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Abstract

Standard Byte-Pair Encoding (BPE) tokeniza-
tion compresses text by pairing a learned token
vocabulary with a detailed merge list. Recent
work has shown that this merge list exposes a
potential attack surface for extracting informa-
tion about language model’s training data. In
this paper, we explore the downstream impact
of BPE inference algorithms that do not rely
on this merge list at all, and hence differ from
the encoding process during the BPE training.
To address this question, we investigate two
broad classes of BPE inference schemes that
differ from BPE appliction during training: a)
targetted deviation from merge-lists including
random merge orders, and various corruptions
of merge list involving deletion/truncation, and
b) non-targetted BPE inference algorithms that
do not depend on the merge list but focus on
compressing the text either greedily or exactly.
Extensive experiments across diverse language
modeling tasks like accuracy-based QA bench-
marks, machine translation, and open-ended
generation reveal that while the targetted devi-
ation from the merge lists exhibit significant
degradation in language model performance,
the non-targetted merge-list free inference algo-
rithms result in minimal impact on downstream
performance that is often much smaller than
expected. These findings pave way for simpler
and potentially more privacy-preserving tok-
enization schemes that do not catastrophically
compromise model performance.

1 Introduction

Byte-pair encoding (Gage, 1994; Sennrich et al.,
2016; Kudo and Richardson, 2018; Radford et al.)
is the standard algorithm used to tokenize input
texts for large language models (LLMs). In prac-
tice, most BPE-based tokenizer implementations
used for frontier language models' rely on a learned
merge list to iteratively combine subword units into

"Most notably, the Huggingface tokenizer codebase:
https://github.com/huggingface/tokenizers

tokens during inference time. This BPE inference
procedure is appealing because it mimics the merge
application procedure during BPE training. How-
ever, dependence on the learned merge list exposes
a vulnerability that might facilitate exploits to af-
fect the model’s downstream performance. Also, as
shown in recent work (Hayase et al., 2024), these
merge lists also expose an attack surface where
adversaries can steal information about the tok-
enizer’s training data that is likely correlated with
the LLM training data. Moreover, other works
(Geiping et al., 2024) have shown that discrepan-
cies between the tokenizer and LLM’s training data
can lead to "glitch tokens" which lead to genera-
tion failures thus, information about the tokenizer’s
training data can be used to finding and exploit-
ing these glitches (Land and Bartolo, 2024). It is
therefore undesirable to rely on the BPE merge list
during the deployment of the associated language
model. Hence in this paper, we investigate the
effectivene ss of using alternative BPE inference
algorithms that do not depend on the learned merge
lists posthoc for large language models trained with
merge-list dependent BPE tokenization. BPE vo-
cabulary typically admits multiple possible segmen-
tations of the input pretokens that can be obtained
from a myriad of BPE inference schemes. How-
ever, as we show in our experiments, these schemes
are not all equal and the standard merge-list depen-
dent scheme is ideal because of its alignment with
the BPE training procedure.” Specifically, we fo-
cus on two such algorithms that aim to optimally
compress the input text: a) left-to-right encoding
that greedily maximizes compression; and b) an
exact maximal compression encoding algorithm to
compress the input pretokens given the BPE vocab-

2Technicallly, the inference scheme used for tokenization
of data during training of language models is the most ideal
scheme. But in our experiments and general practice, the
language models use the merge-list dependent BPE inference
scheme.


https://github.com/huggingface/tokenizers

Using language models ‘ Process OUTpIT
a First, drag the raw audio
How do I quantize the Tokenize M signal to the stem bar and
audio to the grid? the prompt Transformer
Input Prompt -~ t--- and Gene-rziltie-
Input Pretoken to encode/tokenize: quantize
Merge-list dependent:
. Merge-free tokenizers
Standard Tokenizer | 9
Merge-list BPE Vocabulary
ini t,z,q,u,ea,n,i,nt,
BPE Training tq’i uZ, aé b Lose ordering info » an, ...quanti, qu, ...nt, tize,
T a,n e ant, ize, quant,...
a+n=an (525 t\
n +t = nt (505) u step 1: q,u,an,t, i,z e
rol_prd Left-to-right tokenizer
scpndalous N .
_traundEizd ize step n: g, U, an, tize output:
—_— % ep n+l: Qu, an, tize

a+nt=ant(217)
t + ize = tize (107)
q+u=qu(98)

