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Abstract

Large neural models (such as Transformers) achieve state-of-the-art performance1

for information retrieval (IR). In this paper, we aim to improve distillation methods2

that pave the way for the resource-efficient deployment of such models in practice.3

Inspired by our theoretical analysis of the teacher-student generalization gap for4

IR models, we propose a novel distillation approach that leverages the relative5

geometry among queries and documents learned by the large teacher model. Unlike6

existing teacher score-based distillation methods, our proposed approach employs7

embedding matching tasks to provide a stronger signal to align the representations8

of the teacher and student models. In addition, it utilizes query generation to9

explore the data manifold to reduce the discrepancies between the student and the10

teacher where training data is sparse. Furthermore, our analysis also motivates11

novel asymmetric architectures for student models which realizes better embedding12

alignment without increasing online inference cost. On standard benchmarks like13

MSMARCO, we show that our approach successfully distills from both dual-14

encoder (DE) and cross-encoder (CE) teacher models to 1/10th size asymmetric15

students that can retain 95-97% of the teacher performance.16

1 Introduction17

Neural models for information retrieval (IR) are increasingly used to model the true ranking function18

in various applications, including web search [38], recommendation [65], and question-answering19

(QA) [6]. Notably, the recent success of Transformers [59]-based pre-trained language models [11,20

30, 49] on a wide range of natural language understanding tasks has also prompted their utilization in21

IR to capture query-document relevance [see, e.g., 10, 34, 43, 26, 20].22

A typical IR system comprises two stages: (1) A retriever first selects a small subset of potentially23

relevant candidate documents (out of a large collection) for a given query; and (2) A re-ranker then24

identifies a precise ranking among the candidates provided by the retriever. Dual-encoder (DE)25

models are the de-facto architecture for retrievers [26, 20]. Such models independently embed queries26

and documents into a common space, and capture their relevance by simple operations on these27

embeddings such as the inner product. This enables offline creation of a document index and supports28

fast retrieval during inference via efficient maximum inner product search implementations [12, 19],29

with online query embedding generation primarily dictating the inference latency. Cross-encoder (CE)30

models, on the other hand, are preferred as re-rankers, owing to their excellent performance [43, 9, 62].31

A CE model jointly encodes a query-document pair while enabling early interaction among query32

and document features. Employing a CE model for retrieval is often infeasible, as it would require33

processing a given query with every document in the collection at inference time. In fact, even in34

the re-ranking stage, the inference cost of CE models is high enough [22] to warrant exploration of35

efficient alternatives [14, 22, 37]. Across both architectures, scaling to larger models brings improved36

performance at increased computational cost [41, 39].37
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Knowledge distillation [5, 13] provides a general strategy to address the prohibitive inference cost38

associated with high-quality large neural models. In the IR literature, most existing distillation39

methods only rely on the teacher’s query-document relevance scores [see, e.g., 31, 14, 8, 51, 56] or40

their proxies [16]. However, given that neural IR models are inherently embedding-based, it is natural41

to ask: Is it useful to go beyond matching of the teacher and student models’ scores, and directly aim42

to align their embedding spaces?43

With this in mind, we propose a novel distillation method for IR models that utilizes an embedding44

matching task to train student models. The proposed method is inspired by our rigorous treatment45

of the generalization gap between the teacher and student models in IR settings. Our theoretical46

analysis of the teacher-student generalization gap further suggests novel design choices involving47

asymmetric configurations for student DE models, intending to further reduce the gap by better48

aligning teacher and student embedding spaces. Notably, our proposed distillation method supports49

cross-architecture distillation and improves upon existing (score-based) distillation methods for both50

retriever and re-ranker models. When distilling a large teacher DE model into a smaller student DE51

model, for a given query (document), one can minimize the distance between the query (document)52

embeddings of the teacher and student (after compatible projection layers to account for dimension53

mismatch, if any). In contrast, a teacher CE model doesn’t directly provide document and query54

embeddings, and so to effectively employ embedding matching-based distillation requires modifying55

the scoring layer with dual-pooling [61] and adding various regularizers. Both of these changes56

improve geometry of teacher embeddings and facilitate effective knowledge transfer to the student57

DE model via embedding matching-based distillation.58

Our key contributions toward improving IR models via distillation are:59

• We provide the first rigorous analysis of the teacher-student generalization gap for IR settings60

which captures the role of alignment of embedding spaces of the teacher and student towards61

reducing the gap (Sec. 3).62

• Inspired by our analysis, we propose a novel distillation approach for neural IR models, namely63

EmbedDistill, that goes beyond score matching and aligns the embedding spaces of the teacher and64

student models (Sec. 4). We also show that EmbedDistill can leverage synthetic data to improve a65

student by further aligning the embedding spaces of the teacher and student (Sec. 4.3).66

