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QUARTET OF DIFFUSIONS: STRUCTURE-AWARE
POINT CLOUD GENERATION THROUGH PART AND
SYMMETRY GUIDANCE
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Figure 1: Our method, the Quartet of Diffusions, harmoniously orchestrates an interpretable and
controllable pipeline for structure-aware, high-quality, diverse, and efficient point cloud generation
guided by part and symmetry clues.

ABSTRACT

We introduce the Quartet of Diffusions, a structure-aware point cloud generation
framework that explicitly models part composition and symmetry. Unlike prior
methods that treat shape generation as a holistic process or only support part
composition, our approach leverages four coordinated diffusion models to learn
distributions of global shape latents, symmetries, semantic parts, and their spa-
tial assembly. This structured pipeline ensures guaranteed symmetry, coherent
part placement, and diverse, high-quality outputs. By disentangling the generative
process into interpretable components, our method supports fine-grained control
over shape attributes, enabling targeted manipulation of individual parts while
preserving global structural consistency. A central global latent further reinforces
structural coherence across assembled parts. Our experiments show that the Quar-
tet achieves state-of-the-art performance in generating high-quality and diverse
point clouds while maintaining symmetry. To our best knowledge, this is the first
3D point cloud generation framework that fully integrates and enforces both sym-
metry and part priors throughout the generative process.

1 INTRODUCTION
Structure-aware 3D shape generation aims to model not only the holistic surface geometry of ob-
jects but also the underlying organizational principles that govern their composition and forma-
tion (Chaudhuri et al., 2020). A truly structure-aware representation must comprise two essential
components (Chaudhuri et al., 2020): the geometry of atomic structural elements (e.g., low-level
parts) and the structural patterns that dictate how these elements are assembled into coherent shapes
or scenes. These patterns may manifest as hierarchical decompositions, part-whole relationships,
spatial composition graphs, or local and global symmetries.

In this work, we focus on 3D point cloud generation with explicit awareness of two fundamental
structural priors commonly observed in natural and man-made objects: part awareness and sym-
metry awareness. Part awareness captures the notion that objects are composed of semantically
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meaningful, interrelated components with geometrically distinct properties. Symmetry awareness,
in contrast, models the intrinsic geometric regularities—such as reflective or rotational symme-
tries—that often govern the spatial arrangement of parts. Importantly, part awareness serves as a
prerequisite for identifying and enforcing local symmetries, which typically operate at the level of
inter-part relationships. Without symmetry, shapes risk appearing disjointed or unnatural, under-
mining their functional performance in practical applications (e.g. some prior work in Fig. 4).

Compared to unstructured 3D data, structured representations offer substantial advantages. They not
only enhance the visual plausibility and structural coherence of generated shapes, but also facilitate
downstream tasks such as part segmentation, alignment, structure inference, and fine-grained shape
editing (Schor et al., 2019; Li et al., 2020; Hertz et al., 2022; Koo et al., 2023). However, existing
generative approaches largely remain structure-oblivious – treating point cloud synthesis as an un-
constrained distribution learning problem. These methods often prioritize global visual fidelity and
geometry-level details in the distribution, while neglecting the explicit modeling of inherent struc-
ture (Vahdat et al., 2022; Yang et al., 2019; Mo et al., 2023; Zhou et al., 2021a). As a result, they
tend to produce shapes that suffer from poor part organization, broken or inconsistent symmetries,
and limited generalization to unseen or complex object categories (Li et al., 2020). While a few re-
cent efforts support part-level generation, they rarely incorporate symmetry as a learned, relational
prior. To date, there remains a notable gap: the absence of unified, principled frameworks that
jointly encode part-level composition and symmetry structures to guide the generation of coherent,
interpretable, and generalizable 3D shapes.

To address this, we propose the Quartet of Diffusions (the Quartet), a structure-aware point cloud
generation framework that explicitly leverages part and symmetry guidance. Specifically, our
pipeline employs four diffusion models (Ho et al., 2020) to learn the distributions of shape latents,
symmetries, semantic parts, and assemblers that assemble the full point cloud from parts. By explic-
itly modeling these structural distributions, the ensemble of four diffusions harmoniously orches-
trates an effective pipeline for structure-aware point cloud generation through part and symmetry
guidance: Our method enables the generation of high-quality, diverse point clouds with guaranteed
symmetry. The disentangled structural representation makes the generation process interpretable
and controllable, facilitating targeted modifications to individual parts while preserving global con-
sistency. Structural coherence is further reinforced by a global shape latent, which anchors part
assembly to the overall geometry. This approach addresses key limitations in structure modeling
and represents the first 3D shape generation method to guarantee symmetry in the generated shapes.

2 RELATED WORK
Symmetry in 3D shapes Symmetry is a fundamental geometric property observed across natural
and human-made objects. Extensive research exists on symmetry detection (Mitra et al., 2013a;
Atallah, 1985; Illingworth & Kittler, 1988; Mitra et al., 2006; Je et al., 2024; Zhou et al., 2021b;
Gao et al., 2020; Fukunaga & Hostetler, 1975; Comaniciu & Meer, 2002) (for more details, see
Appendices A and B.1). Symmetry clues are widely used in various 3D vision tasks including ac-
quisition and representation (Yang et al., 2024; Buades et al., 2008; Li et al., 2010; Pauly et al., 2005;
Thrun & Wegbreit, 2005; Xu et al., 2009; Zheng et al., 2010), classification (Kazhdan et al., 2004;
Martinet et al., 2006; Podolak et al., 2006), perception (Reisfeld et al., 1995) , manipulation (Mi-
tra et al., 2007; Podolak et al., 2007; Panozzo et al., 2012; Gal et al., 2009; Mehra et al., 2009),
reconstruction (Phillips et al., 2016; Xu et al., 2024; Tulsiani et al., 2020), inverse rendering (Wu
et al., 2020b), and refinement (Mitra et al., 2007). However, symmetry-aware 3D shape generation
remains underexplored. Aside from our method, few approaches guarantee symmetry. PAGENet (Li
et al., 2020) promotes symmetry via an MSE loss between a shape and its reflection, but it is limited
to reflectional symmetry and does not guarantee it.
Part-based 3D shape generation Part-based 3D shape generation leverages the modular struc-
ture of objects (Mitra et al., 2014; 2013b) and emerges as a vital paradigm for modeling complex
geometries (Zerroug & Nevatia, 1999; Kim et al., 2013), enhancing diversity (Schor et al., 2019;
Chen et al., 2024) and facilitating downstream tasks including recognition (Hoffman & Richards,
1984), retrieval (Chang et al., 2015; Mitra et al., 2014), and manipulation (Huang et al., 2014). Early
methods focus on geometric template fitting or hierarchical part assembly (Funkhouser et al., 2004;
Bokeloh et al., 2010; Kalogerakis et al., 2012; Berthelot et al., 2017; Cohen-Or & Zhang, 2016;
Fish et al., 2014). More recent work harnesses implicit shape representations (Koo et al., 2023;
Hertz et al., 2022; Talabot et al., 2025; Hui et al., 2022; Genova et al., 2019; 2020). For example,
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PartSDF (Talabot et al., 2025) models parts using implicit neural fields, enabling both continuous
interpolation and discrete composition.