GrEEﬁiaigHEZP;

_queen_ bagftizd

t(i‘zue/

quant
quanti

ant ~—

quanti+z +e

Final output:

qu + an + tize - - -
Maximal-compression tokenizer

output:

quant + ize

Figure 1: Illustration comparing merge-list based and merge-free BPE algorithms elaborated in the pink ex-
panded box. The pretoken “quantize” is tokenized by three different algorithms: a merge-list based standard
tokenizer (left) and two merge-free algorithms left-to-right (right-top), and maximal-compression
(right-bottom). The ordered merge-list is obtained from bigram statistics during BPE training. In contrast, merge-
free algorithms only depend on the unordered BPE vocabulary which contains less information about the training

corpus.

ulary. We contrast the impact of these algorithms
to a class of inference algorithms that arise by tar-
geting manipulation of the vulnerable merge list
which includes truncation/deletion of merges, ran-
dom shuffling of ordered merges, and backing-off
to single characters. On three diverse language
modeling tasks — a) multiple choice QA, b) con-
ditional generation (machine translation), and c)
open-ended generation — we observe that the tar-
geted inference algorithms significantly degrade
the downstream LLM performance, but the non-
targeted algorithms focusing on compression do
not negatively impact LLM performance, and even
improve it in some cases. Finally, we conduct fur-
ther quantitative and qualitative analysis to study
this surprising pattern of results in greater detail.

Our contributions are: i) empirically support
compression-focused inference algorithms for to-
kenization which ameliorate the security vulner-
ability arising from the dependence on merge-
lists; ii) investigate the downstream effect of nu-
merous BPE inference algorithms, including ones
that exploit the merge-list vulnerability, that de-
viate from training on diverse language modeling

tasks; and iii) shed light on the extent to which
the non-deterministic encoding property of BPE
documented in prior work is impactful in practice.

2 Training and Inference for BPE

BPE, like many other tokenization paradigms, is
non-deterministic i.e. for a fixed tokenizer vocab-
ulary, there are multiple ways to segment(encode)
a given piece of text. Typically, BPE training pro-
duces merge-lists and inference also used these
merge lists in the same way as training to avoid
mismatch and reduce ambiguity in segmentation.
Language models are sensitive to the tokenization
inference scheme used during their training. While
LM training is fairly robust under multiple infer-
ence schemes, our focus in this paper is to explore
mismatched inference algorithms for BPE on a
model pretrained with standard merge-based in-
ference scheme. In this section, we review how
standard BPE training and encoding process and
describe the two alternate merge-free BPE infer-
ence algorithms explored in this paper.



2.1 Training and Merge-list

BPE is a greedy compression algorithms that is
trained on a corpus by repeatedly merging the most
frequent pair of tokens in the training corpora, and
recording the new merged token at each step into
the BPE tokenizer vocabulary. In practice, each
pretoken (space separated word) is processed in-
dividually across the corpus. This results in the
vocabulary of the tokenizer.

A lesser known fact is that many standard BPE
implementations also record the merge list, which
is the ordered list of merges that were performed
sequentially during the training process (see Fig-
ure 1). This list has strictly more information than
the vocabulary alone because it contains the "train-
ing dynamics" of the tokenzier, namely a.) the split-
tings of the tokens (and hence the "dependencies"
between tokens), and b.) the order of the merges.
Recent work (Hayase et al., 2024) has shown that
this information can be used to extract information
about the tokenizer’s training data, which is often
correlated with the pretraining data of the language
model. Thus, the tokenizer merge lists are potential
attack surfaces which adversaries can exploit to
extract information about the language model. In
contrast, the BPE vocabulary does not include any
information about the order of the merges, and is
more difficult to use for attacks.

