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Abstract
When rodents learn to navigate in a novel envi-
ronment, a high density of place fields emerges
at reward locations, fields elongate against the
trajectory, and individual fields change spatial
selectivity while demonstrating stable behavior.
Why place fields demonstrate these characteristic
phenomena during learning remains elusive. We
develop a normative framework using a reward
maximization objective, whereby the temporal
difference (TD) error drives place field reorgani-
zation to improve policy learning. Place fields
are modeled using Gaussian radial basis func-
tions to represent states in an environment, and
directly synapse to an actor-critic for policy learn-
ing. Each field’s amplitude, center, and width, as
well as downstream weights, are updated online at
each time step to maximize rewards. We demon-
strate that this framework unifies three disparate
phenomena observed in navigation experiments.
Furthermore, we show that these place field phe-
nomena improve policy convergence when learn-
ing to navigate to a single target and relearning
multiple new targets. To conclude, we develop a
simple normative model that recapitulates several
aspects of hippocampal place field learning dy-
namics and unifies mechanisms to offer testable
predictions for future experiments.

1. Introduction
A place field is canonically described as a localized region
in an environment where a hippocampal neuron’s firing rate
is maximal and robust across trials (O’Keefe & Dostrovsky,
1971; O’Keefe, 1978). Classically, each neuron has a unique
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spatial receptive field such that the population activity can
describe an animal’s allocentric position within the environ-
ment (Moser et al., 2015). Ablation studies demonstrate
that the hippocampal representation is useful for learning
to navigate to new targets (Morris et al., 1982; Packard
& McGaugh, 1996; Steele & Morris, 1999). Importantly,
each field’s spatial selectivity evolves with experience in
a new environment before stabilizing in the later stages of
learning (Frank et al., 2004). Specifically, a high density of
place fields emerge at reward locations (Gauthier & Tank,
2018; Lee et al., 2020; Sosa et al., 2023), place fields elon-
gate backward against the trajectory (Mehta et al., 1997;
Priestley et al., 2022), and individual field’s spatial selec-
tivity continues to change or “drift” even when animals
demonstrate stable behavior (Geva et al., 2023; Krishnan &
Sheffield, 2023; Kentros et al., 2004; Mankin et al., 2012;
Ziv et al., 2013). Although disparate mechanisms have
been proposed to model these phenomena, a framework that
can unify these phenomena and clarify their computational
role remains elusive. Here, we propose a single normative
model for spatial representation learning , based on the hip-
pocampal CA1 given its role in representing salient spatial
information (Dong et al., 2021; Dupret et al., 2010). Our
key contributions are:

• We develop a two-layered reinforcement learning model
to study spatial representation learning by place fields
(Fig.1A). The first layer is a population of Gaussian radial
basis functions that transform continuous spatial informa-
tion into a relevant representational substrate or “state”,
which feed into an actor-critic network in the second layer
that uses these representations to learn actions that max-
imize cumulative discounted reward. Besides the actor
and critic weights, each place field’s amplitude, center
and width is optimized by the Temporal Difference error.

• Our model recapitulates three experimentally-observed
neural phenomena during task learning: (1) the emergence
of high place field density at rewards, (2) elongation of
fields against the trajectory, and (3) drifting fields that do
not affect task performance.

• We analyze the factors that influence these representa-
tional changes: a low number of fields drives greater
spatial representation learning, the mean population fir-
ing rate reflects the value of that location, and increasing
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noise magnitude during field parameter updates causes a
monotonic decrease in population vector correlation but
non-monotonic change in behavior.

• We demonstrate that optimizing place field widths and
amplitudes enhances reward maximization and policy con-
vergence. However, field parameter optimization alone is
insufficient for learning to navigate to new targets. Intro-
ducing noisy field parameter updates improves new target
learning, suggesting a functional role for noise.

2. Related Works
Anatomically constrained architecture for navigation.
Learning to navigate involves the hippocampus encoding
spatial information and its strong glutamatergic projections
to the striatum (Lisman & Grace, 2005; Floresco et al.,
2001). The ventral and dorsal regions of the striatum are
associated with value estimation and stimulus-response as-
sociations, functioning similarly to a critic and an actor,
respectively (Niv, 2009; Joel et al., 2002; Houk et al., 1994).
Additionally, dopamine neurons in the Ventral Tegmental
Area influence plasticity in the striatal synapses (Reynolds
et al., 2001; Russo & Nestler, 2013). This anatomical insight
has led to the design of a biologically plausible navigation
model, where place fields connect directly to an actor-critic
framework, and synapses are modulated by the TD error
(Arleo & Gerstner, 2000; Foster et al., 2000; Frémaux et al.,
2013; Brown & Sharp, 1995; Kumar et al., 2022). Recent
evidence shows direct dopaminergic projections to the hip-
pocampus to modulate place cell activity, strengthening
the case for navigation models with adaptive place fields
(Palacios-Filardo & Mellor, 2019; Krishnan et al., 2022;
Kempadoo et al., 2016; Sayegh et al., 2024). How upstream
information from the entorhinal cortex influences place field
representations for policy learning needs clarity (Fiete et al.,
2008; Bush et al., 2015). As new experiments challenge
the canonical definition that a place cell only has one place
field (Eliav et al., 2021), we study spatial representational
learning using Gaussian place fields, instead of place cells.

Field density increases near reward locations. Density
traditionally refers to the number of field centers of mass in
a location. However, we also consider changes in the mean
population firing rate, which includes variations in each
field’s width and amplitude. As animals learn to navigate
towards a reward, a high density of place fields emerge at
reward locations (Gauthier & Tank, 2018; Lee et al., 2020;
Sosa et al., 2023). Reward location based reorganization
was observed in hippocampal CA1 and not in CA3 (Dupret
et al., 2010). Interestingly, a recent study showed that place
fields initially coding the reward location shifted backwards
against the trajectory causing a decrease in reward coding
fields, suggesting of a representation predictively coding for
reward (Yaghoubi et al., 2024).

Fields learn to encode future occupancy. As animals
traverse a 1D track, most CA1 fields increase in size and
their center of mass shift backwards against the trajectory
of motion (Mehta et al., 1997; Frank et al., 2004; Priest-
ley et al., 2022). A proposal for this behavior is that fields
initially coding for location xt are learning to also encode
the previous location xt−1, hence predictively coding for
location occupancy p(xt+1|xt) (Mehta et al., 2000; Stachen-
feld et al., 2017). While algorithms such as the successor
representation (Dayan, 1993) learn to predict the transition
structure (Gershman, 2018), the representation is dependent
on a predefined navigation policy. Hence, a complete norma-
tive argument—including policy learning—for why fields
exhibit this behavior is still lacking.

Fields drift during stable behavior. After animals reach
a certain performance criterion in navigating to a reward
location, the spatial selectivity of individual place fields
changes across days, even though animals exhibit stable
behavior (Kentros et al., 2004; Mankin et al., 2012; Ziv et al.,
2013; Geva et al., 2023; de Snoo et al., 2023). A proposal
is that these fields continue to drift within a degenerate
solution space while the overall representational manifold
or the chosen performance metric remains stable (Qin et al.,
2023; Pashakhanloo & Koulakov, 2023; Masset et al., 2022;
Kappel et al., 2015; Rokni et al., 2007). Another proposal is
that compensatory synaptic plasticity adjusts the readout to
maintain stable decoding over time (Rule et al., 2020; Rule
& O’Leary, 2022). However, a model that demonstrates
stable navigation learning behavior with drifting fields is
absent, and the functional role of drift remains unclear.

3. Task and Model setup
Most navigational experiments involve an animal moving
from a start location to a target location to receive a reward,
either in a one-dimensional (1D) track or a two-dimensional
(2D) arena. Similarly, our agents receive their true position
at every time step (t) described by the variable (scalar xt
in 1D, vector xt in 2D), and have to learn a policy (π)
that specifies the actions to take (gt) to move from a start
location (e.g. xstart = −0.75, Fig. 1A green dash) to a
target with reward values following a Gaussian distribution
(xr = 0.5, σr = 0.05, Fig. 1A red area). The agent outputs
a one-hot vector gt (left or right in 1D and left, right, up
or down in 2D), which causes its motion to be discrete,
similar to a trajectory in a grid world. To model smooth
trajectories in a continuous space as an animal’s behavior
(Foster et al., 2000; Frémaux et al., 2013; Kumar et al., 2022;
2024), we use a low-pass filter to smooth gt using a constant
αenv = 0.2 after scaling for maximum displacement using
vmax = 0.1:
xt+1 = xt+ ḡt , ḡt+1 = (1−αenv)ḡt+αenvvmaxgt . (1)

2



A Model of Place Field Reorganization During Reward Maximization

To track an agent’s reward maximization performance dur-
ing navigational learning we compute the cumulative dis-
counted reward (G =

∑T
t=0

∑T
k=0 γ

krt+1+k) for the entire
trajectory for each trial using γ = 0.9 as the discount factor,
which is similar to tracking the cumulative reward. The
agent will continue to receive rewards by staying at the tar-
get. Hence, the trial is terminated when either the maximum
trial time is reached Tmax or when the total reward achieved∑T
t=0 rt reaches a threshold Rmax.

3.1. Place fields as spatial features

The agent represents space through N place fields, which
have spatial selectivity modeled as simple Gaussian bumps:

ϕi(xt) = α2
i exp(−||xt − λi||22/2σ2

i ) , (2)
where α, λ and σ set the amplitude, center, and width re-
spectively. Two types of place field distributions were ini-
tialized to tile the environment: (1) Homogeneous popula-
tion with constant values for amplitudes αi = 0.5, widths
σi = 0.1, and centers uniformly tiling the environment
λ = [−1, ..., 1] (Foster et al., 2000; Frémaux et al., 2013;
Kumar et al., 2022; 2024). (2) Heterogeneous population
with amplitudes, widths and centers drawn from uniform
random distributions between [0, 1], [10−5, 0.1], [−1, 1] re-
spectively. These ranges are consistent with experimental
data where place fields were 20 cm to 50 cm wide in small to
medium environments (Lee et al., 2020; Frank et al., 2004;
Mehta et al., 1997; Sosa et al., 2023). 2D place fields have
scalar amplitudes, two dimensional vectors for center, and
square covariance matrices for the width (Menache et al.,
2005). Refer to App. A for further details.

