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Abstract001

Standard Byte-Pair Encoding (BPE) tokeniza-002
tion compresses text by pairing a learned token003
vocabulary with a detailed merge list. Recent004
work has shown that this merge list exposes a005
potential attack surface for extracting informa-006
tion about language model’s training data. In007
this paper, we explore the downstream impact008
of BPE inference algorithms that do not rely009
on this merge list at all, and hence differ from010
the encoding process during the BPE training.011
To address this question, we investigate two012
broad classes of BPE inference schemes that013
differ from BPE appliction during training: a)014
targetted deviation from merge-lists including015
random merge orders, and various corruptions016
of merge list involving deletion/truncation, and017
b) non-targetted BPE inference algorithms that018
do not depend on the merge list but focus on019
compressing the text either greedily or exactly.020
Extensive experiments across diverse language021
modeling tasks like accuracy-based QA bench-022
marks, machine translation, and open-ended023
generation reveal that while the targetted devi-024
ation from the merge lists exhibit significant025
degradation in language model performance,026
the non-targetted merge-list free inference algo-027
rithms result in minimal impact on downstream028
performance that is often much smaller than029
expected. These findings pave way for simpler030
and potentially more privacy-preserving tok-031
enization schemes that do not catastrophically032
compromise model performance.033

1 Introduction034

Byte-pair encoding (Gage, 1994; Sennrich et al.,035

2016; Kudo and Richardson, 2018; Radford et al.)036

is the standard algorithm used to tokenize input037

texts for large language models (LLMs). In prac-038

tice, most BPE-based tokenizer implementations039

used for frontier language models1 rely on a learned040

merge list to iteratively combine subword units into041

1Most notably, the Huggingface tokenizer codebase:
https://github.com/huggingface/tokenizers

tokens during inference time. This BPE inference 042

procedure is appealing because it mimics the merge 043

application procedure during BPE training. How- 044

ever, dependence on the learned merge list exposes 045

a vulnerability that might facilitate exploits to af- 046

fect the model’s downstream performance. Also, as 047

shown in recent work (Hayase et al., 2024), these 048

merge lists also expose an attack surface where 049

adversaries can steal information about the tok- 050

enizer’s training data that is likely correlated with 051

the LLM training data. Moreover, other works 052

(Geiping et al., 2024) have shown that discrepan- 053

cies between the tokenizer and LLM’s training data 054

can lead to "glitch tokens" which lead to genera- 055

tion failures thus, information about the tokenizer’s 056

training data can be used to finding and exploit- 057

ing these glitches (Land and Bartolo, 2024). It is 058

therefore undesirable to rely on the BPE merge list 059

during the deployment of the associated language 060

model. Hence in this paper, we investigate the 061

effectivene ss of using alternative BPE inference 062

algorithms that do not depend on the learned merge 063

lists posthoc for large language models trained with 064

merge-list dependent BPE tokenization. BPE vo- 065

cabulary typically admits multiple possible segmen- 066

tations of the input pretokens that can be obtained 067

from a myriad of BPE inference schemes. How- 068

ever, as we show in our experiments, these schemes 069

are not all equal and the standard merge-list depen- 070

dent scheme is ideal because of its alignment with 071

the BPE training procedure.2 Specifically, we fo- 072

cus on two such algorithms that aim to optimally 073

compress the input text: a) left-to-right encoding 074

that greedily maximizes compression; and b) an 075

exact maximal compression encoding algorithm to 076

compress the input pretokens given the BPE vocab- 077

2Technically, the inference scheme used for tokenization
of data during training of language models is the most ideal
scheme. But in our experiments and general practice, the
language models use the merge-list dependent BPE inference
scheme.
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Figure 1: Illustration comparing merge-list based and merge-free BPE algorithms elaborated in the pink ex-
panded box. The pretoken “quantize” is tokenized by three different algorithms: a merge-list based standard
tokenizer (left) and two merge-free algorithms left-to-right (right-top), and maximal-compression
(right-bottom). The ordered merge-list is obtained from bigram statistics during BPE training. In contrast, merge-
free algorithms only depend on the unordered BPE vocabulary which contains less information about the training
corpus.

