.32

CPP (w/o mlp) 55.43±7.74 0.8±0.29

CPP (w/ uniformity) 88.82±0.18 4.01±0.15

CPP (w/o prototype) 88.85±0.20 3.88±0.27

CPP (w/o ProtoAug) 89.18±0.15 3.78±0.30

CPP 89.43± 0.24 3.61±0.31

MLP is non-negligible. We show in Table 5 that non-
linearity introduced by the MLP is vital to the success
of training prompt groups regardless of the loss design.
This result coincides with the conventional practice in
self-supervised representation learning, where MLP con-
sistently improves the quality of representations.

Ablation for prompts. Two factors in prompt design can
affect the final performance: prompt length (which in-
dicates the number of trainable units at each layer) and
deep prompt (which represents adding prompts to all lay-
ers instead of the first layer). As shown in Fig. 4 (left),
deep prompt consistently outperforms the shallow prompt,
suggesting the importance of steering features at different
levels of abstraction. Also, an appropriate length can improve the performance. It is worth pointing
out that CPP can still outperform existing methods by a large margin even with Lp = 1 (using
less than 1/20 of parameters compared with DualPrompt). This result showcases a great parameter
efficiency of our method which is critical towards the real-world scalable continual learning.

Centroid number v.s. query radius. Both centroid number C and query radius r can impact how
many prompt groups are actually retrieved for fine-grained matching. For example, with a fixed
r, increasing C may result in fewer categories being visited and vice versa. Even though one can
always traverse all prompt groups to avoid querying process, it will increase inference time as the
task accumulates. As such, it is more cost-effective to select a proper combination of C and r.
Fig. 4 (middle) exhibits the result of a simple grid search on CIFAR-100, and the searched setting
(C = 5 and r = 20) works fairly well for all other datasets.

Visualizations. We visualize data samples and their corresponding prototypes (single centroid) from
CIFAR-100 with and without inserting learned prompt groups. As displayed in Fig. 4 (right), while
samples from the same class tend to locate near each other in the latent space, samples from different
classes still interleave with each other. After prompt groups are added, samples from the same
category are tightly clustered, while different classes are spread out. See Appendix K for additional
visualizations and analysis.

5 CONCLUSION

In this study, we propose a simple and novel framework for rehearsal-free continual learning. It
leverages task-specific prompt to reemerge each snapshot of a model so as to avoid semantic drift.
It also uses prompt-tuning to steer prototypes to reduce interference in the latent space through
contrastive learning on the mixture of data embeddings and prototypes. Empirically, CPP surpasses
state-of-the-art methods by a large margin without using a rehearsal buffer or a test-time oracle. We
comprehensively analyze the effectiveness of proposed components, showcasing clear and additive
benefits. We believe CPP can shine a light on the design principle of real-world continual learning
giving current advances in architecture design and representation learning.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Yaroslav Bulatov. Notmnist dataset. Google (Books/OCR), Tech. Rep.[Online]. Available:
http://yaroslavvb. blogspot. it/2011/09/notmnist-dataset. html, 2, 2011.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and SIMONE CALDERARA. Dark
experience for general continual learning: a strong, simple baseline. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 15920–15930. Curran Associates, Inc., 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Herv’e J’egou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 9630–9640, 2021.

H. Cha, J. Lee, and J. Shin. Co2l: Contrastive continual learning. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pp. 9496–9505, 2021.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-GEM. In International Conference on Learning Representations, 2019a.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019b.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International Conference
on Machine Learning, ICML’20. JMLR.org, 2020.

MohammadReza Davari, Nader Asadi, Sudhir Mudur, Rahaf Aljundi, and Eugene Belilovsky. Probing
representation forgetting in supervised and unsupervised continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16712–16721,
June 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Arthur Douillard, Alexandre Ramé, Guillaume Couairon, and Matthieu Cord. Dytox: Transformers
for continual learning with dynamic token expansion. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

Raia Hadsell, Dushyant Rao, Andrei Rusu, and Razvan Pascanu. Embracing change: Continual
learning in deep neural networks. Trends in Cognitive Sciences, 24:1028–1040, 12 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 16000–16009, June 2022.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. In European Conference on Computer Vision (ECCV), 2022.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In Advances in Neural
Information Processing Systems, volume 33, pp. 18661–18673. Curran Associates, Inc., 2020.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. In International
Conference on Learning Representations, 2022.