Deep neural networks are widely adopted for part-based shape modeling (Schor et al., 2019; Li et al.,
2020; Dubrovina et al., 2019; Li et al., 2024; Wu et al., 2020a; Huang et al., 2015; Li et al., 2017;
Mo et al., 2019; Zou et al., 2017; Nash & Williams, 2017; Wu et al., 2019; Wang et al., 2018; 2019;
Gao et al., 2019). For instance, CompoNet (Schor et al., 2019) enhances diversity by varying both
parts and their compositions, while PASTA (Li et al., 2024) generates shapes conditioned on part
arrangement for fine-grained control. Similarly, our Quartet performs structure-aware 3D generation
by modeling both parts and their compositions, with the added benefit of symmetry enforcement.

Diffusion models Diffusion models (Ho et al., 2020) are generative models based on Markovian
diffusion processes (see Appendix B.3 for more details). They have demonstrated remarkable per-
formance in various domains (Croitoru et al., 2023; Cao et al., 2024; Yang et al., 2023), particularly
in image (Dhariwal & Nichol, 2021; Ho et al., 2020; Rombach et al., 2022; Ramesh et al., 2022;
Brooks et al., 2023; Saharia et al., 2022), speech (Chen et al., 2020; Jeong et al., 2021; Liu et al.,
2022), video (Ho et al., 2022; Xing et al., 2024; Luo et al., 2023; Yang et al., 2023), 3D scene (Wei
et al., 2023; Zhai et al., 2023; Tang et al., 2024), and 3D object generation (Zhou et al., 2021a; Luo
& Hu, 2021; Vahdat et al., 2022; Nakayama et al., 2023; Wu et al., 2023; Mo et al., 2023; Liu et al.,
2019; Zhou et al., 2024; Koo et al., 2023). Accordingly, our Quartet recruits four diffusion models
to learn the distributions of shape latents, symmetries, parts, and assemblers.

3 METHOD

We aim to model the distribution of point clouds x ∈ X ⊆ R3×N as that over a collection of
semantic parts {pj}Mj=1 through part and symmetry guidance. Specifically, we view each point
cloud x =

⋃M
j=1 Tjpj as a composition of its M semantic parts and their corresponding assemblers.

Each assembler Tj is a transformation comprising translation, rotation, and scaling in 3D Euclidean
space, mapping the part pj to the correct position, orientation, and scale in the original point cloud.

The Quartet models four distributions using parameterized diffusion models: 1. point cloud shape
latents pθ (z) (Sec. 3.1), 2. part-wise symmetries pζ (Sj | z) (Sec. 3.2), 3. point cloud parts
pξ

(
pj | Sj , z

)
(Sec. 3.3), and 4. assemblers pψ

(
Tj | wj ,pj ,Sj , z

)
, additionally conditioned on

part latent wj (Sec. 3.4). These components collectively define the Quartet of Diffusions architec-
ture. Pipeline overviews are shown in Figs. 1 and 2.

Modeling point cloud distributions in this way offers several key advantages: 1. It introduces vari-
ability at both the shape and assembly levels, enabling combinatorially greater diversity; 2. By
explicitly generating and enforcing symmetry early in the pipeline, the model produces outputs with
more realistic and consistent symmetric properties; 3. The separate modeling of symmetries, parts,
and assembly allows for better interpretability and fine-grained control – individual parts can be
manipulated independently without compromising global structure; and 4. A central shape latent z
ensures structural coherence across all components. These benefits are demonstrated through exten-
sive experiments in Sec. 4.

The Quartet is trained by sequentially optimizing the parameters of four distributions to fit the given
dataset X . Point cloud generation is performed in two phases: part generation and part assem-
bly. In part generation, a shape latent z is first sampled from the latent distribution pθ (z). Con-
ditioned on z, symmetry groups Sj are sampled from pζ (Sj | z), and parts pj are drawn from
pξ

(
pj | Sj , z

)
for j = 1, 2, . . . ,M ; In part assembly, parts pj are encoded into latent representa-

tions wj using an encoder qϕ
(
wj | pj , z

)
, and the corresponding assemblers Tj are sampled from

pψ
(
Tj | wj ,pj ,Sj , z

)
. These assemblers are then applied to the parts to reconstruct the full point

cloud x̃ :=
⋃M

j=0 Tjpj . Mathematically, the generation process can thus be formulated as

p
({(

pj , Tj ,Sj ,wj

)}M
j=0

, z
)
= pθ (z) p

({(
pj , Tj ,Sj ,wj

)}M
j=0

∣∣∣ z) = pθ (z)

M∏
j=0

p(pj , Tj ,wj | z) (1)

= pθ (z)

M∏
j=0

pζ (Sj | z) pξ
(
pj | Sj , z

)
qϕ
(
wj | pj , z

)
pψ
(
Tj | wj ,pj ,Sj , z

)
, (2)
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Figure 2: Overview of the Quartet’s architecture. Four diffusions are employed to learn the distri-
butions of shape latents, symmetries, parts, and assemblers. By explicitly modeling different distri-
butions, the Quartet provides an interpretable and controllable framework to generate high-quality,
diverse 3D shapes with guaranteed symmetry. Beige blocks denote learnable modules; gray blocks
indicate outputs directly generated from the models.

where the second equality in (1) follows from the conditional independence of parts given the shape
latent z. Therefore, the overall point cloud distribution can be modeled as

p (x) = p
({(

pj , Tj

)}M
j=0

)
=

∫
· · ·
∫

p
({(

pj , Tj ,Sj ,wj

)}M
j=0

, z
)( M∏

j=1

dSj

)(
M∏
j=1

dwj

)
dz (3)

(2)
=

∫
pθ (z)

M∏
j=0

(∫ ∫
pξ
(
pj | Sj , z

)
qϕ
(
wj | pj , z

)
pψ
(
Tj | wj ,pj ,Sj , z

)
dSjdwj

)
dz. (4)

3.1 SHAPE LATENT DIFFUSION

Although we model each distribution separately, they must remain aware of the underlying point
cloud to coordinate coherently. Directly conditioning on the full point cloud is computationally
expensive due to its high dimensionality. Instead, we condition them on shape latents obtained from
a variational autoencoder (VAE) (Kingma & Welling, 2013; Zhou et al., 2024; Vahdat et al., 2022)
(see Appendix B.2 for background).