• Our analysis motivates novel distillation setups. Specifically, we consider a student DE model with67

an asymmetric configuration, consisting of a small query encoder and a frozen document encoder68

inherited from the teacher. This significantly reduces inference latency of query embedding69

generation, while leveraging the teachers’ high-quality document index (Sec. 4.1).70

• We provide a comprehensive empirical evaluation of EmbedDistill (Sec. 5) on two standard IR71

benchmarks – Natural Questions [23] and MSMARCO [40]. We also evaluate EmbedDistill on72

BEIR benchmark [57] which is used to measure the zero-shot performance of an IR model.73

Note that prior works have utilized embedding alignment during distillation for non-IR setting [see,74

e.g., 52, 55, 18, 1, 64, 7]. However, to the best of our knowledge, our work is the first to study75

embedding matching-based distillation method for IR settings which requires addressing multiple76

IR-specific challenges such as cross-architecture distillation, partial representation alignment, and en-77

abling novel asymmetric student configurations. Furthermore, unlike these prior works, our proposed78

method is theoretically justified to reduce the teacher-student performance gap.79

2 Background80

Let Q and D denote the query and document spaces, respectively. An IR model is equivalent to81

a scorer s : Q ⇥ D ! R, i.e., it assigns a (relevance) score s(q, d) for a query-document pair82

(q, d) 2 Q⇥D. Ideally, we want to learn a scorer such that s(q, d) > s(q, d0) iff the document d is83

more relevant to the query q than document d0. We assume access to n labeled training examples84

Sn = {(qi,di,yi)}i2[n]. Here, di = (di,1, . . . , di,L) 2 D
L, 8i 2 [n], denotes a list of L documents85

and yi = (yi,1, . . . , yi,L) 2 {0, 1}L denotes the corresponding labels such that yi,j = 1 iff the86

document di,j is relevant to the query qi. Given Sn, we learn an IR model by minimizing87

R(s; Sn) :=
1

n

X
i2[n]

`
�
sqi,di ,yi

�
, (1)

where sqi,di := (s(qi, d1,i), . . . , s(qi, d1,L)) and `
�
sqi,di ,yi

�
denotes the loss s incurs on (qi,di,yi).88

Due to space constraint, we defer concrete choices for the loss function ` to Appendix A.89
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While this learning framework is general enough to work with any IR models, next, we formally90

introduce two families of Transformer-based IR models that are prevalent in the recent literature.91

2.1 Transformer-based IR models: Cross-encoders and Dual-encoders92

Let query q = (q1, . . . , qm1) and document d = (d1, . . . , dm2) consist of m1 and m2 tokens, respec-93

tively. We now discuss how Transformers-based CE and DE models process the (q, d) pair.94

Cross-encoder model. Let p = [q; d] be the sequence obtained by concatenating q and d. Further,95

let p̃ be the sequence obtained by adding special tokens such [CLS] and [SEP] to p. Given an96

encoder-only Transformer model Enc, the relevance score for the (q, d) pair is97

s(q, d) = hw, pool
�
Enc(p̃)

�
i = hw, embq,di, (2)

where w is a d-dimensional classification vector, and pool(·) denotes a pooling operation that98

transforms the contextualized token embeddings Enc(p̃) to a joint embedding vector embq,d. [CLS]-99

pooling is a common operation that simply outputs the embedding of the [CLS] token as embq,d.100

Dual-encoder model. Let q̃ and d̃ be the sequences obtained by adding appropriate special tokens101

to q and d, respectively. A DE model comprises two (encoder-only) Transformers EncQ and EncD,102

which we call query and document encoders, respectively.1 Let embq = pool
�
EncQ(q̃)

�
and embd103

= pool
�
EncD(d̃)

�
denote the query and document embeddings, respectively. Now, one can define104

s(q, d) = hembq, embdi to be the relevance score assigned to the (q, d) pair by the DE model.105

2.2 Score-based distillation for IR models106

Most distillation schemes for IR [e.g., 31, 14, 8] rely on teacher relevance scores. Given a training set107

Sn and a teacher with scorer st, one learns a student with scorer ss by minimizing108

R(ss, st; Sn) =
1

n

X
i2[n]

`d
�
ssq,di

, stq,di

�
, (3)

where `d captures the discrepancy between ss and st. See Appendix A for common choices for `d.109

