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ABSTRACT

Bilevel optimization, addressing challenges in hierarchical learning tasks, has
gained significant interest in machine learning. The practical implementation of
the gradient descent method to bilevel optimization encounters computational
hurdles, notably the computation of the exact lower-level solution and the inverse
Hessian of the lower-level objective. Although these two aspects are inherently
connected, existing methods typically handle them separately by solving the lower-
level problem and a linear system for the inverse Hessian-vector product. In this
paper, we introduce a general framework to address these computational challenges
in a coordinated manner. Specifically, we leverage quasi-Newton algorithms to
accelerate the resolution of the lower-level problem while efficiently approximating
the inverse Hessian-vector product. Furthermore, by exploiting the superlinear
convergence properties of BFGS, we establish the non-asymptotic convergence
analysis of the BFGS adaptation within our framework. Numerical experiments
demonstrate the comparable or superior performance of the proposed algorithms
in real-world learning tasks, including hyperparameter optimization, data hyper-
cleaning, and few-shot meta-learning.

1 INTRODUCTIONS

Bilevel optimization (BLO), which addresses challenges in hierarchical decision process, has gained
significant interest in many real-world applications. Typical applications in machine learning include
meta-learning (Franceschi et al., 2018; Rajeswaran et al., 2019), hyperparameter optimization (Pe-
dregosa, 2016; Franceschi et al., 2017; Okuno et al., 2021), adversarial learning (Goodfellow et al.,
2014; Pfau & Vinyals, 2016), neural architecture search (Chen et al., 2019; Elsken et al., 2020), and
reinforcement learning (Yang et al., 2019; Hong et al., 2023). In this study, we revisit the following
BLO problem:

min
x∈Rm

Φ(x) := F (x, y∗(x)) s.t. y∗(x) = argmin
y∈Rn

f(x, y), (1)

in which the upper-level (UL) objective function F : Rm × Rn → R is generally nonconvex, while
the lower-level (LL) objective function f : Rm × Rn → R is strongly convex with respect to (w.r.t.)
the LL variable y ∈ Rn.

The gradient of Φ(x), known as hypergradient, is crucial not only for applying gradient descent but
also for developing accelerated gradient-based methods for BLO problems. Therefore, a fundamental
question in solving BLO problems is how to efficiently estimate the hypergradient. Assuming that
f is continuously twice differentiable, and by applying the chain rule and utilizing the first-order
optimality condition ∇yf(x, y

∗(x)) = 0 of the LL optimization problem (Ghadimi & Wang, 2018),
the hypergradient is given by

∇Φ(x) = ∇xF (x, y
∗(x))− [∇2

xyf(x, y
∗(x))]T [∇2

yyf(x, y
∗(x))]−1∇yF (x, y

∗(x)). (2)

*Correspondence to Jin Zhang (zhangj9@sustech.edu.cn)
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Two main challenges in estimating the hypergradient are: (C1) evaluating the LL solution y∗(x); (C2)
estimating the Jacobian-inverse Hessian-vector product [∇2

xyf(x, y)]
T [∇2

yyf(x, y)]
−1∇yF (x, y),

once a good proxy y for the LL solution y∗(x) is obtained.

For (C1), the common approach is to perform a few additional gradient descent steps for the LL
problem on the current estimate yk, using it as a proxy for the LL solution. For (C2), two main
approaches have been proposed in the literature. The first is to estimate the inverse Hessian using
the (truncated) Neumann series (Ghadimi & Wang, 2018; Ji et al., 2021). The second approach is to
compute the inverse Hessian-vector product [∇2

yyf(x, y)]
−1∇yF (x, y) by solving the linear system

[∇2
yyf(x, y)]z = ∇yF (x, y) for z, and then calculating [∇2

xyf(x, y)]
T z (Pedregosa, 2016; Arbel &

Mairal, 2022; Dagréou et al., 2022). Clearly, the hypergradient approximation error depends on the
errors in both (C1) and (C2). Most existing methods handle (C1) and (C2) separately, using different
techniques.

A notable exception is the recent breakthrough by (Ramzi et al., 2022), which introduces a novel
approach (named SHINE), specifically designed for deep equilibrium models (DEQs) (Bai et al.,
2019; 2020) and BLO problems where the UL objective function does not explicitly depend on the
UL variable, i.e., F (x, y) = L(y). The novelty of SHINE lies in its approach to addressing (C1) and
(C2) closely. The main idea is to use quasi-Newton (qN) matrices from the LL solution process to
efficiently approximate the inverse Hessian in the direction needed for the hypergradient computation.
SHINE provides three methods for approximating the hypergradient by incorporating a technique
OPA with Broyden’s method and BFGS. Note that in the OPA method from Ramzi et al. (2022), the
qN matrices derived from the LL resolution are influenced by additional updates. This can potentially
lead to incorrect inversion, as noted in Ramzi et al. (2022). To mitigate this issue, they employ a
fallback strategy. In theory, SHINE demonstrates asymptotic convergence to the hypergradient under
various conditions but does not guarantee convergence of the algorithmic iterates.

Therefore, inspired by SHINE, our focus is on improving hypergradient approximation and reducing
barriers to solving BLO problems. In particular, our main research question is: Can we develop a
method to enhance hypergradient approximation for solving the bilevel optimization problem in (1)
with a guaranteed convergence rate?

1.1 MAIN CONTRIBUTIONS

Our response to this question is affirmative, and our main contributions are summarized below.

• qNBO, a new algorithmic framework utilizing quasi-Newton techniques, is proposed for
solving the BLO problem (1). Unlike SHINE, qNBO includes a subroutine that applies
quasi-Newton recursion schemes specifically tailored for the direction ∇yF (x, y), avoiding
incorrect inversion.

• We validate the effectiveness and efficiency of qNBO with two practical algorithms: qNBO
(BFGS) and qNBO (SR1), corresponding to two prominent quasi-Newton methods. The
numerical results demonstrate qNBO’s comparable or superior performance compared to its
closest competitors, SHINE (Ramzi et al., 2022) and PZOBO (Sow et al., 2022b), as well as
other BLO algorithms, including two popular fully first-order methods: BOME (Liu et al.,
2022) and F2SA (Kwon et al., 2023).

• By leveraging the superlinear convergence rates of BFGS, we analyze the non-asymptotic
convergence of BFGS adaptation within our framework, qNBO.

1.2 ADDITIONAL RELATED WORK

Quasi-Newton methods. Because of the low computation cost per iteration and fast convergence
rate, quasi-Newton (qN) methods has been extensively studied (Nocedal & Wright, 2006). The
most common qN methods are the Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Broyden, 1970b;a;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), its low-memory extension L-BFGS (Liu & Nocedal,
1989), and the symmetric rank one method (SR1) (Davidon, 1991; Broyden, 1967). For BLO
problems, Pedregosa (2016) first uses L-BFGS to solve the LL problem to a certain tolerance. Then a
conjugate-gradient method is applied to solve the linear system [∇2

yyf(x, y)]z = ∇yF (x, y) through
matrix-vector products. Finally, [∇2

xyf(x, y)]
T z is calculated.
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Hypergradient approximation methods. Various bilevel methods have been proposed recently
to approximate the inverse Hessian or omit some second-order derivative computations in the
hypergradient. For example, FOMAML (Finn et al., 2017; Nichol et al., 2018) skips calculating all
second-order derivatives. DARTS (Liu et al., 2018) solves the LL problem with just one gradient
descent step. The Jacobian-Free method (JFB) (Fung et al., 2022) approximates the inverse Hessian
with the identity. Giovannelli et al. (2021) proposes practical low-rank bilevel methods (BSG1
and BSG-N-FD) that use first-order approximations for second-order derivatives through a finite-
difference scheme or rank-1 approximations. Recently, several zeroth-order methods have been
proposed to approximate the full hypergradient, such as ES-MAML (Song et al., 2019) and HOZOG
(Gu et al., 2021). Another zeroth-order method, PZOBO (Sow et al., 2022b), approximates only part
of the hypergradient by comparing two optimization paths.

There is another line of research for BLO problems, which does not explicitly use the hypergradient
in (2), see, e.g., Liu et al. (2023); Sow et al. (2022a); Shen & Chen (2023); Liu et al. (2022); Kwon
et al. (2023; 2024). These algorithms first use the value function of the lower-level problem to
transform the bilevel problem into a single-level problem. Then, they apply the penalty function
method or other techniques to solve the reformulated problem. For instance, BOME (Liu et al., 2022)
is a novel and fast gradient-based method that uses a modified dynamic barrier gradient descent on
the value-function reformulation. F2SA (Kwon et al., 2023) is a fully first-order method developed
from a value function-based penalty formulation. It can be implemented in a single-loop manner.
Additionally, it is shown in Kwon et al. (2023) that the update direction of F2SA has a global
O(1/λ)-approximability of the exact hypergradient, where λ is the penalty parameter.

2 PROPOSED FRAMEWORK

In this section, we introduce a general framework, qNBO, to enhance hypergradient approximation.
It addresses the computational challenges (C1) and (C2) using quasi-Newton techniques. We begin
by rewriting the hypergradient as:

∇Φ(x) = ∇xF (x, y
∗(x))− [∇2

xyf(x, y
∗(x))]Tu∗(x, y∗(x)),

where u∗(x, y) := [∇2
yyf(x, y)]

−1∇yF (x, y). As in Arbel & Mairal (2022) and Dagréou et al.
(2022), the proposed algorithms introduce an additional variable uk alongside xk and yk. Naturally,
qNBO consists of three components. The details of qNBO are presented in Algorithm 1.

Algorithm 1 qNBO : quasi-Newton Meets Bilevel Optimization

Input: x0, y0; initial matrix H0; stepsize α > 0; iterates numbers K, {Qk}K−1
k=0

for k = 0, 1, . . . ,K − 1 do
1. yk+1 ← A(xk, yk) # update yk+1 by a subroutine A
2. if Qk = 1:

uk+1 ← CqN
(
∇yF (xk, yk+1), H0, {st, gt}T−1

t=0

)
# share {st, gt}T−1

t=0 with A(xk, yk)
else:
uk+1 ← B(xk, yk+1, H0,∇yF (xk, yk+1), Qk) # improve uk+1 by a subroutine B

3. xk+1 ← xk − α
(
∇xF (xk, yk+1)− [∇2

xyf(xk, yk+1)]
Tuk+1

)
end for

Part 1: qNBO updates yk towards y∗(xk) using a qN-based subroutine A(xk, yk) in Algorithm 2,
starting from yk. The key is a quasi-Newton recursion scheme CqN , which computes the matrix-vector
product Hd by performing a sequence of inner products and vector summations involving d and
the pairs {si, gi}t−1

i=0 . Here H represents the inverse Hessian approximation of the LL objective,
d = ∇yf(x, yt), si = yi+1 − yi, and gi = ∇yf(x, yi+1) − ∇yf(x, yi) in this subroutine. Two
prominent quasi-Newton recursion schemes are provided in Appendix B.

Part 2: To update uk+1, we provide two options: Qk = 1 or Qk > 1. In the case of Qk = 1, qNBO
updates uk+1 similarly to SHINE. The pairs {si, gi}T−1

i=0 from A(xk, yk) are shared to approximate
the inverse Hessian in the direction∇yF (xk, yk+1). Unfortunately, incorrect inversion may occur
because the pairs {si, gi}T−1

i=0 in A(xk, yk) are designed to satisfy the secant equation Ht+1gt = st.
To address this issue, qNBO adds a subroutine B in Algorithm 3, which uses quasi-Newton recursion
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schemes for the direction∇yF (xk, yk+1) when Qk > 1. The price to pay is that the pairs {si, gi} in
A cannot be shared with B, increasing the computational cost. Thus, choosing between Qk = 1 and
Qk > 1 involves a trade-off between performance and computational cost.

Part 3: After computing yk+1 and uk+1, qNBO updates xk+1 by

xk+1 = xk − αk

(
∇xF (xk, yk+1)− [∇2

xyf(xk, yk+1)]
Tuk+1

)
,

where αk is a stepsize, and ∇̃Φ(xk) := ∇xF (xk, yk+1)−[∇2
xyf(xk, yk+1)]

Tuk+1 is a hypergradient
approximation. This update rule for xk is commonly used in gradient-based algorithms, , such as
those in Arbel & Mairal (2022) and Dagréou et al. (2022).

Algorithm 2 A(x, y0): gradient descent steps + qN steps for the LL problem
Input: x, y0; initial matrix H0; stepsizes β, γ > 0; iterates numbers P, T

1. for j = 0, 1, 2, . . . , P − 1
yj+1 ← yj − β∇yf(x, y

j)
end for

2. y0 ← yP

for t = 0, . . . , T − 1
yt+1 ← yt − γdt,
where dt ← CqN

(
∇yf(x, yt), H0, {si, gi}t−1

i=0

)
(t ≥ 1), d0 ← H0∇yf(x, y0)

st ← yt+1 − yt, gt ← ∇yf(x, yt+1)−∇yf(x, yt)
end for

Return yT , {st, gt}T−1
t=0 .

Algorithm 3 B(x, y,H0, d,Q)

Input: x, y; initial matrix H0; vector d; stepsize ξi > 0; iterates number Q
1. u0 ← H0d, s̃0 ← ξ0u0 and g̃0 ← ∇yf(x, y + s̃0)−∇yf(x, y)
2. for i = 1, 2, . . . , Q− 1

ui ← CqN
(
d,H0, {s̃j , g̃j}i−1

j=0

)
s̃i ← ξiui, g̃i ← ∇yf(x, y + s̃i)−∇yf(x, y)

end for
Return uQ−1.

Two practical qNBO algorithms: qNBO (BFGS) and qNBO (SR1). We describe two prominent
quasi-Newton recursion schemes, CqN , for computing the inverse Hessian approximation-vector
product Htd. These schemes involve a sequence of inner products and vector summations with
d and pairs {si, gi}t−1

i=0 . One is the BFGS two-loop recursion scheme, outlined in Algorithm 4,
corresponding to the BFGS updating formula (Broyden, 1970b;a; Fletcher, 1970; Goldfarb, 1970;
Shanno, 1970):

Ht+1 =
(
I − ρtstgTt

)
Ht

(
I − ρtgtsTt

)
+ ρtsts

T
t , ρt =

1

gTt st
. (3)

The second algorithm is presented in Algorithm 5, which corresponds to the symmetric-rank-one
(SR1) updating formula (Davidon, 1991; Broyden, 1967):

Ht+1 = Ht +
(st −Htgt)(st −Htgt)

T

(st −Htgt)T gt
. (4)

Implementation and improvement. Several details and enhancements are needed for an efficient
implementation of qNBO.

First, the purpose of including a few gradient descent steps in subroutine A is to bring the iterators
closer to a neighborhood of the LL solution, enabling superlinear convergence in subsequent quasi-
Newton steps. A warm-start for y0 is effective because y∗(xk+1) remains close to y∗(xk) when
xk+1 is near xk. This is guaranteed by the Lipschitz continuity of y∗(x). In practice, we conjecture
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that a few initial gradient descent steps are sufficient, although they are necessary for the theoretical
analysis.

Second, because f(x, y) exhibits strong convexity w.r.t. y in our context, the curvature condition
sTt gt > 0, required for BFGS, is consistently satisfied. This allows the use of a fixed step size,
eliminating the need for time-consuming line searches. Furthermore, as the solution approaches a
region conducive to superlinear convergence, employing a few quasi-Newton steps is sufficient to
achieve a satisfactory solution.