To effectively encode point clouds while preserving semantic information, we propose a novel
sparse variational autoencoder (SVAE) with a latent diffusion modeling its latent distribution.
SVAE builds on a VAE architecture implemented with point-voxel convolutional neural networks
(PVCNNs) (Liu et al., 2019; Zhou et al., 2021a), drawing inspiration from sparse autoencoders (Ng
et al., 2011). Prior work suggests that enforcing sparsity in activation layers improves interpretabil-
ity (Cunningham et al., 2023; Makelov et al., 2024; Marks et al., 2024) and semantic disentangle-
ment (Bricken et al., 2023; O’Neill et al., 2024), which is critical for our downstream tasks. To this
end, we introduce a sparsity constraint on the final activation layer aη(x) of the encoder qη (z | x)
while maximizing the VAE evidence lower bound (ELBO) LELBO (Eq. (19) in Appendix B.2):

max
η

Ex [LELBO(η;x)] subject to Ex

[
∥aη(x)∥1

]
< δ, (5)

where δ > 0 controls the sparsity strength. Leveraging Karush–Kuhn–Tucker (KKT) methods (Kuhn
& Tucker, 1951; Karush, 1939), we reformulate the constrained optimization problem into a La-
grangian F(η, λ;x) whose optimal point is a global maximum over the domain of η and obtain its
lower bound:

F(η, λ;x) := LELBO(η;x)− λ
(
∥aη(x)∥1 − δ

)
(6)

≥ LELBO(η;x)− λ ∥aη(x)∥1 =: LSVAE(η;x), (7)

where λ is the KKT multiplier. The SVAE is trained by maximizing this lower bound LSVAE. The
hyperparameter λ controls the trade-off between reconstruction quality and sparsity, with λ = 0
recovering the standard ELBO.

While a simple Gaussian prior is commonly used for VAE latent distributions, evidence suggests
that such a restricted prior cannot accurately capture complex latent distributions (i.e. the prior hole
problem (Vahdat et al., 2021; Zhou et al., 2023)) and can degrade VAE performance (Chen et al.,
2016). To address this, we follow prior work (Zhou et al., 2024) and employ a diffusion model
pθ (z), implemented with a U-Net backbone, to learn the latent distribution. Once trained, the
shape latents can be directly sampled from it. This design enables effective and interpretable feature
extraction via SVAE while enhancing latent expressiveness and maintaining runtime efficiency.
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3.2 SYMMETRY ENFORCEMENT

The Quartet guarantees symmetry by explicitly learning its distribution. Once learned, the model
can generate and enforce appropriate symmetries during point cloud generation. For a 3D shape p,
a finite group of rigid transformations S = ⟨T ⟩ ⊆ E(3), generated by T = {S1, S2, . . . , Sn}, is
said to be a symmetry group over a subset d ⊆ p if the full shape p can be reconstructed by Sd, the
application of S on d, which is defined to be the union of all images under the transformations in S:⋃

S∈S

Sd = p, (8)

where the group generation is defined as ⟨T ⟩ := {
∏n

i=1 Si |Si ∈ T , n ∈ N} . The minimal such
subset d is called the fundamental domain for S. Figure 3 illustrates fundamental domains for
various parts in point cloud airplanes, cars, and chairs.

As translational symmetry implies an infinite shape, for tractability we restrict symmetry groups to
those generated by at most two transformations – reflections or rotations with angles α ≥ π

18 such
that 2π

α ∈ Z. By a special case of the Cartan–Dieudonné theorem (Gallier & Gallier, 2011), any 3D
rotation can be expressed as a composition of two reflections across planes intersecting along the axis
of rotation, where the rotation angle is twice the angle between the two planes. Consequently, we
just need to search for the symmetry groups generated by at most three reflections. Each reflection is
represented using the Hesse normal form (Bôcher, 1915; Duda & Hart, 1972), enabling efficient and
parallelizable symmetry search (Je et al., 2024). When multiple symmetries exist, we select the one
corresponding to the fundamental domain with the smallest cardinality. In practice, if a symmetry
group is generated by fewer than three reflections, we pad the remaining slots with a special symbol
to maintain consistent data dimensionality.

Since each part is generated separately, symmetry is enforced at the part level. During part gener-
ation, we sample only the fundamental domain d and recover the full part by applying the learned
symmetry group as defined in Eq. (8). This approach reduces the number of points to generate and,
more importantly, guarantees symmetry in the resulting shapes.

To learn the distribution of symmetry groups present in the dataset, we first construct a metric space
(M, dM) of reflectional symmetries following Je et al. (Je et al., 2024). We then obtain the ground
truth for symmetry groups S using mean-shift clustering (Mitra et al., 2006; Fukunaga & Hostetler,
1975; Comaniciu & Meer, 2002), a nonparametric method based on gradient ascent over a density
function in M (see Appendix B.1 for more details). Finally, we leverage a diffusion model (Ho
et al., 2020) to learn p (S).
More specifically, we apply the diffusion process (Eq. (21) in Appendix B.3) to S, and note that each
transition kernel q(St | St−1) ∼ N (µtSt−1, σtI) is Gaussian. Therefore, intermediate samples St
can be expressed in closed form as