3 Teacher-student generalization gap: Inspiration for embedding alignment110

Our main objective is to devise novel distillation methods to realize high-performing student DE111

models. As a first step in this direction, we rigorously study the teacher-student generalization112

gap as realized by standard (score-based) distillation in IR settings. Informed by our analysis, we113

subsequently identify novel ways to improve the student model’s performance. In particular, our114

analysis suggests two natural directions to reduce the teacher-student generalization gap: 1) enforcing115

tighter alignment between embedding spaces of teacher and student models; and 2) exploring novel116

asymmetric configuration for student DE model.117

Let R(s) = E
⇥
`
�
sq,d,y

�⇤
be the population version of the empirical risk in Eq. 1, which measures118

the test time performance of the IR model defined by the scorer s. Thus, R(ss)�R(st) denotes the119

teacher-student generalization gap. In the following result, we bound this quantity (see Appendix C.1120

for a formal statement and proof). We focus on distilling a teacher DE model to a student DE model121

and L = 1 (cf. Sec. 2) as it leads to easier exposition without changing the main takeaways. Our122

analysis can be extended to L > 1 or CE to DE distillation with more complex notation.123

Theorem 3.1 (Teacher-student generalization gap (informal)). Let F and G denote the function124

classes for the query and document encoders for the student model, respectively. Suppose that the125

score-based distillation loss `d in Eq. 3 is based on binary cross entropy loss (Eq. 12 in Appendix A).126

Let one-hot (label-dependent) loss ` in Eq. 1 be the binary cross entropy loss (Eq. 10 in Appendix A).127

Further, assume that all encoders have the same output dimension and embeddings have their `2-norm128

bounded by K. Then, we have129

R(ss)�R(st)  En(F,G) + 2KREmb,Q(t, s; Sn) + 2KREmb,D(t, s; Sn)

+�(st; Sn) +K2
�
E
⇥���(stq,d)� y

��⇤+ 1

n

X

i2[n]

���(stqi,di
)� yi

�� �, (4)

1It is common to employ dual-encoder models where query and document encoders are shared.
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Figure 1: Proposed distillation method with query embedding matching. Left: The setting where student employs
an asymmetric DE configuration with a small query encoder and a large (non-trainable) document encoder
inherited from the teacher DE model. The smaller query encoder ensures small latency for encoding query
during inference, and large document encoder leads to a good quality document index. Right: Similarly the
setting of CE to DE distillation using EmbedDistill, with teacher CE model employing dual pooling.

where En(F,G) := supss2F⇥G
��R(ss, st; Sn) � E`d

�
ssq,d, s

t
q,d

���; � denotes the sigmoid function;130

and �(st; Sn) denotes the deviation between the empirical risk (on Sn) and population risk of the131

teacher st. Here, REmb,Q(t, s; Sn) and REmb,D(t, s; Sn) measure misalignment between teacher and132

student embeddings by focusing on queries and documents, respectively (cf. Eq. 7 & 8 in Sec. 4.1).133

The last three quantities in the bound in Thm. 3.1, namely �(st; Sn), E[|�(stq,d) � y|], and134
1
n

P
i2[n] |�(stqi,di

) � yi|, are independent of the underlying student model. These terms solely135

depend on the quality of the underlying teacher model st. That said, the teacher-student gap can be136

made small by reducing the following three terms: 1) uniform deviation of the student’s empirical137

distillation risk from its population version En(F,G); 2) misalignment between teacher student query138

embeddings REmb,Q(t, s; Sn); and 3) misalignment between teacher student document embeddings139

REmb,D(t, s; Sn).140

The last two terms motivate us to propose an embedding matching-based distillation that explicitly141

aims to minimize these terms during student training. Even more interestingly, these terms also142

inspire an asymmetric DE configuration for the student which strikes a balance between the goals of143

reducing the misalignment between the embeddings of teacher and student (by inheriting teacher’s144

document encoder) and ensuring serving efficiency (small inference latency) by employing a small145

query encoder. Before discussing these proposals in detail in Sec. 4 and Fig. 1, we explore the first146

term En(F,G) and highlight how our proposals also have implications for reducing this term. Towards147

this, the following result bounds En(F,G). Due to space constraints, we present an informal statement148

of the result (see Appendix C.2 for a more precise statement and proof).149

Proposition 3.2. Let `d be a distillation loss which is L`d -Lipschitz in its first argument. Let F and G150

denote the function classes for the query and document encoders, respectively. Further assume that,151

for each query and document encoder in our function class, the query and document embeddings152

have their `2-norm bounded by K. Then,153

En(F,G)  ESn

48KL`dp
n

Z 1

0

q
log

�
N(u,F)N(u,G)

�
du. (5)

Furthermore, with a fixed document encoder, i.e., G = {g⇤},154

En(F, {g⇤})  ESn

48KL`dp
n

Z 1

0

p
logN(u,F) du. (6)

Here, N(u, ·) is the u-covering number of a function class.155

Note that Eq. 5 and Eq. 6 correspond to uniform deviation when we train without and with a frozen156

document encoder, respectively. It is clear that the bound in Eq. 6 is less than or equal to that in157

