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ABSTRACT

Effective search methods are crucial for improving the performance of deep
generative models at test time. In this paper, we introduce a novel test-time
search method, Neural Genetic Search (NGS), which incorporates the evolu-
tionary mechanism of genetic algorithms into the generation procedure of deep
models. The core idea behind NGS is its crossover, which is defined as parent-
conditioned generation using trained generative models. This approach offers a
versatile and easy-to-implement search algorithm for deep generative models. We
demonstrate the effectiveness and flexibility of NGS through experiments across
three distinct domains: routing problems, adversarial prompt generation for lan-
guage models, and molecular design.

1 INTRODUCTION

Genetic algorithms (GAs) have demonstrated remarkable performance across a diverse range of
tasks with discrete search space, from classic combinatorial optimization problems (Holland, 1992;
Omara & Arafa, 2010; Vidal et al., 2012; Nagata & Kobayashi, 2013; Mahmoudinazlou & Kwon,
2024) to more recent applications in molecular design (Morris et al., 1998; Jensen, 2019; Nigam
et al., 2021; Kerstjens & De Winter, 2022). By maintaining a population of candidate solutions and
iteratively applying evolutionary operators, such as crossover and mutation, GAs can systematically
explore vast search spaces.
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Figure 1: Examples of parents and offspring generated
via parents-conditioned generation in various tasks.

In this work, we investigate how to incor-
porate the powerful search capabilities of
GAs into deep generative models. Previous
efforts that combined GAs with deep learn-
ing for better search typically applied GAs
after the generation process to refine the
outputs of generative models using exist-
ing problem-specific GAs (Ahn et al., 2020;
Kim et al., 2024). In contrast, our goal
is to integrate the evolutionary principles
of GAs directly into the generation process
of deep models rather than simply chaining
the deep models and GAs.

We present Neural Genetic Search (NGS), a GA-inspired new search algorithm for deep genera-
tive models. NGS enhances the sequential generation process by incorporating genetic operators,
crossover, and mutation. Specifically, we define the crossover as a parent-conditioned generation
(Fig. 1), where the model’s vocabulary is restricted to the tokens used in the selected parents, while
mutation simply removes this restriction, allowing for more diverse outputs. The generation with the
genetic operators proceeds iteratively with an evolving population, steering the generation toward
better results over time, similar to traditional GAs.

∗Equal contribution, correspondence to hyeonah.kim@mila.quebec and sanghyeok.choi@
kaist.ac.kr. Work done while Hyeonah Kim was at KAIST.
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Since the generation process is still governed by the trained generative models, NGS effectively
combine the search capability of GAs with the generative power of deep neural networks. Fur-
thermore, as the proposed genetic operators are problem-agnostic, NGS can be applied to any deep
sequential generative model across various tasks, in contrast to traditional GAs, which require sig-
nificant effort to design problem-specific operators. NGS also can be easily implemented by adding
the population and the parent-conditioned masking rule to any existing algorithm with sequential
generative models. Finally, compared to single-pass generation, the population-based iterative gen-
eration in NGS allows the generation process to adapt over time, improving the quality of generated
outputs and even the robustness to distribution shifts.

We evaluated our algorithm in three distinct domains where sequential generative models are widely
applied: routing problems, red-teaming language models, and de novo molecular design. Our exten-
sive experiments validate that NGS can serve as an effective test-time search method, fulfilling its
main purpose. We also found that NGS can replace the conventional decoding algorithms, offering
improved robustness. Additionally, NGS can be viewed as an automated genetic algorithm with
learned genetic operators, eliminating the need for extensive labor for algorithm design. These re-
sults suggest that NGS has significant potential as a versatile and efficient search strategy, adaptable
to a wide range of applications with sequential generative models.

2 BACKGROUND

In this section, we introduce the sequential generation in discrete space and genetic algorithm as
backgrounds of our algorithm. Our related works can be found in Appendix A.

2.1 SEQUENTIAL GENERATION IN DISCRETE SPACE

This paper focuses on the sequential generation of discrete objects to optimize predefined criteria,
i.e., maximize reward functions. This setting includes many practical applications, including solu-
tion generation for vehicle routing problems, prompt optimization in language models, and SMILES
string generation for molecular optimization.

Let s ∈ S represent a sequence that corresponds to a discrete object x ∈ X . Without loss of
generality and to make the explanation simpler, we assume that the sequence length is T , i.e., s =
(s1, s2, . . . , sT ) where st ∈ V is a token from vocabulary V . We also denote the partial sequence
with length t− 1 as s<t.

We assume that we have a sequential generative policy pθ. The probability of a sequence s being
generated by the policy pθ is:

pθ(s) =

T∏
t=1

pθ(st|s<t), (1)

where s<1 is defined as an empty sequence and pθ(st|s<t) denotes the conditional distribution over
next token st given the partial sequence s<t modeled by pθ. In our work, this conditional distribution
is given by a pretrained neural network, which is often conditioned on some contexts or constrained
with problem-specific constraints.

Note that the mapping from a sequence to a discrete object g : S → X is not necessarily injective,
i.e., there can be multiple sequences that correspond to a single object. Thus, the probability of an
object x ∈ X being generated is defined as pθ(x) =

∑
s:g(s)=x pθ(s). Additionally, we assume the

existence of a reward function rX : X → R which evaluates the quality of a generated object x.
For instance, in routing problems, we can define rX (x) = −c(x) where c(x) is the length of the
route x that we want to minimize.. In molecular optimization, c could represent a property such as
binding affinity or drug-likeness, which we aim to maximize. Since this work focuses on sequence
generation, we mainly use the reward function over sequences, r = rX ◦ g.

Our task is to maximize the reward function by generating a set of objects using the sequential gen-
erative model. Depending on the task, we may also want to maintain the diversity in the generated
objects. We provide a more detailed discussion for each problem we considered in Appendix D.
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Figure 2: Overview of GA with NGS. (1) The policy sequentially constructs sequences, which cor-
respond to chromosomes, to initialize the population. From this population, (2) parents are selected,
and (3) the same policy reproduces offspring by sampling new sequences with a parent-conditioned
mask. Finally, (4) the newly generated candidates replace some members in the population.

2.2 GENETIC ALGORITHM

Genetic algorithms (GAs) are evolutionary-inspired meta-heuristics. By mimicking natural selec-
tion and genetic evolution, GAs iteratively refine a population of candidate solutions. The main
components of GA are as follows:

• Chromosome: A representation of a potential solution, encoded in a suitable format (e.g., a
sequence of numbers).

• Population: A group of chromosomes that evolve over the iterative refinement by GA.
• Selection: Parent chromosomes are selected based on their reward, with chromosomes having

higher reward being more likely to be chosen.
• Crossover: Parents exchange genetic material to create offspring, combining strengths from both.
• Mutation: Random changes to the offspring’s genetic material to maintain diversity and explore

new regions of the solution space.
• Replacement: Offspring replace individuals with low rewards in the population.

The challenge in developing GAs lies in designing each component, particularly crossover and mu-
tation operators, that respect the unique problem-specific constraints while effectively searching the
solution space. In various domains, extensive effort has been devoted to developing highly special-
ized operators that can handle these complexities. While these specialized operators are essential
for handling problem-specific constraints, they make it challenging to generalize across different
problems or adapt to new variations without redesigning the operators.

