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Abstract

Explaining Artificial Intelligence (AI) deci-001
sions is a major challenge nowadays in AI,002
in particular when applied to sensitive scenar-003
ios like medicine and law. However, the need004
to explain the rationale behind decisions is a005
main issues also for human-based deliberation006
as it is important to justify why a certain deci-007
sion has been taken. Resident medical doctors008
for instance are required not only to provide009
a (possibly correct) diagnosis, but also to ex-010
plain how they reached a certain conclusion.011
Developing new tools to aid residents to train012
their explanation skills is therefore a central013
objective of AI in education. In this paper, we014
follow this direction, and we present, to the015
best of our knowledge, the first multilingual016
dataset for Medical Question Answering where017
correct and incorrect diagnoses for a clinical018
case are enriched with a natural language ex-019
planation written by doctors. These explana-020
tions have been manually annotated with ar-021
gument components (i.e., premise, claim) and022
argument relations (i.e., attack, support). The023
Multilingual CasiMedicos-arg dataset consists024
of 558 clinical cases (English, Spanish, French,025
Italian) with explanations, where we annotated026
5021 claims, 2313 premises, 2431 support rela-027
tions, and 1106 attack relations. We conclude028
by showing how competitive baselines perform029
over this challenging dataset for the argument030
mining task.031

1 Introduction032

There is an increasingly large body of research on033

Artificial Intelligence (AI) applied to the medical034

domain with the objective of developing technol-035

ogy to assist and support medical doctors in ex-036

plaining their decisions or how they have reached a037

certain conclusion. For example, resident medical038

doctors preparing for licensing exams may get an039

AI support to explain what and why is the treat-040

ment or diagnosis correct given some background041

information (Safranek et al., 2023; Goenaga et al., 042

2023). 043

A prominent example of this is the recent pro- 044

liferation of Medical Question Answering (QA) 045

datasets and benchmarks, in which the task often 046

involves processing and acquiring relevant special- 047

ized medical knowledge to be able to answer a 048

medical question based on the context provided by 049

a clinical case (Singhal et al., 2023a; Nori et al., 050

2023; Xiong et al., 2024). 051

The development of Large Language Models 052

(LLMs), both general purpose and specialized in 053

the medical domain, has enabled rapid progress in 054

Medical QA tasks which has led in turn to claims 055

about LLMs being able to pass official medical 056

exams such as the United States Medical Licens- 057

ing Examination (USMLE) (Singhal et al., 2023b; 058

Nori et al., 2023). Thus, publicly available LLMs 059

such as LLaMA (Touvron et al., 2023) or Mistral 060

(Jiang et al., 2023) and their respective medical- 061

specific versions PMC-LLaMA (Wu et al., 2023) 062

and BioMistral (Labrak et al., 2024), or proprietary 063

models such as MedPaLM (Singhal et al., 2023b) 064

and GPT-4 (Nori et al., 2023), to name but a few, 065

have been reporting high-accuracy scores in a va- 066

riety of Medical QA benchmarks1(Singhal et al., 067

2023a,b; Xiong et al., 2024). 068

While these results constitute impressive 069

progress, currently the Medical QA research field 070

still presents a number of shortcomings. First, ex- 071

perimentation has been mostly focused on provid- 072

ing the correct answer in medical exams, usually 073

in a multiple-choice setting. However, as doctors 074

are also required to explain and argue about their 075

predictions, research on Medical QA should also 076

address the generation of argumentative explana- 077

tions. Unfortunately, and to the best of our knowl- 078

edge, no Medical QA dataset, that currently exists, 079

1https://huggingface.co/blog/
leaderboard-medicalllm
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includes correct and incorrect diagnoses enriched080