10

Under review as a conference paper at ICLR 2023

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

Yann LeCun, Sumit Chopra, Raia Hadsell, Fu Jie Huang, and et al. A tutorial on energy-based
learning. In PREDICTING STRUCTURED DATA. MIT Press, 2006.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, November 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597. Association for Computational Linguistics, aug 2021.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(12):2935–2947, 2018.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7765–
7773, 2018.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. volume 24 of Psychology of Learning and Motivation, pp. 109–165.
Academic Press, 1989.

Thomas Mensink, Jakob J. Verbeek, Florent Perronnin, and Gabriela Csurka. Distance-based image
classification: Generalizing to new classes at near-zero cost. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35:2624–2637, 2013.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS, pp. 849–856. MIT Press,
2001.

German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019. ISSN
0893-6080.

Quang Pham, Chenghao Liu, Doyen Sahoo, and HOI Steven. Contextual transformation networks for
online continual learning. In International Conference on Learning Representations, 2020.

Quang Pham, Chenghao Liu, and Steven Hoi. Dualnet: Continual learning, fast and slow. In Advances
in Neural Information Processing Systems, volume 34, pp. 16131–16144, 2021.

Ameya Prabhu, Philip Torr, and Puneet Dokania. Gdumb: A simple approach that questions our
progress in continual learning. In The European Conference on Computer Vision (ECCV), August
2020.

Jathushan Rajasegaran, Munawar Hayat, Salman Khan, Fahad Shahbaz Khan, and Ling Shao.
Random path selection for incremental learning. Advances in Neural Information Processing
Systems, 2019.

Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
forgetting in neural networks. In International Conference on Learning Representations, 2022.

11

Under review as a conference paper at ICLR 2023

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, G. Sperl, and Christoph H. Lampert. icarl: Incre-
mental classifier and representation learning. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5533–5542, 2017.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR,
abs/1606.04671, 2016.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

S. Thrun. A lifelong learning perspective for mobile robot control. In V. Graefe (ed.), Intelligent
Robots and Systems. Elsevier, 1995.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve
Jegou. Training data-efficient image transformers & distillation through attention. In Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 10347–10357. PMLR, 18–24 Jul 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In Proceedings of the 37th International Conference on
Machine Learning, pp. 9929–9939, 2020.

Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
An occam’s razor for domain incremental learning, 2022a.

Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
Guolong Su, Vincent Perot, Jennifer G. Dy, and Tomas Pfister. Dualprompt: Complementary
prompting for rehearsal-free continual learning. 2022b.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149, 2022c.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition. In Advances in Neural Information
Processing Systems, volume 33, pp. 15173–15184. Curran Associates, Inc., 2020.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large
scale incremental learning. In CVPR, pp. 374–382, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class
incremental learning. 2021.

Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling
Jui, and Joost van de Weijer. Semantic drift compensation for class-incremental learning. 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6980–6989,
2020.

Chi Zhang, Nan Song, Guosheng Lin, Yun Zheng, Pan Pan, and Yinghui Xu. Few-shot incremental
learning with continually evolved classifiers. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2021.

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma, Shiliang Pu, and De-Chuan Zhan. Forward
compatible few-shot class-incremental learning, 2022.

Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation and
self-supervision for incremental learning. In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

12

Under review as a conference paper at ICLR 2023

A DETAILED DERIVATIONS FOR CONTRASTIVE PROTOTYPICAL LOSS

Here, we provide an analysis of gradients for proposed contrastive prototypical loss. It is sufficient to
show gradients for a single prototype k. To ease the notion, we abbreviate similarity between vector
zi and zj as si,j . Therefore, the loss of a sample xi w.r.t. prototype k is:

Lki =
−1

|P̂ (i)|

∑
zp∈P̂ (i)

log
exp(si,p/τ)∑

zn∈N(i)

exp(si,n/τ)
(7)

The gradient with respect to the similarity si,j between a positive pair (zi, zj) where j ∈ P (i) can
be derived as:

∂Lki
∂si,j

=
−1

|P̂ (i)|

∑
zp∈P̂ (i)

∂

∂si,j

si,p/τ − log
∑

zn∈N(i)

exp(si,n/τ)



=
−1

|P̂ (i)|

∑
zp∈P̂ (i)