Third, in experiments, the initial matrix H0 is chosen as a scalar multiple of the identity matrix. This
simplification ensures that the recursion algorithms, Algorithms 4 and 5, involve only vector inner
products, significantly reducing computational costs. In Algorithm 3, the parameter ξi is typically set
to either 1 or ∥ui∥ in most cases.

Fourth, qNBO is a flexible framework that can integrate other quasi-Newton methods, such as limited
memory BFGS (L-BFGS) (Liu & Nocedal, 1989). It also supports a “non-loop" implementation of
L-BFGS by representing quasi-Newton matrices in outer-product form (Byrd et al., 1994).

Finally, qNBO consists of three parts, with the first two utilizing quasi-Newton recursion schemes.
A stochastic adaptation involves replacing these schemes with stochastic methods (e.g., K-BFGS
(Goldfarb et al., 2020), Stochastic Block BFGS(Gower et al., 2016)) and using stochastic gradients in
Part 3, aligning with Dagréou et al. (2022). Key challenges in implementing the stochastic adaptation
include constructing effective unbiased or biased estimators in Part 3 using techniques like variance
reduction and momentum, and analyzing the convergence rate and complexity of the proposed
stochastic algorithms in a bilevel setting that leverages noisy second-order information. Addressing
these theoretical issues may require breakthroughs beyond the scope of this work.

3 THEORETICAL ANALYSIS

In this section, we analyze the non-asymptotic convergence of the qNBO algorithm, as outlined in
Algorithm 1, under standard assumptions commonly used in BLO literature (Ghadimi & Wang, 2018;
Ji et al., 2021; Chen et al., 2022; Dagréou et al., 2022; Ji et al., 2022).

3.1 ASSUMPTIONS

Assumption 3.1. Assume that the UL objective function F satisfies the following properties:

(i) For all x, the gradients ∇xF (x, y) and ∇yF (x, y) are Lipschitz continuous w.r.t. y, with
Lipschitz constants LFx

and LFy
, respectively.

(ii) For all y, ∇yF (x, y) is Lipschitz continuous w.r.t. x, with a Lipschitz constant L̄Fy
.

(iii) There exists a constant CFy
such that ∥∇yF (x, y)∥ ≤ CFy

for all x, y.

Assumption 3.2. Assume that the LL objective function f has the following properties:

(i) For all x and y, f is continuously twice differentiable in (x, y).

(ii) For all x, f(x, y) is strongly convex w.r.t. y with parameter µ > 0. Moreover, ∇yf(x, y) and
∇2

yyf(x, y) are Lipschitz continuous w.r.t. y with parameter L and Lfyy , respectively.

(iii) For all x,∇2
xyf(x, y) is Lipschitz continuous w.r.t. y with constant Lfxy

.

(iv) For all x, y, we have ∥∇2
xyf(x, y)∥ ≤Mfxy

for some constant Mfxy
.

(v) For all y,∇2
xyf(x, y) and∇2

yyf(x, y) are Lipschitz continuous w.r.t. x with constants L̄fxy
and

L̄fyy , respectively.

Assumption 3.3. There exists ι ∈ R such that infx Φ(x) ≥ ι.
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3.2 CONVERGENCE RESULTS

The evolving nature of inverse Hessian approximations through updating formulas in qNBO sig-
nificantly complicates the analysis of non-asymptotic convergence. Additionally, various update
formulas present different challenges, similar to studying the convergence rates of quasi-Newton
methods. In this section, we focus on the non-asymptotic convergence of qNBO (BFGS), leveraging
the superlinear convergence rates of BFGS. Some results can also be extended to qNBO (SR1).
Comprehensive proofs of these results are provided in Appendix D.

Let LΦ be the Lipschitz constant of ∇Φ given in Lemma D.12. We first present the convergence
results of qNBO (BFGS) for solving the bilevel problem (1), where the LL objective function is
quadratic.
Theorem 3.4 (quadratic case). Suppose that f in (1) takes the following quadratic form:

f(x, y) =
1

2
yTAy − yTx, (5)

where µI ⪯ A ⪯ LI . Assume that Assumption 3.1 and 3.3 hold. Set Qk = k + 1 and H0 = LI .

Let κ := L/µ, tb := 4nlnκ, ct := 2t
T
2

b , and ω := c1(1 + 1
ε )c

2
tκ

3( 1
T )

T , where c1 is a positive
constant given in Theorem D.19. We can choose positive parameters α, ε and T such that τ :=
c2tκ

3( 1
T )

T
(
(1 + ε) + (1 + 1

ε )α
2c1
)
< 1 and αLΦ + ωα2

(
1
2 + αLΦ

)
1

1−τ ≤
1
4 . Then the iterates

xk generated by qNBO (BFGS) satisfy:

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤
4(Φ(x0)− infx Φ(x))

αK
+

3δ0
K(1− τ)

+
18nLC2

Fy
lnK

µ3K
, (6)

with the initial error δ0 = 3c2tκ
3( 1

T )
T c2∥y∗0 − y0∥2, where c2 is a constant.

Remark 3.5. For the quadratic case, quasi-Newton methods achieve global superlinear convergence
(Ye et al., 2023; Rodomanov & Nesterov, 2022; 2021b), allowing P = 0 in Algorithm 2.
Remark 3.6. The convergence rate of qNBO (SR1) for the quadratic case is similar to that in Theorem
3.4. However, for the general case, the qNBO (SR1) algorithm lacks convergence guarantees without
specific corrections used to achieve numerical stability, as noted in Ye et al. (2023).

Next, we explore the case where the LL objective function in (1) takes a general form. While the
convergence rate of qNBO (BFGS) resembles that of the previous quadratic case, it is much more
challenging. The specific convergence rate for this general case is detailed in the following theorem.
Theorem 3.7 (general case). Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Set Qk = k + 1.
Choose the parameters β and P such that (1− βµ)P ∥yk − y∗k∥ ≤ 1

300
√
µ , and assume H0 satisfies:

∥∇2
yyf(xk, y

∗(xk))
−1/2

(
H−1

0 − ∇2
yyf(xk, y

∗(xk))
)
∇2

yyf(xk, y
∗(xk))

−1/2∥F ≤ 1
7 . Define τ :=

κ( 1
T )

T (1− βµ)P
(
(1 + ε) + (1 + 1

ε )α
2c3
)

and ω := c3(1 +
1
ε )κ(

1
T )

T (1− βµ)P , with a constant
c3 given in Theorem D.24. We can choose positive parameters α, ε and T such that τ < 1 and
αLΦ + ωα2

(
1
2 + αLΦ

)
1

1−τ ≤
1
4 . Then the iterates xk generated by qNBO (BFGS) satisfy:

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤
4(Φ(x0)− infx Φ(x))

αK
+

3δ0
K(1− τ)

+
18nLM2

fxy
C2

Fy
lnK

µ3ξ̃K
, (7)

where δ0 = 3κ( 1
T )

T (1− βµ)P c4∥y∗0 − y0∥2 is the initial error with constant c4. The constant ξ̃ is
related to the property of f , as given in (29).

The proof sketch of Theorem 3.7 can be found in Appendix D.2. The complete version of the
parameter specifications and the proofs of Theorems 3.4 and 3.7 are provided in Appendices D.3 and
D.4, respectively.

Discussion on convergence rate and complexity. Choose T = Θ(lnκ) and the step size α =
Θ(κ−3) such that τ < 1 and αLΦ + ωα2

(
1
2 + αLΦ

)
1

1−τ ≤
1
4 . Under the same setting as Theorem

3.7, we have 1
K

∑K−1
k=0 ∥∇Φ(xk)∥2 = O

(
κ3

K + κ3 lnK
K

)
. To achieve an ϵ-stationary point, it is

required that K = Õ(κ3ϵ−1), resulting in a gradient complexity of Gc(f, ϵ) = Õ(κ6ϵ−2) and
Gc(F, ϵ) = Õ(κ3ϵ−1), as well as a Jacobian-vector product complexity of JV (ϵ) = Õ(κ3ϵ−1).
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The details for ensuring τ < 1 and αLΦ + ωα2
(
1
2 + αLΦ

)
1

1−τ ≤
1
4 , as well as the specific

complexity analysis, can be found in Appendix E.

Theoretical comparisons. Our analysis provides a non-asymptotic convergence rate, superior to
that of SHINE (Ramzi et al., 2022). It is established in Ji et al. (2022) that the fastest deterministic
convergence rate, 1

K

∑K−1
k=0 ∥∇Φ(xk)∥2 = O( 1

K ), is achievable. In comparison, BOME (Liu et al.,
2022) reaches a convergence rate of O(K−1/4), F2SA (Kwon et al., 2023) attains O( lnK

K2/3 ), and
SABA (Dagréou et al., 2022) achieves O( 1

K ). To achieve an ϵ-stationary point, the matrix-vector
complexity for qNBO is Õ(κ3ϵ−1), primarily due to the [∇2

xyf(x, y)]
Tu calculations. It is worth

noting that the number of Jacobian-vector products and Hessian-vector products for AID-BIO (Ji et al.,
2021) are of the orders O(κ3ϵ−1) and O(κ3.5ϵ−1), respectively. Although the gradient complexity
Gc(f, ϵ) for qNBO is higher than that in AID-BIO (Ji et al., 2021), the computation of gradients is
generally less complex than performing matrix-vector operations.

4 NUMERICAL EXPERIMENT

In this section, we conduct numerical experiments to evaluate the performance of the qNBO algo-
rithms in solving bilevel optimization problems. We first validate the theoretical convergence through
experiments on a toy example, followed by an assessment of efficiency by comparing qNBO with its
closest competitor, SHINE (Ramzi et al., 2022), as well as other bilevel optimization (BLO) algo-
rithms such as AID-BIO (Ji et al. (2021) with CG method), AID-TN (Ji et al. (2021) with Truncated
Neumann method), AMIGO (Arbel & Mairal (2022) with CG method), SABA (Dagréou et al.,
2022) and BSG1 (Giovannelli et al., 2021). Additionally, we compare qNBO with two widely used
fully first-order algorithms, BOME (Liu et al., 2022) and F2SA (Kwon et al., 2023), in real-world
applications including hyperparameter optimization and data hyper-cleaning. Finally, we explore
qNBO’s applicability to complex machine learning tasks by exclusively comparing it with PZOBO
(Sow et al., 2022b) in a meta-learning experiment, where PZOBO is regarded as the leading algorithm
for few-shot meta-learning. Details of all experimental specifications are provided in Appendix C.
Additionally, we perform an ablation study in Appendix C.5.

4.1 TOY EXAMPLE

In this section, we consider a quadratic bilevel problem where both the UL and LL objective functions
are quadratic. Given z0 ∈ Rn and the symmetric positive definite matrix A ∈ Rn×n, the problem is
formulated as follows:

min
x∈Rn

1

2
∥x− z0∥2 +

1

2
y∗(x)TAy∗(x) s.t. y∗(x) = argmin

y∈Rn

1

2
yTAy − xT y. (8)

In the experiment, the vector z0 and the matrix A are randomly generated, with n = 1000. The
hypergradient is given by∇Φ(x) = (A−1 + I)x− z0, which yields the unique solution (x∗, y∗) =(
(A−1 + I)−1z0, A

−1(A−1 + I)−1z0
)
. To evaluate the performance of various methods in solving

this problem, we analyze the hypergradient estimation errors and the distances between the iterates
(xk, yk) and the optimal solution (x∗, y∗). The results, shown in Figure 1(a), indicate that AID-BIO,
AMIGO-CG and qNBO (SR1) achieve smaller hypergradient errors and produce iterates closer to
the optimal solutions compared to other methods. Furthermore, we analyze the impact of parameter
{Qk}K−1

k=0 in Algorithm 1 on the performance of qNBO (BFGS). As depicted in Figure 1(d) shows
that the hypergradient ∇Φ(xk) generally decreases as Qk increases, with {Qk}K−1

k=0 = {k + 1}K−1
k=0

performing the best, thereby supporting the claims of Theorem 3.4.

4.2 HYPERPARAMETER OPTIMIZATION IN LOGISTIC REGRESSION

We perform hyperparameter optimization for l2-regularized logistic regression on the 20News (Lang,
1995) and Real-sim (Chang & Lin) datasets, formulated as a bilevel problem:

min
x∈R

n′∑
i=1

ℓ(a′i, b
′
i, y

∗(x)) s.t. y∗(x) = argmin
y∈Rn

n∑
i=1

ℓ(ai, bi, y) +
exp(x)

2
∥y∥2, (9)
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(a) (b)

(c) (d)

Figure 1: Numerical results on toy example. (d) Testing results on the impact of the parameter
{Qk}K−1

k=0 in qNBO (BFGS).

Figure 2: Hyperparameter optimization experiments for l2-regularized logistic regression on two
datasets (Left: 20News; Right: Real-sim).

where (ai, bi) ∈ Dtrain and (a′i, b
′
i) ∈ Dval are the training data and validation data respectively, and

ℓ(ai, bi, y) := log
(
1 + exp

(
− biaiT y

))
. The LL variable y is the model’s parameter, while the UL

variable x refers to the regularization hyperparameter.

The performance of different methods on the unseen dataset Dtest is shown in Figure 2, where the
results over 10 runs are plotted for each method. Here AMIGO refers to the algorithm AMIGO in
Arbel & Mairal (2022) that employs gradient descent to solve the auxiliary quadratic problem. The

8
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results show that qNBO (BFGS) reaches its lowest loss faster than the other methods. Notably, the
performance of qNBO (SR1) on the 20News dataset was omitted due to its ineffectiveness in this
experiment, which resulted in oscillations. This issue arises from the numerical instability of SR1
when solving general functions without a correction strategy (Ye et al., 2023).

Figure 3: Data hyper-cleaning results on two datasets. (Left: MNIST; Right: FashionMNIST).

4.3 DATA HYPER-CLEANING

This subsection focuses on data hyper-cleaning for the MNIST (Deng, 2012) and FashionMNIST
(Xiao et al., 2017) to enhance model accuracy, using a noisy training set Dtrain := {ai, bi}mi=1 and a
clean validation set Dval. The objective is to adjust the training data weights to improve performance
on Dval. This task can be formalized as the bilevel problem:

min
x

ℓval(y∗(x)) s.t. y∗(x) = argmin
y
{ℓtrain(x, y) + c∥y∥2}, (10)

where ℓval is the validation loss on Dval and ℓtrain =
∑m

i=1 σ(xi)ℓ(ai, bi, y) is a weighted training
loss with σ(x) = Clip(x, [0, 1]) and x ∈ Rm. In the experiment, both ℓ(ai, bi, y) and ℓval are the
cross entropy loss, with c = 0.001.

Table 1: Comparison of results for hyper-cleaning. We compare the time and F1 score of various
algorithms in achieving specific test accuracies (91.50% for MNIST and 83.00% for FashionMNIST).
Bold font indicates the fastest time to reach the target accuracy. If an algorithm fails to reach the
required test accuracy, the time is recorded up to the highest accuracy it achieves.