Eq. 5 (because N(u,G) � 1 for any u), which alludes to desirable impact of employing a frozen158

document encoder as one of our proposal seeks to do via inheriting teacher’s document encoder (for159

instance in an asymmetric DE configuration). Furthermore, our proposal of employing an embedding-160

matching task will regularize the function class of query encoders; effectively reducing it to F
0 with161

|F0|  |F|. The same holds true for document encoder function class when document encoder is162

trainable (as in Eq. 5), leading to an effective function class G0 with |G0|  |G|. Since we would have163

N(u,F0)  N(u,F) and N(u,G0)  N(u,G), this suggests desirable implications of embedding164

matching for reducing the uniform deviation bound.165
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4 Embedding-matching based distillation166

Informed by our analysis of teacher-student generalization gap in Sec. 3, we propose EmbedDistill – a167

novel distillation method that explicitly focuses on aligning the embedding spaces of the teacher and168

student. Our proposal goes beyond existing distillation methods in the IR literature that only use the169

teacher scores. Next, we introduce EmbedDistill for two prevalent settings: (1) distilling a large DE170

model to a smaller DE model; 2 and (2) distilling a CE model to a DE model.171

4.1 DE to DE distillation172

Given a (q, d) pair, let embtq and embtd be the query and document embeddings produced by the173

query encoder EnctQ and document encoder EnctD of the teacher DE model, respectively. Similarly,174

let embsq and embsd denote the query and document embeddings produced by a student DE model175

with (EncsQ,Enc
s
D) as its query and document encoders. Now, EmbedDistill optimizes the following176

embedding alignment losses in addition to the score-matching loss from Sec. 2.2 to align query and177

document embeddings of the teacher and student:178

REmb,Q(t, s; Sn) =
1

n

X
q2Sn

kembtq � proj
�
embsq

�
k; (7)

REmb,D(t, s; Sn) =
1

n

X
d2Sn

kembtd � proj
�
embsd

�
k. (8)

Asymmetric DE. We also propose a novel student DE configuration where the student employs the179

teacher’s document encoder (i.e., EncsD = EnctD) and only train its query encoder, which is much180

smaller compared to the teacher’s query encoder. For such a setting, it is natural to only employ the181

embedding matching loss in Eq. 7 as the document embeddings are aligned by design (cf. Fig. 1a).182

Note that this asymmetric student DE does not incur an increase in latency despite the use of a183

large teacher document encoder. This is because the large document encoder is only needed to184

create a good quality document index offline, and only the query encoder is evaluated at inference185

time. Also, the similarity search cost is not increased as the projection layer ensures the same small186

embedding dimension as in the symmetric DE student. Thus, for DE to DE distillation, we prescribe187

the asymmetric DE configuration universally. Our theoretical analysis (cf. Sec. 3) and experimental188

results (cf. Sec. 5) suggest that the ability to inherit the document tower from the teacher DE model189

can drastically improve the final performance, especially when combined with query embedding190

matching task (cf. Eq. 7).191

4.2 CE to DE distillation192

Given that CE models jointly encode query-document pairs, individual query and document embed-193

dings are not readily available to implement embedding matching losses as per Eq. 7 and 8. This194

makes it challenging to employ EmbedDistill for CE to DE distillation.195

As a naïve solution, for a (q, d) pair, one can simply match a joint transformation of the student’s query196

embedding embsq and document embedding embsd to the teacher’s joint embedding embtq,d , produced197

by (single) teacher encoder Enct. However, we observed that including such an embedding matching198

task often leads to severe over-fitting, and results in a poor student. Since st(q, d) = hw, embtq,di,199

during CE model training, the joint embeddings embtq,d for relevant and irrelevant (q, d) pairs are200

encouraged to be aligned with w and �w, respectively. This produces degenerate embeddings that201

do not capture semantic query-to-document relationships. We notice that even the final query and202

document token embeddings lose such semantic structure (cf. Appendix G.2). Thus, a teacher CE203

model with st(q, d) = hw, embtq,di does not add value for distillation beyond score-matching; in204

fact, it hurts to include naïve embedding matching. Next, we propose a modified CE model training205

strategy that facilitates EmbedDistill.206

CE models with dual pooling. A dual pooling scheme is employed in the scoring layer to produce207

two embeddings embtq (q,d) and embtd (q,d) from a CE model that serve as the proxy query and208

document embeddings, respectively. Accordingly, we define the relevance score as st(q, d) =209

hembtq (q,d), emb
t
d (q,d)i. We explore two variants of dual pooling: (1) special token-based pooling210

that pools from [CLS] and [SEP]; and (2) segment-based weighted mean pooling that separately211

2CE to CE distillation is a special case of this with classification vector w (cf. Eq. 2) as trivial second encoder.
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Table 1: Full recall performance of various student DE models
on NQ dev set, including symmetric DE student model (67.5M
or 11.3M transformer for both encoders), and asymmetric DE
student model (67.5M or 11.3M transformer as query encoder and
document embeddings inherited from the teacher). All distilled
students used the same teacher (110.1M parameter BERT-base
models as both encoders), with the full Recall@5 = 72.3, Re-
call@20 = 86.1, and Recall@100 = 93.6.