3.2. Policy learning using an Actor-Critic

To model an animal’s trial-and-error based learning behav-
ior, we adopt the reinforcement learning framework, specif-
ically the actor-critic (Arleo & Gerstner, 2000; Brown &
Sharp, 1995; Foster et al., 2000; Frémaux et al., 2013; Ku-
mar et al., 2022; 2024). The critic linearly weights place
field activity using a vector wvi to estimate the value of the
current location:

v(xt) =
∑N
i w

v
i ϕi(xt) . (3)

The value of a location corresponds to the expected cumu-
lative discounted reward for that location. The actor has
M units, each specifying a movement direction. In the 1D
and 2D environments, M = 2 and M = 4 respectively to
code for opposing directions in each dimension e.g. left
versus right and up versus down. Each actor unit aj linearly
weights the place field activity such that the matrix Wπ

ji

computes the preference for moving in the j-th direction:

aj(xt) =
∑N
i W

π
jiϕi(xt) , Pj =

exp(aj)∑M
k exp(ak)

, (4)

with the probability of taking an action computed using a
softmax. A one-hot vector gj is sampled from the action

probability distribution P as in Foster et al. (2000), making
this policy stochastic. wvi and Wπ

ji were initialized by sam-
pling from a normal distribution N (0, 10−5), with other
initializations (uniform or all zeros) reproducing similar
results.

3.3. Reward Maximization Learning Objective

The objective of our agent is to learn a policy π that maxi-
mize the expected cumulative discounted reward JG =
Eτ [G(τ)] = Eτ [

∑T
t=0 γ

trt] over all trajectories τ . To
achieve this goal, our agent uses the standard actor-critic
algorithm using the temporal difference residual (refer to
App. A):

J TD = Eτ [rt + γv(xt+1)− v(xt)] . (5)
which reduces variance and speeds up policy convergence
(Sutton & Barto, 2018; Dayan & Abbott, 2005; Wang et al.,
2018; Schulman et al., 2017; Mnih et al., 2016). The TD
residual is also biologically relevant, as the responses of
midbrain dopamine neurons resemble TD reward prediction
error (Schultz et al., 1997; Starkweather & Uchida, 2021;
Gershman & Uchida, 2019; Amo et al., 2022; Montague
et al., 1996). The actor learns a reward maximizing policy
by ascending the gradient of the policy log likelihood, mod-
ulated by the TD residual. To accurately estimate the value
function and critique policy learning using the TD error, the
critic minimizes the squared TD error L = Eτ

[
1
2δ

2
t

]
.

As our agent uses a single population of place fields, these
fields must learn spatial features that enhance both policy
and value learning. The field parameters θ = {α, λ, σ} and
the policy weights Wπ, wv are updated by gradient ascent
using a joint objective modified from Wang et al. (2018):

∇θ,Wπ,wvJ TD = E
[∑T

t (∇θ,Wπ log π(gt|xt)

+∇θ,wvv(xt)) · δt] , (6)
with ∇wvJ TD = 0 and ∇WπL = 0. We estimate all
parameter gradients online, and provide the explicit update
equations for each parameter in App. A. The learning rates
for the actor-critic and place field parameters can be the
same (Fig. S13). For theoretical analysis, we assume a
separation of timescales between learning the actor-critic
weights and updating place field parameters (App. B).

4. Results
4.1. High field density emerges at the reward location

We first examine the neural phenomenon where a high field
density emerges at the reward location over the course of
learning. Field density is defined by the distribution of place
field center of mass (COM) (Lee et al., 2020), which we
estimate using Gaussian kernel smoothing.

Figure 1B shows how our agent’s track occupancy (p(x)),
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Figure 1. Fields shift towards and amplify at locations with high value. (A) The task is to navigate from the start (green dash) to the
target (red area) to receive rewards. The agent has N place fields (blue) which synapse to an actor (red) and critic (green). The TD error
δ modulates all parameter updates. (B) Example change in field centers for an agent on a 1D track when only optimizing field centers
(∆λ). Initially (T = 50), the agent spends a high proportion of time (pRM (x), black) at the start location while place fields are uniformly
distributed. After some learning trials (T = 1200), the agent still spends a high proportion of time at the start but a high field density
(d(x)) and mean firing rate (f(x)) emerges at the reward location. As learning proceeds, the agent spends a higher amount of time at the
reward location but now field density and mean firing rate starts to increase at the start location (T = 12000). (Right) A high field density
and mean firing rate emerge at the reward and start locations for 50 agents that were randomly initialized with heterogeneous populations
and when all parameters (λ, α, σ, wv,Wπ) are updated using the same learning rate (η = 0.0005). (C) Example change in field centers
for an agent in a 2D arena with a start (green), target (red), and obstacle (gray). In the early learning phase, field centers (black dots) near
the target shift closer, causing a high number of field centers (goal representation) to aggregate at the reward (10 agents with random seeds,
right). In the later learning phase, field centers align along the trajectory. The start, reward locations and radius for goal representation
(G.R.) are marked by green, red and blue circles. (D) When initialized with a heterogeneous field population, the enhancement of average
field density (d(x)) at the reward location xr compared to non-reward location x′ decreases as the number of fields increases. This density
increases when the reward magnitude (Rmax) increases, and reward location’s size (Rsize) decreases. (E) Example field dynamics
when an agent (N = 512) navigates a 1D track. Fields initialized before (λi = 0.5, blue) and after (λi = 0.6, orange) the target move
forward and backward respectively, increasing the density near the target. (F) Fields closest to the reward (λi = 0.5: blue) show rapid
amplification compared to other fields (λi = −0.75, 0.0 : green and purple). The first order perturbative prediction (theory) provides a
good approximation. Shaded area and error bars are 95% CI over 50 seeds.

field density (d(x)), mean firing rate (f(x)), and individual
field’s spatial selectivity (ϕ(x)) change when learning to
navigate in a 1D track from the start xstart = −0.75 to the
target at xr = 0.5, when only optimizing place field centers
(∆λ). In the early stages of learning (T = 50 to T = 1200),
the agent with a homogeneous place field population spends
a higher proportion of time at the start location with only
sporadic exploration towards the reward. Despite this be-
havior, a high field density and mean firing rate emerges at
the target after a few trials. Individual fields at the reward lo-
cation shift closer to the target, as seen in Sosa et al. (2023),
in contrast to fields at non-rewarded locations. As learning
progresses and the agent spends a higher proportion of time
at the reward (T = 12000), field density and mean firing

rate at the start location also begins to rise, replicating the
two-peaked field distribution in Gauthier & Tank (2018),
with some fields shifting backwards from the reward loca-
tion towards the start as in Yaghoubi et al. (2024). Figure
1B (right) also shows that a high field density at the reward
location followed by the start location robustly emerges in
agents initialized with a heterogeneous place field popu-
lation, and when all the field parameters (λ, α, σ) as well
as the actor (Wπ and critic (wv) parameters are optimized
using the same learning rate (η = 0.0005).

Similar field dynamics are observed in a 2D arena with an
obstacle where agents have to navigate to a target from a
starting location (Fig. 1C). When optimizing all the place
field parameters in a homogeneous population, a high field
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density rapidly emerges at the reward location to increase
goal representation (number of COM within 0.25 unit radius
from target center) as seen in (Dupret et al., 2010), followed
by gradual reorganization of field density backward along
the agent’s trajectory.

Increasing the number of fields in a heterogeneous place
field population reduced the average density and mean firing
rate (Fig. 1D, Fig. S1) that emerges near the reward location.
This is because as the number of fields increase, the agent
goes into a weak feature learning regime (Fig. S4) in which
feature learning does not contribute to additional advantage.
Conversely, the density and mean firing rate are proportional
to the reward magnitude, and inversely proportional to the
reward location width as a narrower target might require
higher discriminability for the agent to maximize rewards.

To understand why place fields exhibit these dynamics, we
perform a perturbative approximation to the place field pa-
rameter changes under TD learning updates (Menache et al.,
2005; Bordelon et al., 2024). In this approximation, we
assume that the change to the field parameters is small, con-
trolled by the number of fields, and by the large separation
between learning rates. Focusing on the place field centers,
we derive in App. B the approximation where ηλ = 0.0001
is the learning rate for the field centers and η = 0.01 is the
learning rate for the critic weights such that ηλ ≪ η:

λi(t)− λi(0) ≈ ηλ
η

(
2
σ2
i
+ 1

σ2
x

)−1

×
[
λ̄−λi(0)
σ2
i

+ µ̄x−λi(0)
σ2
x

]
w2
v,i(t) . (7)

Under this approximation, each field’s center shifts propor-
tionally to the squared magnitude of the critic weights (w2

v),
implying that fields at locations with a high value will shift
at a faster rate compared to locations with a low value. In
addition to the value of a location, the agent’s start location
(modeled as a Gaussian with mean µ̄x = −0.75 and spread
σx) and the mean field center location λ̄ over time under the
policy influence each field’s displacement. As the reward
location is visited frequently, we expect λ̄ ≈ 0.5. As the
term within the square bracket changes sign depending on
the field location, only the fields near the reward location
will shift towards the reward, while the rest of the fields will
move towards the start location. Due to these influences,
the field density at the reward location will increase first
followed by a gradual increase in start location (Fig. 1B,E).
Additional approximations are needed to model the agent’s
trajectory and improve the simulation-theory fit for place
field centers (See App. B).

A similar perturbative analysis for amplitude yields:

αi(t)− αi(0) ≈ 2
ηα
η
w2
v,i(t) , (8)

when ηα ≪ η and where ηα = 0.0001 is the learning rate
for the α parameters. Thus, place fields will be amplified at
a rate similar to learning the value function, causing fields at

the reward location to be amplified first, followed by the start
location (Fig. 1F, Fig. S1). Therefore, these approximations
predict fields shifting to the start and reward location with
field amplification at locations of high value.

4.2. Fields elongate against the movement direction

We now turn to the next phenomenon where place field sizes
increase and their centers shift backward against the move-
ment direction as animals learn to navigate. This behavior
suggests predictive coding for future occupancy, which can
be learned through Hebbian association of fields (Mehta
et al., 2000), or through the successor representation (SR)
algorithm, which minimizes state prediction error for each
place field to learn the transition probabilities (Stachenfeld
et al., 2017). Here, we show that our proposed Reward
Maximizing (RM) agent also recapitulates field elongation
in a 1D track and 2D arena around an obstacle.

