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Abstract

Pruning schemes have been widely used in practice to reduce the complexity of
trained models with a massive number of parameters. In fact, several practical
studies have shown that if a pruned model is fine-tuned with some gradient-based
updates it generalizes well to new samples. Although the above pipeline, which
we refer to as pruning + fine-tuning, has been extremely successful in lowering the
complexity of trained models, there is very little known about the theory behind
this success. In this paper, we address this issue by investigating the pruning +
fine-tuning framework on the overparameterized matrix sensing problem with the
ground truth U⋆ ∈ Rd×r and the overparameterized model U ∈ Rd×k with k ≫ r.
We study the approximate local minima of the mean square error, augmented
with a smooth version of a group Lasso regularizer,

∑k
i=1 ∥Uei∥2. In particular,

we provably show that pruning all the columns below a certain explicit ℓ2-norm
threshold results in a solution Uprune which has the minimum number of columns
r, yet close to the ground truth in training loss. Moreover, in the subsequent fine-
tuning phase, gradient descent initialized at Uprune converges at a linear rate to its
limit. While our analysis provides insights into the role of regularization in pruning,
we also show that running gradient descent in the absence of regularization results
in models which are not suitable for greedy pruning, i.e., many columns could have
their ℓ2 norm comparable to that of the maximum. To the best of our knowledge,
our results provide the first rigorous insights on why greedy pruning + fine-tuning
leads to smaller models which also generalize well.

1 Introduction

Training overparameterized models with a massive number of parameters has become the norm in
almost all machine learning applications. While these massive models are successful in achieving
low training error and in some cases good generalization performance, they are hard to store or
communicate. Moreover, inference with such large models is computationally prohibitive. To
address these issues, a large effort has gone into compressing these overparameterized models via
different approaches, such as quantization schemes [1, 2], unstructured [3] and structured [4–6]
pruning mechanisms, and distillation techniques using student-teacher models [7, 8]. Among these
approaches, greedy pruning, in which we greedily eliminate the parameters of the trained model
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based on some measure (e.g., the norms of the weight vectors associated with individual neurons) has
received widespread attention [3, 9–13]. This is mostly due to the fact that several practical studies
have illustrated that training an overparameterized model followed by greedy pruning and fine-tuning
leads to better generalization performance, compared to an overparameterized model trained without
pruning [14]. Furthermore, a phenomenon that has been observed by several practical studies, is
that different forms of regularization during training, such as ℓ0 or ℓ1 regularization [15–17] or ℓ2
regularization including group Lasso [18] lead to models that are better suited for pruning, and
leading to better generalization post fine-tuning. While the greedy pruning framework has shown
impressive results, there is little to no theory backing why this pipeline works well in practice, nor
understanding of the role of regularization in helping generate models which are suitable for greedy
pruning. In this work, we address the following questions:

Does the greedy pruning + fine-tuning pipeline provably lead to a simple model
with good generalization guarantees? What is the role of regularization in pruning?

In this paper, we use the symmetric matrix sensing problem [19] as a test-ground for the analysis of
greedy pruning framework, a model very closely related to shallow neural networks with quadratic
activation functions [20, 19]. In this setting, the underlying problem for the population loss (infinite
samples) is defined as ∥UUT − U⋆U

T
⋆ ∥2F , where U⋆ ∈ Rd×r is an unknown ground-truth rank-r

matrix, with r also being unknown, and U ∈ Rd×k is the overparameterized learning model with
k ≫ r. As we discuss in the Appendix F, the columns of U can be thought of as the weight vectors
associated with individual neurons in a 2-layer shallow neural network with quadratic activation
functions, a connection first observed in [21]. Thus, the data generating model has r neurons, while
the learner trains an overparameterized model with k neurons.

While the statistical and computational complexity of the overparameterized matrix sensing problem
has been studied extensively, we use it as a model for understanding the efficacy of greedy pruning.
In particular, we aim to answer the following questions: Does there exist a simple pruning criteria
for which we can provably show that the pruned model generalizes well after fine-tuning while
having the minimal necessary number of parameters? What is the role of regularization during
training in promoting models which are compatible with greedy pruning? Finally, what generalization
guarantees can we establish for the pruned model post fine-tuning?

Contributions. Our main contribution is to show that the discussed pruning pipeline not only recovers
the correct ground-truth U⋆U

T
⋆ approximately, but also automatically adapts to the correct number of

columns r. In particular, we show that training an overparameterized model on the empirical mean
squared error with an added group Lasso based regularizer to promote column sparsity, followed by a
simple norm-based pruning strategy results in a model Uprune having exactly the minimum number
of columns, r. At the same time, we show that ∥UpruneU

T
prune − U⋆U

T
⋆ ∥2F is small, but non-zero.