ulary. We contrast the impact of these algorithms078

to a class of inference algorithms that arise by tar-079

geting manipulation of the vulnerable merge list080

which includes truncation/deletion of merges, ran-081

dom shuffling of ordered merges, and backing-off082

to single characters. On three diverse language083

modeling tasks – a) multiple choice QA, b) con-084

ditional generation (machine translation), and c)085

open-ended generation – we observe that the tar-086

geted inference algorithms significantly degrade087

the downstream LLM performance, but the non-088

targeted algorithms focusing on compression do089

not negatively impact LLM performance, and even090

improve it in some cases. Finally, we conduct fur-091

ther quantitative and qualitative analysis to study092

this surprising pattern of results in greater detail.093

Our contributions are: i) empirically support094

compression-focused inference algorithms for to-095

kenization which ameliorate the security vulner-096

ability arising from the dependence on merge-097

lists; ii) investigate the downstream effect of nu-098

merous BPE inference algorithms, including ones099

that exploit the merge-list vulnerability, that de-100

viate from training on diverse language modeling101

tasks; and iii) shed light on the extent to which 102

the non-deterministic encoding property of BPE 103

documented in prior work is impactful in practice. 104

2 Training and Inference for BPE 105

BPE, like many other tokenization paradigms, is 106

non-deterministic i.e. for a fixed tokenizer vocab- 107

ulary, there are multiple ways to segment(encode) 108

a given piece of text. Typically, BPE training pro- 109

duces merge-lists and inference also used these 110

merge lists in the same way as training to avoid 111

mismatch and reduce ambiguity in segmentation. 112

Language models are sensitive to the tokenization 113

inference scheme used during their training. While 114

LM training is fairly robust under multiple infer- 115

ence schemes, our focus in this paper is to explore 116

mismatched inference algorithms for BPE on a 117

model pretrained with standard merge-based in- 118

ference scheme. In this section, we review how 119

standard BPE training and encoding process and 120

describe the two alternate merge-free BPE infer- 121

ence algorithms explored in this paper. 122
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2.1 Training and Merge-list123