For comparison, we developed two agents: A) an SR agent
that learns the transition probabilities in parallel to policy
learning (Fig. 2A). The SR agent has a similar architecture
to our (RM) agent (Fig. 1A), with two key differences: 1) It
has one set of place fields with fixed parameters, and only
the synapses from these place fields to the actor-critic are
optimized for policy learning. 2) There is a separate set of
N successor place fields ψ(x) that receive input from the
fixed place fields via synapses U which are optimized using
the SR algorithm (App. C). We compare the learned succes-
sor place fields to the learned place fields in our RM model,
referring to them henceforth as place fields. B) a Metric Rep-
resentation (MR) agent (Fig. 2B) that estimates its current
coordinates in an environment (zt). This metric representa-
tion enables navigation to recalled targets by vector subtrac-
tion (Foster et al., 2000; Kumar et al., 2024). The coordinate
readout weights and place field parameters are updated by
gradient descent to minimize the path integration-derived
TD error LMR = E[ 12 (zt+1 − (zt + at))

2], while only the
actor and critic readout weights are updated to learn a policy.
This objective allows place fields ϕ(x) to reorganize even
in the absence of rewards. See App. D for the derivation.

All three agents (SR, MR, RM) recapitulate the phenomena
seen in (Mehta et al., 1997): on average, place fields increase
in size over learning (Fig. 2C), and the center of mass
(COM) shifts backwards from their initialized positions (Fig.
2D). However, the place field dynamics evolve differently.
All agents initially spend a high proportion of time at the
start location and gradually learn a policy to spend a higher
proportion of time at the reward (Fig. 2E, Fig. S5E).

The SR, by design, tracks the transition probabilities of the
agent’s policy. Consequently, the SR population mean firing
rate fψ(x) closely aligns with the agent’s probability of
being in a location pSR, showing a high positive correlation
(Fig. 2F, blue). Since the MR representation is modulated
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Figure 2. Different objectives cause fields to elongate against the trajectory, but with different dynamics. (A) Successor Representa-
tion agent architecture with successor fields (ψ) as a separate set of features that are learned in parallel to navigational learning. (B) Metric
Representation agent architecture where the path-integration derived temporal difference error drives place field reorganization, while
policy learning occurs in parallel. (C-D) The Reward Maximization (RM), Successor Representation (SR) and Metric Representation
(MR) algorithms cause (C) field sizes to increase and (D) center of mass to shift backwards against the trajectory in a 1D track. Field
changes were normalized separately to be between 0 to 1 for visualization. (E) All agents initially spend a high proportion of time at the
start location, and later learn to dwell at the target (black). Individual SR fields and mean firing rate (red) closely track the proportion of
time the agent spends in a location (top). MR fields reorganize only at the start location (middle). Conversely, individual RM fields and
mean firing rate show an inverse relationship against the proportion of time the RM agent spends at a location in the early learning phase,
but start to align in the later phases (bottom). (F) SR agents show a consistently high, positive correlation (blue) between mean firing rate
and proportion of time spent in a location. MR agents’ show a non-monotonic increase in correlation (green). Conversely, the RM agents’
mean firing rate and time spent at a location become anti-correlated before becoming positively correlated (orange). (G) The SR and RM
mean firing rates (blue) become anti-correlated before becoming positively correlated at the later learning phase, while the SR and MR
fields align momentarily before de-correlating (orange), and the RM and MR fields become anti-correlated (green). (H) Example change
in field selectivity by SR (top), MR (middle), and RM (bottom) agents in a 2D arena with an obstacle. The RM agent’s field elongation is
more pronounced than the SR and MR agents. Summary statistics in Fig. S6. Shaded area is 95% CI over 10 seeds.

by the agent’s displacement at, fields reorganize more at
the start location since displacement is nonzero, causing a
higher mean firing rate. Conversely, displacement becomes
zero at the reward location as the agent comes to a stop
to maximize rewards, causing low field reorganization at
the reward. Hence, MR fields fϕMR

(x) become positively
correlated with pMR at the start location, but do not fully
align with the agent’s time spent at the reward location (Fig.
2F, green). Conversely, during early learning, the RM agent
exhibits a high population mean firing rate fϕRM

(x) at the
reward location, which contrasts sharply with the proportion
of time spent at that location, leading to a highly negative
correlation between fϕRM

(x) and pRM (Fig. 2F, orange).
Interestingly, in the later phase of learning, fϕRM

(x) and
pRM become positively correlated.

The mean firing rates learned by the SR and RM agents be-
come negatively correlated during the early learning phase
but become positively correlated at the later learning phase

(Fig. 2G, blue). Conversely, the mean firing rate correlation
decreases monotonically towards zero for the MR and RM
agents (Fig. 2G, green), while the correlation between SR
and MR increases due to the alignment at the start location
in the early learning phase before becoming uncorrelated
in the later learning phase. A similar change in correlation
is observed when comparing the individual field selectivity,
and the spatial representation similarity matrix (Fig. S5F,G).
Hence, while all three algorithms demonstrate qualitatively
similar neural phenomenon, the dynamics of learning these
representations are different, with SR and RM agents even-
tually learning similar spatial representations.

In a 2D arena with an obstacle, the three agents show field
elongation against the movement direction (Fig. 2H) while
also accounting for the blockage of path by the obstacle. The
RM agent shows a significantly larger elongation of fields to
span the entire corridor while the elongation of fields by SR
is subtle and field elongation by MR is more pronounced
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only at the start location. See Fig. S6 for summary statistics.

4.3. Stable navigation behavior with drifting fields

The third phenomena that the model captures has been de-
scribed as representational drift, where the agent demon-
strates stable behavior but the spatial selectivity of individual
place fields change over time (Fig. 3A, Fig. S8G), as seen
in Ziv et al. (2013). Although our agent uses a stochastic
policy, both the navigation behavior (Fig. 3E, blue) and
the population vector (PV) correlation (Fig. 3C, blue) are
extremely stable.

To drive larger variability in the representation, we intro-
duced Gaussian noise (ξt) of varying magnitudes during
place field parameter updates at every time step (θt+1 =
θt + ξt, see App. E). Increasing the noise magnitude led to
a faster decrease in PV correlation but also disrupted agents’
policy convergence for magnitudes greater than 10−3 (Fig.
3E purple, Fig. S7). Hence, we consider the noise magni-
tudes between 10−4 and 10−3 to be relevant. As the noise
magnitude increases, agent’s reward maximization behavior
remains stable (Fig. 3E) while the PV correlation decreases
rapidly (Fig. 3C). This demonstrates that agents can opti-
mize their policies to maintain stable behavior even though
individual spatial selectivity is changing. Interestingly, the
spatial representation similarity matrix remains more stable
than PV correlation (Fig. 3B), even at higher noise mag-
nitudes (Fig. 3D), and when the agents are not explicitly
optimizing for representational similarity (Qin et al., 2023).

Unlike noisy field parameter updates, adding noise to the
actor and critic synapses (wvt+1 = wvt + ξvt and Wπ

t+1 =
Wπ
t + ξπt ) caused the reward maximization behavior, repre-

sentation similarity and PV correlation to change at similar
rates (Fig. S7), which is not as consistent with experiments
(See Fig. S9 for comparisons to data).

We quantified this drifting behavior at the level of in-
dividual neurons by summing the normalized (between
[0, 1]) variance in each field’s parameters (

∑
V ar(θ̃) =

V ar(α̃) + V ar(λ̃) + V ar(σ̃)) across learning trials, and
comparing this against the mean amplitudes for each field.
When no Gaussian noise is added (Fig. 3F, blue), fields
with a higher mean amplitude showed a higher variance in
its parameters, which is expected since fields with a higher
amplitude are more likely to be involved in policy learn-
ing. Conversely, with a small Gaussian noise, we see the
opposite trend where fields with a smaller mean amplitude
showed a higher variance in parameters while fields with a
higher mean amplitude were more stable (Fig. 3F, orange).
At smaller noise magnitudes, there is a strong positive corre-
lation between higher amplitude fields and the magnitude of
actor and critic readout weights (Fig. S8). This suggests that
high-amplitude fields are more involved in policy learning
and thus more stable, whereas less important fields can alter

Figure 3. Stable representation similarity and anchor fields fa-
cilitate consistent behavior. (A) Injecting Gaussian noise with
a magnitude σnoise = 0.0001 into field parameters causes indi-
vidual field’s spatial selectivity to change across trials while (B)
the representation similarity matrix (dot product of population
activity) remains stable. (C) Injecting higher noise magnitudes
(σnoise = 0.0001, ..., 0.001) leads to a faster decrease in popu-
lation vector correlation (RPV ) across trials while (D) the sim-
ilarity matrix correlation (RRS) decreases at a slower rate. (E)
Agents’ reward maximization performance (G) remains fairly sta-
ble even when the noise magnitude increases. However, beyond
σnoise = 0.001, performance becomes highly unstable. Black
dash indicates the trial at which PV and similarity matrix correla-
tion was measured from. (F) Normalized variance in field parame-
ters (θ = {α, λ, σ}) between trials 25,000 to 200,000 quantifies
the change in individual place fields spatial selectivity. With no
noise (blue) or a larger noise magnitude (σnoise = 0.001), fields
with a larger amplitude undergo a greater change in its parameters.
When σnoise = 0.0001, we see the opposite trend, where fields
with a larger amplitude are more stable than fields with a smaller
amplitude, suggesting fields with larger amplitudes acting as an-
chored representations in an environment. Refer to Fig. S8 for
other σnoise values. Shaded area is 95% CI over 10 seeds.
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their spatial selectivity to maintain stable behavior (Fig. 3E,
orange), consistent with Qin et al. (2023). Increasing the
noise magnitude beyond this magnitude causes place fields
with large magnitudes and more involved in policy learning
to drift more (Fig. 3F, purple), causing unstable behavior
(Fig. 3E, purple).

4.4. Field reorganization improves policy convergence

Figure 4. Field reorganization and noisy updates improve tar-
get learning. (A) Optimizing all three field parameters, amplitude,
width and center of randomly distributed fields allowed agents
(N = 16, σ = 0.1) to attain the highest cumulative discounted
reward (G), while fields with fixed field parameters attained the
lowest. (B) Optimizing place field widths (σ), followed by field am-
plitudes (α) and lastly field centers (λ) caused the biggest decrease
in the number of trials needed for policy convergence (TG>45, at-
tain a running average of G = 45 over 300 trials). As the number
of fields increased, the number of trials needed for policy conver-
gence decreased and the computational advantage afforded by field
optimization extinguished. (C) Agents need to navigate to a target
that changed after 50,000 trials xr = {0.5, 0.0, 0.75,−0.25, 0.5}.
Without noisy field parameter updates, agents (N = 128, σ = 0.1)
struggled to learn new targets (blue, σnoise = 0.0). Field updates
with different noise magnitudes influenced the policy convergence
speed and maximum cumulative reward for subsequent targets,
with σnoise = 0.0005 (red) demonstrating the highest improve-
ment. Shaded area is 95% CI over 50 seeds.