with natural language explanations written by med-081

ical doctors. Second, the large majority of Medical082

QA benchmarks are available only in English (Sing-083

hal et al., 2023a; Xiong et al., 2024), which makes084

it impossible to know the ability of current LLMs085

for Medical QA in other languages.086

In this paper we address these issues by present-087

ing CasiMedicos-Arg, the first Multilingual (En-088

glish, French, Italian, Spanish) dataset for Medi-089

cal QA with manually annotated gold explanatory090

argumentation about incorrect and correct predic-091

tions written by medical doctors. More specifi-092

cally, the corpus consists of 558 documents with093

reference gold doctors’ explanations which are094

enriched with manual annotations for argument095

components (5021 claims and 2313 premises) and096

relations (2431 support and 1106 attack). This097

new resource will make it possible, for the first098

time, to research not only on Argument Mining099

but also on generative techniques to argue about100

and explain predictions in Medical QA settings.101

Finally, strong baselines on argument component102

detection, a challenging sequence labelling task,103

using encoder (Devlin et al., 2019; He et al., 2021),104

encoder-decoder (García-Ferrero et al., 2024) and105

decoder-only LLMs (Jiang et al., 2023; Touvron106

et al., 2023) demonstrate the validity of our anno-107

tated resource. Data, code and fine-tuned models108

will be made publicly available upon publication.109

2 Related Work110

In this section we will focus on reviewing datasets111

for Medical QA and on Explanatory Argumenta-112

tion, the two main features of our main contribution,113

CasiMedicos-Arg.114

2.1 Medical Question Answering115

Several of the most popular Medical QA datasets116

(Jin et al., 2019; Abacha et al., 2019b,a; Jin et al.,117

2021; Pal et al., 2022) have been grouped into118

three multi-task English benchmarks, namely, Mul-119

tiMedQA (Singhal et al., 2023a), MIRAGE (Xiong120

et al., 2024), and the Open Medical-LLM Leader-121

board (Pal et al., 2024), with the aim of provid-122

ing comprehensive experimental evaluation bench-123

marks of LLMs for Medical QA.124

MultiMedQA includes MedQA (Jin et al., 2021),125

MedMCQA (Pal et al., 2022), PubMedQA (Jin126

et al., 2019), LiveQA (Abacha et al., 2019b), Med-127

icationQA (Abacha et al., 2019a), MMLU clin-128

ical topics (Hendrycks et al., 2020) and Health- 129

SearchQA (Singhal et al., 2023a). Except the last 130

one, all of them consist of a multiple-choice for- 131

mat and MedQA, MedMCQA and MMLU’s source 132

data comes from licensing medical exams. In terms 133

of size, MedQA includes almost 15K questions, 134

MedMCQA 187K while the rest of them are of 135

more moderate sizes, namely, 500 QA pairs in Pub- 136

MedQA, around 1200 in MMLU, 738 in LiveQA 137

and 674 in MedicationQA. 138

While every dataset except MedQA and Health- 139

SearchQA includes long form correct answers, they 140

are not considered really usable for benchmarking 141

LLMs because they were not optimally constructed 142

as a ground-truth by medical doctors or profes- 143

sional clinicians (Singhal et al., 2023a). 144

Regarding the Open Medical-LLM Leaderboard, 145

it also includes MedQA, MedMCQA, PubMedQA 146

and MMLU clinical topics. General purpose LLMs 147

such as GPT-4 (Nori et al., 2023), PaLM (Chowd- 148

hery et al., 2022), LLaMa (Touvron et al., 2023) 149

or Mistral (Jiang et al., 2023) report high-accuracy 150

scores on these Medical QA benchmarks, although 151

recently a number of specialized LLMs for the 152

medical domain are appearing, sometimes with 153

even stronger performances. Some popular mod- 154

els include Med-PaLM (Singhal et al., 2023a), 155

MedPaLM-2 (Singhal et al., 2023b), PMC-LLaMA 156

(Wu et al., 2023), and more recently, BioMistral 157

(Labrak et al., 2024). 158

The MIRAGE benchmark includes subsets of 159

MedQA, MedMCQA, PubMedQA, MMLU clini- 160

cal topics and adds the BioASQ-YN dataset (Tsat- 161

saronis et al., 2015) with the aim of evaluating Re- 162

trieval Augmented Generation (RAG) techniques 163

for LLMs in Medical QA tasks. According to the 164

authors, their MEDRAG method not only helps 165

to address the problem of hallucinated content by 166

grounding the generation on specific contexts, but 167

it also provides relevant up-to-date knowledge that 168

may not be encoded in the LLM (Xiong et al., 169

2024). By employing MEDRAG, they are able 170

to clearly improve the zero-shot results of some of 171

the tested LLMs, although the results for others are 172

rather mixed. 173

Summarizing, no Medical QA dataset currently 174

provides reference gold argumentative explana- 175

tions regarding the incorrect and correct predic- 176

tions. Furthermore, and with the exception of Vi- 177

lares and Gómez-Rodríguez (2019), they have been 178

mostly developed for English, leaving a huge gap 179

regarding the evaluation LLMs in Medical QA for 180
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other languages. Motivated by this we present181