2.2 Merge-based BPE Encoding Algorithms

Standard implementations of BPE encodings use
the merge list to encode pretokens returned by some
pretokenization pipeline (which often returns a list
of pretokens). The tokenizer first attempts to match
the pretoken with an element in the vocabulary. If
there are no exact matches, the tokenizer then takes
a list of merges from the merge list appearing in the
pretoken, and subsequently applied the merges to
the pretoken as illustrated in Figure 1. The primary
motivation nehind this scheme is to emulate the
same compression process at inference time as in
the training process so that the token distribution
seen by the models at inference time is similar to
the training distribution if the corpus has a similar
distribution of pretokens as in the training corpus.
In this paper, we call the algorithm described above
the merge-based BPE encoding algorithm since it
relies on the merge list at test time.

An important aspect of merge lists is their nat-
ural hierarchical structure. For example, if the
bigram "an" is learnt at the first step of training,

and the token "ant" is learnt at seventh step by
merging "an" and "t", then the token "ant" can only
be used after applying the merge "a n", and so
"ant" is a child of "an". This is a key property of
merge lists. We revisit this in our merge-list per-
turbation based experiments — when we delete a
symbol from the merge list, we must also delete all
its children since they are no longer reachable dur-
ing the standard BPE encoding process. As noted
above, the merge lists provide a security risk which
can have severe consequences to model providers.
Our work shows that it is possible to encode text
by patching this vulnerability while maintaining
downstream performance. Moreover, our method
does not require retraining the language model on
the new tokenizer, and can be applied post-hoc to
any existing language model.

2.3 Non-targetting Merge-free BPE Inference
Algorithms

Given a BPE vocabulary, there are other natural
algorithms we can use to encode a pretoken with-
out relying on the merge list. However, we must
choose it carefully so that it achieves good down-
stream performance when we integrate it into the
language model’s inference pipeline. We explore
two algorithms that do not depend on the merge
list and focus on maximal compression of preto-
kens.We believe that these algorithms will likely
behave well because BPE training can also be in-
terpreted (Zouhar et al., 2023) to prioritize com-
pression implicitly in a greedy manner. We call
them non-targetting because they do not involve
any targetted manipulation of the learned merge-
list. In this paper, we call a merge-list free encod-
ing algorithm performant if it achieves comparable
or better downstream performance as the standard
merge-based encoding algorithm.

2.3.1 Left-to-right Greedy Encoding

The left-to-right encoding algorithm is a simple
and efficient algorithm for encoding a pretoken.
Given a pretoken, we look for the longest prefix
of the pretoken that is in the vocabulary, and we
output that prefix as a token. We then repeat this
process for the remaining suffix of the pretoken.
For example, given the pretoken "quantize" and the
vocabulary provided in 1, the left-to-right encoding
algorithm chooses the token "quanti" (as opposed
to "quant” or "qu") since it is the longest prefix in
the vocabulary. The suffix "ze" is then encoded
as "z" and "e" since the string "ze" is not in the



vocabulary.

This is a natural candidate for our performant
merge-list free encoding algorithm. Since the BPE
training process learns tokens at each step of train-
ing in a greedy manner, it is plausible that the left-
to-right encoding algorithm will achieve similar
level of compression.

2.3.2 Maximal Compression Encoding

Prior work (Goldman et al., 2024a) has shown that
compression during LLM pretraining correlates
strongly with downstream performance. It is there-
fore natural to ask whether a good compression
at inference time will always lead to better down-
stream performance. To address this question, we
consider the maximal compression encoding algo-
rithm. Given a pretoken, we look for the combi-
nation of tokens in the vocabulary which gives the
highest compression of the pretoken.

For example, if we have the pretoken "quantize"
and the vocabulary provided in 1, the string "quan-
tize" is not an element in the vocabulary, so the
shortest encoding must contain at least two tokens.
From manual inspection, we see that "quant" and
"ize" are both in the vocabulary, so the maximal
compression encoding algorithm chooses this split.

A naive implementation of this algorithm has ex-
ponential time complexity in the length of the preto-
ken, but a dynamic programming algorithm would
reduce this to quadratic time complexity 3. More-
over, since tokenizers are applied to a string after
the pretokenization step, in practice, the strings
being encoded is not very long.