Method
6-Layer (67.5M) 4-Layer (11.3M)

R@5 R@20 R@100 R@5 R@20 R@100

Train student directly 36.2 59.7 80.0 24.8 44.7 67.5
+ Distill from teacher 65.3 81.6 91.2 44.3 64.9 81.0
+ Inherit doc embeddings 69.9 83.9 92.3 56.3 70.9 82.5
+ Query embedding matching 72.7 86.5 93.9 61.2 75.2 85.1
+ Query generation 73.4 86.3 93.8 64.3 77.8 87.9

Train student using only
embedding matching and
inherit doc embeddings 71.4 84.9 92.6 64.6 50.2 76.8

+ Query generation 71.8 85.0 93.0 54.2 68.9 80.8

Table 2: Performance of EmbedDistill for
DE to DE distillation on NQ test set. While
prior works listed in the table rely on tech-
niques such as negative mining and multi-
stage training, we explore the orthogonal
direction of embedding-matching that im-
proves single-stage distillation, which can
be combined with them.

Method #Layers R@20 R@100

DPR [20] 12 78.4 85.4
DPR + PAQ [47] 12 84.0 89.2
DPR + PAQ [47] 24 84.7 89.2
ACNE [60] 12 81.9 87.5
RocketQA [48] 12 82.7 88.5
MSS-DPR [53] 12 84.0 89.2
MSS-DPR [53] 24 84.8 89.8

Our teacher [63] 12 (220.2M) 85.4 90.0
EmbedDistill 6 (67.5M) 85.1 89.8
EmbedDistill 4 (11.3M) 81.2 87.4

performs weighted averaging on the query and document segments of the final token embeddings.212

See Appendix B for details.213

In addition to dual pooling, we also utilize a reconstruction loss during the CE training, which214

measures the likelihood of predicting each token of the original input from the final token embed-215

dings. This loss encourages reconstruction of query and document tokens based on the final token216

embeddings and prevents the degeneration of the token embeddings during training. Given proxy217

embeddings from the teacher CE, we can perform EmbedDistill with the embedding matching loss218

defined in Eq. 7 and Eq. 8 (cf. Fig. 1b).219

4.3 Task-specific online data generation220

Data augmentation as a general technique has been previously considered in the IR literature [see, e.g.,221

45, 47, 17], especially in data-limited, out-of-domain, or zero-shot settings. As EmbedDistill aims222

to align the embeddings spaces of the teacher and student, the ability to generate similar queries or223

documents can naturally help enforce such an alignment globally on the task-specific manifold. Given224

a set of unlabeled task-specific query and document pairs Um, we can further add the embedding225

matching losses REmb,Q(t, s;Um) or REmb,D(t, s;Um) to our training objective. Interestingly, for226

DE to DE distillation setting, our approach can even benefit from a large collection of task-specific227

queries Q
0 or documents D

0. Here, we can independently employ embedding matching losses228

REmb,Q(t, s;Q0) or REmb,D(t, s;D0) that focus on queries and documents, respectively. Please refer229

to Appendix E describing how the task-specific data were generated.230

5 Experiments231

We now conduct a comprehensive evaluation of the proposed distillation approach. Specifically, we232

highlight the utility of the approach for both DE to DE and CE to DE distillation. We also showcase233

the benefits of combining our distillation approach with query generation methods.234

5.1 Setup235

Benchmarks and evaluation metrics. We consider two popular IR benchmarks — Natural Questions236

(NQ) [24] and MSMARCO [40], which focus on finding the most relevant passage/document given237

a question and a search query, respectively. NQ provides both standard test and dev sets, whereas238