CasiMedicos-Arg, the first Medical QA dataset182

including gold reference explanations which has183

been manually annotated with argumentative struc-184

tures, including argument components (premises185

and claims) and their relations (support and attack).186

2.2 Explanatory Argumentation in the187

Medical Domain188

Explanatory argumentation in natural language189

refers to the process of generating or analyzing190

explanations within argumentative texts. In re-191

cent years, natural language explanation generation192

has gained significant attention due to the advance-193

ments of generative models that are leveraged to194

develop specialized explanatory systems. The need195

for explanation generation is also driven by the pre-196

dominant use of non-transparent algorithms which197

lack interpretability, thus being unsuitable for sen-198

sitive domains as medical.199

Camburu et al. (2018) tackle the task of expla-200

nation generation by introducing an extension of201

the Stanford Natural Language Inference (SNLI)202

dataset (Bowman et al., 2015), which includes a203

new layer of annotations providing explanations204

for the entailment, neutrality, or contradiction la-205

bels. The generation of these explanations is ad-206

dressed with a bi-LSTM encoder trained on the new207

e-SNLI dataset. e-SNLI (Camburu et al., 2018) is208

also exploited to generate explanations for a NLI209

method, which first generates possible explanations210

for predicted labels (Label-specific Explanations)211

and then takes a final label decision (Kumar and212

Talukdar, 2020). The authors employ GPT-2 (Rad-213

ford et al., 2019) for label-specific generation and214

classify explanations using RoBERTa (Liu et al.,215

2019).216

Narang et al. (2020) focus on generating com-217

plete explanations in natural language following a218

prediction step, utilizing a T5 model. The model is219

trained to predict both the label and the explanation.220

Li et al. (2021) also propose to generate explana-221

tions along with predicting NLI labels. The gener-222

ation step is leveraged for the question-answering223

task exploiting domain-specific or commonsense224

knowledge, while the NLI step allows to predict225

relations between a premise and a hypothesis.226

In the medical domain, Molinet et al. (2024)227

propose generating template-based explanations228

for medical QA tasks. Their system incorporates229

medical knowledge from the Human Phenotype230

Ontology, making the explanations more verifiable231

and sound for the medical domain. 232

Despite the extensive research proposing var- 233

ious approaches to generate explanations, these 234

approaches are not grounded on any argumenta- 235

tion model. This is particularly important in sensi- 236

tive domains like medicine, where sound and well- 237

founded explanations are essential to justify the 238

taken decision. Moreover, medical explanations 239

require verified medical knowledge at their core, 240

which the described methods lack, as discussed 241

in (Molinet et al., 2024). 242

3 CasiMedicos-Arg Annotation 243

The Spanish Ministry of Health yearly publishes 244

the Resident Medical or Médico Interno Residente 245

(MIR) licensing exams including the correct an- 246

swer. Every year the CasiMedicos MIR Project 247

2.02 takes the published exams by the ministry and 248

provide gold explanatory arguments written by vol- 249

unteer Spanish medical doctors to reason about the 250

correct and incorrect options in the exam. 251

The Antidote CasiMedicos corpus consists of 252

the original Spanish commented exams by the 253

CasiMedicos doctors which were cleaned, struc- 254

tured and freely released for research purposes 255

(Agerri et al., 2023). The original Spanish data 256

was automatically translated and manually revised 257

into English, French, and Italian. The corpus in- 258

cludes 622 documents each with a short clinical 259

case, the multiple-choice questions and the expla- 260

nations written by medical doctors3. 261

In the rest of this section we describe the process 262

of manually annotating argumentative structures in 263

the raw Antidote CasiMedicos dataset. 264

3.1 Argumentation Annotation Guidelines 265

In line with the guidelines proposed by Mayer et al. 266

(2021) for Randomized Controlled Trials (RCT) 267

annotation, we identify two main argument com- 268

ponents: Claims and Premises, and their relations, 269

Support and Attack. Furthermore, we also propose 270

to annotate Markers and labels specific to the med- 271

ical domain, namely, Disease, Treatment and Diag- 272

nostics. In the following, we define and describe 273

the annotation of each label. 274

Claim is a concluding statement made by the 275

author about the outcome of the study (Mayer et al., 276

2021): 277

2https://www.casimedicos.com/mir-2-0/
3https://huggingface.co/datasets/HiTZ/

casimedicos-exp

3

https://www.casimedicos.com/mir-2-0/
https://huggingface.co/datasets/HiTZ/casimedicos-exp
https://huggingface.co/datasets/HiTZ/casimedicos-exp