1

τ
· 1[p = j]−

∂
∂si,j

(∑
zn∈N(i)

exp(si,n/τ)

)
∑

zn∈N(i)

exp(si,n/τ)


=
−1

|P̂ (i)|

∑
zp∈P̂ (i)

(
1

τ
· 1[p = j]− 0

)

=
1

τ |P̂ (i)|

(8)

Here 1 is an indicator. Similarly, the gradient with respect to the similarity si,m between a negative
pair (zi, zm) where m ∈ N(i) is:

∂Lki
∂si,m

=
−1

|P̂ (i)|

∑
zp∈P̂ (i)

∂

∂si,m

si,p/τ − log
∑

zn∈N(i)

exp(si,n/τ)



=
−1

|P̂ (i)|

∑
zp∈P̂ (i)

0−

∂
∂si,m

(∑
zn∈N(i)

exp(si,n/τ)

)
∑

zn∈N(i)

exp(si,n/τ)


=

1

|P̂ (i)|

∑
zp∈P̂ (i)

exp(si,n/τ) · 1
τ · 1[n = m]∑

zn∈N(i)

exp(si,n/τ)


=

1

τ |P̂ (i)|
exp(si,m/τ)∑

zn∈N(i)

exp(si,n/τ)

(9)

Taking gradients of loss Lk with respect to the similarity between a positive pair si,j = sim(zi, zj)
and a negative pair si,m = sim(zi, zm) result in:

∂Lki
∂si,j

=
1

τ |P̂ (i)|
,

∂Lki
∂si,m

=
1

τ |P̂ (i)|
· exp(si,m/τ)∑
zn∈N(i)

exp(si,n/τ)
. (10)

The above derivation shows that positive similarities are treated equally and scaled by the temperature
and the cardinality of the set of positive anchors. And property of implicit hard-case mining (i.e.,
proportional to the exponential term exp(si,m/τ)) is inherited from a typical contrastive loss in
negative term.

13

Under review as a conference paper at ICLR 2023

B CPP IS AN ENERGY-BASED MODEL

The overall objective of an energy-based model (LeCun et al., 2006) (EBM) is to obtain an energy
function Eθ(x) : RD → R parameterized by θ that maps the high dimensional input x to a scalar
value. Giving an energy function Eθ(·), probability density p(x) can be expressed through Gibbs
distribution:

p(y|x) =
exp(−Eθ(x, y)/τ)∫
y′

exp(−Eθ(x, y′)/τ)
=

exp(−Eθ(x, y)/τ)

exp(−Eθ(x)/τ)
(11)

where Eθ(x) is the Helmholtz free energy and τ is the temperature factor. As such:

Eθ(x) = τ · − log

∫
y′

exp(−Eθ(x, y′)/τ) (12)

When making final prediction under our framework, the categorical distribution can be represented
as:

p(y|x) =
exp(sx,y/τ)∑K

y′=1 exp(sx,y′/τ)
(13)

where sx,y = sim(fθ(x),µy). Note that we here merge the prompt parameters P into θ for the sake
of simplicity. When connecting Eq. 13 with Eq. 11 and let Eθ(x, y) = −sx,y , we see that the energy
of x can be expressed as:

Eθ(x) = τ · − log

K∑
y=1

exp(sx,y/τ) (14)

which is dominated by the largest similarity sx,y∗ given an appropriate temperature τ . Above analysis
drives to the conclusion that predicting the class of prototype which is most similar to a given query
vector will generate lowest energy for the system (i.e., a more stable system). Now the question turns
to whether the proposed contrastive prototypical loss serves as a qualified energy loss function.

To see this, we first simplify the Eq. 7 to a formulation where there is only one positive sample zp̂:

Lki = − log
exp(si,p̂)∑

zn∈N(i)

exp(si,n/τ)

= −si,p̂ + log
∑

zn∈N(i)

exp(si,n/τ)

(15)

when letting zp̂ to be the value prototype µ′k that used as classifier, we have:

Lki = −sim(zi,µ
′
k)︸ ︷︷ ︸

push down energy for prototype k

+ log
∑

zn∈N(i)

exp(si,n/τ)

︸ ︷︷ ︸
pull up energies for other prototypes

(16)

As shown above, to minimize above loss, the first term will push down the energy for value prototype
µ′k and the second term will increase energies for other prototypes. So above simplified loss is an
effective loss function for the energy model. However, the ground-truth prototype µ′k is unavailable
at training, instead a rough approximation µk can be generated with Eq. 2 and a set of data samples
are available. As such, Eq. 7 treat µk and every sample embedding as positive prototypes and pulling
the zi to all of them simultaneously. This is equivalent to pulling zi to a fictitious prototype that
dynamically evolves with the distribution of embeddings. Since µ′k is generated using the learned
embeddings at the end of the task, Eq. 7 still approximately minimizes the energy between a sample
and its correspondingly value prototype µ′k even though µ′k is not explicitly shows in loss function.