MSMARCO provides only the dev set that are widely used for common benchmarks. In what239

follows, we use the terms query (document) and question (passages) interchangeably. For NQ, we240

use the standard full recall (strict) as well as the relaxed recall metric [20] to evaluate the retrieval241

performance. For MSMARCO, we focus on the standard metrics Mean Reciprocal Rank (MRR)@10,242

and normalized Discounted Cumulative Gain (nDCG)@10 to evaluate both re-ranking and retrieval243

performance. For the re-ranking, we restrict to re-ranking only the top 1000 candidate document244

provided as part of the dataset to be fair, while some works use stronger methods to find better245

top 1000 candidates for re-ranking (resulting in higher evaluation numbers) See Appendix D for a246

detailed discussion on these evaluation metrics. Finally, we also evaluate EmbedDistill on the BEIR247

benchmark [57] in terms of nDCG@10 and recall@100 metrics.248
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Model architectures. We follow the standard Transformers-based IR model architectures similar249

to Karpukhin et al. [20], Qu et al. [48], Oğuz et al. [47]. We utilized various sizes of DE models based250

on BERT-base [11] (12-layer, 768 dim, 110M parameters), DistilBERT [55] (6-layer, 768 dim, 67.5M251

parameters – ⇠ 2/3 of base), or BERT-mini [58] (4-layer, 256 dim, 11.3M parameters – ⇠ 1/10 of252

base). For query generation (cf. Sec. 4.3), we employ BART-base [27], an encoder-decoder model, to253

generate similar questions from each training example’s input question (query). We randomly mask254

10% of tokens and inject zero mean Gaussian noise with � = {0.1, 0.2} between the encoder and255

decoder. See Appendix E for more details on query generation and Appendix F.1 for hyperparameters.256

5.2 DE to DE distillation257

Table 3: Performance of various DE models on MSMARCO
dev set for both re-ranking and retrieval tasks (full corpus).
The teacher model (110.1M parameter BERT-base models
as both encoders) for re-ranking achieves MRR@10 of 36.8
and that for retrieval get MRR@10 of 37.2. The table shows
performance (in MRR@10) of the symmetric DE student
model (67.5M or 11.3M transformer as both encoders), and
asymmetric DE student model (67.5M or 11.3M transformer
as query encoder and document embeddings inherited from
the teacher).

Method
Re-ranking Retrieval

67.5M 11.3M 67.5M 11.3M

Train student directly 27.0 23.0 22.6 18.6
+ Distill from teacher 34.6 30.4 35.0 28.6
+ Inherit doc embeddings 35.2 32.1 35.7 30.3
+ Query embedding matching 36.2 35.0 35.4 40.8

+ Query generation 36.2 34.4 37.2 34.8

Train student using only
embedding matching and
inherit doc embeddings 36.5 33.5 36.6 31.4

+ Query generation 36.4 34.1 36.7 32.8

We employ AR2 [63]3 and SentenceBERT-258

v5 [50]4 as teacher DE models for NQ259

and MSMARCO. Note that both models260

are based on BERT-base. For DE to DE261

distillation, we consider two kinds of con-262

figurations for the student DE model: (1)263

Symmetric: We use identical question and264

document encoders. We evaluate Distil-265

BERT and BERT-mini on both datasets. (2)266

Asymmetric: The student inherits document267

embeddings from the teacher DE model268

and are not trained during the distillation.269

For query encoder, we use DistilBERT or270

BERT-mini which are smaller than docu-271

ment encoder.272

Student DE model training. We train stu-273

dent DE models using a combination of274

(i) one-hot loss (cf. Eq. 9 in Appendix A)275

on training data; (ii) distillation loss in276

(cf. Eq. 11 in Appendix A); and (iii) em-277

bedding matching loss in Eq. 7. We used [CLS]-pooling for all student encoders. Unlike DPR [20]278

or AR2, we do not use hard negatives from BM25 or other models, which greatly simplifies our279

distillation procedure.280

Results and discussion. To understand the impact of various proposed configurations and losses, we281

train models by sequentially adding components and evaluate their retrieval performance on NQ and282

MSMARCO dev set as shown in Table 1 and Table 3 respectively. (See Table 6 in Appendix F.2 for283

performance on NQ in terms of the relaxed recall and Table 7 in Appendix F.3 for MSMARCO in284

terms of nDCG@10.)285

We begin by training a symmetric DE without distillation. As expected, moving to distillation brings286

in considerable gains. Next, we swap the student document encoder with document embeddings287

from the teacher (non-trainable), which leads to a good jump in the performance. Now we can288

introduce EmbedDistill with Eq. 7 for aligning query representations between student and teacher.289

The two losses are combined with weight of 1.0 (except for BERT-mini models in the presence of290

query generation with 5.0). This improves performance significantly, e.g.,it provides ⇠3 and ⇠5291

points increase in recall@5 on NQ with students based on DistilBERT and BERT-mini, respectively292

(Table 1). We further explore the utility of EmbedDistill in aligning the teacher and student embedding293

spaces in Appendix G.1.294

On top of the two losses (standard distillation and embedding matching), we also use REmb,Q(t, s;Q0)295

from Sec. 4.3 on 2 additional questions (per input question) generated from BART. We also try a296

variant where we eliminate the standard distillation loss and only employ the embedding matching297

loss in Eq. 7 along with inheriting teacher’s document embeddings. This configuration without the298

standard distillation loss leads to excellent performance (with query generation again providing299

additional gains in most cases.)300

3https://github.com/microsoft/AR�/tree/main/AR�
4https://huggingface.co/sentence-transformers/msmarco-bert-base-dot-v�

7

https://github.com/microsoft/AR2/tree/main/AR2
https://huggingface.co/sentence-transformers/msmarco-bert-base-dot-v5


Table 4: Average BEIR performance of our DE
teacher and EmbedDistill student models and their
numbers of trainable parameters. Both models
are trained on MSMARCO and evaluated on 14
other datasets (the average does not include MS-
MARCO). The full table is at Appendix F.4. With
EmbedDistill, student materializes most of the per-
formance of the teacher on the unforeseen datasets.

Method #Layers nDCG@10 R@100

DPR [21] 12 22.5 47.7
ANCE [60] 12 40.5 60.0
TAS-B [15] 6 42.8 64.8
GenQ [57] 6 42.5 64.2

Our teacher [50] 12 (220.2M) 45.7 65.1
EmbedDistill 6 (67.5M) 44.0 63.5

It is worth highlighting that DE models trained with301

the proposed methods (e.g., asymmetric DE with em-302

bedding matching and generation) achieve 99% of303

the performance in both NQ/MSMARCO tasks with304

a query encoder that is 2/3rd the size of that of the305

teacher. Furthermore, even with 1/10th size of the306

query encoder, our proposal can achieve 95-97% of307

the performance. This is particularly useful for la-308

tency critical applications with minimal impact on309

the final performance.310

Finally, we take our best student models, i.e., one311

trained using with additional embedding matching312

loss and using data augmentation from query gen-313

eration, and evaluate on test sets. We compare with314

various prior work and note that most prior work used315

considerably bigger models in terms of parameters,316

depth (12 or 24 layers), or width (upto 1024 dims). For NQ test set results are reported in Table 2, but317

as MSMARCO does not have any public test set, we instead present results for the BEIR benchmark318

in Table 4. Note we also provide evaluation of our SentenceBERT teacher achieving very high319

performance on the benchmark which can be of independent interest (please refer to Appendix F.4320

for details). For both NQ and BEIR, our approach obtains competitive student model with fewer than321

50% of the parameters: even with 6 layers, our student model is very close (98-99%) to its teacher.322

5.3 CE to DE distillation323

Table 5: Performance of DE models distilled from
[CLS]-pooled and Dual-pooled CE models on MS-
MARCO re-ranking task (original top1000 dev).
While both teacher models perform similarly, em-
bedding matching-based distillation only works
with the Dual-pooled teacher. See Appendix F for
nDCG@10 metric.

Method MRR@10

[CLS]-pooled teacher 37.1
Dual-pooled teacher 37.0

Standard distillation from [CLS]-pooled teacher 33.0
+Joint matching 32.4

Standard distillation from Dual-pooled teacher 33.3
+Query matching 33.7

We consider two CE teachers for MSMARCO re-324

ranking task5: a standard [CLS]-pooled CE teacher,325

and the Dual-pooled CE teacher (cf. Sec. 4.2). Both326

teachers are based on RoBERTa-base and trained on327

triples in the training set for 300K steps with cross-328

entropy loss.329

Student DE model training. We considered the fol-330

lowing distillation variants: standard score-based dis-331

tillation from the [CLS]-pooled teacher, and our novel332

Dual-pooled CE teacher (with and without embed-333

ding matching loss). For each variant, we initialize en-334

coders of the student DE model with two RoBERTa-335

base models and train for 500K steps on the train-336

ing triples. We performed the naïve joint embedding337

matching for the [CLS]-pooled teacher (cf. Sec. 4.2) and employed the query embedding matching338

(cf. Eq.7) for the Dual-pooled CE teacher. In either case, embedding-matching loss is added on top of339

the standard cross entropy loss with the weight of 1.0 (when used).340

Results and discussion. Table 5 evaluates the effectiveness of the dual pooling and the embedding341

matching for CE to DE distillation. As described in Sec. 4.2, the traditional [CLS]-pooled teacher did342

not provide any useful embedding for the embedding matching (see Appendix G.2 for the further343

analysis of the resulting embedding space). However, with the Dual-pooled teacher, embedding344

matching does boost student’s performance.345

6 Related work346

Here, we position our EmbedDistill work with respect to prior work on distillation and data augmenta-347

tion for Transformers-based IR models. We also cover prior efforts on aligning representations during348

distillation for non-IR settings. Unlike our problem setting where the DE student is factorized, these349

works mainly consider distilling a single large Transformer into a smaller one.350