Despite these challenges, the evolving framework of GAs remains highly powerful due to their
inherent capacity to explore large, complex solution spaces. The GA’s population-based approach,
which maintains a diverse set of solutions, enables the algorithm to explore many potential solutions
simultaneously, increasing the likelihood of finding global optima. GAs have been successfully
applied to various fields, including routing (Vidal et al., 2012; Nagata & Kobayashi, 2013; Kobeaga
et al., 2018; Wouda et al., 2024), molecular design (Morris et al., 1998; Jensen, 2019; Nigam et al.,
2021; Kerstjens & De Winter, 2022), scheduling (Murata et al., 1996; Gonçalves et al., 2005), and
robotics (Davidor, 1991; Lamini et al., 2018; Ismail et al., 2008).

3 NEURAL GENETIC SEARCH

We begin by assuming a pretrained sequential generative policy pθ∗ , without imposing any con-
straints on its architecture or training method. The only requirement is that the policy pθ∗ samples
solutions in a factorized manner as Eq. (1), which allows a flexible use of training approaches and
models. An overview of our algorithm is provided in Fig. 2 and Algorithm 1.

3.1 CROSSOVER AND MUTATION

We propose a problem-agnostic crossover and mutation operations that integrate readily into the
generative process of the pretrained model.

Crossover. Given two parent chromosomes (s1, s2), we define our crossover operation as token-
restriction, i.e., the vocabulary for a child is restricted to Vs1,s2 = {s11, . . . , s1T } ∪ {s21, . . . , s2T }.1

1We fixed the number of parents to two, but it is allowed to use more than two parents in our algorithm.
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Figure 3: An illustration of crossover and mutation in TSP (§3.1.1). At t = t′, the token-restriction
crossover masks out edges not included in the parents, and then the pretrained policy gives the
distribution over the remaining valid edges. At t = t′+1, since all edges included in the parents are
invalid ( ), the constraint-enforcing mutation activates, allowing selection of any unvisited node.

With this restricted vocabulary, the pretrained generative policy constructs new sequences while
ensuring that they adhere to certain structural constraints from the parents. The crossover is sim-
ply implemented by masking out the tokens not in Vs1,s2 during the sequence generation process
in Eq. (1). We define the next token distribution after the crossover with parents (s1, s2) as:

pcross(s1,s2)(st|s<t) ∝ I(st ∈ Vs1,s2)pθ∗(st|s<t), (2)
where I is an indicator function. As a result, the crossover operator functions as a parent-conditioned
generative process.

Mutation. In classical GA, mutation introduces diversity by allowing new genetic material that
may not appear in either parent. Analogously, our mutation allows new components by un-masking
the masked tokens. Thus, mutation removes the effect of the crossover and reverts to the normal
sequence generation. This mutation is conducted in two cases:

• Constraint-enforcing mutation. If all tokens in Vs1,s2 cannot satisfy the specific constraints in the
sequence, i.e.,

∑
st∈Vs1,s2

pθ∗(st|s<t) = 0, we forcibly do the mutation.

• Stochastic mutation. Even if constraints are met, we apply mutation with probability µ ∈ [0, 1].

Considering the mutation, the next token distribution is then modified further as:
pNGS(s1,s2,µ)(st|s<t) = Ms<t,s1,s2,µ · pθ∗(st|s<t) + (1−Ms<t,s1,s2,µ) · pcross(s1,s2)(st|s<t), (3)

where the binary variable M indicates whether or not the mutation occurs, i.e.,

Ms<t,s1,s2,µ =

{
1 if

∑
st∈Vs1,s2

pθ∗(st|s<t) = 0

Y ∼ Bernoulli(µ) otherwise.

The probability of a sequence s being generated by the policy with NGS conditioned on parents s1
and s2 becomes:

pNGS(s1,s2,µ)(s) =

T∏
t=1

pNGS(s1,s2,µ)(st|s<t). (4)

3.1.1 A CONCRETE EXAMPLE: TSP

We provide a concrete example with the traveling salesman problem (TSP) to provide further insight
into how the crossover and mutation work. Generally, a TSP instance is defined on a complete graph
G = (V, E), where V is the set of N nodes and E is the set of edges. The goal is to find a tour that
visits each node exactly once and returns to the starting point, minimizing the total travel distance;
the reward is defined as the negative total distance. Note that the vocabulary V is the set of edges E ,
and a token is an edge, i.e., st ∈ E .

Fig. 3 illustrates how new offspring solutions are generated using NGS in TSP. A route is constructed
sequentially by choosing edges, with the constraint that each node cannot be visited more than once.
At time step t, the policy samples an edge that connects the current node to the next node. The
sequence of selected edges is directly used as a chromosome. The policy masks out the edges
connecting the current nodes to already-visited nodes to prevent repeated visits. Once all nodes
are visited, a tour is formed by returning to the starting node. During offspring generation, Vs1,s2 is
defined as the set of edges that appear in either of the two parent routes, i.e., Vs1,s2 =

⋃N
t=1{s1t , s2t ∈

E} where s1, s2 are selected parents. This in turn defines pcross as in Eq. equation 2. If no edge in the
parent set remains valid—they all lead to visited nodes—the token restriction on parents is relaxed
through constraint-enforcing mutation, allowing the policy to choose from any edge connected to
un-visited nodes to maintain route validity.
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3.2 RANK-BASED SELECTION AND REPLACEMENT

For selection and replacement, we employ rank-based prioritized sampling (Tripp et al., 2020).
Rank-based sampling works as a stochastic elitism, providing controllability for balancing the
stochasticity and the eagerness in selection. In this section, we define rank with regard to reward,
but it is possible to use multiple criteria (see Appendix D.2).

Assume that the population P is filled with |P| chromosomes. We denote the rank of a sequence s
in P respect to the function f as rankP(s), which ranges from 0 (highest reward) to P − 1 (lowest
reward). Rank-based prioritized sampling probability is defined as:

Pr(s) ∝ (κ|P|+ rankP(s))
−1

. (5)

We sample two chromosomes using Eq. (5) without replacement to generate a pair of parents, and
repeat this independently until we obtain Noff pairs. Those pairs are fed into the crossover and
mutation process, leading to the next generation. In the replacement phase, we use P ∪ O, instead
of P and sample Npop chromosomes without replacement.

3.3 ALGORITHMIC VIEWPOINTS

The NGS algorithm is summarized in Algorithm 1 in Appendix B. NGS offers an improved search
capability for the sequential generative models by gracefully combining the strength of GA with the
neural policy pθ∗ . A more detailed analysis of its time and memory complexities can be found in
Appendix C. Below, we highlight two perspectives on NGS: 1) as a novel decoding strategy that
leverages evolutionary principles and 2) as a GA enhanced by learned operators.

NGS as a decoding strategy. NGS can be viewed as a decoding scheme for sequential generative
models because it converts the learned (conditional) probability distribution into explicit outputs.
Specifically, NGS belongs to stochastic decoding methods and shares similarities with top-k or top-p
sampling, as it modifies (masking-out) the sampling distribution for better results. However, unlike
single-pass approaches, NGS adopts a population-based approach, which iteratively refines a set
of candidate solutions. This population-based process could be particularly useful for complex
tasks that benefit from repeated improvement. Our experiments in §4.1 and §4.2 verify that NGS
effectively decodes outputs from a model’s learned distribution.