St =

(
t∏

i=1

µt

)
S0 +

√√√√ t∑
i=1

σ2
i

t∏
j=i+1

µ2
jϵ, (9)

where ϵ ∼ N (0, I). Setting µt := 1 and γt :=
√∑t

i=1 σ
2
i simplifies this to St = S0 + γtϵ. Thus,

the distribution of St becomes a convolution:

p (St) = (p0 ∗ φ0,γt
) (St) =

∫
p0 (S)φ0,γt

(St − S) dS =

∫
p0 (S)φS,γt

(St) dS, (10)

where p0 is the distribution of S0, φS,γt
is the probability density function for N (S, γtI), and ∗

denotes convolution. With this, we train a diffusion model (Ho et al., 2020) sζ (S, t) parametrized
by ζ to approximate the time-dependent score function (Song et al., 2020b) (i.e. the gradient of the
log-density of noisy data) via an empirical approximation (Je et al., 2024):

sζ (S, t) ≈ ∇S log p(St) ≈
1

γ2
t

(∑
R∈M φR,γt

(S)R∑
R∈M φR,γt (S)

− S
)
. (11)

Since symmetry can vary across shapes, in practice, we condition the diffusion model on the shape
latent z, modeling the symmetry group distribution as pζ (S | z).
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Figure 3: Point cloud airplanes, cars, and chairs with identified symmetry groups and corresponding
fundamental domains for each color-coded part. Ref denotes reflection; Rot(α) denotes rotation by
angle α. Our symmetry formulation allows greater flexibility by supporting symmetries composed
of multiple transformations, such as two reflections (car wheels) or a reflection followed by a rotation
(chair seat (e)). Circular symmetry is approximated via small-angle rotations (chair seat (f)).

After training, symmetries can be sampled from sζ (S, t) through annealed stochastic gradient
Langevin dynamics (Song & Ermon, 2019): We initialize S(0)τ ∼ N (0, I) and sequentially sample
from noise-perturbed distributions sζ (S, t) for t = τ, τ − 1, . . . , 1 using L Langevin steps:

S(0)
t ←

{
ϵ
(0)
τ if t = τ

S(L)
t+1 otherwise

; (12)

S(i+1)
t ← S(i)

t + βtsζ
(
S(i)
t , t

)
+
√

2βtϵ
(i)
t , i = 0, 1, . . . , L, (13)

where ϵ
(i)
t ∼ N (0, I), and βt is the step size. The final sample S(L)

1 is the generated symmetry.

Notably, substituting Eq. (11) into Eq. (13) and setting βt := γ2
t yields the following update rule:

S(i+1)
t ← S(i)

t +
βt

γ2
t

∑T∈M φT,γt

(
S(i)
t

)
T∑

T∈M φT,γt

(
S(i)
t

) − S(i)
t

+
√

2βtϵ
βt:=γ2

t=

∑
T∈M φT,γt

(
S(i)
t

)
T∑

T∈M φT,γt

(
S(i)
t

) +
√
2γtϵ.

(14)
This update rule resembles mean-shift clustering (Eq. (17) in Appendix B.1), except it assumes
an infinite neighborhood B(St) = M and uses a Gaussian kernel with bandwidth γt: Kt(S) :=

1√
2πγt

e−
∥S∥2

2 . Another difference is the injected noise
√
2γtϵ in Eq. (14), which has been shown to

improve robustness, sample quality, and mitigate mode collapse (e.g. Je et al., 2024).

Figure 3 shows examples of identified symmetry group generators. Most parts exhibit symmetry
of a single reflection. In addition, we note that classical symmetries, such as reflectional and rota-
tional, are special cases of our formulation, where the symmetry group S is generated by a single
transformation. Our approach generalizes this by allowing symmetries composed of multiple trans-
formations, such as sequential reflections (e.g., car wheels) or a reflection followed by a rotation
(e.g., the chair seat in (e)). While our model does not explicitly capture circular symmetry, it can be
approximated using discrete rotations with a minimum angle of π

18 (e.g., chair seat in (f)).

3.3 PART GENERATION

Given the identified symmetry groups Sj and corresponding fundamental domains dj for each part
pj , we model the part distribution via the distribution of fundamental domains. Since each full part
pj can be reconstructed by applying Sj to dj (Eq. (8)), we have

pξ
(
pj | Sj , z

)
= pξ (dj | Sj , z) . (15)

To learn pξ (dj | Sj , z), we employ a transformer-based diffusion model (Mo et al., 2023; Peebles
& Xie, 2023; Vaswani et al., 2017), conditioned on the shape latent z and symmetry group Sj .
The model operates directly on voxelized point clouds, using 3D positional and patch embeddings
to capture spatial context. Unlike U-Net architectures (Ho et al., 2020), which face limitations
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Table 1: Quantitative comparison of point cloud generation. PA denotes part awareness; SA denotes
symmetry awareness. Our Quartet is the only model that supports both, achieving significant im-
provements over most baselines and setting a new state of the art.

Model PA SA
Airplane Car Chair

1-NNA (↓) SDI (↓) 1-NNA (↓) SDI (↓) 1-NNA (↓) SDI (↓)
CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

Training set 64.4 64.1 0.954 4.90 51.3 54.8 7.49 1.18 51.7 50.0 5.56 1.68

PointFlow (Yang et al., 2019) ✗ ✗ 75.7 70.7 3410 782 62.8 60.6 679 347 58.1 56.3 7290 530
ShapeGF (Cai et al., 2020) ✗ ✗ 81.2 80.9 332 98.6 58.0 61.3 645 40.9 61.8 57.2 1100 101
DPF-Net (Klokov et al., 2020) ✗ ✗ 75.2 65.6 4256 245 62.0 58.5 827 452 62.4 54.5 5234 245
SetVAE (Kim et al., 2021) ✗ ✗ 76.5 67.7 2830 824 58.8 60.6 1240 327 59.9 59.9 5320 673
DPC (Luo & Hu, 2021) ✗ ✗ 76.4 86.9 187 44.2 60.1 74.8 217 30.3 68.9 80.0 335 50.6
PVD (Zhou et al., 2021a) ✗ ✗ 73.8 64.8 150 42.0 56.3 53.3 213 31.2 54.6 53.8 275 58.4
LION (Vahdat et al., 2022) ✗ ✗ 67.4 61.2 97.2 40.6 53.7 52.3 168 30.8 53.4 51.1 201 55.2
SPAGHETTI (Hertz et al., 2022) ✓ ✗ 78.2 77.0 1530 529 72.3 71.0 581 284 70.7 69.0 5930 582
DiT-3D (Mo et al., 2023) ✗ ✗ 64.7 60.3 105 42.4 52.7 50.2 206 327 52.5 53.1 235 49.0
SALAD (Koo et al., 2023) ✓ ✗ 73.9 71.1 198 45.1 59.2 57.2 236 29.4 57.8 58.4 308 52.6
FrePolad (Zhou et al., 2024) ✗ ✗ 65.3 62.1 94.1 38.1 52.4 53.2 173 29.6 51.9 50.3 252 50.9
Quartet (ours) ✓ ✓ 63.3 59.7 25.7 1.87 50.1 51.8 25.7 2.28 51.6 53.7 28.9 2.86

in scalability and spatial coherence, our transformer backbone incorporates 3D window attention,
reducing computational cost while preserving local structure. This design yields higher efficiency,
scalability, and fidelity in point cloud generation (Mo et al., 2023).