BPE is a greedy compression algorithms that is124

trained on a corpus by repeatedly merging the most125

frequent pair of tokens in the training corpora, and126

recording the new merged token at each step into127

the BPE tokenizer vocabulary. In practice, each128

pretoken (space separated word) is processed in-129

dividually across the corpus. This results in the130

vocabulary of the tokenizer.131

A lesser known fact is that many standard BPE132

implementations also record the merge list, which133

is the ordered list of merges that were performed134

sequentially during the training process (see Fig-135

ure 1). This list has strictly more information than136

the vocabulary alone because it contains the "train-137

ing dynamics" of the tokenzier, namely a.) the split-138

tings of the tokens (and hence the "dependencies"139

between tokens), and b.) the order of the merges.140

Recent work (Hayase et al., 2024) has shown that141

this information can be used to extract information142

about the tokenizer’s training data, which is often143

correlated with the pretraining data of the language144

model. Thus, the tokenizer merge lists are potential145

attack surfaces which adversaries can exploit to146

extract information about the language model. In147

contrast, the BPE vocabulary does not include any148

information about the order of the merges, and is149

more difficult to use for attacks.150

2.2 Merge-based BPE Encoding Algorithms151

Standard implementations of BPE encodings use152

the merge list to encode pretokens returned by some153

pretokenization pipeline (which often returns a list154

of pretokens). The tokenizer first attempts to match155

the pretoken with an element in the vocabulary. If156

there are no exact matches, the tokenizer then takes157

a list of merges from the merge list appearing in the158

pretoken, and subsequently applied the merges to159

the pretoken as illustrated in Figure 1. The primary160

motivation nehind this scheme is to emulate the161

same compression process at inference time as in162

the training process so that the token distribution163

seen by the models at inference time is similar to164

the training distribution if the corpus has a similar165

distribution of pretokens as in the training corpus.166

In this paper, we call the algorithm described above167

the merge-based BPE encoding algorithm since it168

relies on the merge list at test time.169

An important aspect of merge lists is their nat-170

ural hierarchical structure. For example, if the171

bigram "an" is learnt at the first step of training,172

and the token "ant" is learnt at seventh step by 173

merging "an" and "t", then the token "ant" can only 174

be used after applying the merge "a n", and so 175

"ant" is a child of "an". This is a key property of 176

merge lists. We revisit this in our merge-list per- 177

turbation based experiments – when we delete a 178

symbol from the merge list, we must also delete all 179

its children since they are no longer reachable dur- 180

ing the standard BPE encoding process. As noted 181

above, the merge lists provide a security risk which 182

can have severe consequences to model providers. 183

Our work shows that it is possible to encode text 184

by patching this vulnerability while maintaining 185

downstream performance. Moreover, our method 186

does not require retraining the language model on 187

the new tokenizer, and can be applied post-hoc to 188

any existing language model. 189

2.3 Non-targetting Merge-free BPE Inference 190

Algorithms 191

Given a BPE vocabulary, there are other natural 192

algorithms we can use to encode a pretoken with- 193

out relying on the merge list. However, we must 194

choose it carefully so that it achieves good down- 195

stream performance when we integrate it into the 196

language model’s inference pipeline. We explore 197

two algorithms that do not depend on the merge 198

list and focus on maximal compression of preto- 199

kens.We believe that these algorithms will likely 200

behave well because BPE training can also be in- 201

terpreted (Zouhar et al., 2023) to prioritize com- 202

pression implicitly in a greedy manner. We call 203

them non-targetting because they do not involve 204

any targetted manipulation of the learned merge- 205

list. In this paper, we call a merge-list free encod- 206

ing algorithm performant if it achieves comparable 207

or better downstream performance as the standard 208

merge-based encoding algorithm. 209

2.3.1 Left-to-right Greedy Encoding 210

The left-to-right encoding algorithm is a simple 211

and efficient algorithm for encoding a pretoken. 212

Given a pretoken, we look for the longest prefix 213

of the pretoken that is in the vocabulary, and we 214

output that prefix as a token. We then repeat this 215

process for the remaining suffix of the pretoken. 216

For example, given the pretoken "quantize" and the 217

vocabulary provided in 1, the left-to-right encoding 218

algorithm chooses the token "quanti" (as opposed 219

to "quant" or "qu") since it is the longest prefix in 220

the vocabulary. The suffix "ze" is then encoded 221

as "z" and "e" since the string "ze" is not in the 222
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vocabulary.223