MNIST FashionMNIST
Method Time (s) Acc. (%) F1 score Time (s) Acc. (%) F1 score
qNBO (BFGS) 0.42 91.54 95.34 0.83 83.04 93.56
qNBO (SR1) 3.68 91.51 94.59 1.53 83.02 94.09
BOME 6.31 91.50 94.94 3.59 83.00 93.48
SABA 3.35 91.44 94.79 44.29 82.79 88.81
F2SA 8.06 91.46 93.31 8.72 82.98 86.55
SHINE-OPA 20.25 91.51 95.44 9.96 83.07 93.87
PZOBO 1.05 91.46 95.46 2.96 83.05 93.77

As shown in Figure 3, qNBO (BFGS) significantly outperforms other methods, achieving lower test
loss and higher test accuracy more quickly. All results are averaged over 10 random trials. Table
1 illustrates that while qNBO, BOME, and SHINE-OPA are able to achieve the required accuracy,
qNBO (BFGS) does so in the shortest time. Notably, both F2SA and SABA fail to reach the target
accuracy on either dataset. For example, on the MNIST dataset, qNBO (BFGS) requires less than one-
tenth of the time taken by BOME, the second-fastest method. The exclusion of BSG1’s performance
from this experiment is due to its ineffectiveness in addressing these data hyper-cleaning problems.
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4.4 META-LEARNING

In this subsection, we consider the few-shot meta-learning, which can be described as:

min
x

1

m

m∑
i=1

LDi
(x, y∗i (x)) s.t. y∗(x) = argmin

y

1

m

m∑
i=1

LSi
(x, yi).

Due to the superior performance demonstrated by PZOBO compared to the baseline methods (MAML
(Finn et al., 2017) and ANIL (Raghu et al., 2020)), the comparison of qNBO (BFGS) is exclusively
conducted against PZOBO, excluding the aforementioned baseline methods.

Figure 4: 5-way 5-shot experiments on two datasets. (Left: miniImageNet; Right: Omniglot.)

As shown in Figure 4 and Table 2, qNBO (BFGS) achieves superior accuracy compared to PZOBO
on the miniImageNet (Vinyals et al., 2016) and Omniglot (Lake et al., 2015) datasets. Results are
averaged over 5 runs, with all algorithms starting from the same initial point with a test accuracy of
20%. For clarity, the graphs begin at the second data point, omitting the initial one. It is reported that
qNBO (BFGS) reaches peak test accuracies on the Omniglot dataset within 800 seconds, after which
performance declines, likely due to overfitting or other factors. Notably, on the miniImageNet dataset,
qNBO (BFGS) attains a test accuracy exceeding 60%, while PZOBO fails to achieve comparable
results. Furthermore, the results in Table 2 show that qNBO (BFGS) reaches higher test accuracy
in significantly less time compared to PZOBO as the number of ways increases. We do not plot the
curves for other methods like SABA, SHINE-OPA, and BOME, as they are difficult to converge
under various hyperparameter configurations using their source codes.

Table 2: Few-shot meta-learning on the Omniglot dataset: highest test accuracy and time required by
each algorithm.

5-shot
PZOBO qNBO (BFGS)

Acc. (%) Time (s) Acc. (%) Time (s)

5-way 99.31 11124 99.14 772
20-way 97.94 17869 99.14 1648
30-way 97.15 21043 99.05 2978

5 CONCLUSION

This paper introduces qNBO, a flexible algorithmic framework for improving hypergradient approxi-
mation. It leverages quasi-Newton techniques to accelerate the solution of the lower-level problem
and efficiently approximates the inverse Hessian-vector product in hypergradient computation. No-
tably, qNBO includes a subroutine using quasi-Newton recursion schemes specifically tailored for the
direction∇yF (x, y) to avoid incorrect inversion. Furthermore, in addition to the prominent BFGS
and SR1 methods, qNBO can integrate other quasi-Newton methods such as limited-memory BFGS
(L-BFGS) and single-loop implementations. Extensive numerical results verify the efficiency of the
proposed algorithms.
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A OUTLINE OF APPENDIX

The appendix is organized as follows:

• Appendix B presents details of recursive algorithms for computing the inverse quasi-Newton
matrix-vector product.

• Appendix C provides details of the numerical experiments from Section 4.
• Appendix D includes the proofs of the theorems from Section 3.2.

– Appendix D.1 reviews some useful results of the BFGS method;
– Appendix D.2 provides the proof sketch of Theorem 3.7;
– Appendix D.3 presents the proof of Theorem 3.4;
– Appendix D.4 presents the proof of Theorem 3.7.

• Appendix E contains the theoretical discussion and complexity analysis of the proposed
algorithms.

B RECURSIVE PROCEDURE TO COMPUTE THE INVERSE HESSIAN
APPROXIMATION-VECTOR PRODUCT

Due to the low-rank structure of the updates in (3) and (4), for any vector d, r = Ht+1d can be
efficiently computed using the recursive methods detailed in Algorithm 4 for the BFGS update
(Nocedal, 1980), and Algorithm 5 for the SR1 update (Erway & Marcia, 2017), respectively. Note
that Algorithms 4 and 5 involve only the computation of first-order information, provided H0 is a
scalar multiple of the identity matrix. Consequently, by avoiding the storage and computation of the
full Hessian, computational costs can be significantly reduced.

Algorithm 4 Cb(d,H0, {si, gi}t−1
i=0): Two-loop recursion for computing r = Htd when Ht is the

inverse of the BFGS matrix.
1: q = d;
2: for i = t− 1, t− 2, . . . , 0

αi = (sTi q)/(g
T
i si);

q = q − αigi;
end for

3: r = H0q;
4: for i = 0, . . . , t− 1

β = (gTi r)/(g
T
i si);

r = r + (αi − β)si;
end for

Return r = Htd.

Algorithm 5 Cs(d,H0, {si, gi}t−1
i=0): Computing r = Htd when Ht is the inverse of an SR1 matrix.

1: for i = 0, . . . , t− 1
pi = si −H0gi;

2: for j = 0, . . . , i− 1
pi = pi − ((pTj gi)/(p

T
j gj))pj ;

end for
3: end for

Return r = H0d+
∑t−1

i=0((p
T
i d)/(p

T
i gi))pi.

C DETAILS ON EXPERIMENTS

In this section, we additionally compare more algorithms, such as AMIGO (Arbel & Mairal (2022)
with CG method), AID-BIO (Ji et al. (2021) with CG method) and AID-TN (Ji et al. (2021) with
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Truncated Neumann method). At the same time, we add meta-learning experiments comparing with
the PZOBO algorithm. All experiments are conducted on a server equipped with two NVIDIA A40
GPUs, an Intel(R) Xeon(R) Gold 6326 CPU, and 256 GB of RAM.

C.1 DETAILS OF THE TOY EXAMPLE

In this experiment, the initial point for all algorithms is (x0, y0) = (2e, 2e) where e denotes the
vector of all ones.

(a) (b)

(c)

Figure 5: Numerical results on toy example: Comparison of qNBO (SR1), qNBO (BFGS) and qNBO
(BFGS)-ws with other bilevel optimization methods in a toy experiment. Here, “ws” indicates that a
warm-start strategy is applied for uk, with Qk = min(k + 1, 60).

BOME: The maximum number of outer iterations is K = 5000, the number of inner iterations is
T = 100, the inner step size is α = 0.1, the outer step size is ξ = 0.1, and

λk = max
{0.0001q̂(xk, yk)− ⟨∇F (xk, yk),∇q̂(xk, yk)⟩

∥∇q̂(xk, yk)∥2
, 0
}
.

F2SA: The maximum number of outer iterations is K = 5000, the number of inner iterations is
T = 10, the inner step sizes are γk = αk = 0.1, the initial multiplier is λ0 = 0.1, the multiplier
increment is δk = 0.001, and the step size ratio is ξ = 1.

SHINE-OPA: The maximum number of outer iterations is K = 5000, the maximum number
of inner iterations is T = 100, the inner stopping criterion is ∥∇yf(xk, yk+1)∥ ≤ 1

k+1 , the inner
step size is determined using strong Wolfe line search, the number of extra updates of upper-level
information in the BFGS algorithm is 5 (i.e., every 5 steps of BFGS iteration includes an update with
UL gradient ∇yF ), the initial matrix is H0 = I , and the outer step size is αk = 0.1.
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(a) (b)

(c)

Figure 6: Testing results on the impact of the parameter Qk in qNBO (BFGS) in the toy example.
(The qNBO (BFGS) parameters are the same as those in Figure 1, except for Qk. Additionally,
Qk = ws means that Qk = min(k + 1, 60), where the warm start strategy is used for uk.)

AID-TN: The maximum number of outer iterations is K = 5000, the number of inner iterations is
T = 1, the TN iteration P = 1, the inner step size is β = 0.01 and the outer step size is α = 0.2.

AID-BIO/AMIGO-CG: The maximum number of outer iterations is K = 5000, the number of
inner iterations is T = 1, the CG iteration P = 1, the inner step size is β = 0.01 and the outer step
size is α = 0.2.

PZOBO: The maximum number of outer iterations is K = 5000, the number of inner iterations
is Q = N = 10, the parameter µ = 100, the inner step size is α = 0.01 and the outer step size is
β = 0.01.

qNBO (SR1): The maximum number of outer iterations is K = 5000, the number of inner
iterations is T = 6, the warm up iterations P = 9, the number of iterations is Qk = 25, the inner
step sizes are β = 0.1, γ = 1, the initial matrix is H0 = I , and the outer step size is α = 0.4.

qNBO (BFGS): The maximum number of outer iterations is K = 5000, the number of inner
iterations is T = 15, the warm up iterations P = 1, the number of iterations Qk = k + 1, the inner
step sizes are β = 0.1, γ = 1, the initial matrix is H0 = I , and the outer step size is α = 0.1.
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C.2 FURTHER SPECIFICATIONS FOR LOGISTIC REGRESSION

C.2.1 IMPLEMENTATIONS AND HYPERPARAMETER SETTINGS

This section introduces the specific parameters of different algorithms used in the logistic regression
experiment, formulated as a bilevel problem:

min
x∈R

n′∑
i=1

ℓ(a′i, b
′
i, y

∗(x)) s.t. y∗(x) = argmin
y∈Rn

n∑
i=1

ℓ(ai, bi, y) +
exp(x)

2
∥y∥2, (11)

where (ai, bi) ∈ Dtrain and (a′i, b
′
i) ∈ Dval are the training data and validation data respectively, and

ℓ(ai, bi, y) := log
(
1 + exp

(
− biaiT y

))
. The LL variable y is the model’s parameter, while the UL

variable x refers to the regularization hyperparameter.

In this task, we consider two dataset, 20news and Real-sim. The 20news dataset (Lang, 1995)
comprises a total of 18,846 samples with 130,107 features. It is divided into three subsets: the
training set Dtrain has 16961 samples, the validation set Dval has 943 samples, and the test set Dtest

has 942 samples. Similarly, the Real-sim dataset (Chang & Lin) contains 72,309 samples, each with
20,958 features. This dataset is also split into three parts: the training set Dtrain has 65078 samples,
the validation set Dval has 3616 samples, and the test set Dtest has 3615 samples. For all algorithms,
we set x0 to 0 and y0 to a random value. Unless otherwise stated, the batch size of algorithm is
assumed to be 200. In following, AMIGO refers to the algorithm AMIGO (Arbel & Mairal (2022))
that employs stochastic gradient descent to solve the auxiliary quadratic problem.

BOME: The maximum number of outer iterations is K = 200, the number of inner iterations is
T = 10, the inner step size is α = 0.01, the outer step sizes are ξx = 0.1 and ξy = 0.01. The update
rule for λk is:

λk = max

{
0.5q̂(xk, yk)− ⟨∇F (xk, yk),∇q̂(xk, yk)⟩

∥∇q̂(xk, yk)∥2
, 0

}
.

F2SA: The maximum number of outer iterations is K = 2000, the number of inner iterations is
T = 10, starting point z0 = y0, inner step sizes γk = αk = 0.1, the initial multiplier λ0 = 0.1,
multiplier increment δk = 0.0001, step size ratio ξ = 1, and the batch size is 1000.

SABA: The maximum number of outer iterations is K = 20000, the initial point v0 = 0, step sizes
αk = 0.125 and βk = βv

k = 0.125, and the batch size is 32.

BSG1: The maximum number of outer iterations is K = 300, the number of inner iterations is
T = 10, inner step size βk = 0.01, outer step size αk = 0.01.

SHINE-OPA: The maximum number of outer iterations is K = 30, maximum number of inner
iterations is T = 1000. The initial matrix H0 = I , for more details see SHINE code.†

qNBO (BFGS): The maximum number of outer iterations is K = 50, the number of inner
iterations is T = 9, warm-up iteration steps P = 1, iteration steps Qk = 1, inner step sizes
β = 0.0001/(j + 1), γ = 0.1, outer step size selection strategy is the same as the SHINE-OPA
algorithm. When the dataset is the 20news dataset, the initial matrix H0 = 0.1I; when the dataset is
the Real-sim dataset, H0 = 0.01I .

qNBO (SR1): The maximum number of outer iterations is K = 100, the number of inner iterations
is T = 7, warm-up iteration steps P = 3, iteration steps Qk = 3, inner step sizes β = 0.0001/(j +
1), γ = 0.1, initial matrix H0 = 0.1I and outer step size selection strategy is the same as the
SHINE-OPA algorithm.

AID-BIO/AMIGO-CG: The maximum number of outer iterations is K = 1000, the number of
inner iterations is T = 1, the CG iteration P = 1, inner step sizes β = 0.01 and outer step size
α = 0.01.

†https://github.com/zaccharieramzi/hoag/tree/shine
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AMIGO: The maximum number of outer iterations is K = 1000, the batch size is 32, the number
of inner iterations is T = 1, inner step sizes β = 0.01 and outer step size α = 0.1.

AID-TN: The maximum number of outer iterations is K = 1000, the number of inner iterations is
T = 1, the TN iteration P = 1, inner step sizes β = 0.01 and outer step size α = 0.1.

PZOBO: The maximum number of outer iterations is K = 5000, the number of inner iterations
is Q = N = 10, the parameter µ = 10, the inner step size is α = 0.01 and the outer step size is
β = 0.03.

C.3 FURTHER SPECIFICATIONS ON DATA HYPER-CLEANING EXPERIMENTS

This subsection focuses on data hyper-cleaning to enhance model accuracy, using a noisy training set
Dtrain := {ai, bi}mi=1 and a clean validation set Dval. The goal is to adjust training data weights to
enhance performance on Dval. The task can be formalized as the bilevel problem:

min
x

ℓval(y∗(x)) s.t. y∗(x) = argmin
y
{ℓtrain(x, y) + c∥y∥2}, (12)

where ℓval is the validation loss on Dval and ℓtrain =
∑m

i=1 σ(xi)ℓ(ai, bi, y) is a weighted training
loss with σ(x) = Clip(x, [0, 1]) and x ∈ Rm. In the experiment, both ℓ(ai, bi, y) and ℓval are the
cross entropy loss, with c = 0.001.

Experiments are conducted using MNIST (Deng, 2012) and FashionMNIST (Xiao et al., 2017)
datasets, with 50% of the training data corrupted by randomly assigning them sampled labels. The
data is divided into four parts: training set, validation sets 1 and 2, and the test set. The training
set comprises 50000 samples, while the validation and test sets contain 5000 and 10000 samples,
respectively. For each method, model training is conducted on the training set, with the tuning of
hyperparameter x using validation set 1. The LL variable y = (W, b) denotes the parameters of the
linear model with weight W ∈ R10×784 and bias b ∈ R10.