3.4 PART ASSEMBLY

To assemble the full point cloud, we learn assemblers Tj that correctly transform each part pj . We
first train a part encoder qϕ

(
wj | pj , z

)
to obtain compact representations wj , then train a diffusion

model pψ
(
Tj | wj ,pj ,Sj , z

)
to model the assembler distribution pψ

(
Tj | wj ,pj ,Sj , z

)
. To sim-

plify learning, we assume that wj captures all necessary information about pj and Sj , making Tj

conditionally independent of them given wj . Consequently, the diffusion model is conditioned only
on wj and the global shape latent z: pψ (Tj | wj , z) ≈ pψ

(
Tj | wj ,pj ,Sj , z

)
. This assumption

decouples geometric modeling from transformation learning, reducing complexity and allowing the
model to focus on learning flexible, generalizable spatial configurations.

Our assembler diffusion model (Tang et al., 2024) employs a U-Net backbone (Ronneberger et al.,
2015) augmented with skip connections and cross-attention layers (Vaswani et al., 2017). The cross-
attention modules integrate contextual information from both part latents and the global shape latent,
enabling the model to generate transformations that are coherent at both local and global levels. This
architecture effectively handles diverse part configurations and generalizes well to novel shapes. The
hierarchical structure of U-Net further supports multi-scale spatial reasoning, which is essential for
accurate 3D part placement.

For the part encoder, we adopt the SVAE architecture (see Sec. 3.1) with equivariance fine-tuning
(EFT): During training, random rigid transformations, including translations, rotations, and reflec-
tions, are applied to each part, and the encoder is encouraged to produce the latent transformed
accordingly. This promotes geometry-aware but pose-invariant part embeddings, enhancing their
suitability for the part assembly task. As a result, the diffusion model receives more stable and
semantically meaningful latents, leading to more accurate and coherent assembler predictions.

4 EXPERIMENT
4.1 DATASET

We evaluate our method on the ShapeNetPart dataset (Yi et al., 2016), a subset of ShapeNet (Chang
et al., 2015) with semantic part annotations. We focus on three representative categories: airplanes
(body, tail, wings, engines), cars (sunroof, wheels, hood, body), and chairs (backrest and armrests,
legs, seat). Segmentation examples are shown in Fig. 3. We use the official train/validation/test split
provided with the dataset.

Following common practice, we use point clouds with 2048 points. Each part is resized to match the
mean number of points per part within its category. During preprocessing, parts with more points
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Table 2: Per-part SDI-CD (↓) for point cloud generation. With explicit symmetry enforcement, the
Quartet achieves significantly lower SDI scores, indicating stronger symmetry in generated parts.

Model Airplane Car Chair

body tail wings engines roof wheels hood body back legs seat

Training set 0.877 0.700 0.883 0.717 5.25 3.06 3.15 5.27 4.11 2.65 3.04

SPAGHETTI (Hertz et al., 2022) 318 268 417 125 258 339 127 417 2857 2948 1358
SALAD (Koo et al., 2023) 39.1 26.2 30.5 18.5 98.2 68.5 152 256 163 93.5 104
Quartet (ours) 7.86 4.08 7.76 5.84 9.72 4.10 5.76 9.90 10.3 6.19 10.4

Figure 4: Point cloud generation. Samples from the Quartet are visually appealing, diverse, and
exhibit strong structural consistency. The last three columns illustrate targeted manipulation.

are randomly subsampled, while those with fewer are upsampled via random duplication. This
normalization ensures consistent input dimensions across training batches, enhancing the stability
and efficiency of both the encoder and generative models.

4.2 EVALUATION METRICS

Following prior work (e.g. Zhou et al., 2024), we assess the quality and diversity of generated point
clouds using 1-nearest neighbor (1-NNA) (Lopez-Paz & Oquab, 2016), a retrieval-based metric
computed with Chamfer Distance (CD) and Earth Mover’s Distance (EMD). 1-NNA measures how
often a shape’s nearest neighbor belongs to the same distribution (Yang et al., 2019). A balanced
score near 50% indicates close alignment between generated and real shape distributions.

To assess whether a generated 3D shape is symmetric, we introduce the symmetry discrepancy index
(SDI), which quantifies how well a 3D shape p conforms to a given symmetry group S: For a
normalized shape p, SDI is defined as the distance d — either CD or EMD — between p and the
shape reconstructed from its fundamental domain d under S: LSDI(p) := d (p,Sd). Lower SDI
values indicate stronger symmetry. For methods without explicit symmetry modeling, we compute
SDI using the simplest yet most common symmetry: reflection across the vertical bisector plane.
For readability, we report SDI-CD scaled by 10 and SDI-EMD scaled by 103.

4.3 POINT CLOUD GENERATION

We benchmark the Quartet against several competitive 3D generative models. Implementation and
training details are provided in Appendix C, and additional experimental results can be found in Ap-
pendix D. Quantitative results based on 1-NNA and SDI are reported in Tab. 1. Notably, the Quartet
is the only method that explicitly models both part structure and symmetry. Per-part SDI scores
for part-aware models are presented in Tab. 2. The Quartet consistently outperforms state-of-the-art
methods, achieving high fidelity and diversity while closely matching the real shape distribution.
Remarkably, due to explicit symmetry enforcement, the Quartet achieves significantly lower SDI
scores, indicating strong alignment with ideal symmetric structures. Qualitative results in Fig. 4
show that the Quartet generates visually coherent and diverse point clouds obeying symmetry across
all three object categories, demonstrating its effectiveness.