This is a natural candidate for our performant224

merge-list free encoding algorithm. Since the BPE225

training process learns tokens at each step of train-226

ing in a greedy manner, it is plausible that the left-227

to-right encoding algorithm will achieve similar228

level of compression.229

2.3.2 Maximal Compression Encoding230

Prior work (Goldman et al., 2024a) has shown that231

compression during LLM pretraining correlates232

strongly with downstream performance. It is there-233

fore natural to ask whether a good compression234

at inference time will always lead to better down-235

stream performance. To address this question, we236

consider the maximal compression encoding algo-237

rithm. Given a pretoken, we look for the combi-238

nation of tokens in the vocabulary which gives the239

highest compression of the pretoken.240

For example, if we have the pretoken "quantize"241

and the vocabulary provided in 1, the string "quan-242

tize" is not an element in the vocabulary, so the243

shortest encoding must contain at least two tokens.244

From manual inspection, we see that "quant" and245

"ize" are both in the vocabulary, so the maximal246

compression encoding algorithm chooses this split.247

A naive implementation of this algorithm has ex-248

ponential time complexity in the length of the preto-249

ken, but a dynamic programming algorithm would250

reduce this to quadratic time complexity 3. More-251

over, since tokenizers are applied to a string after252

the pretokenization step, in practice, the strings253

being encoded is not very long.254

2.4 Other Merge-list-free Encoding255

Algorithms256

Although there are many other merge-free infer-257

ence algorithms, many of them do not compress258

the prompt as well as the ones discussed above.259

The most trivial one is the character-based encod-260

ing algorithm: this breaks the pretoken into char-261

acters and outputs them as tokens. This encoding262

method has the worst compression for a given piece263

of prompt, and is thus the opposite of the maximal264

compression encoding algorithm.265

As described in nthe subsequent sections, we266

observe that the compression-oriented inference267

algorithms, especially the left-to-right greedy en-268

coding algorithm has comparable downstream per-269

formance as the standard merge-based encoding270

3See the appendix for the dynamic programming algorithm.
1

algorithm while the character-based encoding algo- 271

rithm, although also merge-free, performs signifi- 272

cantly worse. 273

3 Impact of Training-Inference Mismatch 274

on LM Performance 275

In this section, we describe our empirical findings 276

on the impact of different tokenization schemes 277

on downstream LM performance. We not only 278

compare the merge-free non-targetting compres- 279

sion based inference algorithms to the standard 280

tokenization algorithm described above, but we 281

also investigate other tokenization schemes that 282

explcitly seek to exploit and manipulate the vul- 283

nerabilities offered by a publicly available merge- 284

list. We perform extensive investigation on three 285

diverse LM-based tasks as described below. The 286

central question we aim to explore is the nature of 287

the impact of the mismatch between training and 288

inference time tokenization procedures. 289

3.1 Experimental Setup 290

We evaluate an LLM on three diverse kinds of 291

tasks: multiple-choice QA tasks that require very 292

short form generation after encoding the question 293

prompt, a longer conditional generation task of ma- 294

chine translation that involves processing a prompt 295

with the source text and generating target text, and 296

a fully open-ended generation task that focuses on 297

completion based on context to be encoded. We 298

process the prompts with the different encoding 299

schemes, but generate with the full vocabulary. It 300

must be noted that the choince of tokenization in- 301

ference does not affect generation with BPE based 302

tokenizer. 303

We choose to focus on the Qwen-2-7B-Instruct 304

model (Yang et al., 2024) for our experiments. The 305

choice of model is motivated by the need for a 306

model with a sizable vocabulary size to experiment 307

with different ranges of corruption) and a tokenizer 308

which was trained using the HF tokenizer (as op- 309

posed to tiktoken). 4 The Qwen-2 tokenizer has 310

151645 tokens in its vocabulary, of which 255 are 311

single character tokens. Unless noted otherwise, 312

the Qwen-2 tokenizer will be referred to as the 313

4These desiderata eliminates other popular models such
as OLMo-7B and Llama-3. The former uses the GPT-NeoX
tokenizer, which has 50k tokens in its vocabulary, and the
latter uses the tiktoken tokenizer.

The tiktoken tokenizer is a proprietary tokenizer developed
by OpenAI for their models. Their merge lists do not strictly
adhere to the requirements we described in the previous sec-
tion.
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"original" tokenizer (as opposed to the "custom"314