2.4 Other Merge-list-free Encoding
Algorithms

Although there are many other merge-free infer-
ence algorithms, many of them do not compress
the prompt as well as the ones discussed above.
The most trivial one is the character-based encod-
ing algorithm: this breaks the pretoken into char-
acters and outputs them as tokens. This encoding
method has the worst compression for a given piece
of prompt, and is thus the opposite of the maximal
compression encoding algorithm.

As described in nthe subsequent sections, we
observe that the compression-oriented inference
algorithms, especially the left-to-right greedy en-
coding algorithm has comparable downstream per-
formance as the standard merge-based encoding

3See the appendix for the dynamic programming algorithm.
1

algorithm while the character-based encoding algo-
rithm, although also merge-free, performs signifi-
cantly worse.

3 Impact of Training-Inference Mismatch
on LM Performance

In this section, we describe our empirical findings
on the impact of different tokenization schemes
on downstream LM performance. We not only
compare the merge-free non-targetting compres-
sion based inference algorithms to the standard
tokenization algorithm described above, but we
also investigate other tokenization schemes that
explcitly seek to exploit and manipulate the vul-
nerabilities offered by a publicly available merge-
list. We perform extensive investigation on three
diverse LM-based tasks as described below. The
central question we aim to explore is the nature of
the impact of the mismatch between training and
inference time tokenization procedures.

3.1 Experimental Setup

We evaluate an LLM on three diverse kinds of
tasks: multiple-choice QA tasks that require very
short form generation after encoding the question
prompt, a longer conditional generation task of ma-
chine translation that involves processing a prompt
with the source text and generating target text, and
a fully open-ended generation task that focuses on
completion based on context to be encoded. We
process the prompts with the different encoding
schemes, but generate with the full vocabulary. It
must be noted that the choince of tokenization in-
ference does not affect generation with BPE based
tokenizer.

We choose to focus on the Qwen-2-7B-Instruct
model (Yang et al., 2024) for our experiments. The
choice of model is motivated by the need for a
model with a sizable vocabulary size to experiment
with different ranges of corruption) and a tokenizer
which was trained using the HF tokenizer (as op-
posed to tiktoken). * The Qwen-2 tokenizer has
151645 tokens in its vocabulary, of which 255 are
single character tokens. Unless noted otherwise,
the Qwen-2 tokenizer will be referred to as the

*These desiderata eliminates other popular models such
as OLMo-7B and Llama-3. The former uses the GPT-NeoX
tokenizer, which has 50k tokens in its vocabulary, and the
latter uses the tiktoken tokenizer.

The tiktoken tokenizer is a proprietary tokenizer developed
by OpenAl for their models. Their merge lists do not strictly
adhere to the requirements we described in the previous sec-
tion.



"original" tokenizer (as opposed to the "custom"
tokenizers obtained by either using a different en-
coding algorithm or by corrupting the merge list).

3.1.1 MCQA tasks

For the accuracy-based tasks, we evaluate the
model on two popular Q&A benchmarks: MMLU
(Hendrycks et al., 2021) and ARC-Easy/Challenge
(Clark et al., 2018). Conditional Generation: Ma-
chine Translation We consider the effect of differ-
ent tokenizations on the semantic correctness of
the generated text by testing it on the task of ma-
chine translation. We evaluate the performance of
the model on the test split of the WMT-17 English-
German dataset (Bojar et al., 2017), and report one
n-gram based metric (BLEU (Papineni et al., 2002))
and one semantic metric (METEOR (Banerjee and
Lavie, 2005)) comparing the generated text and
the ground truth translations. We also computed
ROUGE (Lin, 2004) and BERTScore (Zhang et al.,
2020), and observe similar trends to BLEU and
METEOR.

3.1.2 Open-ended Generation

We evaluated the open-ended generation capabil-
ities of the model by prompting it with abstracts
from scientific papers. The prompts were gener-
ated by extracting the first five sentence from the
full text in the "Semantic Scholar Open Research
Corpus” (Lo et al., 2020), a text corpus consisting
of research papers extracted from Semantic Scholar.
To ensure the quality and diversity of the prompts,
we took a 5899 examples from the corpus across
multiple academic fields. The text corpora was
chosen due to the high concentration of domain-
specific pretokens which are likely to be sensitive
to tokenization.