Targeted manipulation The Quartet models the distribution of each part separately, enabling tar-
geted part-level manipulation while guaranteeing disentanglement. In Fig. 1 and in the last three
columns of Fig. 4, we present point cloud samples in which the yellow-highlighted parts vary while
the remaining structure is held fixed.
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Table 3: Ablation study. L denotes latent diffusion, S symmetry diffusion, and P part and assembler
diffusions. All four members in the Quartet are essential; removing any degrades performance.

Variation L S P
Airplane Car Chair

1-NNA (↓) SDI (↓) 1-NNA (↓) SDI (↓) 1-NNA (↓) SDI (↓)
CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

Solo ✗ ✗ ✗ 69.2 64.2 154 44.2 55.5 53.6 241 351 53.2 53.8 295 52.8
Duet Var. 1 ✗ ✗ ✓ 76.3 82.1 927 614 70.2 72.9 522 460 68.3 67.2 3261 615
Duet Var. 2 ✓ ✗ ✗ 66.8 63.3 103 42.4 52.3 52.7 192 28.1 53.2 51.6 184 49.2
Trio Var. 1 ✗ ✓ ✓ 85.1 85.8 3516 1450 83.9 83.6 836 326 92.5 85.2 6286 562
Trio Var. 2 ✓ ✗ ✓ 63.1 63.6 95 39.2 49.8 52.4 205 32.3 52.3 53.9 174 52.5
NoSVAE ✓ ✓ ✓ 64.3 61.8 25.2 2.51 51.6 52.0 25.9 2.55 52.6 53.9 29.3 3.15
NoEFT ✓ ✓ ✓ 63.9 62.4 32.7 9.27 51.8 52.0 27.2 5.98 52.5 54.0 30.2 4.15
Quartet ✓ ✓ ✓ 63.3 59.7 25.7 1.87 50.1 51.8 25.7 2.28 51.6 53.7 28.9 2.86

4.4 ABLATION STUDY

Our Quartet consists of four diffusion models responsible for shape latents, symmetries, parts, and
assemblers. As an ablation study, in Tab. 3, we evaluate several simplified variants with some
diffusions or key techniques removed:

• NoSVAE: replaces SVAEs (Sec. 3.1) with standard VAEs for full point cloud and part encoding.
• NoEFT: removes the equivariance fine-tuning (Sec. 3.4) applied to the part SVAE.
• Trio Var. 1: replaces shape latent diffusion with a simple Gaussian prior;
• Trio Var. 2: removes the symmetry diffusion with part diffusion generating the full part directly;
• Duet Var. 1: removes both shape latent and symmetry diffusions;
• Duet Var. 2: removes symmetry diffusion and merges part and assembler diffusions into a single

full-shape diffusion;
• Solo: uses a single diffusion generating full point clouds.

Our results show that all four diffusion models are indispensable members of the Quartet, each con-
tributing to the generation of high-quality, diverse point clouds with strong symmetry. Two key
observations emerge: First, comparing Solo and Duet Var. 1, we see that generating parts without a
central shape latent significantly degrades performance. This echoes previous findings that a simple
Gaussian prior is insufficient for capturing the structural complexity of 3D shapes (Vahdat et al.,
2021; Tomczak & Welling, 2018; Rosca et al., 2018; Zhou et al., 2024; Vahdat et al., 2022). The
performance drops further in Trio Var. 1, where symmetry diffusion is added, likely compound-
ing the mismatch between prior and part representations. Second, comparing Trio Var. 2 and the
full Quartet, we observe that while symmetry enforcement substantially improves SDI, it does not
consistently improve 1-NNA – even with latent diffusion present. This may be due to the added
constraint or increased learning complexity introduced by enforcing symmetry.

4.5 RUNTIME ANALYSIS

Training the Quartet on each object category takes approximately 50 hours on a single GPU. Figure 1
presents the generation performance vs. training time for models trained on the airplane category.
Some baselines require longer training due to joint optimization (Yang et al., 2019), operation on
full point clouds (Zhou et al., 2021a; Luo & Hu, 2021), or the use of complex, high-dimensional
latent spaces (Vahdat et al., 2022). In contrast, despite using four diffusions, the Quartet trains faster
than most baselines. This is because the shape latent, symmetry, and assembler diffusions operate
on low-dimensional representations (124-, 12M -, and 9M -dimensional, respectively, where M is
the number of parts). The majority of training time is spent on part diffusion, which is accelerated
using an efficient transformer-based diffusion (Mo et al., 2023) applied to fundamental domains that
are typically only half or a quarter the size of the full parts.

5 CONCLUSION AND DISCUSSION
We presented the Quartet of Diffusions, a structure-aware framework for 3D point cloud generation
that explicitly models part composition and symmetry. At its current stage, our work focuses on
unconditional generation, but it highlights the importance of integrating symmetry- and part-based
reasoning into structure-aware models. The model’s ability to disentangle and manipulate individual
parts makes it well-suited for interactive shape editing and user-guided design applications.
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Quartet of Diffusions: Structure-Aware Point Cloud Generation
through Part and Symmetry Guidance

Appendix

A RELATED WORK ON SYMMETRY DETECTION

Symmetry is a fundamental geometric property commonly observed in both natural and human-
made objects. As a result, detecting and leveraging symmetry has long been a central problem in
the fields of computer vision and computer graphics (Mitra et al., 2013a). Early work in this area
focused on detecting exact symmetries in 2D or 3D planar point sets (Atallah, 1985; Wolter et al.,
1985). However, the reliance on exact symmetry limits the practicality of these methods, as real-
world objects often exhibit only approximate symmetry due to noise, occlusion, or design variations.

Traditional voting-based approaches, such as those based on the Hough transform (Illingworth &
Kittler, 1988), attempt to accumulate votes for potential symmetries from point correspondences.
While effective in idealized settings, these methods are known to be sensitive to noise and often
produce unreliable results when applied to imperfect or incomplete data.

To address these limitations, Mitra et al. (Mitra et al., 2006) proposed a more robust technique that
replaces voting with mean-shift clustering (Fukunaga & Hostetler, 1975; Comaniciu & Meer, 2002)
in a transformation space (for more details see Appendix B.1). This method searches for modes
in the space of rigid transformations, making it more resilient to noise and better suited for partial
symmetries. Their approach laid the groundwork for several subsequent improvements (Pauly et al.,
2008; Shi et al., 2016), which further enhanced the robustness and generality of symmetry detection.