1. The patient’s presenting picture is presumably278

erythema nodosum. (CasiMedicos)279

2. We propose immunotherapy with thymoglob-280

ulin and cyclosporine as a proper treatment.281

(CasiMedicos)282

Premise corresponds to an observation or mea-283

surement in the study, which supports or attacks284

another argument component, usually a claim. It285

is important that they are observed facts, therefore,286

credible without further evidence (Mayer et al.,287

2021):288

3. In addition, pancytopenia is not observed.289

(CasiMedicos)290

4. What is important is that the eye that has re-291

ceived the blow does not go up, and therefore292

there is double vision in the superior gaze.293

(CasiMedicos)294

Analyzing the CasiMedicos dataset, we found295

certain ambiguity between claims and premises.296

Thus, statements representing general medical297

knowledge about a disease, symptoms, or treat-298

ments must be annotated as claims. Although these299

statements may support or attack the main claim,300

they are not premises since they do not involve301

case-specific evidence but represent medical facts:302

5. [The patient’s presenting picture is presum-303

ably erythema nodosum]. [About 10% of304

cases of erythema nodosum are associated305

with inflammatory bowel disease, both ul-306

cerative colitis and Crohn’s disease]. [As307

mentioned, in most cases, erythema nodosum308

has a self-limited course]. [When associated309

with inflammatory bowel disease, erythema310

nodosum usually resolves with treatment of311

the intestinal flare, and recurs with disease re-312

currences. Local measures include elevation313

of the legs and bed rest]. (CasiMedicos)314

Here the first statement in square brackets rep-315

resents a claim that asserts the patient’s diagnosis316

(erythema nodosum). The following ones represent317

information about the diagnosis, its symptoms and318

its possible treatment. They are not based on the319

evidences given in the case, but on general medical320

knowledge available to the doctor. Therefore, these321

examples should be annotated as Claims.322

Additionally, long statements with multiple self-323

contained pieces of evidence must be divided into324

single premises to differentiate their relations to 325

specific claims. For example, a given evidence in 326

a sentence may support a claim while others may 327

attack it. To preserve these distinctions, such sen- 328

tences should be split into independent premises. 329

As well as Claims and Premises we annotate 330

Markers – discourse markers that are relevant for 331

arguments as they help to identify the spans of ar- 332

gument components and the type of argumentative 333

relations. In the following examples markers are 334

written in bold: 335

6. Other causes related to this picture are 336

autoimmune diseases leading to transverse 337

myelitis (Behcet’s, FAS, SLE,...) or inflamma- 338

tory diseases such as sarcoidosis, although 339

our patient does not seem to meet the criteria 340

for them. (CasiMedicos) 341

7. Although this usually gives a subacute or 342

chronic picture. (CasiMedicos) 343

The possible answers proposed in the CasiMedi- 344

cos multiple-choice options corresponds to predict- 345

ing a Disease, a Treatment or a Diagnosis. We 346

decided to also annotate them as they help to iden- 347

tify the type of doctor’s arguments (whether to look 348

justification of a diagnosis or about a possible treat- 349

ment) and the type of argumentative relations. 350

For advanced reasoning comprehension, we 351

need to explore argumentative relations connecting 352

argument components (claims and premises) and 353

forming a structure of an argument (Mayer et al., 354

2021). Here we provide the definitions of support 355

and attack relations, as well as real examples illus- 356

trating them. 357

Support. All statements or observations justify- 358

ing the proposition of a target argument component 359

are considered as supportive (Mayer et al., 2021): 360

8. In the examination there is a clear dissocia- 361

tion with thermoalgesic anesthesia and preser- 362

vation of arthrokinetic and vibratory. [1] Re- 363

flexes are normal, neither abolished nor ex- 364

alted. [2] In addition, the rest of the exami- 365

nation is strictly normal. [3] With all this I 366

believe that the correct answer is 5, that is a 367

syringomyelic lesion, whose initial character- 368

istic is the sensitive dissociation with anesthe- 369

sia for the thermoalgesic and conservation 370

of the posterior chordal. (CasiMedicos) 371

This example provides premises (in italic) that 372

justify a claim (bold) which they are related to. The 373
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supportive nature is highlighted by the marker With374

all this I believe... .375

Attack. An argument component is attacking376

another one if (i) it contradicts the proposition of a377

target component or (ii) it undercuts its implicit as-378

sumption of significance or relevance, for example,379

stating that the observations related to a target com-380

ponent are not significant or not relevant (Mayer381

et al., 2021):382

9. It might be tempting to answer 3 Fracture of383

the superior wall of the orbit with entrapment384

of the superior rectus muscle. However, mus-385

cles trapped in a fracture do not automatically386

lose their muscular action. (CasiMedicos)387

10. The palpebral hematoma and hyposphagma388

(subconjunctival hemorrhage) does not give389

us the key data. (CasiMedicos)390

These examples represent premises (in italic)391

which either contradict their claims (bold) in Ex-392

ample 9 or which are not considered significant to393

justify or reject target components (Example 10).394

3.2 Annotation Process and Results395

The annotation process consisted of three stages:396

training, reconciliation, and complete dataset an-397

notation. During training, annotators worked on398

10 CasiMedicos cases. We then calculated inter-399

annotator agreement (IAA) results of the training400

phase to highlight any weak spots, guideline flaws,401

and any issues in the dataset needing further analy-402

sis.403

At the reconciliation phase, the descriptions404

of Claim and Premise labels were discussed and405

agreed upon. After this, we started the complete406

dataset annotation. As mentioned earlier, the orig-407

inal CasiMedicos dataset included 622 medical408

cases, but 64 cases were excluded during the an-409

notation phase. Some of them did not have gold410

explanations while others were cases with confus-411

ing relations: the correct answer is a wrong dis-412

ease, treatment, or diagnosis as asked in a question,413

thus, it is attacked by its premises instead of being414

supported. Therefore, the final number of anno-415

tated cases is 558. In the following subsections we416

present the IAA of the entire dataset (3.3), annota-417

tion results and their description (3.4).418

3.3 Inter-Annotator Agreement (IAA)419

The IAA is calculated over a random batch of 100420

CasiMedicos cases. Since one instance (e.g. a421

Label Mean F1
Claim 0.765
Premise 0.659
Marker 0.642
Disease 0.639
Treatment 0.586
Diagnostics 0.527

Table 1: Instance-based F1 agreement.