NGS as a genetic algorithm. From another perspective, NGS can be viewed as a genetic algo-
rithm (GA) with a learned operator, where a pretrained model specifies how to combine and modify
parent solutions via parent-conditioned generation. This approach provides two key benefits: (1)
it replaces traditional, hand-crafted heuristics, and (2) it produces more informed, higher-quality
offspring by using the model’s learned distribution to guide the combination process, rather than
relying on random-walk behavior with predefined rules. As shown in §4.3, NGS can thus serve as
an effective alternative GA.

4 EXPERIMENTS

To verify the effectiveness and versatility of NGS, we conduct extensive experiments on routing
problems (§4.1), red-teaming language models (§4.2), and molecular optimization (§4.3).

4.1 ROUTING PROBLEMS

In this section, we evaluate NGS on routing problems to verify how NGS efficiently explores the
combinatorial solution space. We consider four classic routing problems — Traveling Salesman
Problem (TSP), Capacitated Vehicle Routing Problem (CVRP), Prize-Collecting TSP (PCTSP), and
Orienteering Problem (OP) — all of which have been widely studied in both genetic algorithm and
deep learning research. Detailed descriptions for each task are provided in Appendix F.

Experimental Setup. Following Joshi et al. (2021), we adopt a graph neural network (GNN) to
generate an edge heatmap for a given problem instance G. The heatmap serves as a policy, providing
the conditional distribution on edges. This heatmap-based approach has been widely adopted thanks
to its simplicity and scalability to large instances (Kool et al., 2022; Ye et al., 2023; Kim et al.,
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Table 1: Results on TSP and CVRP. Gap (%) is measured using Concorde (Applegate et al., 2006)
for TSP and PyVRP (Wouda et al., 2024) for CVRP. “Time” shows the average duration needed to
solve a single instance.

TSP N = 200 TSP N = 500 CVRP N = 200 CVRP N = 500

Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time

Concorde - 1s - 10s PyVRP - 4.0m - 21.0m
LKH3 (Helsgaun, 2017) 0.001 10s 0.022 32s LKH3 (Helsgaun, 2017) 0.304 2.4m 0.182 18.6m

GNN (Kim et al., 2025) GNN (Kim et al., 2025)
+ MCTS 0.164 20s 1.324 60s
+ BS (w = 1000) 1.378 4s 20.637 18s + BS (w = 1000) 2.659 4s 2.624 7s
+ Sampling 0.307 2s 1.827 10s + Sampling 1.487 4s 1.982 7s
+ ACO 0.294 5s 1.733 17s + ACO 1.485 7s 1.975 14s
+ NGS (Ours) 0.028 5s 0.322 17s + NGS (Ours) 0.981 8s 1.840 15s

+ MCTS (long) 0.126 100s 1.268 300s
+ Sampling (long) 0.130 16s 1.479 101s + Sampling (long) 1.104 0.7m 1.738 1.2m
+ ACO (long) 0.102 47s 1.162 167s + ACO (long) 1.055 1.2m 1.684 2.3m
+ NGS (Ours, long) 0.011 50s 0.110 170s + NGS (Ours, long) 0.126 1.3m 1.502 2.5m
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Figure 4: Benchmark results on various routing problems. NGS outperformed sampling and ACO
by a significant margin in all problems. See Appendix G.1 for more comprehensive results.

2025).2 We use the advanced off-policy reinforcement learning algorithm by Kim et al. (2025) to
obtain the pretrained GNN. All training and testing are performed three times independently.

Baselines. To validate the effectiveness of our method as a test-time search method, we compare
ours against various search algorithms while using the same pretrained GNN. These search algo-
rithms include sampling (best-of-N), beam search (BS; Joshi et al., 2021), Monte Carlo Tree Search
(MCTS; Qiu et al., 2022), and ant colony optimization (ACO; Ye et al., 2023; Kim et al., 2025).
Note that the ACO-based search of Kim et al. (2025) has already achieved comparable results to
state-of-the-art learning-based methods for routing problems; see details in Appendix E.1.

Results. As shown in Table 1, in TSP and CVRP with the number of nodes 200 and 500, NGS
achieves significantly smaller optimality gaps than the search baselines. Notably, NGS outperforms
both Sampling (long) and ACO (long), which used 10× larger search budget (except for CVRP with
N = 500), demonstrating its search efficiency. Moreover, Fig. 4 illustrates that NGS consistently de-
livers significant performance gains in all routing problems considered. These results underscore the
flexibility and broad applicability of NGS. It is noteworthy that all the search algorithms are based
on the same pretrained neural network, i.e., the only difference resulting in the huge performance
gaps between the algorithms is the search procedure. More results are provided in Appendix G.1

Results on real-world instances. We evaluate the proposed method on real-world benchmark prob-
lems, TSPLib (Reinelt, 1991) and CVRPLib-X (Uchoa et al., 2017). Results are in Appendix G.2.
NGS preserves strong performance despite the distribution shift, demonstrating robust adaptability.

4.1.1 FURTHER STUDIES

NGS with an autoregressive policy. To verify our versatility, we integrate NGS with autoregressive
policy as well. We adopt the state-of-the-art model, the Light Encoder and Heavy Decoder (LEHD;
Luo et al., 2023), which trained via supervised learning. Results are reported in Appendix G.3.

Sensitivity Analysis. We examine the impact of GA hyperparameters. As reported in Appendix G.4,
NGS consistently performs well across a broad range of parameter settings, indicating its robustness
and practical usability.

2Heatmap-based approaches are often referred to as “non-autoregressive” methods in that they only call the
neural network once to generate a heatmap.
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Table 2: The attacker model is fine-tuned and evaluated with Source victim model (Llama-3.2-
3B-Instruct). The attacker is also evaluated on other various victim models, which corresponds to
Transfer setting. The highest mean toxicities among sampling-based algorithms are highlighted
with Bold. All the reported values are averaged over five independent runs with distinct seeds.

Source Transfer
Llama-3.2

-3B-Instruct
Llama-3.1

-8B-Instruct
Llama-3.3

-70B-Instruct
Gemma-2

-9b-it
Qwen2.5

-7B-Instruct phi-4 (14B)

Method Toxicity Diversity Toxicity

BS (w = 4) 0.93 0.24 0.18 0.52 0.00 0.67 0.00
BS (w = 8) 0.99 0.21 0.37 0.74 0.02 0.91 0.00

Sampling 0.59 0.84 0.28 0.50 0.05 0.25 0.08
Temp. (τ=0.8) 0.67 0.82 0.31 0.52 0.04 0.29 0.07
Temp. (τ=0.5) 0.79 0.77 0.40 0.58 0.04 0.40 0.04
top-k (k=10) 0.65 0.82 0.31 0.53 0.04 0.25 0.06
top-k (k=5) 0.69 0.79 0.35 0.52 0.04 0.28 0.05
top-p (p=0.8) 0.69 0.81 0.32 0.51 0.04 0.30 0.07
top-p (p=0.5) 0.78 0.77 0.39 0.56 0.03 0.38 0.04

NGS (Ours) 0.71 0.79 0.45 0.61 0.14 0.59 0.23

4.2 RED-TEAMING LANGUAGE MODELS

In this experiment, we view NGS as an alternative decoding strategy, especially in the context of
automated red-teaming of language models (LMs).