Finally, we show that encouraging uniformity is against the principle of the energy model. By
encouraging uniformity as typical supervised or self-supervised contrastive loss (Chen et al., 2020;

14

Under review as a conference paper at ICLR 2023

Khosla et al., 2020), we turn Eq. 15 into:

Lki = − log
exp(si,p̂)∑

zn∈N(i)

exp(si,n/τ) +
∑

zp∈P̂ (i)

exp(si,p/τ)

= −si,p̂ + log


∑

zn∈N(i)

exp(si,n/τ) +
∑

zp∈P̂ (i)

exp(si,p/τ)

︸ ︷︷ ︸
harmfully pull up energy for target prototype


(17)

As shown above, we can see that the second term in log function acts adversely with respect to
−si,p̂ which minimizes the energy between a sample and its corresponding prototype. Hence, we
intentionally remove the term that encourages the uniformity in typical contrastive loss from our
designed loss.

During inference, the prediction process can be interpreted as selecting a prompt group that generates
the most compatible embedding z′ that has minimum energy with respect to a local system and its
nearest value prototype is the predicted class. The Local system is generated through querying and
making visible a predefined number of neighbors on the key manifold (i.e., manifold containing key
prototypes).

C ALGORITHMS FOR CPP

The pipeline of the proposed framework is summarized in Algoritm 1 and Algorithm 2.

Algorithm 1: Training algorithm
Input: Pre-trained ViT model fθ, number of tasks T , training epochs E, training set
{(xti, yti)}

nt
i=1}Tt=1, prompt length Lp and centriod number C.

for t = 1, · · · , T do
Initialize: MLP mσt , prompt group P t, U = ∅, U ′ = ∅
for class k ∈ Yt do

Generate key prototype µk with Eq. 2
U ← U ∪ µk

end
for e = 1, · · · , E do

Optimize σt, P t through generalized Eq. 6
end
Dispose mσt

fθ ← fθ,P t

for class k ∈ Yt do
Generate value prototype µ′k with Eq. 2
U ′ ← U ′ ∪ µ′k

end
end
Output: {P t}Tt=1, U and U ′.

D RELATIONS WITH PREVIOUS METHODS

There exists different taxonomies for continual learning methods (Parisi et al., 2019; Hadsell et al.,
2020), we here take notions from Hadsell et al. (2020). Put conclusion first, CPP in this study
is a hybrid method. From the view of prompt deployment, CPP is in consistent with modular
models. Extra capacity is assigned when encountering new tasks and a specialization at task-level
is maintained. Nevertheless, CPP does not necessarily suffer from computational issues and the

15

Under review as a conference paper at ICLR 2023

Algorithm 2: Inference algorithm
Given: Pre-trained ViT model fθ, the collection of key prototypes U , the collection of value

prototypes U ′, the collection of prompts {P t}Tt=1, query funcion q(, , r) and pair-wise distance
function d.

Input: test image x
Initialize: Q′ = ∅, L = ∅
q = fθ(x)[0, :] ; // use class token as query vector
M = q(q, U, r) ; // retrieve indexes of r nearest key prototypes
for t ∈M do

q′ = fθ,P t(x)
Q′ ← Q′ ∪ q′
L← L ∪ µ′t

end
y = arg min

y=1...K
(d(Q′, L))

Output: label y

premise of test-time oracle as other modular methods. Inheriting parameter efficiency from prompt-
tuning (Lester et al., 2021), CPP introduces negligible extra parameters for each incremental task.
And since only prompts are updated with gradient descent and each task is associate with a fixed
amount of prompts, the computational overhead is relatively small and constant. During inference, we
leverage prototypes as key values and embeddings as quries to retrieve candiate prompt groups and
thus avoid the requirement of test-time oracle. Taking prototype perspective, CPP can be categorized
as a memory-based method, especially episodic memory method. We save prototypes in memory
space and leverage to retain previous knowledge and also as classifiers during inference. Yet, unlike
most memory-based method, we maintain information in a highly abstract and compressed manner
and set them as anchors in latent space without forwarding them through the network.