As the reward-maximizing model recapitulates
experimentally-observed changes in place fields, it
is natural to ask what computational advantage representa-
tion learning might offer during reinforcement learning. To
probe the contributions of each field parameter to policy
learning, we perform ablation experiments. These ablations
are particularly important due to the parameter degeneracies
in the model: one can trade off the place field amplitudes
and the critic and actor weights.

We first considered the task of navigating to a single fixed
target. Agents with fixed place fields attained the lowest nav-
igational performance with cumulative reward G plateauing
at G = 33 (Fig. 4A), and showed the slowest policy con-

vergence even as the number of fields increased (Fig. 4B).
Optimizing place field widths (σ) contributed to the greatest
improvement in maximum reward and largest decrease in
the number of trials needed for policy convergence (Fig.
4A-B). Optimizing place field amplitudes (α) contributed
to the next most significant improvement (Fig. 4A-B). In-
terestingly, place field center (λ) optimization did not con-
tribute to a significant improvement in performance, and
in fact caused a decrease in reward maximization perfor-
mance and speed of policy convergence when optimized
together with the amplitude parameter. Hence, optimizing
field widths followed by amplitudes and lastly centers signif-
icantly improved agent’s reward maximization performance
and increased the speed of policy convergence.

Optimizing field parameters using the auxiliary metric rep-
resentation (MR) objective, inspired by Fang & Stachenfeld
(2023), marginally improved policy learning (Fig. S15).
However, as the number of place fields increase (Fig. 4B),
the computational advantage afforded by place field op-
timization extinguishes. Nevertheless, optimizing all the
parameters in a small number of fields, e.g. 8, leads to a
similar rate of policy convergence than with a larger number
of randomly initialized fields e.g. 128, which hints that
representation flexibility could allow efficient learning in
systems with few neurons.

We now turn to the influence of noisy fields when learn-
ing to navigate to new targets, inspired by Dohare et al.
(2024). Agents now have to navigate from the same start
location to a target that repeatedly changes location. Al-
though all agents learned to navigate to the first (xr = 0.5)
and the second (xr = 0.0) targets equally well, agents with-
out noisy field updates struggled to learn the next three
targets, and achieved a lower average cumulative reward
(Figure 4C, blue). Increasing the noise magnitude led to
a monotonic improvement in new target learning. Some
place fields coding for the initial reward location shifted
to code for the new reward location (Fig. S3), replicating
the behavior of place cells that selectively code for rewards
(Gauthier & Tank, 2018; Sosa et al., 2023). This behav-
ior was suppressed in agents without noisy field parameter
updates. However, noise magnitudes beyond a threshold
(σnoise = 0.001) caused average cumulative reward to de-
crease. These results suggests that there is a functional role
for noise, especially for new target learning. We see a simi-
lar improvement in reward maximization performance with
noisy field updates in a 2D arena with an obstacle when we
either change the target or the obstacle location (Fig. S12).

5. Discussion
We present a two-layer navigation model which uses tun-
able place fields as feature inputs to an actor and a critic for
policy learning. The noisy parameters of the place fields
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and the policy and value function learn to maximize rewards
using the temporal difference (TD) error. Our simple rein-
forcement learning model reproduces three experimentally-
observed neural phenomena: (1) the emergence of a high
place field density at rewards, (2) enlargement of fields
against the trajectory, and (3) drifting fields without influenc-
ing task performance. We analyzed the model to understand
how the TD error, number of place fields and noise mag-
nitudes influenced place field representations. Lastly, we
demonstrate that learning place field representations with
noisy field parameters improves the rate of policy conver-
gence when learning single and multiple targets.

Our goal was not to replicate every known mechanistic
detail about place fields, but come up with a minimal biolog-
ically grounded model that captures as many phenomena as
possible. This required deliberate decisions to omit certain
granularities. While this necessitates some disconnect with
neural mechanisms, it allows parsimony (Van Vreeswijk &
Sompolinsky, 1996; Burak & Fiete, 2009; Hopfield, 1982)
and interpretability (Bordelon et al., 2024) to make experi-
mentally testable predictions for neural systems (Montague
et al., 1996; Schultz et al., 1997; Kumar et al., 2024). For
instance, our model gives an alternative normative account
for field elongation against the trajectory, which can be con-
trasted with the successor representation algorithm (Raju
et al., 2024; Kumar et al., 2024). As field dynamics are
different in these two models, they could be distinguished
by experiments that track fields over the full course of learn-
ing (Fig. 2C-E, Fig. S6). Furthermore, place field width
and amplitude optimization increases maximum cumulative
reward and accelerates policy convergence (Fig. 4A-B).

Most models that characterized representational drift were
not studied under the context of navigational policy learn-
ing (Masset et al., 2022; Pashakhanloo & Koulakov, 2023;
Ratzon et al., 2024). We showed that increasing the noise
magnitudes caused different drift regimes (Fig. 3F; Fig.
S9D), and at very high noise levels navigation behavior
started to collapse (Fig. 3C, Fig. S7). Importantly, we
showed that fields in the noisy regime allowed agents to
consistently learn new targets in both 1D (Fig. 4C) and 2D
(Fig. S12A-B) environments, without getting stuck in local
minima. The biological origins of adding noise to place
field parameters can be attributed to noisy synaptic plastic-
ity mechanisms (Mongillo et al., 2017; Kappel et al., 2015;
Attardo et al., 2015). Other mechanisms such as unstable
dynamics in downstream networks (Sorscher et al., 2023)
and modulatory mechanisms such dopamine fluctuations
(Krishnan & Sheffield, 2023) could adaptively control drift
rates. A difficult experiment that could directly verify our
model is to induce or constrain place field drift rates in an-
imals and determine how this perturbation influences new
target learning. How fluctuations in dopamine, stochastic
actions and stochastic firing rates within place fields drive

drift rates needs to be explored. The current model provides
a starting point for this investigation.

The proposed model is not without limitations. First, we
modeled single peaked place fields instead of the complex
representations resulting from single “place” cells, which
can be multi-field and multi-scale. Nevertheless, the pro-
posed online reinforcement learning framework is general
enough to accommodate other models of place cell descrip-
tion (Mainali et al., 2024; Sorscher et al., 2023) e.g. Fig.
S14, and can be extended to study representation learning
in other brain regions e.g. medial entorhinal (Boccara et al.,
2019; Wen et al., 2024) or posterior parietal (Suhaimi et al.,
2022) cortex.

Next, place field parameters are optimized by backpropa-
gating the temporal difference error through the actor and
critic components (Fig. S15). Since the motivation was to
develop a normative model whose objective was to maxi-
mize rewards, this was a reasonable starting point. However,
this model must be extended using biologically-plausible
learning rules (Miconi, 2017; Murray, 2019; Lillicrap et al.,
2016; Nøkland, 2016; Overwiening et al., 2025) before it
can in any way be considered mechanistic (Lee et al., 2024;
Starkweather & Uchida, 2021; Krishnan et al., 2022; Kem-
padoo et al., 2016; Edelmann & Lessmann, 2018).

Although we explored a simple non-reward-dependent ob-
jective to drive place field reorganization, extending the
model to other auxiliary objectives (Low et al., 2018; Scha-
effer et al., 2022) to understand their influence in represen-
tation learning for policy learning is the next step. While
our computational experiments successfully demonstrated
the model’s effectiveness in reproducing three disparate phe-
nomena, further work should test its robustness across other
reinforcement learning algorithms e.g. policy gradient (Ku-
mar & Pehlevan, 2024) and network architectures (Team
et al., 2021; Kumar et al., 2025). Additionally, we need
to explore how place field reorganization scales in larger,
more complex environments (Hill et al., 2020; Lin et al.,
2023; Nieh et al., 2021; Kumar et al., 2024) beyond the few
environments we considered.

Code Availability
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Pehlevan-Group/placefield_reorg_agent
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A. Details of the Place field-based navigation model
The code for initializing and training the model in 1D and 2D environments, along with the code for analyzing neural
phenomena and generating all figures, will be available on GitHub upon acceptance.

A.1. Place fields in 1D and 2D environments

The agent contains N place fields. In a 1D track, each place field is described as

ϕi(xt) = α2
i exp

(
−||xt − λi||22

2σ2
i

)
, (9)

with α, λ and σ describing the amplitude, center and width, adapted from Foster et al. (2000); Kumar et al. (2022; 2024).
Most of the simulations were initialized with amplitudes αi = 0.5 and widths σi = 0.1, with centers uniformly tiling
the environment λ = {−1, ..., 1}. Nevertheless, similar representations emerge for amplitudes drawn from a uniform
distribution between [0, 1] and widths uniformly drawn between [0.01, 0.25]. This parameter initialization was used for
ablation studies in Fig. 4. In a 2D arena, each place field is described as

ϕi(xt) = α2
i exp

[
−1

2
(xt − λi)

⊤Σ−1
i (xt − λi)

]
, (10)

where Σi is a 2x2 covariance matrix, adapted from Menache et al. (2005). The off-diagonals were initialized as zeros and
diagonals initialized to match the variance in the 1D place field description, i.e. Σii = 0.12 to ensure field widths are
consistent in 1D and 2D.

A.2. Reward Maximization Objective (Policy Gradient)

The objective of the model is to learn a policy π parametrized by Wπ and spatial features ϕ parameterized by θ that
maximizes the expected cumulative discounted rewards over any trajectory τ = {x0, g0, r0, x1, ...xT , gT , rT , xT+1} in a
finite-horizon setting, modeling the trial structure in neuroscience experiments

JG = Eτ∼ϕθ,πWπ

[
T∑
t=0

γtrt

]
= Eτ [G(τ)] , (11)

where γ is the discount factor, rt is the reward at time step t after choosing an action gt at state xt, and the time horizon T is
finite with trials ending after a maximum of 100 steps in the 1D track and 300 steps in the 2D arena.