C.3.1 IMPLEMENTATIONS AND HYPERPARAMETER SETTINGS

The initial point y0 for all algorithms is obtained from a pretrained initialization model, and the initial
weight vector x0 = 0.5e ∈ R50000.

BOME: The maximum number of outer iterations K = 10000, the number of inner iterations
T = 1, the inner step size α = 0.01, the outer step sizes ξx = 100, ξy = 0.01, and

λk = max

(
0.1q̂(xk, yk)− ⟨∇F (xk, yk),∇q̂(xk, yk)⟩

∥∇q̂(xk, yk)∥2
, 0

)
.

Details can be seen in the code.‡

F2SA: The maximum number of outer iterations K = 7000, the number of inner iterations T = 1,
the initial point z0 = y0, the inner step size γk = αk = 0.01, the initial multiplier λ0 = 0.1, the
difference in multiplier δk = 0.001, the step size ratio ξ = 10000, and the batch size is 2000.

SABA: The maximum number of outer iterations K = 10000, the initial point v0 = 0, the batch
size is 2000. For the MNIST dataset, the step sizes αk = 10, βk = 0.01, βv

k = 0.1; otherwise, the
step sizes αk = 100, βk = βv

k = 0.001.

SHINE-OPA: The maximum number of outer iterations K = 50, the maximum number of inner
iterations T = 1000, the inner stopping criterion ∥∇yf(xk, yk+1)∥ ≤ 1/(100k), the inner step size
is determined using strong Wolfe line search, the number of extra updates in the BFGS algorithm is 5
(i.e., upper-level information is introduced in the BFGS iterations for every 5 steps), the initial matrix
H0 = I , and the outer step size is 100.

‡https://github.com/Cranial-XIX/BOME
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(a) Test accuracy vs Time (b) Test loss vs Time

Figure 7: Data hyper-cleaning on two datasets. (First row: MNIST; Second row: FashionMNIST. All
results are averaged over 10 random trials. The exclusion of BSG1’s performance in this experiment
is due to its ineffectiveness in addressing these data hyper-cleaning problems.)

qNBO (BFGS): The number of iterations Qk = 1, the inner step sizes β = 0.1, γ = 0.1, the outer
step size α = 100, the initial matrix H0 = I . For the MNIST dataset, the maximum number of outer
iterations K = 5000, the number of inner iterations T = 7, the warm-up iteration count P = 3;
otherwise, the maximum number of outer iterations K = 600, the number of inner iterations T = 47,
and the warm-up iteration count P = 3.

qNBO (SR1): The number of inner iterations T = 17, the warm-up iteration count P = 3, the
number of iterations Qk = 3, the inner iteration step sizes β = 0.1, γ = 0.1, the outer iteration
step size α = 100, the initial matrix H0 = 0.01I . In addition, the inner iteration will terminate
early if ∥∇yf(xk, yk+1)∥ ≤ 0.1. For the MNIST dataset, the maximum number of outer iterations
K = 5000; otherwise, the maximum number of outer iterations K = 2000.

AID-BIO/AMIGO-CG: The maximum number of outer iterations is K = 1000, the number of
inner iterations is T = 1, the CG iteration steps P = 1, inner step sizes β = 0.01 and outer step size
α = 10.

AMIGO: The maximum number of outer iterations is K = 1000, the batch size is 200, the number
of inner iterations is T = 1, inner step sizes β = 0.01 and outer step size α = 100.

AID-TN: The maximum number of outer iterations is K = 1000, the number of inner iterations is
T = 1, the TN iteration steps P = 1, inner step sizes β = 0.01 and outer step size α = 30.
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PZOBO: The maximum number of outer iterations is K = 5000, the number of inner iterations
is Q = N = 10, the parameter µ = 0.01, the inner step size is α = 0.01 and the outer step size is
β = 10.

C.4 META-LEARNING

In this subsection, we consider the few-shot meta-learning, which can be described as:

min
x

1

m

m∑
i=1

LDi
(x, y∗i (x)) s.t. y∗(x) = argmin

y

1

m

m∑
i=1

LSi
(x, yi),

where LDi
(x, y∗i ) = 1

|Di|
∑

ξ∈Di
L(x, y∗i ; ξ) is the validation loss function and LSi

(x, yi) =
1

|Si|
∑

ξ∈Si
(L(x, yi; ξ) +R(yi)) is the training loss with the classification loss L and the strongly-

convex regularizerR(yi). In the experiment, L is the cross-entropy function andR is the ℓ2 norm.
In our experimental setting, the task-specific parameters y denote the weights of the last linear layer
of a neural work and x are the parameters of a 4-layer convolutional neural networks (CNN4).

The few-shot meta-learning has m tasks {Ti, i = 1, · · · ,m} sampled over a distribution PT . Each
task Ti has a loss function L(x, yi; ξ) with data sample ξ, the task-specific parameters yi and the
parameters x of an embedding model shared by all tasks.

Figure 8: 5way-5shot on FC100 datasets. Results are averaged over 5 runs, with all algorithms
starting from the same initial point with a test accuracy of 20%. For clarity, graphs begin at the
second data point, omitting the initial one. We report that qNBO (BFGS) reaches peak test accuracies
within 800 seconds, after which performance declines, likely due to overfitting or other factors.

C.4.1 DATASETS

miniImageNet: The miniImageNet dataset (Vinyals et al., 2016), derived from ImageNet (Rus-
sakovsky et al., 2015), is a large-scale benchmark for few-shot learning. The dataset comprises
100 classes, each encompassing 600 images of size 84 × 84. Following Arnold et al. (2020), we
partition the classes into 64 classes for meta-training, 16 classes for meta-validation, and 20 classes
for meta-testing. In the experiment, CNN4 has four convolutional blocks, in which each convolu-
tional block contains a 3×3 convolution (padding=1), ReLU activation, 2×2 max pooling and batch
normalization. Each convolutional layer has 32 filters.

FC100: The FC100 dataset (Oreshkin et al., 2018), generated from Krizhevsky & Hinton (2009),
consists of 100 classes with each class containing 600 images of size 32. Following Oreshkin et al.
(2018), the classes are split into 60 classes for meta-training, 20 classes for meta-validation, and 20
classes for meta-testing. Each convolutional block of CNN4 comprises a 3×3 convolutional layer
(with padding set to 1 and a stride of 2), subsequent batch normalization, ReLU activation, and 2×2
max pooling. Each convolutional layer has 64 filters.

Omniglot: Comprising 1623 character classes derived from 50 diverse alphabets, the Omniglot
dataset (Lake et al., 2015) contains 20 samples within each class. The classes are divided into three
parts: 1100 classes for meta-training, 100 classes for meta-validation, and 423 classes for meta-testing.
The CNN4 network is identical to that used on the miniImageNet dataset but has 64 filters per layer.
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C.4.2 EXPERIMENTAL SETUP

The meta learning experiment is carried out using the code available at the website.§ At each meta-
iteration, a batch of 16 training tasks is sampled and the parameters are updated based on these tasks.
The max outer steps K is set to 6000 for both algorithms. The initial parameter y0 is selected as 0.

PZOBO: The parameters involved in the algorithm are the same as those in Sow et al. (2022b).

qNBO (BFGS): For all three datasets, the inner steps T is set to 20, the hypergradient updates Qk is
3, the step sizes β and γ are both specified as 0.1, and the Hessian matrix is initialized as H0 = 0.01I .
In addition, the inner iteration will terminate early if ∥A∥ + ∥b∥ ≤ tol, where A and b are the
components of the parameter y denoting the weights of the final linear layer in a neural work. The
specific values of tol and other parameters can be found in the code provided in the supplementary
materials.
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Figure 9: Ablation study on the iteration number T of qNBO (BFGS). (The first row illustrates the
test accuracy and test loss for MNIST, and the second row shows these values for FashionMNIST.)

C.5 ABLATION STUDY

C.5.1 TOY EXAMPLE

In this subsection, we conduct an ablation study to assess the impact of the parameters Qk on the
performance of the qNBO (BFGS) algorithm in the toy experiment. As illustrated in Figure 6, the
setting Qk = k + 1 outperforms the others. Furthermore, employing the warm start strategy for uk
(denoted as Qk = ws) enhances the performance of qNBO (BFGS), suggesting the potential benefits
of this strategy.

§https://github.com/sowmaster/esjacobians
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C.5.2 DATA HYPER-CLEANING

In this subsection, we conduct an ablation study to assess the impact of the parameters T and Qk

within the qNBO (BFGS) algorithm on its performance in the data hyper-cleaning experiment. As
illustrated in Figures 9 and 10, smaller values of T and Qk lead to improved performance in terms of
both accuracy and loss across the two datasets, thereby indicating the efficiency of qNBO (BFGS).
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Figure 10: Ablation study on the iteration number Q of qNBO (BFGS). (The first row shows the test
accuracy and test loss for the MNIST dataset, and the second row shows the same metrics for the
FashionMNIST dataset.)

D PROOF OF THE RESULTS IN SECTION 3.2

D.1 RESULTS OF QUASI-NEWTON METHOD

In this subsection, we first summarize the convergence properties of BFGS method for solving the
problem:

min
y∈Rn

g(y). (13)

Besides, to derive the upper bound of the hypergradient estimation error, we review some conclusions
of BFGS update presented in Jin & Mokhtari (2023); Rodomanov & Nesterov (2022; 2021b).

D.1.1 CONVERGENCE RESULTS OF BFGS METHOD

Assumption D.1. Assume that g has the following properties:

(i) g(y) is strongly convex w.r.t. y with parameter µ > 0, i.e., µI ⪯ ∇2g(y). Moreover,
∇g(y) is Lipschitz continuous w.r.t. y with parameter L > 0 (i.e.,∇2g(y) ⪯ LI ).

(ii) The Hessian∇2g(y) satisfies:

∇2g(y1)−∇2g(y2) ⪯M∥y1 − y2∥z∇2g(w),∀y1, y2, z, w ∈ Rn,
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where ∥y∥z := ⟨∇2g(z)y, y⟩1/2 and M > 0.
Lemma D.2. (Rodomanov & Nesterov (2021b), Global convergence) If the function g has the
following quadratic form:

g(y) =
1

2
yTAy − yTx, (14)

where µI ⪯ A ⪯ LI such that Assumption D.1 holds. If the BFGS method is used to solve the
problem (13), and if H0 = LI and the number of iterations i ≥ 4n ln L

µ , then for all i ≥ 4n ln L
µ , the

following inequality holds:

∥yi − y∗∥ ≤ 2κ3/2(
tb
i
)

i
2 ∥y0 − y∗∥, (15)

with κ = L
µ and tb = 4nlnL

µ .

Lemma D.3. (Rodomanov & Nesterov (2021b), local convergence) Suppose that Assumption D.1 on
g holds. If H0 = LI and the initial point y0 satisfies:

∥y0 − y∗∥ ≤ K1,K1 =
2ln 3

2

√
L

3
2

3
2Mµ

max{ µ
2L
,

1

K0 + 9
}, (16)

where K0 = 8nln 2L
µ and i ≥ K0, then for all i ≥ K0, the iterate generated by the BFGS algorithm

has the following superlinear convergence rate:,

∥yi − y∗∥ ≤ 2κ3/2(
tc
i
)

i
2 ∥y0 − y∗∥, (17)

with tc = 9
8K0 and κ = L

µ .

Lemma D.4. (Theorem 3 of Jin & Mokhtari (2023)) Suppose that Assumption D.1 on g holds. If the
initial point y0 and the initial Hessian approximation matrix B0 (with H0 = B−1

0 ) satisfy:

∥∇2g(y∗)1/2(y0 − y∗)∥ ≤
ϵ

6
,

∥∇2g(y∗)−1/2
(
B0 −∇2g(y∗)

)
∇2g(y∗)−1/2∥F ≤ δ,

(18)

where ϵ, δ ∈ (0, 12 ), ρ ∈ (0, 1),

(3 + ϵ)ϵ

(1− ϵ)(1− ρ)
≤ δ, and ϵ

3
+ 2δ ≤ (1− 2δ)ρ,

then the iterate generated by the BFGS algorithm has the following superlinear convergence rate:

∥yi − y∗∥ ≤

√
L

µ

(C1q
√
i+ C2

i

)i∥y0 − y∗∥, (19)

where C1 = 2
√
2δ(1 + ρ)(1 + ϵ

3 ), C2 =
(1+ρ)(1+ ϵ

3 )ϵ

3(1−ρ) and q =
√

1+2δ
1−2δ .

To be specific, the superlinear convergence rate of BFGS algorithm can also be expressed in the
following alternative form.
Lemma D.5. (Corollary 4 of Jin & Mokhtari (2023)) Suppose that Assumption D.1 on g holds. If
the initial point y0 and the initial BFGS matrix B0 satisfy:

∥∇2g(y∗)1/2(y0 − y∗)∥ ≤
1

300
,

∥∇2g(y∗)−1/2
(
B0 −∇2g(y∗)

)
∇2g(y∗)−1/2∥F ≤

1

7
,

(20)

then the iterate solved by the BFGS algorithm exhibits the following convergence rate:

∥yi − y∗∥ ≤

√
L

µ

(1
i

) i
2 ∥y0 − y∗∥. (21)
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D.1.2 PROPERTIES OF THE BFGS UPDATES

Lemma D.6. If the function g in the problem (13) has the following quadratic form:

g(y) =
1

2
yTAy − yTx, (22)

with µI ⪯ A ⪯ LI , then the BFGS matrix Bi satisfies:

k−1∑
i=0

(Bisi −Asi)TA−1(Bisi −Asi)
sTi Bisi

≤ nL

µ
. (23)

Proof. Define σi := σ(A,Bi) = ⟨A−1, Bi −A⟩=Tr(A−1(Bi −A)) ≥ 0, then

σ(A,Bi)− σ(A,Bi+1) = ⟨A−1, Bi −Bi+1⟩

=
⟨BiA

−1Bisi, si⟩
⟨Bisi, si⟩

− 1

=

〈
Bi

(
A−1 −B−1

i

)
Bisi, si

〉
⟨Bisi, si⟩

≥
〈
(Bi −A)A−1(Bi −A)si, si

〉
⟨Bisi, si⟩

,

(24)

where the last inequality follows from the fact that

(Bi −A)A−1(Bi −A) = BiA
−1Bi − 2Bi +A

A⪯Bi

⪯ BiA
−1Bi −Bi = Bi(A

−1 −B−1
i )Bi.

Thus, it is derived that

σi − σi+1 ≥
〈
(Bi −A)A−1(Bi −A)si, si

〉
⟨Bisi, si⟩

, ∀0 ≤ i ≤ k − 1.

Finally, summing the above inequality over i yields:

k−1∑
i=0

〈
(Bi −A)A−1(Bi −A)si, si

〉
⟨Bisi, si⟩

≤ σ0 − σq≤σ0 = σ(A,LI)=⟨A−1, LI −A⟩

≤
〈
A−1,

L

µ
A−A

〉
=n

(
L

µ
− 1

)
≤nL
µ
.

Definition D.7. Define

ψ(A,G) ≜ ⟨A−1, G−A⟩ − lnDet(A−1G), (25)

where Det denotes the determinant of the matrix.
Definition D.8. Define

θ(A,B, u) :=

[
⟨(B −A)A−1(B −A)u, u⟩

⟨BA−1Bu, u⟩

]1/2
,

and let ϑ : (−1,+∞)→ R be the univarite function:

ϑ(t) := t− ln(1 + t) ≥ 0.