tokenizers obtained by either using a different en-315

coding algorithm or by corrupting the merge list).316

3.1.1 MCQA tasks317

For the accuracy-based tasks, we evaluate the318

model on two popular Q&A benchmarks: MMLU319

(Hendrycks et al., 2021) and ARC-Easy/Challenge320

(Clark et al., 2018). Conditional Generation: Ma-321

chine Translation We consider the effect of differ-322

ent tokenizations on the semantic correctness of323

the generated text by testing it on the task of ma-324

chine translation. We evaluate the performance of325

the model on the test split of the WMT-17 English-326

German dataset (Bojar et al., 2017), and report one327

n-gram based metric (BLEU (Papineni et al., 2002))328

and one semantic metric (METEOR (Banerjee and329

Lavie, 2005)) comparing the generated text and330

the ground truth translations. We also computed331

ROUGE (Lin, 2004) and BERTScore (Zhang et al.,332

2020), and observe similar trends to BLEU and333

METEOR.334

3.1.2 Open-ended Generation335

We evaluated the open-ended generation capabil-336

ities of the model by prompting it with abstracts337

from scientific papers. The prompts were gener-338

ated by extracting the first five sentence from the339

full text in the "Semantic Scholar Open Research340

Corpus" (Lo et al., 2020), a text corpus consisting341

of research papers extracted from Semantic Scholar.342

To ensure the quality and diversity of the prompts,343

we took a 5899 examples from the corpus across344

multiple academic fields. The text corpora was345

chosen due to the high concentration of domain-346

specific pretokens which are likely to be sensitive347

to tokenization.348

We then measured how much the generated text349

deviated from the original text (human written dis-350

tribution) distribution by measuring the MAUVE351

score (Pillutla et al., 2023) between the two sets of352

texts.353

3.2 Targeted Tokenization354

As mentioned above, we measure the impact on355

the downstream LM performance when the infer-356

ence algorithms target to manipulate merge-list357

obtained via tokenizer training. We deliberately358

corrupt the merge list of the tokenizer and measure359

the performance degradation. To understand the360

sensitivity of LLM inference on the merge list, we361

ran inference using tokenizations generated from362

a corrupted merge list. The merge list gives a fine- 363

grained interface for controlling the encoding of 364

the model (as opposed to the choice of encoding 365

algorithms which are qualitatively different from 366

one another). These experiments can also help us 367

understand to what extent the manipulation of the 368

merge list (by for example, a malicious insider) can 369

be used to sabotage the generation capability of the 370

model. We corrupt the tokenizer in the following 371

ways: 372

Truncation: Since the merge lists are generated 373

in the order in which the merges are learned, we 374

consider the effect of removing the less common 375

merges (learned last during training) by deleting 376

the last N merges from the merge list. 377

Deletion: We also consider the effect of random 378

deletion of merges since the merges important for 379

downstream performance may not be concentrated 380

in a particular region within the merge list. For ran- 381

dom deletions, we first choose an initial set of dele- 382

tions (the "initial set") and delete all merges which 383

depend on these seeds (the "number of deletions"). 384

To generate our random deletion tokenizers, we’ve 385

fixed a random seed, chose an increasing number 386

of initial deletions, and measured the performance 387

of the model for each of these settings. (This is 388

why the number of deletions is not a clean number 389

for all of our random deletion experiments.) 390

Merge Shuffle: We also consider a merge-based 391

tokenization where at runtime, we randomly shuf- 392

fle the merge list being applied to the pretoken. For 393

example, the standard encoding algorithm 1 may 394

tokenize the pretoken "quantize" by successively 395

applying the merges "a n", "z e", "i ze", "t ize", and 396

"q u", in this order, resulting in the tokenization "qu 397

an tize". The random shuffle encoding algorithm 398

may instead apply the merges "u a", "n t", "q ua", 399

"nt i", and "ze" (assuming all of these appear in the 400

merge list somewhere), resulting in the tokeniza- 401

tion "qua nti ze". Throughout our experiments, we 402

have a fixed random seed which determines how 403

the merge list is shuffled. 404

The random shuffle encoding results in a drasti- 405

cally different token distribution at inference time 406

compared to the standard encoding algorithm. This 407

provides a natural baseline where we expect the 408

generation capability of the model to be signifi- 409

cantly degraded. 410

Character Level: As described above, we also 411

consider the baseline of splitting pretokens into 412

individual characters. 413

Observing the results in Table 1, we see that the 414
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Accuracy-based Tasks Machine Translation OEG.

Tokenizer ARC MMLU BLEU METEOR MAUVE

Standard 0.869 0.656 37.519 0.6764 0.904

Merge shuffle 0.853 0.617 15.984 0.4846 0.245

Character-level 0.860 0.624 16.305 0.4783 0.399

Random deletion 0.860 0.628 20.932 0.5420 0.170

Table 1: Evaluation results for corrupted tokenizers
on the accuracy-based tasks (ARC and MMLU) and
the WMT-17 English–German machine translation task.
The corrupted tokenizers do not suffer as much for
accuracy-based tasks compared to longer generation
tasks. The random deletion tokenizer was obtained by
randomly deleting 149 802 tokens from the standard
tokenizer. “OEG.” stands for “Open-ended Generation.”