To maximize the cumulative reward objective, we perform gradient ascent on the policy and place field parameters,
θnew = θold + ηθ∇θJG , Wπ

new =Wπ
old + η∇WπJG , (12)

where ηθ and η are learning rates for θ and Wπ respectively. The gradients are derived using the log-derivative trick,
∇θ,WπJG = ∇θ,WπEτ [G(τ)] (13)

= ∇θ,Wπ

∫
τ

p(τ |θ,Wπ)G(τ) (14)

=

∫
τ

p(τ |θ,Wπ)∇θ,Wπ log p(τ |θ,Wπ)G(τ) (15)

= Eτ [∇θ,Wπ log p(τ |θ,Wπ)G(τ)] , (16)
where the trajectory τ describes the state to state transitions. We expand the above using the Markov assumption that the
transition to future states depend only on the present state and not on the states preceding it,

p(τ |θ,Wπ) = p(x0)

T∏
t=0

p(xt+1|xt)π(gt|xt; θ,Wπ) (17)

log p(τ |θ,Wπ) = log p(x0) +

T∑
t=0

(log p(xt+1|xt) + log π(gt|xt; θ,Wπ)) (18)

∇θ,Wπ log p(τ |θ,Wπ) =

T∑
t=0

∇θ,Wπ log π(gt|xt; θ,Wπ) . (19)

Since the gradients are not dependent on the state transitions, the last line excludes them. Substituting Eq. 19 into Eq. 16

15



A Model of Place Field Reorganization During Reward Maximization

yields

∇θ,WπJG = Eτ

[
T∑
t=0

∇θ,Wπ log π(gt|xt; θ,Wπ) ·Gt

]
, (20)

which completes the full derivation of the policy gradient theorem (Sutton et al., 1999; Sutton & Barto, 2018). The policy
gradient objective was used by Kumar & Pehlevan (2024) to optimize the policy and place field parameters. However,
this learning signal requires an explicit reward and policy gradient methods are slow to converge as they suffer from high
variance due to:

• Monte Carlo sampling: Agents need to sample an entire episode to estimate the expected return Eτ [Gt = rt + γrt+1 +
γ2rt+2 + ...] before updating the policy. This can introduce significant variance because the estimate is based on a
single path through the stochastic environment, which may not be representative of the expected value over many
episodes.

• No Baseline: The basic policy gradient algorithm computes the gradient solely based on the return G from each
trajectory. By introducing a baseline (either constant b or dynamically evolving bt e.g. value function vt), which
estimates the expected return from a given state, the variance of the gradient estimate can be reduced, because now the
policy learns which action is better than the previous (concept of using an Advantage At instead of rewards).

Value based methods (Sutton & Barto (2018), Chapter 3.5) were introduced to address some of these issues. For instance,
instead of sampling returns Gt, value functions Vt learn to estimate the expected returns at each time step t:

Vt = E[Gt] , (21)
which can reduce the variance during credit assignment. The combination of policy gradient with value-based methods lead
us to the Actor-Critic algorithm.

A.3. Alternative reward maximization objective (Temporal Difference)

The optimal value function Vt reflects the true expected cumulative discounted rewards, hence the policy gradient objective
can be rewritten as

JG = Eτ [G(τ)] = E

[
T∑
t=0

γtrt

]
, (22)

= E

[
rt + γ

T∑
t=1

γtrt

]
, (23)

JG = E [rt + γVt+1] . (24)
which yields the following self-consistency equation

rt + γVt+1 − Vt ≡ 0 , (25)
as argued by Sutton & Barto (2018); Frémaux et al. (2013).

Alternatives to policy gradient algorithms propose subtracting a baseline which can be a fixed constant b or a dynamically
changing variable bt. Since we have the value function Vt we can modify the objective to be

J A = E [Gt − Vt] = E [At] = E

[
T∑
t=0

rt + γVt+1 − Vt

]
, (26)

which gives us the Advantage function (Mnih et al., 2016; Schulman et al., 2015). This reduces the variance as the policy
has to learn to select actions that gives an advantage over the current value function. We get a learning objective function
that is an analogue to maximizing the expected cumulative discounted returns while subtracting a baseline Eq. 11.

∇θ,WπJ A = E

[
T∑
t=0

∇θ log π(gt|xt; θ,Wπ) ·At

]
. (27)

However, we have assumed that we are given the optimal value function Vt to critique the actor if it is doing better or worse
than before. Instead, we can learn to estimate the value function vt using a critic by minimizing the Temporal Difference
error

δt = rt + γvt+1 − vt . (28)
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The critic can learn to approximate the true value function by minimizing the mean squared error between the true value
function Vt and the predicted vt, or the temporal difference error δt

Lv = E

[
T∑
t=0

1

2
(V (xt)− v(xt; θ, w

v))
2

]
(29)

= E

[
T∑
t=0

1

2
(rt + γV (xt+1)− v(xt; θ, w

v))
2

]
. (30)

Since we do not have the optimal value function Vt, we can approximate it by bootstrapping the estimated value function vt
and ensuring that we do not take gradients with respect to the time shifted value estimate v(xt+1) using a stop gradient (sg):

LTD = E

[
T∑
t=0

1

2
(rt + γv(xt+1; sg(θ, w

v))− v(xt; θ, w
v))

2

]
(31)

= E

[
T∑
t=0

1

2
δ2t (θ, w

v)

]
. (32)

We minimize the temporal difference error using gradient descent for the critic to estimate the value function

∇θ,wvLTD =
∂LTD

∂δ
· ∂δ
∂v

· ∇θ,wvv(θ, wv) , (33)

= E

[
T∑
t=0

δt · (−1) · ∇θ,wvv(xt; θ, w
v)

]
, (34)

= E

[
T∑
t=0

−∇θvv(xt; θ, w
v) · δt

]
. (35)

Notice the additional negative sign that pops out when you take the derivative of δ only with respect to vt
∂δ

∂v
=
∂(rt + γvt+1 − vt)

∂vt
= −1 , (36)

since rt and vt+1 are treated as constants, we do not take their derivatives. Since we do not have the optimal value function
Vt but a biased estimate vt, we can use the temporal difference error as our reward maximization objective

J TD = E

[
T∑
t=0

rt + γvt+1 − vt

]
= E

[
T∑
t=0

δt

]
. (37)

As the value estimation becomes closer to the optimal value vt → Vt, this objective becomes similar to the advantage
objective J TD → J A. Note that we are not directly maximizing the TD error during policy learning. Rather, we want to
optimize the policy π and place field parameters θ by gradient ascent, using the biased estimate of the advantage function

∇θ,WπJ TD = E

[
T∑
t=0

∇θ,Wπ log π(gt|xt; θ,Wπ) · δt

]
. (38)

An alternative interpretation is that during policy learning, the agent learns a policy to maximize the difference between the
actual reward and the estimated value

A.4. Combined reward maximization objective for place field parameters

In our model (Fig. 1A), actor Wπ and critic wv weights are optimized separately, while the place field parameters θ overlap.
The actor uses gradient ascent for Eq. 27, and the critic employs gradient descent for Eq. 35. Since we have a single
population of place fields, we optimize these parameters to support both objectives. Thus, we derive a combined objective
function to update Wπ , wv , and θ in a single gradient pass
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∇Wπ,wv,θJ = ∇Wπ,wv,θJ TD −∇Wπ,wv,θLTD (39)

= E

[
T∑
t=0

∇Wπ,wv,θ log π(gt|xt;Wπ, θ)δt

]
− E

[
T∑
t=0

−∇Wπ,wv,θv(xt;w
v, θ)δt

]
, (40)

= E

[
T∑
t=0

∇Wπ,wv,θ log π(gt|xt;Wπ, θ)δt +∇Wπ,wv,θv(xt;w
v, θ)δt

]
, (41)

= E

[
T∑
t=0

(∇Wπ,wv,θ log π(gt|xt;Wπ, θ) +∇Wπ,wv,θv(xt;w
v, θ)) δt

]
. (42)

where ∇wvJ TD = 0 and ∇WπLTD = 0 since the respective objectives are not parameterized by wv and Wπ respectively.
This means that Wπ is tuned to maximize J TD, wv is tuned to minimize LTD and θ is tuned to balance both the objectives.

Since most optimizers e.g. in Tensorflow, PyTorch perform gradient descent, not ascent, we can minimize the negative
policy gradient Eq. 27, which is equivalent to the negative log likelihood

∇Wπ,wv,θL = −∇Wπ,wv,θJ TD +∇Wπ,wv,θLTD (43)

= −E

[
T∑
t=0

∇Wπ,wv,θ log π(gt|xt;Wπ, θ) · δt

]
+ E

[
T∑
t=0

−∇Wπ,wv,θṽ(xt;w
v, θ) · δt

]
, (44)

= E

[
T∑
t=0

∇Wπ,wv,θ − log π(gt|xt;Wπ, θ) · δt

]
+ E

[
T∑
t=0

−∇Wπ,wv,θṽ(xt;w
v, θ) · δt

]
, (45)

= ∇Wπ,wv,θLTDπ +∇Wπ,wv,θLTDv . (46)

which is the same update rule used in Wang et al. (2018); Mnih et al. (2016) to train the actor and critic separately while the
feature parameters are trained jointly.

It is also possible to initialize two separate populations of place fields, each for the actor and critic. Alternatively, we only
optimize place field parameters using the actor’s objective while the critic uses the spatial features to learn the value function.
The converse is also possible where the place field parameters and critic weights are optimized to minimize the TD error
while the actor learns a policy without optimizing the spatial representations, as we did in the perturbative approximation
(App. B). From numerical experiments, optimizing place field parameters using both the actor and critic objectives allowed
the agent to achieve the fastest policy convergence and highest cumulative reward performance (Fig. S15).

A.5. Online update of place field and actor-critic parameters

Now, we derive an online implementation of Eq. 6 which is the same as Eq. 42, so that all parameters are updated at every
time step. Extending from Foster et al. (2000); Kumar et al. (2022), the actor and critic weights are updated according to the
gradients

∆wv(t+ 1) = ηδtϕ(xt) , ∆W π(t+ 1) = ηδtg̃tϕ(xt)
⊤ , (47)

where g̃t,j = gt − P and η = 0.01. The gradient updates for place field parameters follow

∆θ(t+ 1) = ηθδt
(
wv(t) +W

⊤
π (t) · g̃t

)
∇θϕ(xt;θ) , (48)

where we use a significantly smaller learning rate ηθ = 0.0001 so that the spatial representation evolves in a stable manner.
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Specifically, each field parameter is updated according to
δbpi,t = δt

(
wvi (t) +Wπ

ji(t) · g̃t,j
)
, (49)

∆αi,t = ηα · δbpi,t · ϕi(xt) ·
(

2

αi

)
, (50)

∆λi,t = ηλ · δbpi,t · ϕi(xt) ·
(
xt − λi
σ2
i

)
, (51)

where δbpi,t is the TD error gradient that has been backpropagated through the actor and critic weights. Using just the wvi (t)
or Wπ

ji weights alone to backpropagate the TD error influences the representation learned by the place field population and
ultimately the navigation performance (Fig. S15).