Remark D.9. On the interval [0,+∞), ϑ(t) satisfies:

t2

2(1 + t)
≤ ϑ(t) ≤ t2

2 + t
. (26)
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Lemma D.10. (Rodomanov & Nesterov (2021b), Lemma 5.2 ) Define Ji :=
∫ 1

0
∇2g(yi + tsi) dt

and yi+1 = yi + si. Then, Jisi = ∇g(yi+1)−∇g(yi). If B0 = LI , then ∀i ≥ 0, the BFGS matrix
Bi satisfies:

1

ξi
∇2g(yi) ⪯ Bi ⪯ ξi

L

µ
∇2g(yi), (27)

1

ξi+1
Ji ⪯ Bi ⪯ ξi+1

L

µ
Ji, (28)

where ri := ∥si∥yi
, ξi := eM

∑i−1
j=0 rj (≥ 1) and the strongly self-concordant constant M of g.

Lemma D.11. When B0 = LI , the BFGS matrix Bi satisfies (27) and (28). If ξ̄ = max
i=0,··· ,k−1

ξi+1 ≤
2 in (28), then the following inequality holds:

ξ̃

k−1∑
i=0

θ2i ≤ n
(
L

µ
− 1

)
+

k−1∑
i=0

∆i, (29)

where ξ̃ = 1

2(ξ̄2+ξ̄)
, θi := θ(Ji, Bi, ui), ψi := ψ(Ji, Bi), ψ̃i+1 := ψ(Ji, Bi+1), and ∆i :=

ψi+1 − ψ̃i+1.

Proof. Note that

1

ξi+1
Ji ⪯ Bi ⪯

ξi+1L

µ
Ji. (30)

From Lemma 2.4 of Rodomanov & Nesterov (2022), it can be further deduced that:

ψi − ψ̃i+1 ≥ ϑ
(

1

ξi+1
θi

)
. (31)

Since ξ̄ = max
i=0,··· ,k−1

ξi+1 ≤ 2, it follows from the definition of θi that:

θ2i =
⟨(Bi − Ji)J−1

i (Bi − Ji)ui, ui⟩
⟨BiJ

−1
i Biui, ui⟩

= 1− ⟨(2Bi − Ji)ui, ui⟩
⟨BiJ

−1
i Biui, ui⟩

(30)

≤ 1. (32)

Then, it is derived that:

ϑ

(
1

ξi+1
θi

)
(26)

≥
1

ξ2i+1
θ2i

2
(
1 + 1

ξi+1
θi

) ≥ 1
ξ2i+1

2
(
1 + 1

ξi+1

)θ2i =
1

2
(
ξ2i+1 + ξi+1

)θ2i . (33)

Thus, it holds that:

ξ̃θ2i ≤ ψi − ψ̃i+1 = ψi − ψi+1 +∆i, ∀i ∈ {0, . . . , k − 1}, (34)

where ξ̃ = 1

2(ξ̄2+ξ̄)
and

∆i := ψi+1 − ψ̃i+1 = ⟨J−1
i+1 − J

−1
i , Bi+1⟩+ lnDet(J−1

i , Ji+1). (35)
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By summing equation (34) over i and given that ψk ≥ 0, it follows that:

ξ̃

k−1∑
i=0

θ2i ≤ ψ0 − ψk +

k−1∑
i=0

∆i ≤ ψ0 +

k−1∑
i=0

∆i

= ψ(J0, LI) +

k−1∑
i=0

∆i

= ⟨J−1
0 , LI − J0⟩ − lnDet(J−1

0 , LI) +

k−1∑
i=0

∆i

≤ ⟨J−1
0 , LI − J0⟩+

k−1∑
i=0

∆i

≤ ⟨J−1
0 ,

L

µ
J0 − J0⟩+

k−1∑
i=0

∆i

= n

(
L

µ
− 1

)
+

k−1∑
i=0

∆i.

(36)

Notations: In step 1 of Algorithm 1, y0k = yk establishes the initial value of y at the start of the
k-th iteration. After P warm-up iterations, denoted as yk,0 = yPk , the term yk,T refers to the state of
y following T further iterations with xk fixed. In the second step of Algorithm 1, uk,Qk

represents
the state of u after Qk iterations, with both xk and yk+1 fixed.

D.2 PROOF SKETCH OF THEOREM 3.7

The proofs of Theorem 3.4 and 3.7 encompasses three critical steps: first, it splits the hypergradient
approximation error into the T-step error of estimating the lower level solution ∥yk,T − y∗k∥2 and the
Qk-step error ∥uk,Qk

− u∗k∥2; second, it establishes upper bounds for these errors based on previous
iteration errors; finally, it combines the above results to substantiate the theorem’s convergence. Since
the proofs of Theorem 3.4 and 3.7 are similar, we only elaborate on the proof sketch of Theorem 3.7
below.

Step 1: Decomposing the hypergradient estimation error.

First, the hypergradient estimation error at the kth iteration can be bounded by:

∥∇̃Φ(xk)−∇Φ(xk)∥2 ≤ 3
(
L2
Fx

+
L2
fxy
C2

Fy

µ2

)
∥yk,T − y∗k∥2 + 3M2

fxy
∥uk,Qk

− u∗k∥2. (37)

Step 2: Upper-bounding the error.

The T-step error of estimating the lower level solution ∥yk,T − y∗k∥2 is bounded by:

∥y∗k − yk,T ∥2 ≤ τ∥y∗k−1 − yk−1,T ∥2 + 2(1 +
1

ε
)κ(

1

T
)T (1− βµ)PL2

yα
2∥∇Φ(xk−1)∥2

+ 12(1 +
1

ε
)κ(

1

T
)T (1− βµ)PL2

yα
2
nLM2

fxy
C2

Fy

µ3ξ̃Qk−1

,

(38)

where τ = κ( 1
T )

T (1−βµ)P
(
(1+ε)+6(1+ 1

ε )L
2
yα

2(L2
Fx

+
L2

fxy
C2

Fy

µ2 +
4M2

fxy
L2

Fy

µ2 +
4M2

fxy
C2

Fy
L2

fyy

µ4 )
)
.

The Qk-step error ∥uk,Qk
− u∗k∥ is bounded by:

∥uk,Qk
− u∗k∥2 ≤ 2

nLC2
Fy

ξ̃µ3Qk

+ 4

(
L2
Fy

µ2
+
C2

Fy
L2
fyy

µ4

)
∥y∗k − yk,T ∥2. (39)
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Step 3: Combining Step 1 and Step 2.

Combining (37), (38) and (39), the upper bound of the hypergradient estimation error is derived as:

∥∇̃Φ(xk)−∇Φ(xk)∥2 ≤ δ0τk + ωα2
k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2

+ 6ωα2
nLM2

fxy
C2

Fy

µ3ξ̃

k−1∑
j=0

τ j
1

Qk−1−j
+ 6

nLM2
fxy
C2

Fy

µ3ξ̃Qk

,

with

δ0 = 3κ(
1

T
)T (1− βµ)P (L2

Fx
+
L2
fxy
C2

Fy

µ2
+

4M2
fxy
L2
Fy

µ2
+

4M2
fxy
C2

Fy
L2
fyy

µ4
)∥y∗0 − y0∥2

and

ω = 6(L2
Fx

+
L2
fxy
C2

Fy

µ2
+

4M2
fxy
L2
Fy

µ2
+

4M2
fxy
C2

Fy
L2
fyy

µ4
)(1 +

1

ε
)κ(

1

T
)T (1− βµ)PL2

y.

Due to the LΦ-smoothness of Φ, the final convergence result can be proved.

To prove Theorems 3.4 and 3.7, we first present the following lemma.
Lemma D.12. (Lemma 2.2 of Ghadimi & Wang (2018)) Under Assumptions 3.1 and 3.2, we have:

• For all x, y,
∥∇̄F (x; y)− ∇̄F (x; y∗(x))∥ ≤ C∥y∗(x)− y∥,

where ∇̄F (x; y) = ∇xF (x, y)−[∇2
xyf(x, y)]

T [∇2
yyf(x, y)]

−1∇yF (x, y) andC = LFx+
LFyMfxy

µ + CFy

(
Lfxy

µ +
LfyyMfxy

µ2

)
.

• y∗(x) is Ly-Lipschitz continuous in x:
∥y∗(x1)− y∗(x2)∥ ≤ Ly∥x1 − x2∥,

where Ly =
Mfxy

µ .

• ∇Φ is LΦ-Lipschitz continuous in x:
∥∇Φ(x1)−∇Φ(x2)∥ ≤ LΦ∥x1 − x2∥,

where LΦ =
(L̄Fy+C)Mfxy

µ + LFx + CFy

(
L̄fxyCFy

µ +
L̄fyyMfxy

µ2

)
.

D.3 PROOF OF THEOREM 3.4

Lemma D.13. Suppose that Assumptions 3.1 and 3.2 hold. The error between the approximate
hypergradient ∇̃Φ(xk) and the true hypergradient in Algorithm 1 can be bounded by:

∥∇̃Φ(xk)−∇Φ(xk)∥2 ≤ 3
(
L2
Fx

+
L2
fxy
C2

Fy

µ2

)
∥yk,T − y∗k∥2 + 3M2

fxy
∥uk,Qk

− u∗k∥2. (40)

Proof. Let u∗k = [∇2
yyf(xk, y

∗
k)]

−1∇yF (xk, y
∗
k), then

∥∇̃Φ(xk)−∇Φ(xk)∥2

=
∥∥∇xF (xk, yk,T )− [∇2

xyf(xk, yk,T )]
Tuk,Qk

−
(
∇xF (xk, y

∗
k)− [∇2

xyf(xk, y
∗
k)]

Tu∗k
)∥∥2

=∥∇xF (xk, yk,T )−∇xF (xk, y
∗
k)− ([∇2

xyf(xk, yk,T )]
Tuk,Qk

− [∇2
xyf(xk, y

∗
k)]

Tu∗k)∥2

=∥∇xF (xk, yk,T )−∇xF (xk, y
∗
k)

−
(
[∇2

xyf(xk, yk,T )]
Tuk,Qk

− [∇2
xyf(xk, yk,T )]

Tu∗k − ([∇2
xyf(xk, y

∗
k)]

Tu∗k − [∇2
xyf(xk, yk,T )]

Tu∗k)
)
∥2

=∥∇xF (xk, yk,T )−∇xF (xk, y
∗
k)

−[∇2
xyf(xk, yk,T )]

T (uk,Qk
− u∗k)−

(
[∇2

xyf(xk, yk,T )]
T − [∇2

xyf(xk, y
∗
k)]

T
)
u∗k∥2

≤3∥∇xF (xk, yk,T )−∇xF (xk, y
∗
k)∥2 + 3∥∇2

xyf(xk, yk,T )∥2∥uk,Qk
− u∗k∥2

+ 3∥∇2
xyf(xk, yk,T )−∇2

xyf(xk, y
∗
k)∥2∥u∗k∥2.
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Based on Assumptions 3.1 and 3.2, it can be derived that:

∥∇̃Φ(xk)−∇Φ(xk)∥2

≤3L2
Fx
∥yk,T − y∗k∥2 + 3M2

fxy
∥uk,Qk

− u∗k∥2 + 3
L2
fxy
C2

Fy

µ2
∥yk,T − y∗k∥2

=3
(
L2
Fx

+
L2
fxy
C2

Fy

µ2

)
∥yk,T − y∗k∥2 + 3M2

fxy
∥uk,Qk

− u∗k∥2.

Lemma D.14. When the qNBO algorithm (Algorithm 1) is applied to solve the problem (1), if the LL
objective function f takes the quadratic form (22) and H0 = (1/L)I , it holds that:

Qk∑
i=1

∥A−1∇yF (xk, yk+1)− uk,i∥ ≤
CFy

µ

√
nLQk

µ
,

with Qk > 1.

Proof. From Lemma D.6, it follows that:

Qk∑
i=1

(A−1∇yF (xk, yk+1)− uk,i)TA(A−1∇yF (xk, yk+1)− uk,i)
uTk,iBk,iuk,i

=

Qk∑
i=1

(A−1∇yF (xk, yk+1)− uk,i)TA(A−1∇yF (xk, yk+1)− uk,i)
∇yF (xk, yk+1)TB

−1
k,i∇yF (xk, yk+1)

≤nL
µ
,

with Bk,i = H−1
k,i .

Since µI ⪯ A ⪯ LI and A ⪯ Bk,i ⪯ L
µA, we have:

Qk∑
i=1

µ∥A−1∇yF (xk, yk+1)− uk,i∥2
1
µ∥∇yF (xk, yk+1)∥2

≤ nL

µ
.

Since ∥∇yF (xk, yk+1)∥ ≤ CFy
, it can be further derived that:

Qk∑
i=1

∥A−1∇yF (xk, yk+1)− uk,i∥2 ≤
nLC2

Fy

µ3
. (41)

Finally, by applying the Cauchy-Schwarz inequality, we can deduce that

Qk∑
i=1

∥A−1∇yF (xk, yk+1)− uk,i∥ ≤
CFy

µ

√
nLQk

µ
. (42)

Lemma D.15. Choose the parameters β and P such that (1−βµ)P ∥yk − y∗k∥ ≤ 1
300

√
µ , and ensure

H0 satisfies: ∥∇2
yyf(xk, y

∗(xk))
−1/2

(
H−1

0 − ∇2
yyf(xk, y

∗(xk))
)
∇2

yyf(xk, y
∗(xk))

−1/2∥F ≤ 1
7 .

Then, under Assumptions 3.1 and 3.2, it holds that

∥y∗k−yk,T ∥2 ≤ (1+ε)κ(
1

T
)T (1−βµ)P ∥yk−1,T−y∗k−1∥2+(1+

1

ε
)κ(

1

T
)T (1−βµ)PL2

y∥xk−xk−1∥2,
(43)

with a positive constant ε.
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Proof. Under the setting of parameters β, P and H0, the condition (20) is satisfied. Furthermore,
based on Lemma D.5 and the fact that yk,0 = yPk and yk = y0k, it holds that:

∥yk,T − y∗k∥2 ≤ κ(
1

T
)T ∥yk,0 − y∗k∥2 ≤ κ(

1

T
)T (1− βµ)P ∥yk − y∗k∥2,

where κ = L
µ . Finally, since yk = yk−1,T , using Young’s inequality yields:

∥yk,T − y∗k∥2 ≤ (1 + ε)κ(
1

T
)T (1− βµ)P ∥yk−1,T − y∗k−1∥2 + (1 +

1

ε
)κ(

1

T
)T (1− βµ)P ∥y∗k−1 − y∗k∥2

≤ (1 + ε)κ(
1

T
)T (1− βµ)P ∥yk−1,T − y∗k−1∥2 + (1 +

1

ε
)κ(

1

T
)T (1− βµ)PL2

y∥xk−1 − xk∥2,

where ε is a positive constant and the last inequality follows from Lemma 2.2 in Ghadimi & Wang
(2018).

Lemma D.16. If the LL function f takes the quadratic form and T ≥ tb, under Assumptions 3.1 and
3.2, it is derived that

∥y∗k − yk,T ∥2 ≤ (1 + ε)c2tκ
3(

1

T
)T ∥yk−1,T − y∗k−1∥2 + (1+

1

ε
)c2tκ

3(
1

T
)TL2

y∥xk − xk−1∥2, (44)

with tb = 4nlnL
µ and a positive constant ε.