corruption doesn’t seem to affect the MCQA tasks415

much but it shows significant degradation in MT416

and open-ended generation under corruption. Al-417

though the prompts in accuracy-based benchmarks418

are long enough to have different tokenizations un-419

der our scheme, the generation length is not long420

enough to show subtantial differences in perfor-421

mance. The merge shuffle corruption consistently422

performs at least as bad as, if not worse than, the423

character-level corruption. This suggests that se-424

vere corruption to the merge lists can essentially do425

away any benefits of subword tokenization, and the426

model may as well use a character-level tokeniza-427

tion.428

In Figure 2, we investigate the relationship be-429

tween the effect on downstream performance and430

severity of corruption. We observe that both se-431

mantic and n-gram metrics are not too sensitive432

to mild corruption on a per-example level. As the433

corruption levels cross a threshold (merge shuffle,434

char-level, aggressive deletion), the drop in per-435

formance is noticeably significant. In fact, we’ve436

observed that performance is quite stable even for437

"medium-sized" deletions (107060 and 115604).438

This seems to suggest that the model’s performance439

relies primarily on "highly-trained" tokens which440

are only destroyed for very aggressive corruptions.441

It could also be the case that large portions of BPE442

vocabulary are never used for practical purposes443

indicating the existence of many undertrained to-444

kens in the vocabulary. It is also interesting to note445

that the decline for the random deletion tokenizer446

is more steady in the machine translation task com-447

pared to the accuracy-based tasks. This robustness448

is likely due to the fact that the model is generating449

longer text in the machine translation task.450

Overall on manual inspection, the degradation 451

of generated output exhibits unnatural syntactic 452

choices (e.g. characters spaced out by spaces) 453

which causes drops in BLEU and MAUVE. 454

3.3 Non-targetting Tokenization 455

As described above, we compare compression 456

based merge-free algorithms against the standard 457

algorithm. These algorithms either greedily or ex- 458

actly maximize compression of the pretoken given 459

the BPE vocabulary. 460

Accuracy-based Tasks Machine Translation OEG.

Tokenizer ARC MMLU BLEU METEOR MAUVE

Standard 0.869 0.656 37.519 0.6764 0.904

Maximal Compression 0.863 0.678 35.899 0.6718 0.927

Left to right 0.903 0.705 35.396 0.6632 0.985

Table 2: Evaluation results for non-targetting merge-
free tokenizers on the accuracy-based tasks (ARC and
MMLU), the WMT-17 English–German machine trans-
lation task, and the open-ended genertion task. The left-
to-right tokenizer maintains the performance or even
outperforms the standard tokenizer. The maximal com-
pression also large maintains the standard tokenizer’s
performance “OEG.” stands for “Open-ended Genera-
tion.”

In Table 2, we can see that both left-to-right and 461

maximal compression tokenization schemes more 462

or less maintain the performance under the standard 463

tokenizer. Left-to-right curiously even improves 464

the accuracy performance in the MCQA tasks. It 465

is also marginally closer to human-written texts 466

for open-ended generation as reflected by MAUVE 467

scores. These results indicate that such merge-free 468

compression based algorithms are robust to train- 469

ing/inference mismatch for models trained with 470

merge-based standard tokenization. A possible ex- 471

planation of this phenomenon could be the con- 472

jecture that the BPE training objective implicitly 473

greedily optimizes compression and due to exten- 474

sive training on left-to-right languages, it naturally 475

breaks ties in favor of left-to-right bigrams. Thus 476

left-to-right greedy compression matches this im- 477

plicit objective. However, this conjecture only par- 478

tially explains our results. 479

This is because when we measure how differ- 480

ently the prompts are encoded under various tok- 481

enization schemes compared to the standard tok- 482

enizer, we find that the merge-free tokenizer differ 483

in the encoding of every single prompt in the open- 484

ended generation task. Table 3 shows the average 485

edit distances between the merge-based standard 486
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Figure 2: Performance of different random deletion tokenizers on the accuracy-based tasks (ARC and MMLU) and
the machine translation task. For both datasets, the performance degrades after around 70k deletions.