Label Mean F1
Claim 0.915
Premise 0.891
Marker 0.634
Disease 0.738
Treatment 0.777
Diagnostics 0.638

Table 2: Token-based F1 agreement.

claim) is usually an entire self-contained sentence, 422

we measured the IAA at both instance level and at 423

token level. In other words, we compute agreement 424

over entire instances and over the tokens of each 425

instance. 426

Table 1 illustrates the IAA at instance level. 427

Since instances are very long, annotators may be 428

uncertain about which elements to include, leading 429

to lower agreement scores for some labels. How- 430

ever, the major labels Claim and Premise have rela- 431

tively good results with scores of 0.765 and 0.659, 432

respectively. The mean F1 over all labels is 0.669. 433

Table 2 shows the IAA at the token level. Here 434

we compute the agreement over tokens of each in- 435

stance. The highest agreement score is of a Claim 436

label being 0.915, while the lowest is of a Diagnos- 437

tics label accounting for 0.638. The mean F1 over 438

all tokens is 0.880. 439

3.4 Annotation Results 440

In this part we report the stats about label distri- 441

bution over entire cases (documents) and the la- 442

bel distribution over the doctor’s explanations only. 443

Additionally, we also discuss the distribution of 444

argumentative relations. 445

Table 3 reports the total number of entities over 446

the dataset and the average number of entities per 447

case. Table 4 shows the label distributions only 448

for the explanations, namely, the total number of 449

entities in explanations and the averaged number 450

of entities per explanation. In both tables we notice 451

that the discrepancy between the average number 452
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Label Total Mean per case
Claim 5021 8.998
Premise 2313 4.145
Marker 1117 2.0
Disease 1791 3.21
Treatment 1278 2.29
Diagnostics 786 1.40

Table 3: Label Distribution over Entire Cases.

Label Total Mean per explanation
Claim 3003 5.948
Premise 470 0.935
Marker 974 1.833

Table 4: Label Distribution in Explanations.

of claims per explanation and of premises per ex-453

planation is rather high. This may seem strange454

since premises are needed to accept or reject claims455

in order to complete one argumentation unit.456

However, there are plausible reasons for such457

distribution. First, there is a certain number of458

cases where the explanation is based on evidences459

from doctor’s knowledge rather than clinical facts460

described in the case itself. Such explanations take461

into account the information given about the pa-462

tient (e. g. age, symptoms, vital signs), but do not463

repeat any of these facts (as in Example 1 in Ap-464

pendix A). Second, explanations that do not repeat465

evidences from the case are frequent, e. g. "Here466

we must suspect ... disease. All the symptoms fall467

perfectly within the picture"; "This is a fairly easy468

epidemiology question, in adults without other data,469

Pneumococcus is the 1st"). Last but not least, there470

is a group of cases with implicit premises or im-471

plicit warrants: the explanation presents claims (e.472

g. a conclusion about a disease and a treatment)473

implying that some evidences from the case text474

and implying certain medical knowledge to align475

evidences with a disease and a choice of treatment476

(as in Example 2 in Appendix A).477

In Table 5 we present the distribution of argu-478

mentative relations. Support relations appear twice479

as much as Attack ones, making this argumentation480

pattern frequent and probably more convincing. In481

cases where the conclusion is made solely exclud-482

ing wrong propositions by attacking them there is483

a lack of confidence about the claim.484

As a result, we present CasiMedicos-Arg, a485

multi-layer argument-based annotation of the En-486

glish version of CasiMedicos consisting of 558 clin-487

Relation Total Mean per case
Support 2431 4.357
Attack 1106 1.982

Table 5: Distribution of Argumentative Relations.