Red-teaming language model aims to generate attack prompts to induce undesirable output from a
“victim” language model. Our experiment is based on the approach that fine-tunes “attacker” LM to
serve as an automated attack prompt generator (Perez et al., 2022; Lee et al., 2024a). We fine-tune
the attacker LM following the fine-tuning approach proposed by Lee et al. (2024a). Specifically, the
reward of an attack prompt is defined as the probability of it being toxic. This reward signal is then
used for fine-tuning based on the combination of GFlowNets and maximum likelihood estimation.
Given the fine-tuned attacker LM, we investigate how the decoding schemes affect the red-teaming
performance. For more details, including the evaluation procedure, see Appendix D.2.

Experimental setup. Throughout the experiments, GPT-2 (Radford et al., 2019) is used as an
attacker and Llama-Guard-3-8B (Llama Team, 2024) as the safety classifier. During fine-tuning,
Llama-3.2-3B-Instruct (Llama Team, 2024) is used as a victim. For testing, we evaluate the attacker
LM using various victim LMs, not only the one used in the fine-tuning phase, but also unseen LMs:
Llama-3.1-8B-Instruct, Llama-3.3-70B-Instruct (Llama Team, 2024), Gemma-2-9b-it (Team et al.,
2024), Qwen2.5-7B-Instruct (Yang et al., 2024), and phi-4 (Abdin et al., 2024).

Implementation details. First, to further encourage diversity in the selection and replacement, we
introduce the novelty of a chromosomes and use weighted rank in rank-based prioritized sampling
in Eq. Eq. (5). In addition, in crossover, we optionally discard the used token from Vs1,s2 after each
token selection to avoid meaningless repetition; please refer to Appendix D.2 for details.

Baselines. We considered canonical sampling-based decoding strategies for language models,
specifically, tempered sampling (Temp.) with temperature τ , top-k sampling, and top-p sampling
(also known as Nucleus sampling, Holtzman et al. 2020). We also include beam search (BS) with
beam width w, while we did not directly compare against it because it is deterministic.

Results. We summarized the results in Table 2.The ‘Source’ column result shows that NGS could
comparably balance the toxicity (reward) and diversity. The results in Transfer setting are more
remarkable in that NGS outperforms the other decoding schemes significantly, showing robustness
toward the distribution shift. This is attributed to NGS’s unique characteristic, population-based
iterative generation, which could adapt the generation process towards better search space by con-
ditioning on promising parents from previous generations. For more comprehensive results with
standard deviation and results obtained using another model as source victim LM, see Appendix H.

4.3 DE NOVO MOLECULAR DESIGN

In this experiments, we focus on verifying the effectiveness of NGS as a new GA method, unlike the
experiments in routing and red-teaming. In molecular design, various studies have found that GA
methods still remain as strong baselines for recent deep learning methods. Furthermore due to the
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Table 3: Average scores of Top-10 molecules discovered within 10,000 evaluations
Type Score Func. (↑) SynNet SMILES GA STONED Graph GA NGS (Ours)

Property
Optimization

qed 0.947 ± 0.001 0.947 ± 0.001 0.948 ± 0.000 0.944 ± 0.001 0.948 ± 0.000
jnk3 0.673 ± 0.078 0.407 ± 0.088 0.616 ± 0.083 0.830 ± 0.135 0.891 ± 0.059
drd2 0.998 ± 0.003 0.993 ± 0.009 0.998 ± 0.004 1.000 ± 0.001 1.000 ± 0.000
gsk3b 0.824 ± 0.069 0.799 ± 0.041 0.755 ± 0.044 0.915 ± 0.065 0.958 ± 0.021

Multi-property
Optimization

perindopril mpo 0.563 ± 0.025 0.447 ± 0.018 0.503 ± 0.020 0.546 ± 0.038 0.600 ± 0.017
ranolazine mpo 0.784 ± 0.012 0.768 ± 0.030 0.850 ± 0.022 0.763 ± 0.028 0.854 ± 0.020
sitagliptin mpo 0.337 ± 0.051 0.477 ± 0.074 0.706 ± 0.081 0.629 ± 0.068 0.640 ± 0.061

Structure-based
Optimization

isomers c9h10n2o2pf2cl 0.715 ± 0.030 0.878 ± 0.049 0.949 ± 0.041 0.908 ± 0.025 0.914 ± 0.023
deco hop 0.676 ± 0.103 0.621 ± 0.006 0.625 ± 0.014 0.610 ± 0.017 0.851 ± 0.130
scaffold hop 0.517 ± 0.011 0.519 ± 0.012 0.533 ± 0.031 0.530 ± 0.035 0.697 ± 0.145

Average 0.703 0.686 0.748 0.768 0.835

black-box properties in chemical space, test-time search with deep generative models have rarely
studied. In several works, Graph-based GA (Jensen, 2019), an expert-designed GA, is directly
employed to refine the solutions or support the policy explorations (Ahn et al., 2020; Kim et al.,
2024; Gao et al., 2024; Wang et al., 2024; Lee et al., 2024b)

Experimental setup. De novo molecular design aims to discover molecules with the desired
property, which is measured by the objective function f , x∗ = argmaxx∈X f(x), where x is a
molecule, and X denotes the chemical space which comprises all possible molecules. We follow the
experimental setting in the Practical Molecular Optimization (PMO) benchmark (Gao et al., 2022a),
which limits evaluations to 10,000. We provide further details in Appendix D.3.

Implementation details. This work employs a string-based molecular representation, the Simpli-
fied Molecular-Input Line-Entry System (SMILES) strings (Weininger, 1988); the examples are
provided in Fig. 1. Following prior works (Olivecrona et al., 2017; Kim et al., 2024), we adopt an
LSTM policy to generate SMILES sequences. Since we have a limited budget, we use 8K calls to
train the policy and 2K to conduct the genetic search with NGS; see details in Appendix E.3.

Baselines. We compare NGS with GA methods specially designed for molecular design: Graph GA
(Jensen, 2019), SMILES GA (Brown et al., 2019), STONED (Nigam et al., 2021), and SynNet (Gao
et al., 2022b). They utilize fragment-based graphs, SMILES, SELFIES (Krenn et al., 2020), and
synthesis, respectively, as molecular representations.

Results. As depicted in Table 3, NGS outperforms previous GA methods in average Top-10 scores
across 10 tasks in different types by achieving the best scores in 8 tasks out of 10. These results
highlight the effectiveness of NGS as an alternative GA method despite the computational cost of
policy training. In Appendix I, we compare NGS with the results with training only. Moreover,
NGS manages to produce valid molecules without explicitly enforcing validity checks or SMILES
grammar constraints at each step. Because the policy is pretrained on valid examples, it naturally
learns to generate syntactically correct SMILES strings, ensuring a high rate of validity in its outputs.

5 CONCLUSION

Contributions. We propose Neural Genetic Search (NGS), a test-time search algorithm that com-
bines the population-based exploration of genetic algorithms with the expressive power of pretrained
generative models. By replacing domain-specific crossover rules with a parent-conditioned gener-
ation process and allowing mutation through unrestricted sampling, NGS offers an iterative refine-
ment strategy that boosts solution quality across diverse tasks without needing specialized heuris-
tics. Our experiments, conducted across diverse tasks such as routing problems, adversarial prompt
generation, and molecular design, show that NGS improves solution quality compared to previous
search methods. Beyond its strong performance, NGS is flexible and easy to adopt: it only requires
a pretrained model that constructs discrete outputs sequentially.