Tokenizer Jaccard Levenshtein Edit Perplexity

Standard 0.000 0.000 0.000 83.798
Left to right 0.226 29.645 0.165 95.891
Maximal Comp. 0.196 24.740 0.139 155.751
Merge Shuffle 0.918 692.000 0.959 131.400
Character-level 0.925 796.987 0.964 58.212
Random Deletion 0.927 800.719 0.966 92.734
Truncation 0.889 455.775 0.884 97.202

Table 3: Perplexity scores and prompt metrics (Jaccard similarity, Levenshtein distance, edit distance) between
different tokenization approaches and standard tokenization.

tokenizer encodings and encodings from the other487

tokenizers. We observe that the left-to-right and488

maximal compression encodings are less distant489

than other corruption-based tokenizers. Though,490

we also notice that they have higher perplexity491

on the prompts than the standard meerge-based492

tokenizer. This indicates that the compression493

based approaches use potentially unconventional494

and undertrained tokens but these effects are over-495

come by the model’s robustness to specific kinds496

of typos and oversegmentations associated with497

compression-based algorithms.498

4 Qualitative Analysis499

We see above that left-to-right and maximal-500

compression do not adversely affect the down-501

stream LM performance despite encoding the502

prompts differently from the standard tokenizer.503

We analyzed the spread of difference in encoding504

of our inference scheme from the standard tok-505

enizer in Figure 3 (additional figures in Appendix)506

and noticed that the non-targetting left-to-right and507

maximal-compression algorithms noticeably re- 508

sulted in smaller encoding differences than the tar- 509

getting encoding schemes. We manually analyzed

Figure 3: Spread of edit distance over prompts for open
ended generation for various inference schemes. Top
two are non-targetting merge-free schemes; bottom 3
are targetting inference schemes.

510
the prompts with low and high edit distances of 511

the left-to-right tokenizer from the original merge- 512

based tokenizer. A general trend we observed was 513
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that the low-distance prompts tended to cover di-514