E DISCUSSION OF INFERENCE EFFICIENCY

Here, we analyze the efficiency of inference process for CPP and provides an engineering solution.
The time complexity of different data samples can be different during inference and there is random-
ness. For example, when querying 5 nearest neighbors with key prototypes, it does not necessarily
result in 5 different prompt groups due the existences of multi-centroid prototypes and task-level
prompt groups. At worst case, when 5 nearest centroids are from totally different classes and these
classes are contained in totally different tasks. Then the query function will return 5 different prompt
groups. However, in practice, centroids from same class tend to locate near to each other and a
prompt group is shared by all classes within a task. It results in much lesser prompt groups that
being retrieved and number of prompt groups vary according to data samples. From an engineering
perspective, one can leverage batch processing to accelerate the process. Concretely, one can directly
append all prompt groups and input a batch of attention masks to differentiate different configurations.

F DISCUSSION OF SCALABILITY

The scalability of a continual learning framework is one of the most crucial considerations in practice.
It requires a framework to be first, memory efficient, consuming affordable memory footprint as tasks
accumulate; second, computational efficient, using as less computational resources as possible; at last,
privacy respectful, making it compatible with diverse real-world scenarios. We manage to analysis
the scalability of our method with respect to these three aspects in the following paragraph.

For memory usage, there are two parts in our framework will cause increasing parameters during
continual learning, prototypes and prompt groups. Using split CIFAR-100 as an instance, each new
class will introduce 2×M × 768 extra parameters where M denotes the centroid number and the
factor 2 is due to the decoupling of key and value prototypes. Let M = 5 as in our setting, we only
save 10× 768 extra parameters for a new class, this consumes approximately only 1/20 of memory
as saving a single ImageNet image (224× 224× 3). Besides, each new task (containing 10 classes)

16

Under review as a conference paper at ICLR 2023

will bring a prompt group (w/ deep prompt) with 8 × 12 × 768 parameters. When averaged over
10 classes, it is approximately equivalent to 10 × 768 per class. Note that the increasing rate of
parameters introduced by prompt group are negatively correlated to the size of the task. When put
together both sources of extra parameters, we can see that for each incremental class we have roughly
20× 768 parameters which costs 0.01536 MB and is equivalent to 1/10 of a single ImageNet image.
Moreover, the increment of memory usage for each class is constant w.r.t. all scenarios from where
saving explicit samples may suffer from memory surge due to the resolution change (e.g., with a 4K
camera). With above discussion, we believe it is fair to say that our framework is benign to scalability
issue in terms of memory usage. From a computational perspective, thanks to prompt-tuning, only a
tiny portion of parameters are updated through backpropagation. And prototypes are leveraged as
anchors in latent space, thus no explicit data samples from previous classes need to be forwarded
through the network. So the computational cost during the training is also minimized. Finally, since
all information from previous tasks are retained as a few latent vectors (i.e., the prototypes), the
privacy is inherently protected.

G REPRODUCTION DETAILS

Prototype-related methods. In Sec. 4.3, we compare our method to other representative prototype-
based methods. To be impartial, we first run the original codes (ResNet-18 as feature extractor) on the
same split ImageNet-subset and split CIFAR-100 as we used. In original setting of ProtoAug (Zhu
et al., 2021), it uses 50 classes in initial session and 5 class for each incremental session. To be
consistent with our setup, we change it to 10 classes per session and 10 sessions in total. Both
iCaRL (Rebuffi et al., 2017) and ProtoAug (Zhu et al., 2021)’s technical designs are orthogonal to
the choice of feature extractor. So we replace ResNet-18 with a pre-trained ViT-B/16 without the
loss of fairness and keep other designs the same as originals. To take advantages of the pre-trained
backbone, we set learning rate to 1e-4 for both methods according to a simple grid search and use the
same training configuration as detailed in Sec. 4.2 for fairness.