ical cases with explanations. In the following sec- 488

tions we describe the experiments performed on ar- 489

gument component detection (claims and premises) 490

to establish strong baselines on the task and vali- 491

date our annotations. 492

4 Experimental Setup 493

We first describe the process of projecting the 494

manually annotated argumentation labels from the 495

source English data to the other three target lan- 496

guages, namely, French, Italian and Spanish. This 497

process will result in the Multilingual Casimedicos- 498

Arg which will then be leveraged to produce strong 499

baselines on argument component detection using 500

a variety of LMs, including encoders (Devlin et al., 501

2019; He et al., 2021), encoder-decoders (García- 502

Ferrero et al., 2024) and decoder-only LLMs (Tou- 503

vron et al., 2023; Jiang et al., 2023). 504

4.1 Multilingual CasiMedicos-Arg 505

Taking the manually annotated English 506

CasiMedicos-Arg as starting point, we first 507

needed to project the annotations to Spanish, 508

French, and Italian following the method described 509

in Yeginbergenova and Agerri (2023). Second, 510

and to ensure that the projection method correctly 511

leveraged the annotations to the new data we addi- 512

tionally performed an automatic post-processing 513

step of the newly generated data to correct any 514

misalignments. Finally, and to guarantee the 515

quality of annotations and the validity of our 516

evaluations, the translated and projected data is 517

manually revised by native speakers. 518

Label projection is performed using word align- 519

ments calculated by AWESOME (Dou and Neubig, 520

2021) and Easy Label Projection (García-Ferrero 521

et al., 2022) to automatically map the word align- 522

ments into sequences (argument components) and 523

project them from the source (English) to the target 524

language (French, Italian and Spanish). 525

A particular feature of argument of argument 526

components is that the sequences could span over 527

the entire length of the sentences. Therefore, after 528

revising the automatically projected data, an extra 529

post-processing step was performed by correcting 530
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the projections in the sequences where some anno-531

tations were placed incorrectly. The most common532

correction was fixing articles at the beginning of533

the argument components, which were systemati-534

cally missed out during the automatic projection535

step. Other sequences were labeled only by half in-536

stead of the whole sequence. This post-processing537

step was essential to minimize the human labor dur-538

ing manual correction. The number of corrections539

introduced during the post-processing step can be540

found in Appendix B.541

The final manual correct step involved checking542

the translation quality and projected labels by na-543

tive expert annotators fixing any misprojections or544

errors in the translation. The result of this process545

is the Multilingual CasiMedicos-Arg dataset, ob-546

tained by projecting the manual annotations from547

English to Italian, French and Spanish.548

4.2 Sequence Labelling with LLMs549

We leverage Multilingual CasiMedicos-Arg to per-550

form crosslingual and multilingual argument com-551

ponent detection, a task that, due the heterogeneity552

and length of the sequences, is usually a rather553

challenging task (Stab and Gurevych, 2017; Eger554

et al., 2018; Yeginbergenova and Agerri, 2023).555

Furthermore, In addition to classic encoder-only556

models like mBERT (Devlin et al., 2019) and mDe-557

BERTa (He et al., 2021), we decided to also per-558

form the task using encoder-decoder and decoder-559

only models. For the encoder-decoder category,560

we chose two variants of Medical mT5, a mul-561

tilingual text-to-text model adapted to multilin-562

gual medical texts: med-mT5-large and med-mT5-563

large-multitask (García-Ferrero et al., 2024). For564

the decoder-only architecture, we selected the565

LLaMA2 (Touvron et al., 2023) and Mistral (Jiang566

et al., 2023) models with 7B parameters. The567

domain-specific versions of these models produced568

less promising results, so we opted to report the569

results of the aforementioned models.570

Previous work in sequence labeling with LLMs571

has demonstrated that discriminative approaches572

based on encoder-only models still outperform gen-573

erative techniques based on LLMs (Wang et al.,574

2023). The motivation behind it is usually the na-575

ture of the sequence labeling task that even though576

LLMs possess some linguistic knowledge they suf-577

fer from a number of problems, notably, halluci-578

nated content. In this paper we use the LLMs for579

Sequence Labelling library to fine-tune the genera-580

tive models with unconstrained decoding4. 581

We structure the experiments as follows. First, 582

we perform monolingual experiments in which we 583

train and test for each language separately. Note 584

that for English we use the gold standard anno- 585

tations, while for French, Italian and Spanish we 586

are fine-tuning the models on projected data, what 587

in crosslingual transfer research is usually called 588

data-transfer. Additionally, we also report results 589

of model-transfer (fine-tuning the models in En- 590

glish and predict in the rest of the target languages). 591

Finally, we experiment with multilingual data aug- 592

mentation by pooling the training data of all four 593

languages and then evaluate in each language sepa- 594

rately. 595

Since each model has its own way of learning 596

due to the architecture, namely, some models learn 597

better over longer iterations and others perform 598

at a good level in less time, we report the best re- 599

sults yielded from the models under different hyper- 600

parameters. Multilingual BERT and mDeBERTa 601

were fine-tuned for 3 epochs, while Medical mT5 602

required 20 epochs; the rest of the hyperparameters 603

are based on previous related work (Yeginbergen- 604

ova and Agerri, 2023) and (García-Ferrero et al., 605

2024), respectively. Regarding LLaMA2 and Mis- 606

tral, they were fine-tuned for 5 epochs leaving the 607

rest of the hyperparameters as default. 608

Model Monolingual Multilingual
mBERT 76.24(0.59) 77.14(0.97)
mDeBERTa 77.08(0.89) 77.30(0.59)
med-mT5-large 80.43(0.22) 82.37(0.21)
med-mT5-large-multitask 80.93(0.26) 82.03(0.32)
LLaMA2-7B 81.49(0.82) 83.07(0.11)
Mistral-0.1-7B 83.27(0.48) 83.24(0.73)

Table 6: F1-scores and their standard deviations for
argument component detection in English CasiMedicos-
Arg; bold: best overall result; underlined: best result
per model across the two language settings.