Proof. From Lemma D.2, if T ≥ tb, it holds that:

∥yk,T − y∗k∥2 ≤ c2tκ3(
1

T
)T ∥yk,0 − y∗k∥2,

where ct = 2t
T
2

b . Furthermore, since yk,0 = yk−1,T , using Young’s inequality yields:

∥yk,T − y∗k∥2 ≤ (1 + ε)c2tκ
3(

1

T
)T ∥yk−1,T − y∗k−1∥2 + (1 +

1

ε
)c2tκ

3(
1

T
)T ∥y∗k−1 − y∗k∥2

≤ (1 + ε)c2tκ
3(

1

T
)T ∥yk−1,T − y∗k−1∥2 + (1 +

1

ε
)c2tκ

3(
1

T
)TL2

y∥xk−1 − xk∥2,

where ε is a positive constant and the last inequality follows from Lemma 2.2 in Ghadimi & Wang
(2018).

Lemma D.17. Choose the parameters β, P such that (1− βµ)P ∥yk − y∗k∥ ≤ K1, and H0 = LI ,
under Assumptions 3.1 and 3.2, it is derived that

∥y∗k−yk,T ∥2 ≤ (1+ε)c2l κ
3(1−βµ)P ( 1

T
)T ∥yk−1,T−y∗k−1∥2+(1+

1

ε
)c2l κ

3(1−βµ)P ( 1
T
)TL2

y∥xk−1−xk∥2,
(45)

with a positive constant ε, T ≥ K0, K0 := 8nln 2L
µ , cl = 2t

T
2
c .

Proof. From Lemma D.3, if T ≥ K0, it holds that:

∥yk,T − y∗k∥2 ≤ c2l κ3(
1

T
)T ∥yk,0 − y∗k∥2 ≤ c2l κ3(

1

T
)T (1− βµ)P ∥yk − y∗k∥2,

where cl = 2t
T
2
c . Furthermore, using Young’s inequality yields:

∥yk,T − y∗k∥2 ≤ (1 + ε)c2l κ
3(1− βµ)P ( 1

T
)T ∥yk−1,T − y∗k−1∥2 + (1 +

1

ε
)c2l κ

3(1− βµ)P ( 1
T
)T ∥y∗k−1 − y∗k∥2

≤ (1 + ε)c2l κ
3(1− βµ)P ( 1

T
)T ∥yk−1,T − y∗k−1∥2 + (1 +

1

ε
)c2l κ

3(1− βµ)P ( 1
T
)TL2

y∥xk−1 − xk∥2,

where ε is a positive constant and the last inequality follows from Lemma 2.2 in Ghadimi & Wang
(2018).
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Lemma D.18. (Error of uk,Qk
) Suppose that the lower level function f has the quadratic form and

Assumptions 3.1 and 3.2 hold. If uk,Qk
= ūk and

ūk := argmin
i
∥A−1∇yF (xk, yk+1)− uk,i∥, (46)

then for Qk > 1, the following inequality holds:

∥uk,Qk
− u∗k∥2 ≤ 2

nLC2
Fy

µ3Qk
+ 2

L2
Fy

µ2
∥y∗k − yk,T ∥2. (47)

Proof. From Lemma D.14, we have:

∥A−1∇yF (xk, yk+1)− ūk∥2 ≤
nLC2

Fy

µ3Qk
. (48)

Moreover, under Assumption 3.1 and given that yk+1 = yk,T , it holds that:

∥uk,Qk
− u∗k∥2 ≤ 2∥ūk −A−1∇yF (xk, yk+1)∥2 + 2∥A−1∇yF (xk, yk+1)−A−1∇yF (xk, y

∗
k)∥2

≤ 2
nLC2

Fy

µ3Qk
+ 2

L2
Fy

µ2
∥y∗k − yk,T ∥2.

Theorem D.19. (Restatement of Theorem 3.4 with full parameter specifications) Suppose that the
LL function f in (1) takes the quadratic form:

f(x, y) =
1

2
yTAy − yTx, (49)

where µI ⪯ A ⪯ LI such that Assumption 3.2 holds. Choose the stepsize α > 0, the positive
constant ε > 0, H0 = LI and T ≥ tb (tb = 4nlnκ) such that

τ < 1 and αLΦ + ωα2

(
1

2
+ αLΦ

)
1

1− τ
≤ 1

4
,

where τ = c2tκ
3( 1

T )
T
(
(1 + ε) + 6(1 + 1

ε )L
2
yα

2(L2
Fx

+
L2

fxy
C2

Fy

µ2 +
2M2

fxy
L2

Fy

µ2 )
)
, ω = 6(L2

Fx
+

L2
fxy

C2
Fy

µ2 +
2M2

fxy
L2

Fy

µ2 )(1 + 1
ε )c

2
tκ

3( 1
T )

TL2
y, κ = L

µ and ct = 2t
T
2

b . Then, under Assumptions 3.1
and 3.3 , the iterate generated by the qNBO (BFGS) algorithm (Algorithm 1) has the following
convergence rate:

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤
4(Φ(x0)− Φ(x∗))

αK
+

3δ0
K(1− τ)

+
1

K

K−1∑
k=0

18nLM2
fxy
C2

Fy

µ3Qk
, (50)

with the initial error δ0 = 3c2tκ
3( 1

T )
T (L2

Fx
+

L2
fxy

C2
Fy

µ2 +
2M2

fxy
L2

Fy

µ2 )∥y∗0 − y0∥2. Specifically, if
Qk = k + 1, we have:

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤
4(Φ(x0)− infx Φ(x))

αK
+

3δ0
K(1− τ)

+
18nLM2

fxy
C2

Fy
lnK

µ3K
. (51)

Proof. Substituting the inequality (47) into (40) yields:

∥∇̃Φ(xk)−∇Φ(xk)∥2 ≤ 3
(
L2
Fx

+
L2
fxy
C2

Fy

µ2

)
∥yk,T − y∗k∥2

+ 3M2
fxy

(
2
nLC2

Fy

µ3Qk
+ 2

L2
Fy

µ2
∥y∗k − yk,T ∥2

)
≤
(
3L2

Fx
+

3L2
fxy
C2

Fy

µ2
+

6M2
fxy
L2
Fy

µ2

)
∥y∗k − yk,T ∥2

+ 6
nLM2

fxy
C2

Fy

µ3Qk
.

(52)
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Then, by plugging the inequality (52) into (44), we obtain that:

∥y∗k − yk,T ∥2 ≤ (1 + ε)c2tκ
3(

1

T
)T ∥yk−1,T − y∗k−1∥2 + 2(1 +

1

ε
)c2tκ

3(
1

T
)TL2

yα
2∥∇Φ(xk−1)∥2

+ 2(1 +
1

ε
)c2tκ

3(
1

T
)TL2

yα
2∥∇̃Φ(xk−1)−∇Φ(xk−1)∥2

≤ τ∥y∗k−1 − yk−1,T ∥2 + 2(1 +
1

ε
)c2tκ

3(
1

T
)TL2

yα
2∥∇Φ(xk−1)∥2

+ 12(1 +
1

ε
)c2tκ

3(
1

T
)TL2

yα
2
nLM2

fxy
C2

Fy

µ3Qk−1
,

(53)

where τ = c2tκ
3( 1

T )
T
(
(1 + ε) + 6(1 + 1

ε )L
2
yα

2(L2
Fx

+
L2

fxy
C2

Fy

µ2 +
2M2

fxy
L2

Fy

µ2 )
)
.

By telescoping (53) over k, it follows that:

∥y∗k − yk,T ∥2 ≤ τk∥y∗0 − y0,T ∥2 + 2(1 +
1

ε
)c2tκ

3(
1

T
)TL2

yα
2
k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2

+ 12(1 +
1

ε
)c2tκ

3(
1

T
)TL2

yα
2
nLM2

fxy
C2

Fy

µ3

k−1∑
j=0

τ j
1

Qk−1−j
.

Combining the inequality (52) and ∥y∗0 − y0,T ∥2 ≤ c2tκ
3( 1

T )
T ∥y∗0 − y0,0∥2, we can further derive

that

∥∇̃Φ(xk)−∇Φ(xk)∥2 ≤ δ0τk + ωα2
k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2

+ 6ωα2
nLM2

fxy
C2

Fy

µ3

k−1∑
j=0

τ j
1

Qk−1−j
+ 6

nLM2
fxy
C2

Fy

µ3Qk
,

(54)

with δ0 = 3c2tκ
3( 1

T )
T (L2

Fx
+

L2
fxy

C2
Fy

µ2 +
2M2

fxy
L2

Fy

µ2 )∥y∗0 − y0,0∥2 and ω = 6(L2
Fx

+
L2

fxy
C2

Fy

µ2 +
2M2

fxy
L2

Fy

µ2 )(1 + 1
ε )c

2
tκ

3( 1
T )

TL2
y .

Since∇Φ(·) is LΦ−lipschitz continuous (Lemma 2.2 in Ghadimi & Wang (2018)), we have:

Φ(xk+1) ≤ Φ(xk) + ⟨∇Φ(xk), xk+1 − xk⟩+
LΦ

2
∥xk+1 − xk∥2

≤ Φ(xk)− α⟨∇Φ(xk), ∇̃Φ(xk)−∇Φ(xk)⟩ − α∥∇Φ(xk)∥2 + α2LΦ∥∇Φ(xk)∥2

+ α2LΦ∥∇Φ(xk)− ∇̃Φ(xk)∥2

≤ Φ(xk)−
(α
2
− α2LΦ

)
∥∇Φ(xk)∥2 +

(α
2
+ α2LΦ

)
∥∇Φ(xk)− ∇̃Φ(xk)∥2.

(55)

Using the inequality (54), it holds that:

Φ(xk+1) ≤Φ(xk)−
(α
2
− α2LΦ

)
∥∇Φ(xk)∥2 +

(α
2
+ α2LΦ

)
∥∇Φ(xk)− ∇̃Φ(xk)∥2

≤Φ(xk)−
(α
2
− α2LΦ

)
∥∇Φ(xk)∥2 +

(α
2
+ α2LΦ

)
δ0τ

k

+ ωα2
(α
2
+ α2LΦ

) k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2 +
(α
2
+ α2LΦ

) 6nLM2
fxy
C2

Fy

µ3Qk

+ 6ω
(α
2
+ α2LΦ

)
α2
nLM2

fxy
C2

Fy

µ3

k−1∑
j=0

τ j
1

Qk−1−j
.

(56)

32



Published as a conference paper at ICLR 2025

Finally, summing the inequality (56) from k = 0 to k = K − 1 yields:(α
2
− α2LΦ

)K−1∑
k=0

∥∇Φ(xk)∥2 ≤Φ(x0)− Φ(xK) +
(α
2
+ α2LΦ

) δ0
1− τ

+ ωα2
(α
2
+ α2LΦ

)K−1∑
k=0

k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2

+ 6ω
(α
2
+ α2LΦ

)
α2
nLM2

fxy
C2

Fy

µ3

K−1∑
k=0

k−1∑
j=0

τ j
1

Qk−1−j

+

K−1∑
k=0

(α
2
+ α2LΦ

) 6nLM2
fxy
C2

Fy

µ3Qk
.

(57)

Furthermore, from the inequality
∑K−1

k=0

∑k−1
j=0 ajbk−1−j ≤

∑K−1
k=0 ak

∑K−1
j=0 bj , we obtain

K−1∑
k=0

k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2 ≤
K−1∑
k=0

τk
K−1∑
k=0

∥∇Φ(xk)∥2 ≤
1

1− τ

K−1∑
k=0

∥∇Φ(xk)∥2,

K−1∑
k=0

k−1∑
j=0

τ j
1

Qk−1−j
≤

K−1∑
k=0

τk
K−1∑
k=0

1

Qk
≤ 1

1− τ

K−1∑
k=0

1

Qk
.

Thus, we can conclude that(
1

2
− αLΦ − ωα2

(
1

2
+ αLΦ

)
1

1− τ

)
1

K

K−1∑
k=0

∥∇Φ(xk)∥2

≤Φ(x0)− Φ(xK)

αK
+

(
1

2
+ αLΦ

)
δ0

K(1− τ)

+

(
1

2
+ αLΦ

)
1

K

K−1∑
k=0

6nLM2
fxy
C2

Fy

µ3Qk
+

6ω

1− τ

(
1

2
+ αLΦ

)
α2 1

K

K−1∑
k=0

nLM2
fxy
C2

Fy

µ3Qk
.

(58)

Moreover, if αLΦ + ωα2
(
1
2 + αLΦ

)
1

1−τ ≤
1
4 , then

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤
4(Φ(x0)− Φ(x∗))

αK
+

3δ0
K(1− τ)

+
1

K

K−1∑
k=0

18nLM2
fxy
C2

Fy

µ3Qk
, (59)

where Φ(x∗) = infx Φ(x). Finally, if Qk = k + 1, then (51) is established.

Next, we consider the case with warm-up steps and provide the corresponding theorem, which proves
to be similar to Theorem D.24, so a detailed proof is not provided.
Theorem D.20. (Warm-up for quadratic f ) Suppose that the LL function f in (1) takes the quadratic
form:

f(x, y) =
1

2
yTAy − yTx, (60)

where µI ⪯ A ⪯ LI such that Assumption 3.2 holds. Choose the stepsize β and warm-start iteration
steps P such that (1−βµ)P ∥yk−y∗k∥ ≤ 1

300
√
µ , and ensure the initial Hessian approximation matrix

H0 satisfies: ∥∇2
yyf(xk, y

∗(xk))
−1/2

(
H−1

0 − ∇2
yyf(xk, y

∗(xk))
)
∇2

yyf(xk, y
∗(xk))

−1/2∥F ≤ 1
7 .

Choose the stepsize α > 0 and the positive constant ε > 0 such that

τ < 1 and αLΦ + ωα2

(
1

2
+ αLΦ

)
1

1− τ
≤ 1

4
,
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where τ = κ( 1
T )

T (1 − βµ)P
(
(1 + ε) + 6(1 + 1

ε )L
2
yα

2(L2
Fx

+
L2

fxy
C2

Fy

µ2 +
2M2

fxy
L2

Fy

µ2 )
)
, ω =

6(L2
Fx

+
L2

fxy
C2

Fy

µ2 +
2M2

fxy
L2

Fy

µ2 )(1 + 1
ε )κ(

1
T )

T (1− βµ)PL2
y and κ = L

µ . Then, under Assumptions
3.1 and 3.3, the iterate generated by the qNBO (BFGS) algorithm (Algorithm 1) has the following
convergence rate:

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤
4(Φ(x0)− Φ(x∗))

αK
+

3δ0
K(1− τ)

+
1

K

K−1∑
k=0

18nLM2
fxy
C2

Fy

µ3Qk
, (61)

with the initial error δ0 = 3κ( 1
T )

T (1− βµ)P (L2
Fx

+
L2

fxy
C2

Fy

µ2 +
2M2

fxy
L2

Fy

µ2 )∥y∗0 − y0∥2.