DualPrompt on split ImangeNet-subset. Here, we further reproduce DualPrompt (Wang et al.,
2022b) on split ImageNet-subset. The result can be seen in Table 6. To prevent information leakage,
we use MAE pre-trained weights instead of the original ViT pre-trained weights. All other parameters
are set following the original paper. Specifically, we set Le = 20, Lg = 5, starte = 3, ende =
5, startg = 1, endg = 2. We train the model for 50 epochs with constant learning rate 0.005 and
Adam optimizer is used. Since the original paper does not use split ImageNet-subset, there may exist
a better configuration with further tuning.

Table 6: Reproduction of DualPrompt on split ImageNet-subset.

Methods split ImageNet-subset
Avg. Acc (↑) Forget (↓)

DualPrompt (MAE) 92.5 2.0
CPP (ours) 93.9 1.89

H EVALUATION METRICS

Let Ai,j be classification accuracy on the j-th task after training on the i-th task. After the model
finishes training on the i-th task, we compute the Average Accuracy (Ai) and Forgetting (Fi) as
follows:

Ai =
1

i

i∑
j=1

Ai,j

Fi =
1

i− 1

i−1∑
j=1

max
j′∈{1,··· ,i−1}

(Aj′,j −Ai,j)

Assume there are T tasks in total, we report accuracy from last session as Acc = AT following
(Lopez-Paz & Ranzato, 2017; Wang et al., 2022b). There are also a large body of literature (Li &

17

Under review as a conference paper at ICLR 2023

Hoiem, 2018; Zhu et al., 2021; Douillard et al., 2022) report macro average over all sessions as
Acc = 1

T

∑T
i=1Ai. To ease future reference, we provide results under both protocols in Appendix I.

I RESULTS UNDER DIFFERENT PROTOCOLS

Detailed results for CIFAR-100 under different splits. Here, we provide session-wise results for
split CIFAR-100 under different splits. As shown in Fig. 5, our method exhibits a clear and consistent
improvements over other methods and the gap is enlarged as the length of task sequence increases.

Results under different metrics. Here, we provide results under two commonly used measure-
ments as described in Appendix H.

Table 7: Results for CPP under different metrics.

Task num Dataset Pre-train Accuracy Forgetting
Avg. (↑) Last (↑) Avg. (↓) Last (↓)

5 split CIFAR-100 ViT 92.6 89.58 3.99 3.97
10 split CIFAR-100 ViT 93.06 89.43 3.11 3.61
20 split CIFAR-100 ViT 92.49 88.25 3.66 4.56
5 5-datasets ViT 95.15 93.36 0.12 0.1
10 split ImageNet-Sub MAE 95.01 93.90 0.84 1.89

J EXTRA ABLATIONS

Ablation for MLP design. As MLP layer is crucial for training prompts, we are curious about
relations between MLP width (number of hidden units), deepth (layer numbers) and prompt quality.
As shown in Table 8, either monotonously increasing layers or hidden units do not necessarily bring
benefits. And 3-layer with 2048 hidden units, which is the same as the conventional practice in
self-supervised representation learning, produces best performance in our framework. So we adopt
this setting as default for all our experiments.

Table 8: Results on split cifar-100 under different MLP layer numbers.

Layer num Hidden units Split CIFAR-100
Avg. Acc (↑) Forget (↓)

1 2048 82.16 4.58
3 1024 89.27 4.13
3 2048 89.43 3.61
3 4096 89.16 4.09
5 2048 88.54 3.20

Generation of multi-centriod prototypes. In CPP, we leverage spectral clustering to generate
multi-centroid prototypes. Herein, we also provide results for commonly used k-means clustering
algorithm. As shown in Table 9, spectral clustering empirically demonstrates better performance and
we thus take it as default.

Table 9: Different clustering algorithms for generating multi-centroid prototypes.

Methods Split CIFAR-100
Avg. Acc (↑) Forget (↓)

K-means 89.02 4.18
Spectral Clustering 89.43 3.61

18

Under review as a conference paper at ICLR 2023

20 40 60 80 100
Class num

70

75

80

85

90

95

Av
er

ag
e

ac
c

(%
)

Ours
DualPrompt
L2P
ProtoAug
iCaRL

(a) 5-splits.

10 20 30 40 50 60 70 80 90 100
Class num

65

70

75

80

85

90

95

100

Av
er

ag
e

ac
c

(%
)

Ours
DualPrompt
L2P
ProtoAug
iCaRL

(b) 10-splits.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Class num

60

70

80

90

100

Av
er

ag
e

ac
c

(%
)

Ours
DualPrompt
L2P
ProtoAug
iCaRL

(c) 20-splits.