5 Empirical Results 609

In this section, we report the results obtained after 610

performing the steps described in Section 4. All 611

the results and standard deviations reported in this 612

section are obtained by averaging three randomly 613

initialized runs. We evaluate using sequence level 614

F1-macro score, a common metric for argument 615

component detection. 616

4https://github.com/ikergarcia1996/
Sequence-Labeling-LLMs
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Model Spanish French Italian Avg.
monolingual data-transfer

mBERT 75.39(0.49) 73.66(0.66) 74.78(0.59) 74.61
mDeBERTa 77.39(0.83) 76.35(0.29) 76.98(0.76) 76.91
med-mT5-large 80.79(0.19) 80.12(0.59) 80.32(0.04) 80.41
med-mT5-large-multitask 80.69(0.65) 80.13(0.56) 80.70(0.08) 80.51
LLaMA2-7B 80.39(0.52) 80.89(0.54) 80.69(0.46) 80.66
Mistral0.1-7B 81.71(0.29) 81.38(0.52) 81.56(0.44) 81.55

multilingual data-transfer
mBERT 75.08(0.89) 74.92(0.62) 74.95(1.38) 74.98
mDeBERTa 76.06(1.42) 76.22(0.89) 77.06(0.65) 76.45
med-mT5-large 82.07(0.12) 80.85(0.26) 80.89(0.72) 81.27
med-mT5-large-multitask 82.09(0.26) 80.83(0.28) 80.57(0.49) 81.16
LLaMA2-7B 81.56(0.28) 81.03(0.49) 81.16(0.20) 81.25
Mistral-0.1-7B 82.40(0.12) 82.10(0.33) 81.41(0.69) 81.97

cross-lingual model-transfer
mBERT 72.75(0.24) 71.47(1.27) 72.49(0.09) 72.24
mDeBERTa 76.05(0.14) 74.63(0.53) 75.22(0.32) 75.30
med-mT5-large 79.91(1.26) 78.51(1.20) 79.41(0.87) 79.28
med-mT5-large-multitask 79.81(0.83) 77.96(0.13) 77.07(0.34) 78.28
LLaMA2-7B 75.31(0.68) 68.56(1.07) 73.86(0.51) 72.58
Mistral-0.1-7B 79.27(0.42) 70.62(7.37) 78.36(0.37) 76.08

Table 7: F1-scores and their standard deviations of data-transfer (monolingual and multilingual), and cross-lingual
model-transfer experiments using Spanish, French, and Italian data; bold: best overall result; underlined: best result
per model across the three language settings.

We first show the results on monolingual (using617

the manually annotated English data) and multilin-618

gual (fine-tuning on all four languages and eval-619

uating in English) in Table 6. Overall, it can be620

observed that the decoder-only generative mod-621

els outperform the rest, though the Medical mT5622

models are nearly as effective. Furthermore, the623

multilingual method of pooling all languages into624

a single dataset proves to be beneficial for every625

model, improving over the results obtained when626

training using the gold standard English data only.627

The results for Spanish, French and Italian are628

displayed in Table 7. As for the English results,629

it can be seen that the multilingual data-transfer630

approach is the most effective setting, even with631

LLMs which are supposedly pre-trained on English632

data only. Among all the models, Mistral achieves633

the highest F1-macro scores. However, while for634

all the other models the multilingual training was635

advantageous no substantial improvement was ob-636

served in a similar setting with Mistral. Finally, it637

can be seen that crosslingual model transfer is the638

least optimal of the settings, even when using state-639

of-the-art multilingual LMs such as mDeBERTa640

(He et al., 2021). An interesting point to note is that641

for crosslingual model transfer the best results are642

obtained by the Medical mT5 models, which may643

be due to this model being trained on multilingual644

medical data (García-Ferrero et al., 2024).645

Summarizing, in this section we present compet-646

itive baselines for argument component detection 647

on CasiMedicos-Arg, validating both the manual 648

annotations and the strategy of projecting English 649

labels to other languages to facilitate the applica- 650

tion of crosslingual and multilingual techniques. 651

6 Conclusion 652

In this paper we present CasiMedicos-Arg, a mul- 653

tilingual (French, English, Italian and Spanish) 654

Medical QA dataset including gold reference ex- 655

planations written by medical doctors which has 656

been annotated with argumentative structures. This 657

dataset aims to bridge a glaring gap in the Medi- 658

cal QA ecosystem by facilitating the evaluation of 659

explanations generated to argue or justify a given 660

prediction. 661

The final dataset includes 558 documents (paral- 662

lel in four languages) with reference gold doctors’ 663

explanations which are enriched with manual an- 664

notations for argument components (5021 claims 665

and 2313 premises) and relations (2431 support 666

and 1106 attack). 667

Both interannotator agreement results and the 668

baselines provided for argument component detec- 669

tion demonstrate the validity of our annotations. 670

Furthermore, experiments show the advantage of 671

performing argument component detection from a 672

multilingual data-transfer perspective. 673
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Limitations674