There are two ways to optimize the place field width parameter. The first and straightforward method is to update the width
parameter according to

∆σi,k,t = ησ · δbpi,t · ϕi,k(xt) ·

(
(xt − λi)

2

σ3
i,k

)
, (52)

where k = 1 in a 1D place field. In a 2D place field with k = 2, we can update the diagonal elements in the 2D matrix
while keeping the off-diagonals to zeros as in Menache et al. (2005). However, fields will only elongate along each axis.
Instead, in our simulations, we optimized the off-diagonals using the same gradient flow equations. However, we needed to
include additional constraints so that each place field’s covariance matrix remains 1) symmetric, 2) bounded, and 3)positive
semi-definite to perform matrix inversion. Specifically, the covariance matrix was bounded between [10−5, 0.5] to prevent
exploding widths and gradients.
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B. Derivation for perturbative expansion
The dynamics of place field parameters are nonlinear and difficult to characterize analytically. To gain some analytical
tractability, we impose a strong separation of timescales between policy learning updates and place field parameter updates.
To do so, we set the learning rates for the actor-critic η to be much larger than the learning rates for the place field parameters
ηα, ηλ, ησ ≪ η. In simulations, we use η = 0.01 and ηθ = 0.0001.

The critic estimates the value as

v(xt) =

N∑
i=1

wiϕi(xt,θi) , (53)

where θi = (αi, λi, σi) are neuron specific parameters (amplitude, mean, and bandwidth respectively). We write wv as w
for clarity. To start with let’s just consider

ϕi(xt,θi) = α2
i exp

(
− 1

2σ2
i

(xt − λi)
2

)
. (54)

We consider a TD based update, which in the gradient flow (infinitesimal learning rate) limit can be approximated as
d

dt
w(t) =M(t)(wV −w(t)) , (55)

d

dt
θi(t) = ϵ wi(t)Ext

∇θi
ϕi(xt,θi)δt , (56)

The key assumption we make is that the dimensionless ratio of learning rates, ϵ is perturbatively small

ϵ =
ηθ
η

≪ 1, (57)

where ηθ is the learning rate for the place field parameters θi and η is the learning rate for the actor-critic. The matrix
M(t) = Σ(t) − γΣ+(t) where Σ = ⟨ψ(xt)ψ(xt)⟩ and Σ+(t) =

〈
ψ(xt)ψ(xt+1)

⊤〉 depends on the equal time and
time-step shifted correlations of features. The vectorwV =M−1ΣwR wherewR ·ψ(x) = R(x). We investigate a simple
perturbation series.

w(t) = w0(t) + ϵw1(t) + ϵ2w2(t) + ...

θ(t) = θ0(t) + ϵθ1(t) + ϵ2θ2(t) + ... (58)
and examine the dynamics up to first order in ϵ. We will show that this recovers many qualitative features of the observed
representational updates.

The leading zeroth order dynamics are
d

dt
θ0(t) = 0 ,

d

dt
w0(t) =M0(wV −w0(t)) , (59)

whereM0 = Σ(0)− γΣ+(0) is the initial feature covariance under the initial policy.

B.1. Place Field Amplitude

We start by asserting a separation of timescales between training readout weights and feature parameters during a simple TD
learning setup

d

dt
wi(t) =

∑
j

Mij(w
V
j − wj) , (60)

d

dt
αi(t) = ϵ

2

αi(t)
wi
∑
j

Mij(w
V
j − wj) , (61)

The zero-th order solution to Eq. 55 is

∆w0(t) ≡ wV −w0(t) = exp (−M t)wV , (62)
w0(t) = [I − exp (−M t)]wV , (63)

which can be substituted in to get the first order correction to the dynamics for θ
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d

dt
α1(t) = 2α−1

0 ⊙ [I − exp (−M t)]wV ⊙M exp (−M t)wV . (64)

Under the condition that α0 = 1 andM =M⊤ we can work out an exact expression in terms of the eigendecomposition
M =

∑
k λkuku

⊤
k

α1(t) = 2
∑
kℓ

(wV · uk)(uℓ ·wV ) (uk ⊙ uℓ)
[
(1− e−λkt)− λk

λk + λℓ
(1− e−(λk+λℓ)t)

]
, (65)

we can approximate this at late times as
lim
t→∞

α1(t) ≈ 2wV ⊙wV . (66)

As t→ ∞ we can approximate this as limt→∞ θ(t) ≈ 2(wV )
2. This indicates that neurons which are heavily involved in

the reproduction of the value function are upweighted in their amplitude.

B.2. Field Center

Based on the place field center update equation and rewriting the terms as above,

d

dt
λi(t) ≈ ϵ

xt − λi
σ2
i

wiϕi(x)
∑
j

ϕj(x)(w
V
j − wj) . (67)

We need to compute an average over spatial positions. We approximate the space position early in training as a Gaussian
with mean s0 and variance σ2

x 〈
(xt − λi)

σ2
ϕi(x)ϕj(x)

〉
≈ µij − λi

σ2
Mij , (68)

where µij =
(

2
σ2 + 1

σ2
x

)−1 (
1
σ2 (λi + λj) +

1
σ2
x
µ̄x

)
is the mean value of x obtained by the above Gaussian integral under

the approximation that p(x) ∼ N (µ̄x, σ
2
x). Approximating λj as the mean position of the tuning curves λ̄ we obtain the

following prediction

λ(t)− λ(0) ≈ ϵwV ⊙

[(
2

σ2
+

1

σ2
x

)−1(
1

σ2
(λ(0) + λ̄) +

1

σ2
x

µ̄x

)
− λ(0)

]
⊙ [I − exp (−M t)]wV . (69)

Following the solution in Eq. 63, we can approximate this at late times as

lim
t→∞

λ(t)− λ(0) ≈ ϵwV ⊙

[(
2

σ2
+

1

σ2
x

)−1(
1

σ2
(λ(0) + λ̄) +

1

σ2
x

µ̄x

)
− λ(0)

]
⊙wV . (70)

Hence, in addition to the value of a location, three additional factors influence each field’s displacement.

λi(t)− λi(0) ≈
ηλ
η

(
2

σ2
i

+
1

σ2
x

)−1 [
λ̄− λi(0)

σ2
i

+
µ̄x − λi(0)

σ2
x

]
w2
v,i(t) , ηλ ≪ η , (71)

where λ̄ is the agent’s expected location sampled from its policy, µ̄x = −0.75 is the starting location and σx is the estimated
spread of the trajectory. This analysis suggests that fields will be influenced by both the start location and the location
where the agent spends a higher proportion of time at. In later learning phases, this will be the reward location λ̄ = 0.5.
Consequently, only the fields near the reward location will shift towards the reward, while the rest of the fields will move
towards the start location. We illustrate this perturbative approximation at early and late times of training in Figure 5. The
theory is quite accurate early in training, but fails at sufficiently long training time.
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Figure 5. Difference in early versus late time perturbative approximation. Blue scatter points shows the magnitude and direction of
change in (N = 256) field center position compared to the position at which the fields were initialized (λi(T )− λi(0)). (A) In early
time, the perturbative expansion is a good fit to the field center displacement, and captures the shift in fields towards the reward location
xr = 0.5 (red) (B) As learning proceeds, the approximation begins to break down for fields further from the reward location. Free
parameters were fit with λ̄ = 0.535 and σx = 0.45.

C. Successor Representation agent
The generalized temporal difference error is given by

δSRt,j = ϕj(xt) + γψπj (xt+1)− ψπj (xt) , (72)
with Mi representing the predicted successor representation and ϕ(x) representing the initialized place field representation
that is not optimized.

ψπi (xt) =

N∑
i

[Uji]+ϕi(xt) , (73)

The successor representation is computed using a summation of the place fields with a learned matrix U that is positively
rectified. The rectification is necessary to have a non-negative representation.

∆Ut = ϕi(xt) · δ⊤t,j , (74)
The matrix U is initialized as an identity matrix and is updated using a two-factor rule using the TD error as in Gardner et al.
(2018).

D. Metric Representation learning objective
The hippocampus is known to learn and represent spatial maps even in the absence of rewards, enabling rapid navigation to
new locations when required (Tolman, 1948; Steele & Morris, 1999; Tse et al., 2007). This requires reorganization of place
fields in non-rewarded conditions, which has been proposed as a mechanism for learning a predictive map that estimates
future spatial occupancy (Mehta et al., 1997; Stachenfeld et al., 2017). To describe this non-reward-based reorganization,
the successor representation algorithm (Dayan, 1993) has been used. More recently, an auxiliary predictive objective has
been proposed (Fang & Stachenfeld, 2023).

Here, we present a simple predictive objective for place field reorganization that is independent of rewards. We introduce a
previously described objective called the Metric Representation (MR), which learns a low-dimensional representation of
an environment using place field activity and a biologically plausible learning rule that is modulated by a path integration-
derived Temporal Difference error. This representation allows an agent to predict its current coordinates z(xt) and perform
vector subtraction to rapidly navigate to recalled goals (Foster et al., 2000; Kumar et al., 2024). However, representation
learning was not studied using this objective. Recently, a similar objective was proposed to learn a spatial map using local
learning rules, although as a high-dimensional representation (Stöckl et al., 2024).

The dimensionality of the coordinate prediction z(xt) is equal to the dimensionality of the environment, calculated through
a linear summation of place field activity:

zj(xt) =

N∑
i

WMR
ji ϕi(xt) , z ∈ RD . (75)

When the agent accurately predicts its coordinates in the environment, the following path integration-derived self-consistency
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equation holds:
zj(xt+1) ≡ zj(xt) + aj(xt) , (76)

zj(xt+1)− zj(xt)− aj(xt) ≡ 0 , (77)
where aj(xt) is the true displacement of the agent in the environment. However, if the prediction is inaccurate, Eq. 77
can be reformulated into a temporal difference error for each dimension j of the environment as described by Foster et al.
(2000); Kumar et al. (2024):

χt = zj(xt+1)− zj(xt)− aj(xt) , χ ∈ RD . (78)
This one step prediction error (χt) can be expressed as a loss function, similar to Fang & Stachenfeld (2023) without the
temporal discounting factor:

LMR = Eg∼π

[
T∑
t=0

1

2
χ2
t

]
= E

[
T∑
t=0

1

2
(z(xt+1;W

MR)− z(xt;WMR)− a(xt))2
]
, (79)

which can be minimized by gradient descent by optimizing both the coordinate readout weights (WMR) and place field
parameters (θ ∈ {α,λ,σ}):

∇WMR,θ = E[
T∑
t=0

χt∇ϕ(xt; θ)⊤] . (80)

The gradient updates were implemented in an online manner:
∆WMR(t+ 1) = ηχtϕ(xt)

⊤ , (81)

∆θ(t+ 1) = ηθW
⊤
MR(t)χt∇θϕ(xt; θ) , (82)

We can analyze how the different temporal difference residues (both the canonical reward-dependent and newly proposed
metric representation-based) influence place field reorganization and agent policy learning performance by propagating the
residues through a combination of actor, critic, and metric representation weights:

δbpt = δt
(
βvwv(t) + βπW

⊤
π (t) · g̃t

)
+ βMRW

⊤
MR(t)χt , (83)

∆θi(t+ 1) = ηθδ
bp
t ∇θϕ(xt; θ) . (84)

This can be done by setting the weighting of each component βv, βπ, βMR ∈ {0, 1}. Refer to Fig. S15 for policy
convergence performance in both the 1D and 2D environments when using different combinations to learn place field
representations.