Limitations. Despite these advantages, NGS relies on the quality of the underlying neural policy.
The potential performance gains may be limited if the pretrained model’s distribution does not en-
compass high-quality solutions. In such cases, the policy can be fine-tuned by incorporating NGS,
similar to approaches introduced by Choo et al. (2022); we leave this as future work. Another limi-
tation is that NGS introduces a set of GA-related hyperparameters. While we provide the rationale
behind their selection and demonstrate their robustness across diverse configurations, practitioners
may still need to adjust them for specific tasks.
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Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
cal report. arXiv preprint arXiv:2412.08905, 2024.

Sungsoo Ahn, Junsu Kim, Hankook Lee, and Jinwoo Shin. Guiding deep molecular optimization
with genetic exploration. Advances in neural information processing systems (NeurIPS), 2020.

David Applegate, Robert Bixby, Vasek Chvatal, and William Cook. Concorde TSP solver, 2006.
URL https://www.math.uwaterloo.ca/tsp/concorde/.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional AI:
Harmlessness from AI feedback. arXiv preprint arXiv:2212.08073, 2022.

Egon Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636, 1989.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
GFlowNet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
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A RELATED WORKS

Deep generative models with GA. Several studies explore combining GAs and deep generative
models, particularly in chemical domains. One direction is that utilizing expert-designed GA to
improve the generative models’ outcome. Ahn et al. (2020) and Kim et al. (2024) employ Graph
GA (Jensen, 2019) whose crossover and mutation are designed to guarantee the validity in chem-
ical space, to refine the generated molecules. Conversely, some researches suggest to incorporate
neural models to enhance or design GAs.s Notably, in SynNet (Gao et al., 2022b), the neural pol-
icy construct offspring conditioned on molecule embedding from the parent, allowing exploiting
the generative capability from the deep model similar to our works. However, to ensure the plau-
sibility, SynNet employs domain-specific reaction rules in the subsequent synthesis planning. Gao
et al. (2024) utilizes the generative model to refine the molecules obtained by Graph GA to more
synthesizable ones. In Reinforced Genetic Algorithm (RGA; Fu et al., 2022), the neural models
guides the crossover and mutation process with a protein target structure embedding to overcome a
random-work exploration with predefined rules.

More broadly, there is a growing trend that leverages large language models (LLMs) as a black-box
operator within GAs, where parent samples are directly fed into LLM to obtain new samples. These
LLM-based GAs have been studied in various domains, including prompt optimization (Meyerson
et al., 2024; Liu et al., 2024; Guo et al., 2024), molecular design (Wang et al., 2024), and code
generations (Lehman et al., 2023; Chen et al., 2023; Ye et al., 2024). However, a primary challenge is
the reliance on hand-crafted prompt engineering, and many approaches continue to employ problem-
specific rules along with the LLM-based operator (Liu et al., 2024; Wang et al., 2024).

Test-time search for enhanced inference. Recent work in large language models (LLMs) (Bai
et al., 2022; Madaan et al., 2023; Snell et al., 2024; Brown et al., 2024) demonstrates that dedicat-
ing additional computation at test time can greatly improve outputs (see Dong et al. (2024) for an
overview). Meanwhile, in combinatorial optimization (CO), its mathematically rigorous algorithmic
foundations have inspired a line of research integrating traditional algorithms into test-time search
within deep learning. For instance, (Kool et al., 2022) employ restricted dynamic programming
guided by a graph neural network (GNN) that predicts a solution heatmap in routing problems.
Meanwhile, Ye et al. (2023) and Kim et al. (2025) use a predicted edge heatmap in ant colony
optimization (ACO) for broader CO applications. Luo et al. (2023) propose a new greedy decoding-
based search that randomly destroys the generated solutions and reconstructs solutions. Although
effective, this method relies on handcrafted rules for destruction. In addition to external algorithmic
integrations, there exist a range of self-improvement approaches, such as beam search (Joshi et al.,
2021; Choo et al., 2022), sampling (also called best-of-N) (Kool et al., 2019), and Monte Carlo Tree
Search (Qiu et al., 2022), and active searches (Bello et al., 2016; Hottung et al., 2022; Son et al.,
2023) are also employed for refining solutions at test time.

B ALGORITHM

Algorithm 1 Neural Genetic Search

Require: Npop, Noff, the number of iterations Niter, a pretrained policy pθ∗

1: Initialize P = {(si, r(si))}Npop
i=1 , where si ∼ pθ∗(s) by Eq. (1)

2: for i = 1 to Niter do
3: O ← ∅
4: for n = 1 to Noff do
5: Select parents (s1, s2) from P using Eq. (5) ▷ Selection
6: Generate offspring s ∼ pNGS(s1,s2,µ)(s) by Eq. (4) ▷ Crossover and Mutate
7: O ← O ∪ {(s, r(s))}
8: end for
9: Replace P by sampling Npop chromosomes from P ∪ O using Eq. (5). ▷ Replacement

10: end for
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C TIME AND MEMORY COMPLEXITIES

The proposed crossover, mutation, selection, or replacement in §3 does not require a significant
amount of time to perform. However, it may increase the generation time depending on the mini-
batch size.

Consider that we want to generate K sequences in total and assume that our mini-batch size is limited
to m (K > m). Then, we need to iterate ⌈K/m⌉ times of generation, regardless of the generation
algorithm. On the other hand, when considering the NGS iteration with specified Npop and Noff, we
need to iterate ⌈Npop/m⌉+ ⌈(K −Npop)/Noff⌉ · ⌈Noff/m⌉ times. When m is smaller than Noff, the
number of iterations of NGS is similar to the normal generation. Otherwise, the number of iterations
can increase much larger than ⌈K/m⌉. In practice, however, m is usually smaller compared to Noff,
and thus, the time complexity is not increased too much (see Table 5).

Our algorithm slightly increases memory usage, as the population should be kept in memory, which
is usually negligible. In routing problem experiments, NGS requires additional memory since we
need to construct the N ×N edge matrix for each chromosome. However, using the sparse matrix
could largely relieve this.

D DETAILED PROBLEM FORMULATIONS

This section provides more detailed explanations of each sequential generation problem we consid-
ered.

D.1 ROUTING PROBLEMS

In all routing problem we considered, a problem instance can be defined on the fully connected
graph G = (V, E), where V is the set of N nodes, and E is a set of edges, each associated with a
weight representing the distance between two connected nodes. The goal is to find the optimal route
that satisfies all problem-specific constraints.

In this context, a candidate solution for a routing problem can be defined as a set of edges that
compose a route, which in turn can be represented as a sequence of edges. Thus, the vocabulary
corresponds to all the edges, i.e., V = E , a chromosome corresponds to a sequence of edges, and
the policy pθ∗ is a conditional distribution that enables sequential selection of edges. Note that the
policy should be conditioned on the problem-specific constraints, which mask out the infeasible
edges based on these constraints. The reward r is defined as the objective function of each problem.
We provide details about problem-specific components for each problem in Appendix F.