We then measured how much the generated text
deviated from the original text (human written dis-
tribution) distribution by measuring the MAUVE
score (Pillutla et al., 2023) between the two sets of
texts.

3.2 Targeted Tokenization

As mentioned above, we measure the impact on
the downstream LM performance when the infer-
ence algorithms target to manipulate merge-list
obtained via tokenizer training. We deliberately
corrupt the merge list of the tokenizer and measure
the performance degradation. To understand the
sensitivity of LLM inference on the merge list, we
ran inference using tokenizations generated from

a corrupted merge list. The merge list gives a fine-
grained interface for controlling the encoding of
the model (as opposed to the choice of encoding
algorithms which are qualitatively different from
one another). These experiments can also help us
understand to what extent the manipulation of the
merge list (by for example, a malicious insider) can
be used to sabotage the generation capability of the
model. We corrupt the tokenizer in the following
ways:

Truncation: Since the merge lists are generated
in the order in which the merges are learned, we
consider the effect of removing the less common
merges (learned last during training) by deleting
the last N merges from the merge list.

Deletion: We also consider the effect of random
deletion of merges since the merges important for
downstream performance may not be concentrated
in a particular region within the merge list. For ran-
dom deletions, we first choose an initial set of dele-
tions (the "initial set") and delete all merges which
depend on these seeds (the "number of deletions").
To generate our random deletion tokenizers, we’ve
fixed a random seed, chose an increasing number
of initial deletions, and measured the performance
of the model for each of these settings. (This is
why the number of deletions is not a clean number
for all of our random deletion experiments.)
Merge Shuffle: We also consider a merge-based
tokenization where at runtime, we randomly shuf-
fle the merge list being applied to the pretoken. For
example, the standard encoding algorithm 1 may
tokenize the pretoken "quantize" by successively
applying the merges "an", "z e", "i ze", "t ize", and
"qu", in this order, resulting in the tokenization "qu
an tize". The random shuffle encoding algorithm
may instead apply the merges "ua", "nt", "qua",
"nti", and "ze" (assuming all of these appear in the
merge list somewhere), resulting in the tokeniza-
tion "qua nti ze". Throughout our experiments, we
have a fixed random seed which determines how
the merge list is shuffled.

The random shuffle encoding results in a drasti-
cally different token distribution at inference time
compared to the standard encoding algorithm. This
provides a natural baseline where we expect the
generation capability of the model to be signifi-
cantly degraded.

Character Level: As described above, we also
consider the baseline of splitting pretokens into
individual characters.

Observing the results in Table 1, we see that the



Accuracy-based Tasks Machine Translation OEG.

Tokenizer ARC MMLU BLEU METEOR MAUVE
Standard 0.869 0.656 37.519 0.6764 0.904
Merge shuffle 0.853 0.617 15.984 0.4846 0.245
Character-level ~ 0.860 0.624 16.305 0.4783 0.399
Random deletion 0.860 0.628 20.932 0.5420 0.170

Table 1: Evaluation results for corrupted tokenizers
on the accuracy-based tasks (ARC and MMLU) and
the WMT-17 English—-German machine translation task.
The corrupted tokenizers do not suffer as much for
accuracy-based tasks compared to longer generation
tasks. The random deletion tokenizer was obtained by
randomly deleting 149 802 tokens from the standard
tokenizer. “OEG.” stands for “Open-ended Generation.”

corruption doesn’t seem to affect the MCQA tasks
much but it shows significant degradation in MT
and open-ended generation under corruption. Al-
though the prompts in accuracy-based benchmarks
are long enough to have different tokenizations un-
der our scheme, the generation length is not long
enough to show subtantial differences in perfor-
mance. The merge shuffle corruption consistently
performs at least as bad as, if not worse than, the
character-level corruption. This suggests that se-
vere corruption to the merge lists can essentially do
away any benefits of subword tokenization, and the
model may as well use a character-level tokeniza-
tion.