E. Details for noisy field updates
To induce drift, we independently introduced noise to field amplitudes, centers and width, as well as the synapses to the
actor and critic (θ ∈ {α, λ, σ, wv,Wπ}).

θt+1 = θt + ξt , (85)
where the noise term ξt are independent Gaussian noises with zero mean and magnitude σnoise ∈ {10−6, 10−1}. We
performed a noise sweep to determine how increasing the noise magnitude affected the agent’s reward maximization
behavior, population vector correlation and representation similarity. Refer to Fig. S7.
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Figure S1. Influence of place field parameter optimization for a single seed. Example change in individual field’s spatial selectivity
(ϕ(x), colored), mean firing activity at a location (

∑N
i ϕi(x)), field density which is the number of Center of Mass (COM) in a location

after smoothing with a Gaussian kernel density estimate (gKDE) (gKDE(COM), blue) and, the frequency of being in a location
(pRM (x)), when optimizing different combinations of field parameters (α, λ, σ) during reward maximization (RM). The location in
which the highest value for mean firing activity, field density and frequency is attained is indicated by a red, blue and black vertical dash
line respectively. Optimizing a (A) small number (N = 16) and (B) large number of place fields yields a similar high mean firing rate at
the reward location followed by the start location. However, the field density evolves differently when in the low field regime, (A) a high
density emerges at the reward location in the early stages of learning, but it shifts to the start location at later stages of learning. This
effect was observed in a recent experiment where place fields which initially encoded the reward location, gradually shifted backward
towards the corresponding start location. This shift led to a decrease in place fields specifically coding for the reward, suggesting that the
hippocampal representation reorganizes to predictively code for the reward (Yaghoubi et al., 2024). Whether experiments demonstrate
such misalignment between place field density and mean firing rate needs to be analyzed. Based on the ablation studies (Fig. 4A,B),
mean firing rate will be a stronger indicator of learning performance than field density. (B) In the high field regime, a high field density
at the reward location remains stable throughout learning. Note that COM changes only when the place field centers are optimized
(∆λ). Distribution is shown for a single seed run for a homogeneous place field population that has been initialized by with equal
spacing between field centers (λ ∈ [−1, 1]), equal amplitude (α = 0.5) and width (σ = 0.01). Refer to Fig. S2 for general place field
reorganization over different seeds.
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Figure S2. Average change in field density and mean firing rate for different number of place fields. Vertical blue and red dash
lines indicate the location with the highest density and mean firing rate, with the legend indicating the location (x). (A) Homogeneous
place field distribution was initialized with field parameters similar to Fig. S1, equal spacing between field centers (λ ∈ [−1, 1]), equal
amplitude (α = 0.5) and equal width (σ = 0.01). (B) All place field parameters center (λ), amplitude (α), and width (σ) were initialized
by sampling from a uniform distribution between [−1, 1], [0, 1], [10−5, 0.1] respectively to model heterogeneous place field population.
Learning rates for the place field parameters and actor-critic were nθ = 0.0001 and n = 0.01 respectively. Shaded area is 95% CI over
50 different seeds.
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Figure S3. A small proportion of reward-encoding place fields shift to the new reward location. Agents with N = 256 place fields
and Gaussian noise injected to field parameters (σnoise = 0.0001) were trained to navigate to a reward location at xr = 0.75 for 50,000
trials, thereafter the reward location was shifted to xr = −0.2 for the next 50,000 trials. (A) Place field density at the start of learning
was uniformly distributed (left) and increased near the first reward location at the end of the first 50,000 trials (center). After the shift in
reward location, a high density of fields emerged at the new reward location (right). The black line shows the learned policy, where a
velocity of 0.1(-0.1) indicates moving right (left). Agents learn to navigate to the reward location, both before and after the shift. (B)
Example distribution of individual place fields before learning (left), before the shift (center) and after the shift (right). All place field
parameters λ, α, and σ were initialized by sampling from a uniform distribution between [−1, 1], [0, 1], [10−5, 0.1] respectively to
model heterogeneous place field population. Notice the backward shift of some place fields that were at the initial reward location to the
new reward location. (C) About 2.6% of the place fields coding for the initial reward at xr = 0.75 (green dots) shifted to the new reward
location at xr = −0.2 (about 19 of the 734 green dots are within the blue circle). Other place fields at xr = −0.2 increased their firing
rate to encode the new reward location. We see a large number of fields shifting backward, though not entirely to the new reward location.
Shaded area shows 95% CI for 10 seeds of agents with 256 place fields each. Black and green dots show a total 2560 place fields for all
10 agents.
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Figure S4. Weak feature learning with large number of place fields. Critic wv
i and actor Wπ

ji weights were initialized by sampling
from a random normal distribution N (0, 10−5), despite the number of place fields N , similar to Foster et al. (2000); Kumar et al. (2022);
Frémaux et al. (2013). (A) Homogeneous place field population: Place field parameters were initialized with equal spacing between field
centers (λ ∈ [−1, 1]), equal amplitude (α = 0.5) and equal width (σ = 0.01). (B) Heterogeneous place field population: All place field
parameters center (λ), amplitude (α), and width (σ) were initialized by sampling from a uniform distribution between [−1, 1], [0, 1],
[10−5, 0.1] respectively. (A-B) The sum of the L2 norm for each place field’s center λ, amplitude α and width σ between its initialized
and final value decreases as the number of fields available increases. Hence, as the number of fields increases, the change in each place
field’s parameter becomes smaller. This suggests a weak feature learning regime with large N. (C) Similar to Fig. 1D. Density at the
reward location d(xr) compared to non-reward location d(x′) decreases with a higher number of fields. (D) The mean firing rate at the
reward location

∑
ϕ(xr) compared to non-reward location

∑
ϕ(x′) decreases with a higher number of fields. (C-D) Density and mean

firing rate at the reward location are proportional to the reward magnitude (Rmax), and inversely proportional to the size of the reward
location (Rsize). Error bars show 95% CI over 50 different seeds.
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Figure S5. SR and MR agent architecture, and representation dynamics. (A) Successor Representation (SR) agent architecture to
learn a navigational policy and the SR place fields. Only the synapses from the initialized place field (ϕfixed) to the actor (red) and
critic (green), and the synapses (U ) to the SR fields (ψ) were plastic. Refer to App. C for implementation details. (B) Left: Metric
Representation (MR) agent architecture learns to predict the agent’s coordinates in an environment. The coordinate readout is a linear
summation of place field activity, and its dimension is the same as the displacement in the environment. The agent learns to predict
its coordinates by minimizing a path integration derived temporal difference error χt. The gradient updates are performed on both
the coordinate readout weights WMR

ji and place field parameters α,λ,σ. The agent learns to navigate to the reward location only by
updating the actor and critic weights, without influencing place field parameters Refer to App. D for details. Hence, place fields in the
MR agent will reorganize even in the absence of rewards. Right: Change in MR agent’s coordinate estimation in a 1D track across
trials (T = 0, 1, 10, 50000). Coordinate estimation was close to zero during WMR

ji initialization. After 10 trial, the agent starts to show
a monotonic increase in coordinate estimation as the agent moves from x = −1 to x = 1. By 50,000 trials, the agent’s coordinate
estimation becomes stable. (C) Average change for 16 and 64 place fields’ size (firing rate greater than 10−3 in the track) (top row) and
center of mass (bottom row) when SR, RM and MR agents navigate in a 1D track with the absolute change reflected in the y axis. Shaded
area shows 95% CI over 5 seeds for agents with 16 and 64 place fields. (D) Spatial representation similarity matrix for SR (top row)
and RM (middle row) and MR (bottom row) agents in a 1D track is visualized by taking the dot product of the place field activity at
each location. (E) Difference in correlation between the proportion of time spent in a location between SR, RM, MR agents. (F) The
correlation between the individual field firing rates learned by SR, RM, and MR agents rapidly diverge but remain positively correlated.
(G) The correlation between the spatial representation similarity matrices (purple) learned by SR, RM and MR rapidly diverge in the early
learning phase but stabilize and remain positively correlated in later phases.
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Figure S6. Field elongation in 2D arena. (A-C) 2D Place field distortion dynamics by SR (A), RM (B), and MR (C) agents as learning
proceeds. Numbers in yellow on the obstacle indicates (Field ID)-(Maximum firing rate). (D) Average change for 256 place fields’ size
(top row) and center of mass () (bottom row) when SR, RM and MR agents navigate in a 2D arena with the absolute change reflected in
the y axis. Area was determined by computing the firing rate that was greater than 10−3 in the arena. The 2D arena was divided into three
sub-areas to track COM movement 1) away from the reward location, 2) the corridor from right to left, and 3) towards the start location.
All three agents showed an increase in field area and backward COM shift towards the start location. Shaded area shows 95% CI over
3 seeds. (E) Change in coordinate readout weights in a 2D environment. Each plot indicates the synaptic weights WMR