verse scientific domains and had considerably sim-515

pler language than the high distance prompts. The516

high distance prompts seemed to be overwhelm-517

ingly represented by domain-specific topics related518

to biology and medicine with hyperspecific jargon519

and rare terms, indicating that rare tokens that tend520

to be merged much later and are typically underrep-521

resented are handled differently by the standard and522

left-to-right schemes. We also computed embed-523

dings with Qwen2-7b-instruct model (Yang524

et al., 2024) of the completions under the differ-525

ent tokenizers. When we analyzed outlier comple-526

tions (according to cosine-similarity with standard527

tokenizer completions) for low-distance prompts,528

we noticed that these prompts were mostly medi-529

cal and biology related although with simpler lan-530

guage than high-distance prompts. Conversely,531

high-distance prompts with outlier completions532

tended to contain fewer proper names and domain-533

specific terms than other prompts in this group.534

5 Related Work535

While we focus on BPE inference algorithms536

that ameliorate security vulnerabilities associ-537

ated with merge-lists (Hayase et al., 2024), the538

non-deterministic property of tokenization algo-539

rithms (Kudo and Richardson, 2018; Sennrich et al.,540

2016; Mielke et al., 2021) in general which has541

been identified in several prior works (Cao and542

Rimell, 2021; Gastaldi et al., 2025) forms the crux543

of our motivation. The symbols in the vocabulary544

can give rise to multiple possible segmentations545

for a given word/pretoken. While much work has546

studied the effect of training different types of to-547

kenizers/segmenters and models based on those548

tokenizers (Goldman et al., 2024b; Saleva and Lig-549

nos, 2023), we instead focus on evaluating different550

BPE inference scheme on pretrained tokenizers and551

models with the standard BPE approach. While552

training models (Provilkov et al., 2020) with differ-553

ent tokenization schemes in general doesn’t affect554

the downstream performance significantly, in our555

setting of training-inference mismatch we observe556

significant performance degradation with certain557

algorithms. Related to our work, Uzan et al. (2024)558

also study different BPE inference algorithms but559

they limit their analysis to intrinsic tokenization560

metrics like cognitive plausibility (Beinborn and561

Pinter, 2023) and morphology (Bostrom and Dur-562

rett, 2020) but do not investigate their downstream563

impact on the model performance. Our surprising 564

finding that algorithms like left-to-right and max- 565

compression don’t result in significance perfor- 566

mance degradation despite encoding the prompts 567

differently is also related to the findings in recent 568

work that show that LLMs have an implicit lexicon 569

of pretokens (Kaplan et al., 2025) and are robust to 570

typos (Cao et al., 2023). 571

6 Conclusion 572

In light of security vulnerabilities associated with 573

inference-time usage of the merge-list learned dur- 574

ing BPE training, we explored alternative merge- 575

free algorithms for BPE inference on pretrained 576

models. We found that although arbitrary and 577

targeted inference-time deviations from standard 578

BPE hurt downstream LM performance signifi- 579

cantly, surprisingly the non-targeted compression- 580

based merge-free algorithms maintained or even 581

improved it. This suggests potential overlap in 582

the implicit objectives of BPE training and these 583

merge-free algorithms paving way for more secure 584

tokenization schemes for language models. 585

7 Limitations 586

The primary limitation of our work is that while we 587

have articulated the need for merge-list free BPE in- 588

ference algorithms and have provided empirical ev- 589

idence for two such inference algorithms focusing 590

on compression across a diverse set of LM tasks, it 591

is not clear that the algorithms investigated are the 592

optimal algorithms for merge-free inference that 593

preserves performance across all domains and lan- 594

guages. Relatedly, we only have empirical support 595

from our experiments and prior works for conlcud- 596

ing that left-to-right and max-compression algo- 597

rithms preserve performance possibly because the 598

original BPE training procedure implicitly greedily 599

optimizes (Zouhar et al., 2023) for compression 600

and breaks ties in left-to-right manner for most 601

languages. We don’t have theoretical support and 602

gurantees for this conjecture and our findings might 603

not hold for small amounts of data in low-resource 604

languages, especially with a non-monotonic or a 605

non-left-to-right writing order. Finally, while our 606

recommendation might eliminate data inference 607

and other security vulnerabilities directly related to 608

merge-lists, they still wouldn’t defend against other 609

kinds of attacks based on tokenization like those 610

focusing on finding and exploiting glitch tokens. 611
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8 Ethical Considerations612

While we recommend defending against vulnera-613

bilities associated with merge lists during deploy-614

ment by not using them, this would also result in615

less transparency. It can be argued that publicly616

available merge-lists possible allow data-mixture617

inference and it might be desirable in certain cases618

because of transparency and auditability reasons.619

However, depending on the context, it can also be620

argued that LMs should be protected from the se-621

curity vulnerabilities posed by publicly available622

merge-lists. We recognize that our recommenda-623

tion applies for the latter contexts and doesn’t apply624

in contexts that disproportionately prioritize trans-625

parency.626
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Algorithm 1 Dynamic-Programming for Maximal-Compression BPE Encoding. Given an input string
s and a BPE vocabulary represented as a prefix trie rooted at root, this procedure finds the shortest
sequence of token IDs whose concatenation exactly matches s. We maintain a one-dimensional array
dp[0..n] where dp[i] holds the best encoding (minimal number of tokens) for the prefix s[0..i− 1]. At
each position i, we traverse the trie from the root to extend all valid tokens starting at i, updating dp[j+1]
whenever we discover a shorter encoding ending at j.
1: procedure MAXCOMPBPEENCODE(s, root)
2: n← |s|
3: dp← [None]0..n
4: dp[0]← []
5: for i← 0 to n− 1 do
6: if dp[i] ̸= None then
7: node← root
8: for j ← i to n− 1 do
9: if s[j] /∈ node.children then

10: break
11: node← node.children[s[j]]
12: if node.token_id is defined then
13: candidate← dp[i] ∥ node.token_id
14: if (dp[j + 1] = None) ∨ |candidate| < |dp[j + 1]| then
15: dp[j + 1]← candidate

16: return dp[n]

Figure 4: Jaccard distance between the tokenization of the Semantic Scholar prompts obtained from the standard
tokenizer and custom tokenizers.
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Figure 5: Levenshtein distance between the tokenization of the Semantic Scholar prompts obtained from the standard
tokenizer and custom tokenizers.

Figure 6: Edit distance between the tokenization of the Semantic Scholar prompts obtained from the standard
tokenizer and custom tokenizers.
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