Distillation for IR. Traditional distillation techniques have been widely applied in the IR literature,351

often to distill a teacher CE model to a student DE model [28, 8]. Recently, distillation from a DE352

5Note: Full retrieval is prohibitively expensive with CE models.
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model (with complex late interaction) to another DE model (with inner-product scoring) has also been353

considered [29, 15]. As for distilling across different model architectures, Lu et al. [31], Izacard and354

Grave [16] consider distillation from a teacher CE model to a student DE model. Hofstätter et al. [14]355

conduct an extensive study of knowledge distillation across a wide-range of model architectures. Most356

existing distillation schemes for IR rely on only teacher scores; by contrast, we propose a geometric357

approach that also utilizes the teacher embeddings. Many recent efforts [48, 51, 56] show that iterative358

multi-stage (self-)distillation improves upon single-stage distillation [48, 51, 56]. These approaches359

use a model from the previous stage to obtain labels [56] as well as mine harder-negatives [60]. We360

only focus on the single-stage distillation in this paper. Multi-stage procedures are complementary to361

our work, as one can employ our proposed embedding-matching approach in various stages of such a362

procedure. Interestingly, we demonstrate in Sec. 5 that our proposed EmbedDistill can successfully363

benefit from high quality models trained with such complex procedures [50, 63]. In particular, our364

single-stage distillation method can transfer almost all of their performance gains to even smaller365

models. Also to showcase that our method brings gain orthogonal to how teacher was trained, we366

conduct experiments with single-stage trained teacher in Appendix F.5.367

Distillation with representation alignments. Outside of the IR context, a few prior works proposed368

to utilize alignment between hidden layers during distillation [52, 55, 18, 1, 64]. Chen et al. [7] utilize369

the representation alignment to re-use teacher’s classification layer for image classification. Unlike370

these works, our work is grounded in a rigorous theoretical understanding of the teacher-student371

(generalization) gap for IR models. Further, our work differs from these as it needs to address multiple372

challenges presented by an IR setting: 1) cross-architecture distillation such as CE to DE distillation;373

2) partial representation alignment of query or document representations as opposed to aligning for374

the entire input, i.e., a query-documents pair; and 3) catering representation alignment approach to375

novel IR setups such as asymmetric DE configuration. To the best of our knowledge, our work is first376

in the IR literature that goes beyond simply matching scores (or its proxies) for distillation.377

Semi-supervised learning for IR. Data augmentation or semi-supervised learning has been previ-378

ously used to ensure data efficiency in IR [see, e.g., 35, 66]. More interestingly, data augmentation379

have enabled performance improvements as well. Doc2query [45, 44] performs document expan-380

sion by generating queries that are relevant to the document and appending those queries to the381

document. Query expansion has also been considered, e.g., for document re-ranking [67]. Notably,382

generating synthetic (query, passage, answer) triples from a text corpus to augment existing training383

data for QA systems also leads to significant gains [2, 47]. Furthermore, even zero-shot approaches,384

where no labeled query-document pairs are used, can also perform competitively to supervised385

methods [26, 17, 33, 54]. Unlike these works, we utilize query-generation capability to ensure tighter386

alignment between the embedding spaces of the teacher and student.387

Richer transformers-based architectures for IR. Besides DE and CE models (cf. Sec. 2), interme-388

diate configurations [36, 22, 42, 32] have been proposed. Such models independently encode query389

and document before applying a more complex late interaction between the two. Nogueira et al.390

[46] explore generative encoder-decoder style model for re-ranking. In this paper, we focus on basic391

DE/CE models to showcase the benefits of our proposed geometric distillation approach. Exploring392

embedding matching for aforementioned architectures is an interesting avenue for future work.393

7 Conclusion394

We propose EmbedDistill — a novel distillation method for IR that goes beyond simple score matching.395

En route, we provide a theoretical understanding of the teacher-student generalization gap in an IR396

setting which not only motivated EmbedDistill but also inspired new design choices for the student DE397

models: (a) reusing the teacher’s document encoder in the student and (b) aligning query embeddings398

of the teacher and student. This simple approach delivers consistent quality and computational gains399

in practical deployments and we demonstrate them on MSMARCO, NQ, and BEIR benchmarks.400

Finally, we found EmbedDistill retains 95-97% of the teacher performance to with 1/10th size students.401

Limitations. As discussed in Sec. 4.2 and 5.3, EmbedDistill requires modifications in the CE scoring402

function to be effective. In terms of underlying IR model architectures, we only explore Transformer-403

based models in our experiments; primarily due to their widespread utilization. That said, we expect404

our results to extend to non-Transformer architectures such as MLPs. Finally, we note that our405

experiments only consider NLP domains, and exploring other modalities (e.g., vision) or multi-modal406

settings (e.g., image-to-text search) is left as an interesting avenue for future work.407
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