We consider two main limitations in our work that675

we would like to address in the short term future.676

First, the choice of languages. We would have liked677

to include languages from different language fami-678

lies and with different morphological and grammat-679

ical characteristics, but we were limited by the na-680

tive expertise available to us to perform the manual681

corrections of the projected labels and translations.682

Second, the size of the dataset (558 documents)683

could be larger.684

Regarding the first limitation, we still think that685

our experiments demonstrate the superiority of686

performing multilingual data-transfer over cross-687

lingual model transfer, at least with the LLMs cur-688

rently available. With respect to the size of the689

dataset, we would like to point out that its size690

is similar to other datasets reviewed in Section 2,691

which are being widely used to benchmark LLMs692

for Medical QA.693

Another issue worth considering in the future694

is the need to further research the generation of695

explanations for the predictions while taking into696

account a crucial unsolved issue, namely, the eval-697

uation explanation generation in the highly special-698

ized medical domain.699
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A Appendix. CasiMedicos Real Cases936

Example 1:937

938

QUESTION TYPE: DERMATOLOGY939

CLINICAL CASE:940

941

A 62-year-old man with a history of significant942

alcohol abuse, carrier of hepatitis C virus, treated943

with Ibuprofen for tendinitis of the right shoulder,944

goes to his dermatologist because after spending945

two weeks on vacation at the beach he notices the946

appearance of tense blisters on the dorsum of his947

hands. On examination, in addition to localization948

and slight malar hypertrichosis. The most likely949

diagnosis is:950

951

1- Epidermolysis bullosa acquisita.952

2- Porphyria cutanea tarda.953

3- Phototoxic reaction.954

4- Contact dermatitis.955

5- Acute intermittent porphyria.956

957

CORRECT ANSWER: 2958

959

Porphyria Cutanea Tarda: 60% of patients with960

PCT are male, many of them drink alcohol in961

excess, women who develop it are usually treated962

with drugs containing estrogens. Most are males963

with signs of iron overload, this overload reduces964

the activity of the enzyme uroporphyrinogen965

decarboxylase, which leads to the elevation of966

uroporphyrins. HCV and HIV infections have967

been implicated in the precipitation of acquired968

PCT. There is a hereditary form with AD pattern.969

Patients with PCT present with blistering of970

photoexposed skin, most frequently on the dorsum971

of the hands and scalp. In addition to fragility, they972

may develop hypertrichosis, hyperpigmentation,973

cicatricial alopecia and sclerodermal induration.974

975

Example 2:976

977

QUESTION TYPE: PEDIATRICS978

CLINICAL CASE:979

980

6-month-old infant presenting to the emergency981

department for respiratory distress. Examination:982

axillary temperature 37.2°C, respiratory rate983

40 rpm, heart rate 160 bpm, blood pressure984

90/45 mmHg, SatO2 95% on room air. He shows985

moderate respiratory distress with intercostal986

Set (Language) Number of corrections
Train (ES) 450
Test (ES) 153
Dev (ES) 64

Train (FR) 378
Test (FR) 109
Dev (FR) 49
Train (IT) 336
Test (IT) 117
Dev (IT) 55

Table 8: Number of corrections introduced in the post-
processing step after automatic label projection.

and subcostal retraction. Pulmonary ausculta- 987

tion: scattered expiratory rhonchi, elongated 988

expiration and slight decrease in air entry in 989

both lung fields. Cardiac auscultation: no 990

murmurs. It is decided to keep the patient under 991

observation in the hospital for a few hours. What 992

do you consider the most appropriate attitude 993

at this time with regard to the complementary tests? 994

995

1- Request venous blood gas, leukocyte count 996

and acute phase reactants. 997

2- Request chest X-ray. 998

3- Request arterial blood gases and acute phase 999

reactants. 1000

4- Do not request complementary tests. 1001

1002

CORRECT ANSWER: 4 1003

1004

The patient probably presents with bronchioli- 1005

tis. At this stage, no additional tests should be 1006

performed unless there is a clinical worsening. 1007

B Number of corrections after annotation 1008

projection 1009

The number of corrections required after automati- 1010

cally projecting the annotations. 1011
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