D.2 RED-TEAMING LANGUAGE MODELS

In this task, we use an attacker language model (LM) to generate attack prompts to elicit toxic re-
sponses from victim LM. The V corresponds to the vocabulary of the attacker LM (GPT-2 (Radford
et al., 2019) in our experiment), and a chromosome is an attack prompt (a sentence in natural lan-
guage). We define our sequential generative policy pθ∗ with a pretrained attacker LM equipped
with top-p (Nucleus) sampling (Holtzman et al., 2020) (p=0.95). The top-p serves as a “plausibility
constraint,” which prevents the crossover (Eq. (2)) from generating highly unlikely tokens.

The reward for an attack prompt is defined as the average toxicity of the response from the victim
LM given the attack prompt. The toxicity is the probability of the ‘unsafe’ token of the safety
classifier model (Llama-Guard-3 (Llama Team, 2024)) given the victim’s response.

The evaluation of an attack algorithm follows these steps: 1) Generate 1,024 attack prompts using an
attacker LM and a decoding algorithm to evaluate. 2) For each attack prompt, generate 5 responses
using the target victim model, calculate the toxicity of each response using the classifier, and take
the average, resulting in the toxicity of the prompt. 3) Calculate average toxicity and diversity over
1,024 attack prompts. Note that generating diverse, high-reward prompts is desirable in red-teaming
unlike optimization tasks. We use average pairwise cosine distance in the embedding space using
MiniLMv2 (Wang et al., 2021) as a diversity measure.
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We found that the token restriction using Vs1,s2 as suggested in §3.1 could lead to meaningless
repetition of a set of words in the parents (and this often ‘hacks’ the reward function and gives better
quantitative results). To prevent this undesirable behavior, we discard the token from Vs1,s2 once it
is selected. Algorithmically, at step t, we sample st following Eq. (3) and then replace Vs1,s2 with
Vs1,s2 \ {st}.
As discussed in §4.2, it is desirable to generate a diverse set of toxic prompts in the red-teaming
language model task. To promote diversity in the population, we incorporate novelty measure during
selection and replacement. We define the novelty ν of a chromosome s as averaged pairwise cosine
distance against the population, i.e.,

ν(s;P) = 1

|P|
∑
s′∈P

(1− cosine similarity(e(s), e(s′)), (6)

where e is the sentence encoder (MiniLMv2 (Wang et al., 2021)). Then, we define weighted rank
using both reward and novelty as follows:

rankr,ν,ω,P(s) = (1− ω) · rankr,P(s) + ω · rankν,P(s), (7)

where ω is novelty rank weight (we set ω = 0.1) and rankr,P and rankν,P is reward and novelty
rank, respectively. This weighted rank is used for selection and mutation, following the rank-based
selection rule in Eq. (5).

D.3 DE NOVO MOLECULAR DESIGN

We employ the string-based representation, the Simplified Molecular-Input Line-Entry System
(SMILES; Weininger, 1988), which represents molecules using ASCII text. SMILES encodes a
molecule’s connectivity (which atoms are bonded to which), as well as additional details such as
bond types, charges, and stereochemistry. We directly adopt the vocabulary set from Olivecrona
et al. (2017), which consists of 55 tokens, including start and end tokens. The examples are illus-
trated in Fig. 1.

The reward is defined as a normalized scalar in [0, 1] that measures a pharmaceutically relevant
property. For example, QED quantifies the drug-likeness of molecules, whereas JNK3, DRD2, and
GSK3b measure a molecule’s activity against specific proteins. Please refer to Gao et al. (2022a)
and Brown et al. (2019) for additional details on each task.

Lastly, we employ an LSTM policy without explicitly enforcing validity constraints. Following
previous work (Olivecrona et al., 2017), the policy is initialized with a prior policy trained on a
public dataset (e.g., ZINC250K) to learn valid SMILES patterns. We then rely on this policy to
guide the crossover process and produce valid SMILES strings.

E ADDITIONAL EXPERIMENTAL DETAILS

Computing resource. We use a server with two sockets of AMD EPYC 7542 32-Core Processor,
and a single GPU, the NVIDIA RTX A6000, for the routing and De novo molecular design exper-
iments. For the red-teaming language models task, we use a cloud server with four NVIDIA A100
HBM2e 80GB PCIe gpus.

E.1 ROUTING PROBLEMS

Training procedure. We followed the training procedure of Kim et al. (2025).3 Specifically, we
train a graph neural network (GNN) that generates heatmaps using the GFlowNet (Bengio et al.,
2021) training, combined with off-policy exploration through the local-search operators (2opt for
TSP, Swap* (Vidal, 2022) for CVRP, and destroy-and-repair local search for others). For details
regarding the training procedure, please refer to the original paper (Kim et al., 2025).

3https://github.com/ai4co/rl4co
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Hyperparameters. For sampling, we use 1,000 for mini-batch size. We use 100 for the number
of ants in ACO and the number of offspring in NGS, which makes the two algorithms have the same
number of iterations: 10 when generating 1,000 candidates and 100 when 10,000 (long). Note that
for TSP and CVRP, we employ the local search after solution generation for all baselines, as usually
done in heatmap-based approaches. We use 100 for both population size and offspring size of NGS,
0.01 for the mutation rate µ, and 0.001 for the weight-shifting factor κ.

E.2 RED-TEAMING LANGUAGE MODELS

Fine-tuning procedure. We mainly followed the two-stage fine-tuning procedure of Lee et al.
(2024a). In the first stage, a policy explores the space of prompts during the GFlowNet-based
fine-tuning. All evaluated prompts are stored in the buffer. In the second stage, we fine-tune the
attack language model (LM) with high-quality prompts obtained by filtering prompts with both high
toxicity and high likelihood from the buffer. For more details, please check the original paper (Lee
et al., 2024a).

Hyperparameters. At test time, we attack a victim LM using the fine-tuned attack LM. We con-
sidered common sampling-based decoding strategies as baselines, including sampling, tempered
sampling with temperature τ ∈ [0.5, 0.8], top-k sampling with k ∈ [5, 10], and top-p sampling with
p ∈ [0.5, 0.8]. Each baseline only changes the specified hyperparameter, and the others remain the
same. For NGS, we use 256 and 16 for the population size and offspring size, respectively. We use
0.05 for the stochastic mutation rate µ and 0.01 for the weight-shifting factor κ in the rank-based
sampling.

E.3 DE NOVO MOLECULAR DESIGN

Training procedure. Unlike routing problems or language-model attacks, molecular design con-
strains the total number of evaluations rather than distinctly separating training from inference.
Therefore, we allocate 8K evaluations to train the policy and then conduct NGS with the trained
policy. Following Kim et al. (2024), we adopt generative flow networks (GFlowNets; Bengio et al.,
2021; 2023) but without guided exploration. Because GFlowNets are off-policy, they can leverage
replay training extensively, thus exhibiting sample-efficient learning. Indeed, the results in Kim et al.
(2024) show that GFlowNets outperform REINVENT (Olivecrona et al., 2017) even without guided
exploration. Specifically, we initialize our policy with the same pretrained parameters used in REIN-
VENT, trained on an unlabeled dataset. We then use the allocated 8K evaluations to train this policy
by generating samples, storing them in an experience buffer, and minimizing the trajectory-balance
loss (Malkin et al., 2023) using those buffered samples. We follow the hyperparameter setup from
Kim et al. (2024), including the batch size, number of replay training iterations, inverse temperature,
and learning rates; please refer to their original implemetation for more details.4

Hyperparameters. During NGS, we use the population size and offspring size as 100 and 5,
respectively. The stochastic mutation rate µ is set as 0.01, and the weight-shifting factor κ in Eq. (5)
as 0.01.