In Figure 2, we investigate the relationship be-
tween the effect on downstream performance and
severity of corruption. We observe that both se-
mantic and n-gram metrics are not too sensitive
to mild corruption on a per-example level. As the
corruption levels cross a threshold (merge shuffle,
char-level, aggressive deletion), the drop in per-
formance is noticeably significant. In fact, we’ve
observed that performance is quite stable even for
"medium-sized" deletions (107060 and 115604).
This seems to suggest that the model’s performance
relies primarily on "highly-trained" tokens which
are only destroyed for very aggressive corruptions.
It could also be the case that large portions of BPE
vocabulary are never used for practical purposes
indicating the existence of many undertrained to-
kens in the vocabulary. It is also interesting to note
that the decline for the random deletion tokenizer
is more steady in the machine translation task com-
pared to the accuracy-based tasks. This robustness
is likely due to the fact that the model is generating
longer text in the machine translation task.

Overall on manual inspection, the degradation
of generated output exhibits unnatural syntactic
choices (e.g. characters spaced out by spaces)
which causes drops in BLEU and MAUVE.

3.3 Non-targetting Tokenization

As described above, we compare compression
based merge-free algorithms against the standard
algorithm. These algorithms either greedily or ex-
actly maximize compression of the pretoken given
the BPE vocabulary.

Accuracy-based Tasks Machine Translation OEG.

Tokenizer ARC MMLU BLEU METEOR MAUVE
Standard 0.869 0.656 37.519 0.6764 0.904
Maximal Compression 0.863 0.678 35.899 0.6718 0.927
Left to right 0.903 0.705 35.396 0.6632 0.985

Table 2: Evaluation results for non-targetting merge-
free tokenizers on the accuracy-based tasks (ARC and
MMLU), the WMT-17 English—-German machine trans-
lation task, and the open-ended genertion task. The left-
to-right tokenizer maintains the performance or even
outperforms the standard tokenizer. The maximal com-
pression also large maintains the standard tokenizer’s
performance “OEG.” stands for “Open-ended Genera-
tion.”

In Table 2, we can see that both left-to-right and
maximal compression tokenization schemes more
or less maintain the performance under the standard
tokenizer. Left-to-right curiously even improves
the accuracy performance in the MCQA tasks. It
is also marginally closer to human-written texts
for open-ended generation as reflected by MAUVE
scores. These results indicate that such merge-free
compression based algorithms are robust to train-
ing/inference mismatch for models trained with
merge-based standard tokenization. A possible ex-
planation of this phenomenon could be the con-
jecture that the BPE training objective implicitly
greedily optimizes compression and due to exten-
sive training on left-to-right languages, it naturally
breaks ties in favor of left-to-right bigrams. Thus
left-to-right greedy compression matches this im-
plicit objective. However, this conjecture only par-
tially explains our results.

This is because when we measure how differ-
ently the prompts are encoded under various tok-
enization schemes compared to the standard tok-
enizer, we find that the merge-free tokenizer differ
in the encoding of every single prompt in the open-
ended generation task. Table 3 shows the average
edit distances between the merge-based standard
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Figure 2: Performance of different random deletion tokenizers on the accuracy-based tasks (ARC and MMLU) and
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Jaccard Levenshtein

Edit Perplexity

Tokenizer

Standard 0.000
Left to right 0.226
Maximal Comp. 0.196
Merge Shuffle 0.918
Character-level 0.925
Random Deletion  0.927
Truncation 0.889

0.000 0.000 83.798
29.645 0.165 95.891
24.740 0.139 155.751

692.000 0.959 131.400
796.987 0.964 58.212
800.719 0.966 92.734
455.775 0.884 97.202

Table 3: Perplexity scores and prompt metrics (Jaccard similarity, Levenshtein distance, edit distance) between
different tokenization approaches and standard tokenization.

tokenizer encodings and encodings from the other
tokenizers. We observe that the left-to-right and
maximal compression encodings are less distant
than other corruption-based tokenizers. Though,
we also notice that they have higher perplexity
on the prompts than the standard meerge-based
tokenizer. This indicates that the compression
based approaches use potentially unconventional
and undertrained tokens but these effects are over-
come by the model’s robustness to specific kinds
of typos and oversegmentations associated with
compression-based algorithms.