Figure 5: Comparison with state-of-the-art methods on CIFAR-100 under multiple splits.

Effectiveness of the query function. We assume that samples with similar semantics should tend
to locate close to each other in latent space. It is convincing to see that, giving r nearest neighbors,
whether the true class falls in the candidates. In this case, top-r accuracy in the coarse query process

19

Under review as a conference paper at ICLR 2023

can be deemed as a rigid upper-bound for CPP. We here plot top-r accuracy under the 5-centroid
prototype environment in Fig. 6. We can see that top-r accuracy increases monotonically with r and
r = 20 works fairly well. Hence, query vector in combination with key prototypes and a reasonable
hyper-parameter can be safely leveraged to retrieve candidate prompt groups.

5 10 15 20
Top-r

93

94

95

96

97

98

Av
er

ag
e

ac
c

(%
)

Top-r acc

Figure 6: Top-r accuracy of split CIFAR-100 under 5-centroid prototype.

K DETAILED VISUALIZATIONS AND ANALYSIS

Fig. 7 displays training samples from CIFAR-100 in latent space under different configurations.
Fig. 7a and Fig. 7b shows original data samples with their corresponding key prototypes and multi-
centroid key prototypes, respectively. As shown in figures, both single-centroid and multi-centroid
key prototypes effectively characterize the distribution for each class. In Fig. 7c and Fig. 7d, when
replacing key prototypes to value prototypes, there is a clear drift and mismatch between class
distributions and their corresponding prototypes. Since value prototypes characterize the distribution
of prompted samples in latent space, this observation manifests a clear distribution shift in latent
space when adding prompts. And thus justify the necessity of decoupling prototypes into the key
prototypes and value prototypes two sets. Fig. 7e and Fig. 7f shows value prototypes and embeddings
of samples after adding prompts. Both single-centroid and multi-centroid value prototypes suits
the learned distributions well according to visualizations, while multi-centroid value prototypes can
better capture outliers and thus being more representative.

In Fig. 7, we have successfully shown the efficacy of key and value prototypes for representing
training embeddings. So we test their performances on test dataset in Fig. 8, When leveraging key
prototypes for coarse retrieval, it works fairly well according to Fig. 8a and Fig. 8b. Fig. 8c and Fig. 8d
further validate the necessity of decoupling prototypes from test data view. There are some classes
where key prototypes can still effectively characterize sample distribution after inserting prompts,
suggesting less semantic overlap (easy to discriminate) and minor distribution shift. However, most
classes fail to reuse key prototypes. When using value prototypes as classifiers for final prediction,
Fig. 8e and Fig. 8f demonstrate a clear match which in turn results in high accuracy.

20

Under review as a conference paper at ICLR 2023

(a) Original train samples with key prototypes (b) Original train samples with multi-centriod key pro-
totypes

(c) Original train samples with value prototypes (d) Original train samples with multi-centroid value
prototypes

(e) Prompted train samples with value prototypes (f) Prompted train samples with multi-centriod value
prototypes

Figure 7: Visualization for train data in CIFAR-100.

21

Under review as a conference paper at ICLR 2023

(a) Original test samples with key prototypes (b) Original test samples with multi-centriod key pro-
totypes

(c) Prompted test samples with key prototypes (d) Prompted test samples with multi-centroid key
prototypes

(e) Prompted test samples with multi-centroid value
prototypes

(f) Prompted test samples with value prototypes

Figure 8: Visualization for test data in CIFAR-100.

22

	Introduction
	Related Works
	Methodology
	Problem Setup and Notion
	A Training-free Baseline
	Contrastive Prototypical Prompt
	Multi-centroid Prototypes

	Experiments
	Datasets
	Configuration and Evaluation Metric
	Comparison with State of the Arts
	Ablation Study

	Conclusion
	Detailed Derivations for Contrastive Prototypical Loss
	CPP is An Energy-based Model
	Algorithms for CPP
	Relations with Previous Methods
	Discussion of Inference Efficiency
	Discussion of scalability
	Reproduction Details
	Evaluation Metrics
	Results under Different Protocols
	Extra Ablations
	Detailed Visualizations and Analysis