D.4 PROOF OF THEOREM 3.7

Proposition D.21. (Example 4.1 of Rodomanov & Nesterov (2021a)) Suppose that ∀x, the LL
function f is µ-strongly convex w.r.t. y and its Hessian is Lfyy

-Lipschitz continuous w.r.t. y. Then f

is strongly self-concordant with constant M =
Lfyy

µ3/2 , i.e.,

∇2
yyf(x, y1)−∇2

yyf(x, y2) ⪯M∥y1 − y2∥z∇2
yyf(x,w),∀y1, y2, z, w ∈ Rn,

where ∥y∥z := ⟨∇2
yyf(x, z)y, y⟩1/2.

Proof. Using the Lipschitz continuity of the Hessian, we have

∇2
yyf(x, y1)−∇2

yyf(x, y2) ⪯ Lfyy
∥y1 − y2∥I

⪯
Lfyy

µ1/2
⟨∇2

yyf(x, z)(y1 − y2), y1 − y2⟩1/2I

=
Lfyy

µ1/2
∥y1 − y2∥zI ⪯

Lfyy

µ3/2
∥y1 − y2∥z∇2

yyf(x,w),

where the second and the last inequalities follow from the fact that µI ⪯ ∇2
yyf(x, y). This demon-

strates that f is strongly self-concordant with constant M =
Lfyy

µ3/2 .

Lemma D.22. If the Assumptions 3.1 and 3.2 hold, then uk,i generated in the step 2 of the Algorithm
1 satisfies:

Qk∑
i=1

∥∇2
yyf(xk, yk+1)

−1∇yF (xk, yk+1)− uk,i∥2 ≤
nLC2

Fy

ξ̃µ3
, (62)

where Qk > 1, ξ̃ = min
i=1,··· ,Qk

1

2(ξ2i+ξi)
and ξi = eM

∑i−1
j=0 ∥ζjuk,j∥yk+1 .

Proof. Note that in Algorithm 3:

Ji :=

∫ 1

0

∇2
yyf(xk, yk+1 + tsi) dt, Ji+1 :=

∫ 1

0

∇2
yyf(xk, yk+1 + tsi+1) dt,

with si = ζiHk,i∇yF (xk, yk+1).

When the step size ζi is chosen appropriately, based on the definition of Ji and the properties of f
as stated in Assumption 3.2, it can be concluded that Ji is nearly equal to Ji+1, i.e., ∆i ≈ 0, and
µI ⪯ Ji ⪯ LI . From Lemma D.11, it follows that

Qk∑
i=1

(J−1
i ∇yF (xk, yk+1)− uk,i)TJi(J−1

i ∇yF (xk, yk+1)− uk,i)
∇yF (xk, yk+1)TJ

−1
i ∇yF (xk, yk+1)

≤ nL

ξ̃µ
. (63)

Since µI ⪯ Ji ⪯ LI , we have
Qk∑
i=1

µ∥J−1
i ∇yF (xk, yk+1)− uk,i∥2

1
µ∥∇yF (xk, yk+1)∥2

≤ nL

ξ̃µ
. (64)
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Moreover, it follows from Assumption 3.1:
Qk∑
i=1

∥J−1
i ∇yF (xk, yk+1)− uk,i∥2 ≤

nLC2
Fy

ξ̃µ3
.

If the parameter M of function f or ζiuk,i is sufficiently small, Ji can be considered as an approxi-
mation of∇2

yyf(xk, yk+1). Therefore, θ(Ji, Bi, ui) can be used to characterize the approximation
between Hk,i and [∇2

yyf(xk, yk+1)]
−1 along the gradient direction∇yF (xk, yk+1), i.e.,

Qk∑
i=1

∥∇2
yyf(xk, yk+1)

−1∇yF (xk, yk+1)− uk,i∥2 ≤
nLC2

Fy

ξ̃µ3
, (65)

where ξ̃ = min
i=1,··· ,Qk

1
2(ξi2+ξi)

and ξi = eM
∑i−1

j=0 ∥ζjuk,j∥yk+1 .

Lemma D.23. Suppose that Assumption 3.2 holds. Note that uk+1 = uk,Qk
in the step 2 of Algorithm

1. If uk,Qk
= ūk with

ūk := argmin
i
∥∇2

yyf(xk, yk+1)
−1∇yF (xk, yk+1)− uk,i∥2, (66)

then

∥uk,Qk
− u∗k∥2 ≤ 2

nLC2
Fy

ξ̃µ3Qk

+ 4

(
L2
Fy

µ2
+
C2

Fy
L2
fyy

µ4

)
∥y∗k − yk,T ∥2,∀Qk > 1, (67)

where ξ̃ = min
i=1,··· ,Qk

1
2(ξi2+ξi)

and ξi = eM
∑i−1

j=0 ∥ζjuk,j∥yk+1 .

Proof. Combining Lemma D.22 and the definition of ūk yields:

∥∇2
yyf(xk, yk+1)

−1∇yF (xk, yk+1)− uk,Qk
∥2 ≤

nLC2
Fy

ξ̃µ3Qk

. (68)

Under Assumptions 3.1 and 3.2, since yk+1 = yk,T , it holds that

∥∇2
yyf(xk, yk+1)

−1∇yF (xk, yk+1)−∇2
yyf(xk, y

∗
k)

−1∇yF (xk, y
∗
k)∥2

≤2∥∇2
yyf(xk, yk+1)

−1∇yF (xk, yk+1)−∇2
yyf(xk, yk+1)

−1∇yF (xk, y
∗
k)∥2

+ 2∥∇2
yyf(xk, yk+1)

−1∇yF (xk, y
∗
k)−∇2

yyf(xk, y
∗
k)

−1∇yF (xk, y
∗
k)∥2

≤2
L2
Fy

µ2
∥y∗k − yk,T ∥2 + 2C2

Fy
∥∇2

yyf(xk, yk+1)
−1 −∇2

yyf(xk, y
∗
k)

−1∥2

≤2
L2
Fy

µ2
∥y∗k − yk,T ∥2

+ 2C2
Fy
∥∇2

yyf(xk, yk+1)
−1∥2∥∇2

yyf(xk, yk+1)−∇2
yyf(xk, y

∗
k)∥2∥∇2

yyf(xk, y
∗
k)

−1∥2

≤2
L2
Fy

µ2
∥y∗k − yk,T ∥2 + 2

C2
Fy
L2
fyy

µ4
∥y∗k − yk,T ∥2

=2

(
L2
Fy

µ2
+
C2

Fy
L2
fyy

µ4

)
∥y∗k − yk,T ∥2.

(69)

Finally, from Assumption 3.1 and the inequality (69), it is derived that

∥uk,Qk
− u∗k∥2 ≤2∥uk,Qk

−∇2
yyf(xk, yk+1)

−1∇yF (xk, yk+1)∥2

+ 2∥∇2
yyf(xk, yk+1)

−1∇yF (xk, yk+1)−∇2
yyf(xk, y

∗
k)

−1∇yF (xk, y
∗
k)∥2

≤ 2
nLC2

Fy

ξ̃µ3Qk

+ 4

(
L2
Fy

µ2
+
C2

Fy
L2
fyy

µ4

)
∥y∗k − yk,T ∥2.

(70)
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Theorem D.24. (Restatement of Theorem 3.7 with full parameter specifications) Suppose that
Assumptions 3.1, 3.2 and 3.3 hold. Choose the stepsize β and warm-up iteration steps P such that
(1 − βµ)P ∥yk − y∗k∥ ≤ 1

300
√
µ , and ensure the initial Hessian approximation matrix H0 satisfies:

∥∇2
yyf(xk, y

∗(xk))
−1/2

(
H−1

0 − ∇2
yyf(xk, y

∗(xk))
)
∇2

yyf(xk, y
∗(xk))

−1/2∥F ≤ 1
7 . Define τ =

κ( 1
T )

T (1 − βµ)P
(
(1 + ε) + 6(1 + 1

ε )L
2
yα

2(L2
Fx

+
L2

fxy
C2

Fy

µ2 +
4M2

fxy
L2

Fy

µ2 +
4M2

fxy
C2

Fy
L2

fyy

µ4 )
)

and

ω = 6(L2
Fx

+
L2

fxy
C2

Fy

µ2 +
4M2

fxy
L2

Fy

µ2 +
4M2

fxy
C2

Fy
L2

fyy

µ4 )(1 + 1
ε )κ(

1
T )

T (1 − βµ)PL2
y. Choose the

stepsize α > 0, the positive constant ε > 0 and iterate T > 0 such that

τ < 1 and αLΦ + ωα2

(
1

2
+ αLΦ

)
1

1− τ
≤ 1

4
.

Then, the solution xk generated by Algorithm 1 achieves the following convergence rate:

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤
4(Φ(x0)− infx Φ(x))

αK
+

3δ0
K(1− τ)

+
1

K

K−1∑
k=0

18nLM2
fxy
C2

Fy

µ3ξ̃Qk

, (71)

where δ0 = 3κ( 1
T )

T (1 − βµ)P (L2
Fx

+
L2

fxy
C2

Fy

µ2 +
4M2

fxy
L2

Fy

µ2 +
4M2

fxy
C2

Fy
L2

fyy

µ4 )∥y∗0 − y0∥2 is the
initial error. Specifically, if Qk = k + 1, we have:

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤
4(Φ(x0)− Φ(x∗))

αK
+

3δ0
K(1− τ)

+
18nLM2

fxy
C2

Fy
lnK

µ3ξ̃K
. (72)

Proof. Substituting the inequality (67) into (40) yields:

∥∇̃Φ(xk)−∇Φ(xk)∥2 ≤ 3
(
L2
Fx

+
L2
fxy
C2

Fy

µ2

)
∥yk,T − y∗k∥2

+ 3M2
fxy

(
2
nLC2

Fy

ξ̃µ3Qk

+ 4
(L2

Fy

µ2
+
C2

Fy
L2
fyy

µ4

)
∥y∗k − yk,T ∥2

)

≤

(
3L2

Fx
+

3L2
fxy
C2

Fy

µ2
+ 12M2

fxy

(L2
Fy

µ2
+
C2

Fy
L2
fyy

µ4

))
∥y∗k − yk,T ∥2

+ 6
nLM2

fxy
C2

Fy

µ3ξ̃Qk

.

(73)

Then, based on Lemma D.15, substituting the above inequality into (43) yields:

∥y∗k − yk,T ∥2 ≤ (1 + ε)κ(
1

T
)T (1− βµ)P ∥yk−1,T − y∗k−1∥2 + 2(1 +

1

ε
)κ(

1

T
)T (1− βµ)PL2

yα
2∥∇Φ(xk−1)∥2

+ 2(1 +
1

ε
)κ(

1

T
)T (1− βµ)PL2

yα
2∥∇̃Φ(xk−1)−∇Φ(xk−1)∥2

≤ τ∥y∗k−1 − yk−1,T ∥2 + 2(1 +
1

ε
)κ(

1

T
)T (1− βµ)PL2

yα
2∥∇Φ(xk−1)∥2

+ 12(1 +
1

ε
)κ(

1

T
)T (1− βµ)PL2

yα
2
nLM2

fxy
C2

Fy

µ3ξ̃Qk−1

,

(74)

where τ = κ( 1
T )

T (1−βµ)P
(
(1+ε)+6(1+ 1

ε )L
2
yα

2(L2
Fx

+
L2

fxy
C2

Fy

µ2 +
4M2

fxy
L2

Fy

µ2 +
4M2

fxy
C2

Fy
L2

fyy

µ4 )
)
.

Summing the inequality (74) from 0 to k results in:

∥y∗k − yk,T ∥2 ≤ τk∥y∗0 − y0,T ∥2 + 2(1 +
1

ε
)κ(

1

T
)T (1− βµ)PL2

yα
2
k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2

+ 12(1 +
1

ε
)κ(

1

T
)T (1− βµ)PL2

yα
2
nLM2

fxy
C2

Fy

µ3ξ̃

k−1∑
j=0

τ j
1

Qk−1−j
.

36



Published as a conference paper at ICLR 2025

Combining the inequality (73) and ∥y∗0 − y0,T ∥2 ≤ κ( 1
T )

T (1− βµ)P ∥y∗0 − y0∥2, it follows that

∥∇̃Φ(xk)−∇Φ(xk)∥2 ≤ δ0τk + ωα2
k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2

+ 6ωα2
nLM2

fxy
C2

Fy

µ3ξ̃

k−1∑
j=0

τ j
1

Qk−1−j
+ 6

nLM2
fxy
C2

Fy

µ3ξ̃Qk

,

(75)

where δ0 = 3κ( 1
T )

T (1 − βµ)P (L2
Fx

+
L2

fxy
C2

Fy

µ2 +
4M2

fxy
L2

Fy

µ2 +
4M2

fxy
C2

Fy
L2

fyy

µ4 )∥y∗0 − y0∥2 and

ω = 6(L2
Fx

+
L2

fxy
C2

Fy

µ2 +
4M2

fxy
L2

Fy

µ2 +
4M2

fxy
C2

Fy
L2

fyy

µ4 )(1 + 1
ε )κ(

1
T )

T (1− βµ)PL2
y .

Since∇Φ(·) is LΦ−Lipschitz, it can be obtained that

Φ(xk+1) ≤ Φ(xk) + ⟨∇Φ(xk), xk+1 − xk⟩+
LΦ

2
∥xk+1 − xk∥2

≤ Φ(xk)− α⟨∇Φ(xk), ∇̃Φ(xk)−∇Φ(xk)⟩ − α∥∇Φ(xk)∥2 + α2LΦ∥∇Φ(xk)∥2

+ α2LΦ∥∇Φ(xk)− ∇̃Φ(xk)∥2

≤ Φ(xk)−
(α
2
− α2LΦ

)
∥∇Φ(xk)∥2 +

(α
2
+ α2LΦ

)
∥∇Φ(xk)− ∇̃Φ(xk)∥2.

(76)

Using the inequality (75) yields:

Φ(xk+1) ≤Φ(xk)−
(α
2
− α2LΦ

)
∥∇Φ(xk)∥2 +

(α
2
+ α2LΦ

)
∥∇Φ(xk)− ∇̃Φ(xk)∥2

≤Φ(xk)−
(α
2
− α2LΦ

)
∥∇Φ(xk)∥2 +

(α
2
+ α2LΦ

)
δ0τ

k

+ ωα2
(α
2
+ α2LΦ

) k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2 +
(α
2
+ α2LΦ

) 6nLM2
fxy
C2

Fy

µ3ξ̃Qk

+ 6ω
(α
2
+ α2LΦ

)
α2
nLM2

fxy
C2

Fy

µ3ξ̃

k−1∑
j=0

τ j
1

Qk−1−j
.

(77)

Finally, by telescoping the inequality (77) from k = 0 to k = K − 1, it is derived that(α
2
− α2LΦ

)K−1∑
k=0

∥∇Φ(xk)∥2 ≤Φ(x0)− Φ(xK) +
(α
2
+ α2LΦ

) δ0
1− τ

+ ωα2
(α
2
+ α2LΦ

)K−1∑
k=0

k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2

+

K−1∑
k=0

(α
2
+ α2LΦ

) 6nLM2
fxy
C2

Fy

µ3ξ̃Qk

+ 6ω
(α
2
+ α2LΦ

)
α2
nLM2

fxy
C2

Fy

µ3ξ̃

K−1∑
k=0

k−1∑
j=0

τ j
1

Qk−1−j
.