4 Qualitative Analysis

We see above that left-to-right and maximal-
compression do not adversely affect the down-
stream LM performance despite encoding the
prompts differently from the standard tokenizer.
We analyzed the spread of difference in encoding
of our inference scheme from the standard tok-
enizer in Figure 3 (additional figures in Appendix)
and noticed that the non-targetting left-to-right and

maximal-compression algorithms noticeably re-
sulted in smaller encoding differences than the tar-
getting encoding schemes. We manually analyzed
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Figure 3: Spread of edit distance over prompts for open
ended generation for various inference schemes. Top
two are non-targetting merge-free schemes; bottom 3
are targetting inference schemes.

the prompts with low and high edit distances of
the left-to-right tokenizer from the original merge-
based tokenizer. A general trend we observed was



that the low-distance prompts tended to cover di-
verse scientific domains and had considerably sim-
pler language than the high distance prompts. The
high distance prompts seemed to be overwhelm-
ingly represented by domain-specific topics related
to biology and medicine with hyperspecific jargon
and rare terms, indicating that rare tokens that tend
to be merged much later and are typically underrep-
resented are handled differently by the standard and
left-to-right schemes. We also computed embed-
dings with Qwen2-7b-instruct model (Yang
et al., 2024) of the completions under the differ-
ent tokenizers. When we analyzed outlier comple-
tions (according to cosine-similarity with standard
tokenizer completions) for low-distance prompts,
we noticed that these prompts were mostly medi-
cal and biology related although with simpler lan-
guage than high-distance prompts. Conversely,
high-distance prompts with outlier completions
tended to contain fewer proper names and domain-
specific terms than other prompts in this group.

5 Related Work

While we focus on BPE inference algorithms
that ameliorate security vulnerabilities associ-
ated with merge-lists (Hayase et al., 2024), the
non-deterministic property of tokenization algo-
rithms (Kudo and Richardson, 2018; Sennrich et al.,
2016; Mielke et al., 2021) in general which has
been identified in several prior works (Cao and
Rimell, 2021; Gastaldi et al., 2025) forms the crux
of our motivation. The symbols in the vocabulary
can give rise to multiple possible segmentations
for a given word/pretoken. While much work has
studied the effect of training different types of to-
kenizers/segmenters and models based on those
tokenizers (Goldman et al., 2024b; Saleva and Lig-
nos, 2023), we instead focus on evaluating different
BPE inference scheme on pretrained tokenizers and
models with the standard BPE approach. While
training models (Provilkov et al., 2020) with differ-
ent tokenization schemes in general doesn’t affect
the downstream performance significantly, in our
setting of training-inference mismatch we observe
significant performance degradation with certain
algorithms. Related to our work, Uzan et al. (2024)
also study different BPE inference algorithms but
they limit their analysis to intrinsic tokenization
metrics like cognitive plausibility (Beinborn and
Pinter, 2023) and morphology (Bostrom and Dur-
rett, 2020) but do not investigate their downstream

impact on the model performance. Our surprising
finding that algorithms like left-to-right and max-
compression don’t result in significance perfor-
mance degradation despite encoding the prompts
differently is also related to the findings in recent
work that show that LLMs have an implicit lexicon
of pretokens (Kaplan et al., 2025) and are robust to
typos (Cao et al., 2023).

6 Conclusion

In light of security vulnerabilities associated with
inference-time usage of the merge-list learned dur-
ing BPE training, we explored alternative merge-
free algorithms for BPE inference on pretrained
models. We found that although arbitrary and
targeted inference-time deviations from standard
BPE hurt downstream LM performance signifi-
cantly, surprisingly the non-targeted compression-
based merge-free algorithms maintained or even
improved it. This suggests potential overlap in
the implicit objectives of BPE training and these
merge-free algorithms paving way for more secure
tokenization schemes for language models.