F DESCRIPTION OF ROUTING PROBLEMS

In routing problems, the problem is defined on the fully connected graph G = (V, E), where V is
the set of N nodes, and E is a set of edges, each associated with a weight representing the distance
between two connected nodes. The goal is to find the optimal route that satisfies all given constraints.
In this context, a route is defined as a cycle within the graph, and the vocabulary is composed of
the set of edges E . We provide details about problem-specific components for each problem. All
problem instances are generated according to Ye et al. (2023).

4https://github.com/hyeonahkimm/genetic_gfn
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F.1 TRAVELING SALESMAN PROBLEM

The traveling salesman problem (TSP) aims to find the shortest route that visits all cities exactly
once and returns to the starting point. A solution is defined as a Hamiltonian cycle with minimum
total weights (i.e., total distance to travel). Consequently, the reward function r(x) is defined as a
negative value of total distance. Starting from a random node, a route is generated by sequentially
selecting the next node to visit. This is done by choosing an edge connected to the current node,
thus extending the route. To avoid revisiting nodes, the model masks out edges that lead to already
visited nodes.

F.2 CAPACITATED VEHICLE ROUTING PROBLEM

The capacitated vehicle routing problem (CVRP; Dantzig & Ramser, 1959) is defined on a fully
connected graph G = (V, E), where V is the set of nodes, which includes a depot (the starting and
ending point for the vehicles) and the customers (the locations that need to be served with demand),
and E is the set of edges representing the connections between nodes, each with an associated travel
distance. In CVRP, we assume the use of multiple homogeneous vehicles, each with a capacity
Q, and the goal is to serve all customers exactly once while minimizing the total travel distance.
The reward function is defined as the negative of the total distance, and the solution consists of
a set of multiple routes, each starting and ending at the depot (a special node with zero demand).
Additionally, the total demand of each route cannot exceed the vehicle capacity Q.

Similar to the TSP, the solution is generated sequentially by selecting the next node, which cor-
responds to choosing an edge connected to the current node. However, the process begins at the
depot, which allows multiple visits. At each step, the policy masks out edges that lead to already
visited nodes, except for the depot. To enforce the capacity constraints, edges leading to nodes with
demands that exceed the remaining vehicle capacity are also masked out to have zero probability.

F.3 PRIZE-COLLECTING TRAVELING SALESMAN PROBLEM

The prize-collecting traveling salesman problem (PCTSP; Balas, 1989) is a variation of the TSP,
where the constraints for visiting all nodes are relaxed. Instead, the PCTSP introduces the prize
constraints about the minimum prizes to collect. In the PCTSP, each node has a prize and penalty;
thus, the salesman gets prizes for visiting the cities and penalties for the unvisited cities. The reward
is defined as the summation of the total distance and the net penalties from un-visited nodes.

Similar to the CVRP, a route starts and ends with the depot whose prize and penalty are zero. To
prevent repeated visiting, the policy masks out all edges connected to already visited nodes. In
addition to satisfy the prize constraints, when the collected prize is less than the minimum prizes the
edge connected to the depot is also masked out.

F.4 ORIENTEERING PROBLEM

The orienteering problem (OP; Golden et al., 1987) is a variation of the classical routing problems
where the objective is to find a route that maximizes the total prize collected from visited cities,
subject to a constraint on the total travel distance. Unlike the PCTSP, where the goal is to minimize
penalties for unvisited cities, the orienteering problem is focused on maximizing the reward within
a limited travel budget.

In the OP, each city has a prize associated with it, and the objective is to visit a subset of cities in
order to maximize the total prize collected, while ensuring that the total distance traveled does not
exceed a specified maximum distance. Thus, tshe reward is defined as the sum of the prizes from
the cities visited.

Similar to the PCTSP, the solution is represented as a set of routes starting from a depot. Each
route must respect the distance constraint while selecting cities that contribute to the total prize. To
prevent revisiting cities, the policy masks out edges connected to previously visited cities, ensuring
that each city is visited at most once. Additionally, the edge connecting the depot can be masked out
if the total distance constraint has already been met or exceeded, ensuring no additional unnecessary
travel occurs.
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G ADDITIONAL EXPERIMENTAL RESULTS ON ROUTING PROBLEMS

G.1 EXTENDED RESULTS

Fig. 5 shows extended results for the routing problems (§4.1), including the results for instances with
1,000 nodes. Overall, NGS substantially outperforms the baseline methods in all settings except
for CVRP with 1,000 nodes, showing its effectiveness as an inference-time search method. We
suspect two reasons for the worse results in CVRP1000: (1) our heatmap-based policy may be
suboptimal given the increased complexity of large-scale CVRP, and (2) the post-processing local
search, Swap* (Vidal et al., 2012), largely overshadows any differences between the generation
algorithms.
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Figure 5: Comprehensive results on routing problems.

G.2 RESULTS ON REAL-WORLD INSTANCES

We benchmark our model against baselines on real-world TSP and CVRP instances from
TSPLib (Reinelt, 1991) and CVRPLib-X (Uchoa et al., 2017). We use the models trained on random
uniform instances of size 200, 500, and 1,000 for evaluation of TSP/CVRPLib instances with sizes
100-299, 300-699, and larger than 700, respectively. As shown in Table 4 NGS achieves significantly
better performance than the baselines on these real-world datasets.

Table 4: Average optimality gap with the best-known solutions on TSPLib and CVRPLib-X.

N # Sampling ACO NGS (ours)

T
SP

L
ib 100-299 30 1.29% 1.26% 1.08%

300-699 10 3.32% 3.19% 1.65%
700-1499 12 5.62% 5.40% 3.14%

C
V

R
PL

ib 100-299 43 2.44% 2.43% 2.04%
300-699 40 3.42% 3.43% 3.27%
700-1001 17 4.15% 4.16% 4.02%

G.3 NGS WITH AN AUTOREGRESSIVE POLICY

Since NGS does not assume a specific model architecture or training procedure, it can be readily
applied to any high-performing policy. We demonstrate this by integrating NGS with the Light En-

19



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

coder and Heavy Decoder (LEHD; Luo et al., 2023), a state-of-the-art autoregressive model trained
via supervised learning. LEHD also proposes Random Re-Construct (RRC) to refine solutions,
incorporating randomness into the greedy decoding strategy by repeatedly restarting from the ran-
domly destroyed and augmented sub-routes. Table 5 shows that LEHD + NGS achieves the lowest
optimality gap compared to sampling and RRC. While RRC achieves competitive outcomes, it is
specifically tailored to routing problems and can struggle to generate diverse solutions when further
constraints are introduced.

Table 5: Experiment on TSP with an autoregressive model. We adopt the pretrained model from
LEHD (Luo et al., 2023). “Time” is measured as the average duration needed to solve a single
instance.