In recent years, learning-based methods have also been introduced (Ji & Liu, 2019; Zhou et al.,
2021b; Gao et al., 2020), leveraging neural networks to detect symmetry directly from 3D data.
These methods benefit from data-driven representations and have shown improved generalization
across object categories and varying conditions.

Building on these trends, Je et al. (Je et al., 2024) proposed a hybrid approach that combines ele-
ments of both traditional and learning-based techniques. Their method redefines the symmetry space
and applies Langevin dynamics—a sampling technique from generative modeling—to iteratively re-
fine symmetry estimates. This formulation provides both robustness and efficiency and serves as a
strong foundation for the symmetry detection component in our framework.

B BACKGROUND

B.1 SYMMETRY DETECTION BY MEAN-SHIFT CLUSTERING

A common approach to detecting symmetry in 3D objects involves using the Hough trans-
form (Illingworth & Kittler, 1988) to vote on the parameters of potential symmetry planes (Mitra
et al., 2013a; 2006). In this framework, each pair of points in the shape casts a vote for a candidate
symmetry in a predefined transformation spaceM. For example, in the case of reflectional symme-
try, a point pair a and b casts a vote for the plane that passes through their midpoint a+b

2 and has a
normal vector given by a−b

∥a−b∥ – the direction that would reflect one point onto the other.

In an ideal setting, where the object and its symmetries are exact, votes from all symmetric point
pairs would concentrate on discrete points in M. In such cases, detecting symmetry reduces to
identifying the peak with the highest vote count. However, most real-world objects and 3D datasets
only exhibit approximate symmetry. As a result, the votes form a smooth, continuous distribution in
M rather than sharp peaks. Detecting symmetry in this context thus requires identifying clusters in
M that correspond to the most prominent approximate symmetries.

Mitra et al. (Mitra et al., 2006) proposes to use the mean-shift clustering (Fukunaga & Hostetler,
1975; Comaniciu & Meer, 2002), a nonparametric clustering method based on gradient ascent on a
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density function p(S) inM defined as

p(S) :=
∑
R∈M

K

(
S −R

h

)
, (16)

where K is a kernel function (e.g., Gaussian or Epanechnikov kernel (Epanechnikov, 1969)) with
bandwidth h. The significant modes of p, and hence the significant symmetries, can be determined
using gradient ascent: The algorithm first initializes from any of the candidate transformation S0 ∈
M and performs the following iteration until convergence:

St+1 ←
∑

R∈B(St)
K

(
St−R

h

)
R∑

R∈B(St)
K

(
St−R

h

) , (17)

where B(St) is a neighborhood of St.

While it has shown promising results in detecting symmetries (e.g., Chang et al., 2015), it may fail
under noisy shapes or noisy transformation space (Je et al., 2024). Inspired by Je et al. (Je et al.,
2024), we leverage a diffusion process (Ho et al., 2020) to establish the connection between the
iteration in Eq. (17) and the stochastic gradient Langevin dynamics (Welling & Teh, 2011), where
stochastic noise is injected to improve the sample quality and robustness.

B.2 VARIATIONAL AUTOENCODER

We use variational autoencoders (VAEs) (Kingma & Welling, 2013) as our latent distribution model
as it provides access to a low-dimensional latent space and has been successfully applied to generate
point clouds (Li et al., 2022a; Wang et al., 2020; Li et al., 2022b; Zhou et al., 2024). VAEs are
probabilistic generative models that can model a probability distribution of a given dataset X .

Starting with a known prior distribution p(z) of shape latents z ∈ Rz, the parametric decoder of
a VAE models the conditional distribution pη (x | z) parametrized by η. However, training the
decoder to maximize the likelihood of data is not possible as

p(x) =

∫
pη (x | z) p(z) dz (18)

is intractable. Instead, a parametric encoder pη (x | z) is used to approximates the posterior distri-
bution. Both networks are jointly trained to maximize a lower bound on the likelihood called the
evidence lower bound (ELBO):

LELBO(η;x) := Eqη(z|x) [log pη (x | z)]−DKL (qη (z | x) , p(z)) , (19)

where DKL is the Kullback-Leibler divergence between the two distributions (Csiszár, 1975).

B.3 DENOISING DIFFUSION PROBABILISTIC MODEL

Our generative framework leverages four denoising diffusion probabilistic models (DDPMs or dif-
fusion models) (Sohl-Dickstein et al., 2015; Ho et al., 2020) to model distinct data distributions.
Given a data sample z ∼ p(z), diffusion models progressively corrupt z = z0 into a noisy sample
zτ through a Markovian forward diffusion process. At each time step t = 1, 2, . . . , τ , Gaussian
noise is added according to a predefined variance schedule {σt}t:

q (z1:τ | z0) :=
τ∏

t=1

q(zt|zt−1) (20)

q(zt | zt−1) ∼ N (µtzt−1, σtI) , (21)

whereN (µ,σ) denotes multivariate Gaussian distribution with mean µ and variance σ. In practice,
we set µt :=

√
1− σt. If τ is sufficiently large (e.g., 1000 steps), p(zτ ) will approach the standard

Gaussian distribution N (0, I).

Diffusion models learn a reverse process pθ(zt−1 | zt), parameterized by θ, which defines a Marko-
vian denoising chain that inverts the forward diffusion. This process gradually transforms a sample
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of standard Gaussian noise zτ back into a data sample z0:

pθ(z0:τ ) := p(zτ )

τ∏
t=1

pθ(zt−1 | zt); (22)

pθ(zt−1 | zt) ∼ N
(
µθ(zt, t), ς

2
t I

)
, (23)

where µθ(zt, t) represents the predicted mean for the Gaussian distribution at time step t and {ςt}t
is another variance schedule.