7 Limitations

The primary limitation of our work is that while we
have articulated the need for merge-list free BPE in-
ference algorithms and have provided empirical ev-
idence for two such inference algorithms focusing
on compression across a diverse set of LM tasks, it
is not clear that the algorithms investigated are the
optimal algorithms for merge-free inference that
preserves performance across all domains and lan-
guages. Relatedly, we only have empirical support
from our experiments and prior works for conlcud-
ing that left-to-right and max-compression algo-
rithms preserve performance possibly because the
original BPE training procedure implicitly greedily
optimizes (Zouhar et al., 2023) for compression
and breaks ties in left-to-right manner for most
languages. We don’t have theoretical support and
gurantees for this conjecture and our findings might
not hold for small amounts of data in low-resource
languages, especially with a non-monotonic or a
non-left-to-right writing order. Finally, while our
recommendation might eliminate data inference
and other security vulnerabilities directly related to
merge-lists, they still wouldn’t defend against other
kinds of attacks based on tokenization like those
focusing on finding and exploiting glitch tokens.



8 Ethical Considerations

While we recommend defending against vulnera-
bilities associated with merge lists during deploy-
ment by not using them, this would also result in
less transparency. It can be argued that publicly
available merge-lists possible allow data-mixture
inference and it might be desirable in certain cases
because of transparency and auditability reasons.
However, depending on the context, it can also be
argued that LMs should be protected from the se-
curity vulnerabilities posed by publicly available
merge-lists. We recognize that our recommenda-
tion applies for the latter contexts and doesn’t apply
in contexts that disproportionately prioritize trans-
parency.
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Algorithm 1 Dynamic-Programming for Maximal-Compression BPE Encoding. Given an input string
s and a BPE vocabulary represented as a prefix trie rooted at root, this procedure finds the shortest
sequence of token IDs whose concatenation exactly matches s. We maintain a one-dimensional array
dp [0. .n] where dp[i] holds the best encoding (minimal number of tokens) for the prefix s[0..0 — 1]. At
each position ¢, we traverse the trie from the root to extend all valid tokens starting at 7, updating dp[j+1]
whenever we discover a shorter encoding ending at 3.

1: procedure MAXCOMPBPEENCODE(s, root)

2 n < |s|

3 dp « [Nonejo..n

4: dp[0] ]

S: for i <~ Oton — 1do

6: if dp[i] # None then

7: node < root

8 for j <—iton—1do

9: if s[j] ¢ node.children then

10: break

11: node < node.children[s[j]]

12: if node.token_id is defined then

13: candidate <— dp[i] || node.token_id
14: if (dp[j + 1] = None) V |candidate| < |dp[j + 1]| then
15: dp[j + 1] < candidate

16: return dp[n]
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Figure 4: Jaccard distance between the tokenization of the Semantic Scholar prompts obtained from the standard
tokenizer and custom tokenizers.



Left to right Merge Shuffle Truncation (Del. Seed = 151267, Start Index =

3000 1200 1 1000
2500 1000 800 4
2 2000 2 800 z
§ 5 $ 600
% 1500 - % 600 %
i & £ 400
1000 - 400 4
500 4 200 4 200 4
0- T T T T T T 0 04
0 100 200 300 400 500 600 500 1000 1500 200 200 400 600 800 1000 1200
Metric value Metric value Metric value
Truncation (Del. Seed = 150867, Start Index = 500) Random Deletion (Seed = 41500) Character-level

1200 A

1500 4 1000 4

800 4

1000 4
600

500 +

Frequency
o
!
Frequency
5 8
o 8 3
Frequency

0 250 500 750 1000 1250 1500 500 1000 1500 2000 500 1000 1500 2000
Metric value Metric value Metric value
Truncation (Del. Seed = 151347, Start Index = 20) Random Deletion (Seed = 41000) Maximal Compression

1200 1500 4

800 +

1000 A 1250 4

800 1000 |

600 | 750 1

500

200 4
250 4

Frequency
PO
s o
o s 3
i . .
Frequency
-
s 8 3
Frequency
o

250 500 750 1000 1250 1500 500 1000 1500 2000 50 100 150
Metric value Metric value Metric value

o

Figure 5: Levenshtein distance between the tokenization of the Semantic Scholar prompts obtained from the standard
tokenizer and custom tokenizers.
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Figure 6: Edit distance between the tokenization of the Semantic Scholar prompts obtained from the standard
tokenizer and custom tokenizers.
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