N = 200 N = 500

Gap (%) Time Gap (%) Time

LEHD + RRC 0.020 5.07m 0.172 16.5m
LEHD + Sampling 0.022 0.14m 0.376 1.46m
LEHD + NGS (Ours) 0.004 0.18m 0.152 1.48m

G.4 SENSITIVITY ANALYSIS

We conduct sensitivity analysis for the key hyperparameters — population size Npop, offspring size
Noff, and the mutation rate µ — on TSP and CVRP with 500 nodes. The results in Fig. 6 indicate
that a smaller population size generally yields better outcomes, likely due to more greedy parent
selection. Increasing the offspring size tends to degrade performance, as it reduces the number of
search iterations.
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Figure 6: Sensitivity analysis on TSP and CVRP with 500 nodes.
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H ADDITIONAL EXPERIMENTAL RESULTS ON RED-TEAMING LANGUAGE
MODELS

In Table 6, we provide a more detailed version of Table 2 with standard deviation. Also, in Ta-
ble 7, we provide additional results obtained by using Llama-3.1-8B-Instruct (Llama Team, 2024)
as source victim LM.

Table 6: The attacker model is fine-tuned and evaluated using Llama-3.2-8B-Instruct as Source
victim model. The highest mean toxicities among sampling-based algorithms are highlighted with
Bold. All the reported values are averaged over five independent runs with distinct seeds. Note that
the diversity for the Transfer settings is almost identical to the Source setting.
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Method Toxicity Div. Toxicity

BS (w = 4) 0.93 ± 0.01 0.24 ± 0.00 0.18 ± 0.02 0.52 ± 0.04 0.00 ± 0.00 0.67 ± 0.05 0.00 ± 0.00
BS (w = 8) 0.99 ± 0.00 0.21 ± 0.00 0.37 ± 0.00 0.74 ± 0.03 0.02 ± 0.02 0.91 ± 0.01 0.00 ± 0.00

Sampling 0.59 ± 0.02 0.84 ± 0.00 0.28 ± 0.02 0.50 ± 0.01 0.05 ± 0.00 0.25 ± 0.01 0.08 ± 0.01
Temp. (τ=0.8) 0.67 ± 0.01 0.82 ± 0.00 0.31 ± 0.02 0.52 ± 0.00 0.04 ± 0.00 0.29 ± 0.00 0.07 ± 0.01
Temp. (τ=0.5) 0.79 ± 0.01 0.77 ± 0.00 0.40 ± 0.02 0.58 ± 0.01 0.04 ± 0.00 0.40 ± 0.01 0.04 ± 0.00
top-k (k=10) 0.65 ± 0.02 0.82 ± 0.00 0.31 ± 0.02 0.53 ± 0.01 0.04 ± 0.00 0.25 ± 0.01 0.06 ± 0.01
top-k (k=5) 0.69 ± 0.01 0.79 ± 0.00 0.35 ± 0.01 0.52 ± 0.01 0.04 ± 0.00 0.28 ± 0.01 0.05 ± 0.00
top-p (p=0.8) 0.69 ± 0.01 0.81 ± 0.00 0.32 ± 0.02 0.51 ± 0.01 0.04 ± 0.00 0.30 ± 0.01 0.07 ± 0.00
top-p (p=0.5) 0.78 ± 0.01 0.77 ± 0.00 0.39 ± 0.02 0.56 ± 0.01 0.03 ± 0.00 0.38 ± 0.01 0.04 ± 0.01

NGS (Ours) 0.71 ± 0.01 0.79 ± 0.01 0.45 ± 0.03 0.61 ± 0.01 0.14 ± 0.03 0.59 ± 0.06 0.23 ± 0.05

Table 7: The attacker model is fine-tuned and evaluated using Llama-3.1-8B-Instruct as Source
victim model. The highest mean toxicities among sampling-based algorithms are highlighted with
Bold. All the reported values are averaged over five independent runs with distinct seeds. Note that
the diversity for the Transfer settings is almost identical to the Source setting.
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Method Toxicity Div. Toxicity

BS (w = 4) 0.97 ± 0.01 0.22 ± 0.00 0.49 ± 0.00 0.98 ± 0.00 0.71 ± 0.06 0.02 ± 0.00 0.03 ± 0.00
BS (w = 8) 0.71 ± 0.01 0.26 ± 0.00 0.25 ± 0.00 0.65 ± 0.01 0.29 ± 0.07 0.00 ± 0.00 0.01 ± 0.00

Sampling 0.53 ± 0.01 0.84 ± 0.00 0.45 ± 0.01 0.52 ± 0.01 0.18 ± 0.00 0.30 ± 0.01 0.25 ± 0.01
Temp. (τ=0.8) 0.60 ± 0.01 0.81 ± 0.00 0.50 ± 0.01 0.56 ± 0.01 0.23 ± 0.01 0.27 ± 0.01 0.22 ± 0.00
Temp. (τ=0.5) 0.73 ± 0.01 0.66 ± 0.01 0.57 ± 0.01 0.65 ± 0.01 0.38 ± 0.00 0.14 ± 0.01 0.12 ± 0.01
top-k (k=10) 0.59 ± 0.01 0.82 ± 0.00 0.50 ± 0.01 0.55 ± 0.00 0.21 ± 0.01 0.29 ± 0.02 0.23 ± 0.01
top-k (k=5) 0.62 ± 0.01 0.79 ± 0.00 0.53 ± 0.01 0.57 ± 0.00 0.25 ± 0.01 0.26 ± 0.01 0.22 ± 0.01
top-p (p=0.8) 0.61 ± 0.01 0.82 ± 0.00 0.51 ± 0.01 0.57 ± 0.01 0.22 ± 0.01 0.31 ± 0.00 0.24 ± 0.02
top-p (p=0.5) 0.70 ± 0.01 0.75 ± 0.01 0.57 ± 0.00 0.63 ± 0.01 0.32 ± 0.01 0.24 ± 0.01 0.21 ± 0.01

NGS (Ours) 0.65 ± 0.01 0.77 ± 0.02 0.55 ± 0.02 0.59 ± 0.01 0.39 ± 0.01 0.50 ± 0.02 0.51 ± 0.02
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I ADDITIONAL EXPERIMENTAL RESULTS ON MOLECULAR DESIGN

Table 8: Average Top-10 scores with 10K training and ours where we conduct NGS during last 2K
evaluations.

Type Score Func. (↑) Fully Training Training (8K)
+ NGS (2K)

Property
Optimization

qed 0.948 ± 0.000 0.948 ± 0.000
jnk3 0.883 ± 0.054 0.891 ± 0.059
drd2 1.000 ± 0.000 1.000 ± 0.000
gsk3b 0.935 ± 0.049 0.958 ± 0.021

Multi-property
Optimization

perindopril mpo 0.616 ± 0.035 0.600 ± 0.017
ranolazine mpo 0.862 ± 0.022 0.854 ± 0.020
sitagliptin mpo 0.568 ± 0.076 0.640 ± 0.061

Structure-based
Optimization

isomers c9h10n2o2pf2cl 0.911 ± 0.030 0.914 ± 0.023
deco hop 0.837 ± 0.135 0.851 ± 0.130
scaffold hop 0.699 ± 0.147 0.697 ± 0.145

Average 0.826 0.835

In this section, we examine the effect of conducting NGS rather than training the policy by fully
leveraging the limited evaluation budgets. The results in Table 8 shows that NGS achieves higher
Top-10 scores in overall. Although NGS discovers new high-reward molecules during search, the
policy exploration is still effective. These findings suggest that NGS can be further enhanced as an
alternative GA method by incorporating policy exploration.
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