DDPMs are trained by maximizing the variational lower bound of log-likelihood of the data z0 under
q(z0):

Eq(z0) [log pθ(z0)] ≥ Eq(z0:τ )

[
log

pθ(z0:τ )

q(z1:τ | z0)

]
. (24)

Expanding Eq. (24) with Eq. (22) and noticing that p(zτ ) and q(z1:τ | z0) are constant with respect
to θ, we obtain our objective function to maximize:

Eq(z0),q(z1:τ |z0)

[
τ∑

t=1

log pθ(zt−1 | zt)

]
. (25)

Since we can factor the joint posterior

q(z1:τ | z0) =
τ∏

t=1

q(zt−1 | zt, z0) (26)

and both q(zt−1 | zt, z0) and pθ(zt−1 | zt) are Gaussian, maximizing Eq. (25) is equivalent as
minimizing the following score matching objective for a parametric model ϵθ(zt, t):

Ldiffusion(θ) := Ep(z0),t∼U(1,τ),ϵ∼N (0,I)

[
∥ϵ− ϵθ(zt, t)∥2

]
, (27)

where U(1, τ) is the uniform distribution on {1, 2, . . . , τ}. Intuitively, minimizing this loss corre-
sponds to learning to predict the noise ϵ required to denoise the diffused sample zt. Notably, the
training objective of diffusion models closely aligns with estimating the gradient of the log data den-
sity – i.e., the score function – as used in score-based energy models (Song et al., 2020a; Swersky
et al., 2011; Hyvärinen et al., 2009; LeCun et al., 2006).

During inference, the network allows sampling through an iterative procedure since the learned
distribution can be factorized as

pθ ({zt}τt=0) = p (zτ ) pθ (zt−1 | zt) = p (zτ )

τ∏
t=1

pθ (zt−1 | zt) (28)

for p(zτ ) := N (0, I).

C IMPLEMENTATION AND TRAINING DETAILS

Tables 4 and 5 provide the architecture and training details for the various VAE and diffusion models
used in the Quartet. The hyperparameter λ in Eq. (7), which controls the activation sparsity in
the SVAE, is set to 0.005. The hyperparameter for the equivariance fine-tuning in the part VAE,
discussed in Sec. 3.4, is set to 0.01. For all models, we employ a learning rate scheduler with a
reduce-on-plateau policy, which decreases the learning rate by a factor of 10 if the loss does not
improve for 10 consecutive epochs. All training runs converged successfully by the end of training.

D MORE EXPERIMENTAL RESULTS

Table 6 and Figs. 5 and 6 present more results for the point cloud generation experiment in Sec. 4.3.
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Table 4: Model architecture details for the Quartet. M denotes the number of parts for each object
category (M = 4 for airplanes and cars; M = 3 for chairs).

Model Backbone Data dimensionality Latent dimensionality

Point cloud SVAE PVCNN (Liu et al., 2019) 2048× 3 128
Shape latent diffusion U-Net (Ronneberger et al., 2015) 128 -
Symmetry diffusion ResNet (He et al., 2016) 12×M -
Part diffusion Transformer (Vaswani et al., 2017) 2048× 3 -
Part VAE PVCNN (Liu et al., 2019) 57× 3 to 1024× 3 128
Assembler diffusion U-Net (Ronneberger et al., 2015) 9×M -

Table 5: Training details for the Quartet.

Model Batch size Number of epoch Learning rate

Point cloud SVAE 64 1000 10−3

Shape latent diffusion 32 2000 10−4

Symmetry diffusion 32 2000 10−4

Part diffusion 16 2000 10−3

Part VAE 64 1000 10−5

Assembler diffusion 32 2000 10−4

Figure 5: Full point cloud generation results. Samples from the Quartet are visually appealing,
diverse, and exhibit strong structural and symmetry consistency.

Table 6: Quantitative comparison of point cloud generation. PA denotes part awareness; SA denotes
symmetry awareness. Our Quartet is the only model that supports both, achieving significant im-
provements over most baselines and setting a new state of the art.

Model PA SA
Airplane Car Chair

1-NNA (↓) SDI (↓) 1-NNA (↓) SDI (↓) 1-NNA (↓) SDI (↓)
CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

Training set 64.4 64.1 0.954 4.90 51.3 54.8 7.49 1.18 51.7 50.0 5.56 1.68

r-GAN (Achlioptas et al., 2018) ✗ ✗ 98.4 96.8 4519 1410 83.7 99.7 1053 362 94.5 99.0 7249 619
1-GAN/CD (Achlioptas et al., 2018) ✗ ✗ 87.3 94.0 3629 1353 68.6 83.8 918 352 66.5 88.8 7972 582
1-GAN/EMD (Achlioptas et al., 2018) ✗ ✗ 89.5 76.9 4129 914 71.9 64.7 982 313 71.2 66.2 7184 521
PointFlow (Yang et al., 2019) ✗ ✗ 75.7 70.7 3410 782 62.8 60.6 679 347 58.1 56.3 7290 530
SoftFlow (Kim et al., 2020) ✗ ✗ 76.1 65.8 3284 529 59.2 60.1 1549 428 64.8 60.1 5628 420
ShapeGF (Cai et al., 2020) ✗ ✗ 81.2 80.9 332 98.6 58.0 61.3 645 40.9 61.8 57.2 1100 101
DPF-Net (Klokov et al., 2020) ✗ ✗ 75.2 65.6 4256 245 62.0 58.5 827 452 62.4 54.5 5234 245
SetVAE (Kim et al., 2021) ✗ ✗ 76.5 67.7 2830 824 58.8 60.6 1240 327 59.9 59.9 5320 673
DPC (Luo & Hu, 2021) ✗ ✗ 76.4 86.9 187 44.2 60.1 74.8 217 30.3 68.9 80.0 335 50.6
PVD (Zhou et al., 2021a) ✗ ✗ 73.8 64.8 150 42.0 56.3 53.3 213 31.2 54.6 53.8 275 58.4
LION (Vahdat et al., 2022) ✗ ✗ 67.4 61.2 97.2 40.6 53.7 52.3 168 30.8 53.4 51.1 201 55.2
SPAGHETTI (Hertz et al., 2022) ✓ ✗ 78.2 77.0 1530 529 72.3 71.0 581 284 70.7 69.0 5930 582
DiT-3D (Mo et al., 2023) ✗ ✗ 64.7 60.3 105 42.4 52.7 50.2 206 327 52.5 53.1 235 49.0
SALAD (Koo et al., 2023) ✓ ✗ 73.9 71.1 198 45.1 59.2 57.2 236 29.4 57.8 58.4 308 52.6
FrePolad (Zhou et al., 2024) ✗ ✗ 65.3 62.1 94.1 38.1 52.4 53.2 173 29.6 51.9 50.3 252 50.9
Quartet (ours) ✓ ✓ 63.3 59.7 25.7 1.87 50.1 51.8 25.7 2.28 51.6 53.7 28.9 2.86
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Figure 6: More targeted manipulation results. We vary the yellow-highlighted parts while holding
the remaining structure fixed.
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