ji from place
fields to the x (top row) and y dimensions of the 2D environment respectively. Weights were randomly initialized in trial 0. As the agent
explores the environment, the weights converge to reflect a spatial map where the coordinate estimation for the X and Y axes increase
monotonically when the agent moves left to right and bottom to top respectively, similar to Foster et al. (2000); Kumar et al. (2024) which
used a similar path-integration TD error but with eligibility traces instead.
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Figure S7. Noise amplitude monotonically influences population vector correlation and agent performance. Adding Gaussian
noise with increasing magnitude [5x10−7, 101] either in field parameters (α, λ, σ) or Actor-Critic (Wπ, wv) influences the variance in
Population Vector Correlation (RPV , blue), Spatial Representation Similarity which is the dot product of field activity (RRS , orange)
and cumulative discounted reward (G, green). Low variance of RPV and RRS indicates high correlation as learning progresses. Low
variance in G indicates stable performance. When G increases before decreasing as the noise amplitude increases, agent’s navigation
performance collapsed and the agent achieves 0 reward with low variance. A high ratio of variance in population vector correlation
and reward maximization behavior (RPV /G, red) indicates that there is an optimal noise amplitude which causes high variance in
population vector correlation (low PV correlation) while demonstrating stable performance. A similar analysis can be performed using
representational similarity (RPV /RRS , purple) to determine the optimal noise amplitude for high variance in population vector correlation
but stable representation similarity as seen in Qin et al. (2023). Note that our agents are only optimizing for navigation behavior instead of
representation similarity.
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Figure S8. Influence of noisy fields on agent performance and field representation. (A) Reward maximization performance variability
increases when noise magnitude increases. (B) With no noise injection, variance in parameter update is initially positively correlated
with field amplitude (blue). When a small amount of noise is added, fields with a larger mean amplitude show a smaller variance in
change in parameter while fields with a smaller amplitude show higher variance. Conversely, when the magnitude of noise is further
increased (purple), fields with a higher amplitude show higher variance in its parameters. (C) The correlation between mean amplitude
and the magnitude of the readout weights (sum over all actions for squared actor weights and squared critic weights) is high and positively
correlated when the noise magnitude is low. This correlation decreases and becomes weakly positive when σnoise = 0.001. This supports
the claim that in the low noise regime, fields with a high amplitude are more involved in policy learning and hence drift less or are more
stable to maintain performance integrity. (D) Population vector correlation decreases at a faster rate than the similarity matrix when noise
magnitude increases. (E) Representation similarity correlation decreases as the noise magnitude increases, but at a slower rate than PV
correlation. (F) Proportion of fields that are active (average fraction of fields with firing rate less than 0.05, 0.1,0,25) continues to increase
with higher noise magnitude. (G) Introducing Gaussian noise with zero mean and variance N(0, 0.00025) to place field parameters
during updates θt+1 = θt + ξt caused each place field’s center, firing rate and width to fluctuate as trials progressed. See App. E for
details. This causes each field’s spatial selectivity to change over time. Specifically, each field’s centroid (λ) shifted from its initialized
location, firing rates fluctuated (α2) causing fields to gain or lose selectivity, and most fields increased in size (σ2) while some did not.
The first two were observed by Qin et al. (2023) who analyzed Gonzalez et al. (2019). Each color corresponds to the dynamics of a
specific field, with 5 example fields shown.
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Figure S9. Noisy place field parameter update replicates drift dynamics seen in neural data. (A) Place field centroids becomes
distinctively different across trials, after stable navigation performance was attained at trial 25,000, similar to Ziv et al. (2013); de Snoo
et al. (2023). Each place field’s centroid position was sorted according to trial 25,000, 125,000 and 195,000. (B) When no Gaussian noise
is added to place field parameters (α, λ, σ), place field optimization alone does not cause centroids to shift. Instead, adding small Gaussian
noise (σnoise ∈ {0.0001, 0.00025, 0.0005}) replicates the gradual shift in centroid position across trials (25,100 to 125,000) as seen in
Qin et al. (2023); Ziv et al. (2013); Geva et al. (2023). When the noise magnitude is high e.g. σnoise ≥ 0.001, centroids shift rapidly to
a new location, similar to the random shuffle or null hypothesis seen in Ziv et al. (2013); Qin et al. (2023); Geva et al. (2023). (A-B)
Analysis was done for 64 place fields aggregated over 10 agents initialized with different seeds to have 640 fields in total. (C) Example
graph topology for one agent with N = 64 place fields with Gaussian noise σnoise = 0.00025 added to field parameters. Each node
indicates a place field’s centroid position across learning, and the edge is weighted by the normalized (between 0 to 1) cosine distance
between each node that is less than 0.55. Red, green, blue, orange, black nodes indicate centroids initialized at the reward, start, end of
track near the reward, end of track near the start locations and the middle of the track respectively. As learning progressed, the cosine
distance between each centroid changed and the ensemble representation rotated. Nevertheless, fields encoding the reward, start, and track
were fairly stably as seen in Gonzalez et al. (2019), and the greater separation of clusters support the phenomenon where a high density of
fields emerge at the reward and start locations.
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Figure S10. Influence of field width and number of fields on agent performance. (A) Fields initialized with σ = 0.1 and (B) σ = 0.05.
Policy learning is slower when initialized with a smaller field width. (C) Influence of field parameter optimization on the average
maximum cumulative reward (left) and trial at which agent achieves cumulative discounted reward of 45 and above for the previous 300
trials (right). Correlation plot shows the p-value for a pairwise t-test performed to determine the influence of fields parameters on learning
performance.
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Figure S11. Influence of noise on new target learning performance in 1D track. Increasing the number of place fields (N ) and field
widths (σ) led to a general increase in new target learning performance. When no noise was injected to field parameters (σnoise = 0.0,
blue), most agents struggled to learn to navigate to new targets and seem to be stuck in a local minima. Instead, noise magnitude
of σnoise = 0.0005 allowed agents to maximize rewards throughout the 250,000 trials. Increasing the noise magnitude beyond this
(σnoise = 0.001) negatively affected the agent’s target learning performance, especially when the number of fields were low.
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Figure S12. Influence of noise on learning performance in 2D arena with an obstacle. (A) Agents started at the same location
xstart = (0.0, 0.75) and had to navigate to a target that changed to a new location every 50,000 trials following the sequence
(xr ∈ [(0.75,−0.75), (−0.75, 0.75), (0.75, 0.75), (−0.75,−0.75)]). Increasing the noise magnitude improved new target learning
performance. (B) Agents learned to navigate to a target at xr = (0.75, 0.0) from a start location xstart = (−0.75, 0.0) with an obstacle
with coordinates (xmin = −0.2, xmax = 0.2, ymin = −1.0, ymax = 0.5) for the first 50,000 trials. After which, the location of
the obstacle was shifted up to (xmin = −0.2, xmax = 0.2, ymin = −0.5, ymax = 1.0) while the start and target location was the
same. Agents with a noise magnitude σnoise = 0.00025 showed the highest average reward maximization performance followed
by σnoise = 0.0005. A high noise magnitude (σnoise = 0.001) disrupted learning performance while agents without noisy field
updates (σnoise = 0.0) did not learn to navigate around the new obstacle. Note that field amplitudes and widths were clipped to be
between [10−5, 2] and [10−5, 0.5] respectively to ensure the Σ covariance matrix in 2D place fields remained valid for matrix inversion.
Performance was averaged over agents initialized with different number of 2D place fields (N ∈ {64, 144, 256, 576}) with the diagonals
of the field width initialized with Σ = 0.01 and constant amplitude α = 1.0, over 30 different seeds. Shaded area is 95% CI.
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Figure S13. Using the same learning rates for the place field parameters and actor-critic recovers the same phenomena of a high
field density emerging at reward location followed by the start location, and field elongation against the agent’s trajectory. (A)
Each place field’s amplitude, center and width were sampled from a uniform distribution of [0, 1], [−1, 1], [10−5, 0.1] respectively to
model heterogeneous place field distribution. After learning, a high density (number) of fields emerged at the start (green dash) and
reward (red area) location, similar to Fig. 1B (right) and Fig. S2B. This phenomenon is consistent across different numbers of place fields.
Shaded area is 95% CI over 50 different seeds. (C) In a 2D arena with obstacles, place fields elongate from the reward location (red circle)
back to the start location (green circle), while narrowing along the corridor with an obstacle (gray), similar to Fig. 2F. Learning rates for
the actor, critic and place field parameters were η = ηθ = 0.0005.
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Figure S14. Center-surround place fields reproduces the emergence of a high density of fields at the reward location. (A) Example
of 16 center-surround fields uniformly distributed before (left) and after learning for 10,000 trials (right), with the learning rates for the
center-surround place field parameters and policy network being the same (η = ηθ = 0.001). Place fields near the reward shifted to the
reward location while others elongated from the reward location back to the start location similar to Fig. 2C (bottom row). (B) A high
field density (gKDE(COM)) and mean firing rate (

∑
ϕ(x)) emerged at the reward location for N = 16 (left) and N = 64 (right) when

using center-surrounds fields. However, we do not see a high density emerging at the start location robustly. Further analysis is needed to
verify if the representations learned by Gaussian basis functions and center-surround fields (difference of Gaussians) are similar, and if not
why. Shaded area is 95% CI for 10 seeds.
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Figure S15. Difference in policy convergence when backpropagating temporal difference error to optimize place field parameters.
We evaluated the speed of policy learning when optimizing (A) heterogeneously distributed place field population in the 1D track and (B)
homogeneously distributed place field population in the 2D arena using: (1) fixed place field parameters (blue), (2) backpropagating
the TD error δt through the actor weights W⊤

π g̃t (βπ = 1, βv = 0, βMR = 0, orange), (3) backpropagating the TD error through the
critic weights wv (βπ = 0, βv = 1, βMR = 0, green), (4) backpropagating the path integration derived TD error χt through the metric
representation weights WMR (βπ = 0, βv = 0, βMR = 1, red) while learning the value function and policy by optimizing only the
readout critic and actor weights, (5) backpropagating the TD error through both the actor and critic weights, otherwise called the Reward
Maximization agent (βπ = 1, βv = 1, βMR = 0, purple), (6) backpropagating the TD error through both the actor and critic weights
and the path integration based TD error through the metric representation weights, (βπ = 1, βv = 1, βMR = 1, brown). The combined
RM+MR objective used for place field parameter optimization achieved the fastest policy learning, similar to Stachenfeld et al. (2017)
when the number of fields was low (N = {4, 8, 16, 32} in 1D and N = {4, 8} in 2D). With more fields, the reward maximization agent
(RM , purple) was almost as effective as the combined objective (RM +MR, brown). Optimizing place field parameters using only
the actor weights led to the slowest policy convergence (orange), nevertheless faster than using fixed place fields. The same learning
rates were used when the number of fields were increased. Hence, tuning learning rates should improve the stability of policy learning,
especially in the 2D arena for the agent with the combined RM+MR objective. Shaded area indicates 95% CI over 50 random seeds.
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