(78)

Moreover, due to
∑K−1

k=0

∑k−1
j=0 ajbk−1−j ≤

∑K−1
k=0 ak

∑K−1
j=0 bj , we can deduce that

K−1∑
k=0

k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2 ≤
K−1∑
k=0

τk
K−1∑
k=0

∥∇Φ(xk)∥2 ≤
1

1− τ

K−1∑
k=0

∥∇Φ(xk)∥2,

K−1∑
k=0

k−1∑
j=0

τ j
1

Qk−1−j
≤

K−1∑
k=0

τk
K−1∑
k=0

1

Qk
≤ 1

1− τ

K−1∑
k=0

1

Qk
.
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Then, the following inequality holds:(
1

2
− αLΦ − ωα2

(
1

2
+ αLΦ

)
1

1− τ

)
1

K

K−1∑
k=0

∥∇Φ(xk)∥2

≤Φ(x0)− Φ(xK)

αK
+

(
1

2
+ αLΦ

)
δ0

K(1− τ)

+
1

K

K−1∑
k=0

(
1

2
+ αLΦ

)
6nLM2

fxy
C2

Fy

µ3ξ̃Qk

+
1

K

K−1∑
k=0

6ω

1− τ

(
1

2
+ αLΦ

)
α2
nLM2

fxy
C2

Fy

µ3ξ̃Qk

.

(79)

If αLΦ + ωα2
(
1
2 + αLΦ

)
1

1−τ ≤
1
4 , then

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤
4(Φ(x0)− infx Φ(x))

αK
+

3δ0
K(1− τ)

+
1

K

K−1∑
k=0

18nLM2
fxy
C2

Fy

µ3ξ̃Qk

. (80)

Finally, by substituting Qk = k + 1 into (80), (72) is derived.

In addition, we present another theorem that does not require the strict assumption on the initial
Hessian matrix H0, but does require that T ≥ 8n ln

(
2L
µ

)
.

Theorem D.25. Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Choose the stepsize β and warm-up
iteration steps P such that (1−βµ)P ∥yk−y∗k∥ ≤ K1, whereK1 is defined in (16). SetH0 = LI and

T ≥ 8nln 2L
µ . Define τ = c2l κ

3( 1
T )

T (1−βµ)P
(
(1+ε)+6(1+ 1

ε )L
2
yα

2(L2
Fx

+
L2

fxy
C2

Fy

µ2 +
4M2

fxy
L2

Fy

µ2 +
4M2

fxy
C2

Fy
L2

fyy

µ4 )
)

and ω = 6(L2
Fx

+
L2

fxy
C2

Fy

µ2 +
4M2

fxy
L2

Fy

µ2 +
4M2

fxy
C2

Fy
L2

fyy

µ4 )(1 + 1
ε )c

2
l κ

3( 1
T )

T (1−
βµ)PL2

y . Choose the stepsize α > 0, the positive constant ε > 0 and iterate T > 0 such that

τ < 1 and αLΦ + ωα2

(
1

2
+ αLΦ

)
1

1− τ
≤ 1

4
.

Then, the solution xk generated by Algorithm 1 achieves the following convergence rate:

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤
4(Φ(x0)− Φ(x∗))

αK
+

3δ0
K(1− τ)

+
1

K

K−1∑
k=0

18nLM2
fxy
C2

Fy

µ3ξ̃Qk

, (81)

where δ0 = 3c2l κ
3κ( 1

T )
T (1− βµ)P (L2

Fx
+

L2
fxy

C2
Fy

µ2 +
4M2

fxy
L2

Fy

µ2 +
4M2

fxy
C2

Fy
L2

fyy

µ4 )∥y∗0 − y0∥2 is
the initial error. Specifically, if Qk = k + 1, we have:

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤
4(Φ(x0)− infx Φ(x))

αK
+

3δ0
K(1− τ)

+
18nLM2

fxy
C2

Fy
lnK

µ3ξ̃K
. (82)

Proof. Substituting the inequality (67) into (40) yields:

∥∇̃Φ(xk)−∇Φ(xk)∥2 ≤ 3
(
L2
Fx

+
L2
fxy
C2

Fy

µ2

)
∥yk,T − y∗k∥2

+ 3M2
fxy

(
2
nLC2

Fy

ξ̃µ3Qk

+ 4
(L2

Fy

µ2
+
C2

Fy
L2
fyy

µ4

)
∥y∗k − yk,T ∥2

)

≤

(
3L2

Fx
+

3L2
fxy
C2

Fy

µ2
+ 12M2

fxy

(L2
Fy

µ2
+
C2

Fy
L2
fyy

µ4

))
∥y∗k − yk,T ∥2

+ 6
nLM2

fxy
C2

Fy

µ3ξ̃Qk

.

(83)
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Then, based on Lemma D.17, substituting the above inequality into (45) yields:

∥y∗k − yk,T ∥2 ≤ (1 + ε)c2l κ
3(

1

T
)T (1− βµ)P ∥yk−1,T − y∗k−1∥2 + 2(1 +

1

ε
)c2l κ

3(
1

T
)T (1− βµ)PL2

yα
2∥∇Φ(xk−1)∥2

+ 2(1 +
1

ε
)c2l κ

3(
1

T
)T (1− βµ)PL2

yα
2∥∇̃Φ(xk−1)−∇Φ(xk−1)∥2

≤ τ∥y∗k−1 − yk−1,T ∥2 + 2(1 +
1

ε
)c2l κ

3(
1

T
)T (1− βµ)PL2

yα
2∥∇Φ(xk−1)∥2

+ 12(1 +
1

ε
)c2l κ

3(
1

T
)T (1− βµ)PL2

yα
2
nLM2

fxy
C2

Fy

µ3ξ̃Qk−1

,

(84)

where τ = c2l κ
3( 1

T )
T (1 − βµ)P

(
(1 + ε) + 6(1 + 1

ε )L
2
yα

2(L2
Fx

+
L2

fxy
C2

Fy

µ2 +
4M2

fxy
L2

Fy

µ2 +
4M2

fxy
C2

Fy
L2

fyy

µ4 )
)
.

Summing the inequality (84) from 0 to k results in:

∥y∗k − yk,T ∥2 ≤ τk∥y∗0 − y0,T ∥2 + 2(1 +
1

ε
)c2l κ

3(
1

T
)T (1− βµ)PL2

yα
2
k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2

+ 12(1 +
1

ε
)c2l κ

3(
1

T
)T (1− βµ)PL2

yα
2
nLM2

fxy
C2

Fy

µ3ξ̃

k−1∑
j=0

τ j
1

Qk−1−j
.

Combining the inequality (83) and ∥y∗0 − y0,T ∥2 ≤ c2l κ3( 1
T )

T (1− βµ)P ∥y∗0 − y0∥2, it follows that

∥∇̃Φ(xk)−∇Φ(xk)∥2 ≤ δ0τk + ωα2
k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2

+ 6ωα2
nLM2

fxy
C2

Fy

µ3ξ̃

k−1∑
j=0

τ j
1

Qk−1−j
+ 6

nLM2
fxy
C2

Fy

µ3ξ̃Qk

,

(85)

where δ0 = 3c2l κ
3( 1

T )
T (1− βµ)P (L2

Fx
+

L2
fxy

C2
Fy

µ2 +
4M2

fxy
L2

Fy

µ2 +
4M2

fxy
C2

Fy
L2

fyy

µ4 )∥y∗0 − y0∥2 and

ω = 6(L2
Fx

+
L2

fxy
C2

Fy

µ2 +
4M2

fxy
L2

Fy

µ2 +
4M2

fxy
C2

Fy
L2

fyy

µ4 )(1 + 1
ε )c

2
l κ

3( 1
T )

T (1− βµ)PL2
y .

Since∇Φ(·) is LΦ−Lipschitz, it can be obtained that

Φ(xk+1) ≤ Φ(xk) + ⟨∇Φ(xk), xk+1 − xk⟩+
LΦ

2
∥xk+1 − xk∥2

≤ Φ(xk)− α⟨∇Φ(xk), ∇̃Φ(xk)−∇Φ(xk)⟩ − α∥∇Φ(xk)∥2 + α2LΦ∥∇Φ(xk)∥2

+ α2LΦ∥∇Φ(xk)− ∇̃Φ(xk)∥2

≤ Φ(xk)−
(α
2
− α2LΦ

)
∥∇Φ(xk)∥2 +

(α
2
+ α2LΦ

)
∥∇Φ(xk)− ∇̃Φ(xk)∥2.

(86)

Using the inequality (85) yields:

Φ(xk+1) ≤Φ(xk)−
(α
2
− α2LΦ

)
∥∇Φ(xk)∥2 +

(α
2
+ α2LΦ

)
∥∇Φ(xk)− ∇̃Φ(xk)∥2

≤Φ(xk)−
(α
2
− α2LΦ

)
∥∇Φ(xk)∥2 +

(α
2
+ α2LΦ

)
δ0τ

k

+ ωα2
(α
2
+ α2LΦ

) k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2 +
(α
2
+ α2LΦ

) 6nLM2
fxy
C2

Fy

µ3ξ̃Qk

+ 6ω
(α
2
+ α2LΦ

)
α2
nLM2

fxy
C2

Fy

µ3ξ̃

k−1∑
j=0

τ j
1

Qk−1−j
.

(87)
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Finally, by telescoping the inequality (87) from k = 0 to k = K − 1, it is derived that(α
2
− α2LΦ

)K−1∑
k=0

∥∇Φ(xk)∥2 ≤Φ(x0)− Φ(xK) +
(α
2
+ α2LΦ

) δ0
1− τ

+ ωα2
(α
2
+ α2LΦ

)K−1∑
k=0

k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2

+

K−1∑
k=0

(α
2
+ α2LΦ

) 6nLM2
fxy
C2

Fy

µ3ξ̃Qk

+ 6ω
(α
2
+ α2LΦ

)
α2
nLM2

fxy
C2

Fy

µ3ξ̃

K−1∑
k=0

k−1∑
j=0

τ j
1

Qk−1−j
.

(88)

Moreover, due to
∑K−1

k=0

∑k−1
j=0 ajbk−1−j ≤

∑K−1
k=0 ak

∑K−1
j=0 bj , we can deduce that

K−1∑
k=0

k−1∑
j=0

τ j∥∇Φ(xk−1−j)∥2 ≤
K−1∑
k=0

τk
K−1∑
k=0

∥∇Φ(xk)∥2 ≤
1

1− τ

K−1∑
k=0

∥∇Φ(xk)∥2,

K−1∑
k=0

k−1∑
j=0

τ j
1

Qk−1−j
≤

K−1∑
k=0

τk
K−1∑
k=0

1

Qk
≤ 1

1− τ

K−1∑
k=0

1

Qk
.

Then, the following inequality holds:(
1

2
− αLΦ − ωα2

(
1

2
+ αLΦ

)
1

1− τ

)
1

K

K−1∑
k=0

∥∇Φ(xk)∥2

≤Φ(x0)− Φ(xK)

αK
+

(
1

2
+ αLΦ

)
δ0

K(1− τ)

+
1

K

K−1∑
k=0

(
1

2
+ αLΦ

)
6nLM2

fxy
C2

Fy

µ3ξ̃Qk

+
1

K

K−1∑
k=0

6ω

1− τ

(
1

2
+ αLΦ

)
α2
nLM2

fxy
C2

Fy

µ3ξ̃Qk

.

(89)

If αLΦ + ωα2
(
1
2 + αLΦ

)
1

1−τ ≤
1
4 , then

1

K

K−1∑
k=0

∥∇Φ(xk)∥2 ≤
4(Φ(x0)− Φ(x∗))

αK
+

3δ0
K(1− τ)

+
1

K

K−1∑
k=0

18nLM2
fxy
C2

Fy

µ3ξ̃Qk

, (90)

where Φ(x∗) = infx Φ(x).

Finally, by substituting Qk = k + 1 into (90), (82) is derived.

E COMPLEXITY AND THEORETICAL DISCUSSION

Corollary E.1. Consider T = Θ(lnκ) and α = Θ(κ−3) such that τ < 1 and αLΦ +

ωα2
(
1
2 + αLΦ

)
1

1−τ ≤
1
4 . Under the same setting of Theorem 3.7, we have 1

K

∑K−1
k=0 ∥∇Φ(xk)∥2 =

O(κ
3

K + κ3lnK
K ). To achieve an ϵ-stationary point, we require K = Õ(κ3ϵ−1), resulting in the gra-

dient complexity of Gc(f, ϵ) = Õ(κ6ϵ−2), Gc(F, ϵ) = Õ(κ3ϵ−1) and a Jacobian-vector product
complexity JV (ϵ) = Õ(κ3ϵ−1).

Proof. For Theorem 3.7, by Theorem D.24, we have

c3 = 6L2
y(L

2
Fx

+
L2
fxy
C2

Fy

µ2
+

4M2
fxy
L2
Fy

µ2
+

4M2
fxy
C2

Fy
L2
fyy

µ4
) = Θ(κ6).
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Since 0 < (1− βµ)P ≤ 1 and α = Θ(κ−3), it is derived that

τ = κ(
1

T
)T (1− βµ)P

(
(1 + ε) + (1 +

1

ε
)α2c3

)
= Θ(κ(1/T )T ),

ω = c3(1 +
1

ε
)κ(

1

T
)T (1− βµ)P = Θ(κ7(1/T )T ).

Based on Lemma D.12,∇Φ is LΦ-Lipschitz with LΦ = Θ(κ3). For a suitable choice of α = Θ(κ−3),
it follows that αLΦ < 1

8 . Additionally, with T = Θ(lnκ), the conditions 0 < τ ≤ 1
2 and

ωα2 = Θ(κ(1/T )T ) ≤ 1
10 are satisfied. Consequently,

αLΦ + ωα2

(
1

2
+ αLΦ

)
1

1− τ
≤ 1

8
+

1

10

(
1

2
+

1

8

)
1

1− 1
2

≤ 1

4
.

Since α = Θ(κ−3), it can be obtained from (72) that 1
K

∑K−1
k=0 ∥∇Φ(xk)∥2 = O(κ

3

K + κ3lnK
K ).

Furthermore, in order to achieve an ϵ-stationary point, we have K = O(κ3ϵ−1lnκ3

ϵ ) = Õ(κ3ϵ−1).
Therefore, the following complexity results are derived:

• Gc(f, ϵ) = K(T + P ) +
∑K−1

k=0 Qk = K(T + P ) + K(K+1)
2 = Õ(κ6ϵ−2);

• Gc(F, ϵ) = 2K = Õ(κ3ϵ−1);

• JV (ϵ) = K = Õ(κ3ϵ−1).

Details for obtaining τ ≤ 1/2 and ωα2 ≤ 1/10: Since τ = Θ
(
κ(1/T )T

)
, ωα2 = Θ

(
κ(1/T )T

)
and κ ≥ 1, it is enough to show that C0κ(1/T )

T ≤ 1/10 by choosing T = Θ(lnκ). Here, C0 ≥ 1 is
a positive constant in τ and ωα2, depending explicitly on the Lipschitz constants in the assumptions.

By taking the logarithm on both sides of C0κ(1/T )
T ≤ 1/10, we get:

lnκ− T lnT ≤ − ln(10C0).

This is equivalent to T lnT ≥ lnκ + ln(10C0). Therefore, choosing T ≥ lnκ + ln(10C0) + ϵ is
sufficient, since lnT ≥ 1. Similarly, we can prove the result for Theorem 3.4.
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