Hence, the pruned model can subsequently be fine-tuned using a small number of gradient steps,
and in this regime, ∥UtU

T
t − U⋆U

T
⋆ ∥2F shows linear convergence to its limit. Moreover, the pruned

model can be shown to admit finite sample generalization bounds which are also statistically optimal
for a range of parameters. In particular, we show that to obtain a model Uout that has exactly r
columns and its population error is at most ∥UoutU

T
out − U⋆U

T
⋆ ∥F ≤ ε, our framework requires

O(dk2r5 + rd
ε2 ) samples, which is statistically optimal for sufficiently small ε. We should also add

that our framework does not require any computationally prohibitive pre- or post-processing (such as
SVD decomposition) for achieving this result.

While there are several works [22, 19, 23] establishing that gradient descent in the “exactly-
parameterized” setting requires O(rd/ε2) samples to achieve a generalization error of ε, and con-
verges linearly to this limit, the picture is different in the overparameterized setting. In [23], the
authors showed that in the overparametrized setting, vanilla gradient descent requires O(kd/ε2)
samples to achieve a generalization error of ∥UgdU

T
gd −U⋆U

T
⋆ ∥F ≤ ε, degrading with the overparam-

eterization of the model. Moreover the resulting solution does not have the correct column sparsity.
In order to obtain a model which can be stored concisely, Ugd has to be post-processed by computing
its SVD, which is computationally expensive in the high dimensional regime.

As our second continuation, we show that use of explicit regularization to promote column sparsity
while training is important to learn models suitable for greedy pruning. Specifically, we show that
while implicit regularization [19, 24] suffices to learn models with the correct rank, these approaches
learn solutions with a large number of columns having ℓ2-norms comparable to that of the maximum,
even if r = 1. Hence, it is unclear how to sparsify such models based on the norms of their columns.
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2 Setup and Algorithmic Framework

Given n observation matrices {Ai}ni=1, in the matrix sensing framework, the learner is provided mea-
surements yi = ⟨Ai, U⋆U

T
⋆ ⟩+ εi where ⟨·, ·⟩ indicates the trace inner product and εi is measurement

noise assumed to be distributed i.i.d. ∼ N (0, σ2)1. Here U⋆ ∈ Rd×r is the unknown parameter,
and the rank r ≤ d is unknown. The goal of the matrix sensing problem is to learn a candidate
matrix X such that X ≈ U⋆U

T
⋆ . For computational reasons, it is common to factorize X as UUT for

U ∈ Rd×k. In this paper, we study the factored model in the overparameterized setting, where k ≫ r.
The empirical mean squared error is,

Lemp(U) =
1

n

n∑
i=1

(
⟨Ai, UUT ⟩ − yi

)2
. (1)

For the case that Ai’s are sampled entry-wise i.i.d. N (0, 1/d) and as n→∞, up to additive constants
which we ignore, the population mean square error can be written down as,

Lpop(U) = ∥UUT − U⋆U
T
⋆ ∥2F . (2)

There is an extensive literature on how to efficiently learn the right product U⋆U
T
⋆ in both finite sample

and population settings [25, 26]. In particular, there are several works on the efficiency of gradient-
based methods with or without regularization for solving this specific problem [19, 23]. While these
approaches guarantee learning the correct product UUT ≈ U⋆U

T
⋆ , in the overparameterized setting

the obtained solutions are not column sparse and storing these models requires Θ̃(kd) bits of memory
(ignoring precision). As a result, in order to obtain a compressed solution Uout ∈ Rd×r with the
correct number of columns, one has to post-process U and do a singular value decomposition (SVD),
an operation which is costly and impractical in high-dimensional settings.

The goal of this paper is to overcome this issue and come up with an efficient approach to recover a
solution Uout which generalizes well, in that Lpop(U) is small, while at the same time having only a
few non-zero columns, i.e. is sparse. Specifically, we show that via some proper regularization, it is
possible to obtain a model that approximately learns the right product U⋆U

T
⋆ , while having only a few

significant columns. As a result, many of its columns can be eliminated by a simple ℓ2 norm-based
greedy pruning scheme, without significantly impacting the training loss. In fact, post pruning we end
up with a model Uprune ∈ Rd×r that has the correct dimensionality and its outer product UpruneU

T
prune

is close to the true product U⋆U
T
⋆ . When the resulting “exactly parameterized” model is fine-tuned,

the generalization loss Lpop(U) can be shown to converge to 0 at a linear rate.

To formally describe our procedure, we first introduce the regularization scheme that we study in this
paper, and then we present the greedy pruning scheme and the fine-tuning procedure.

Regularization. The use of regularization for matrix sensing (and matrix factorization) to encourage
a low rank solution [27–33], or to control the norm of the model for stability reasons [34, 35], or to
improve the landscape of the loss by eliminating spurious local minima [36] has been well-studied in
the literature. While these approaches implicitly or explicitly regularize for the rank of the learned
matrix, the solution learned as a result is often not column sparse. Indeed, note that a matrix can
be low rank and dense at the same time, if many columns are linear combinations of the others.
We propose studying the following regularized matrix sensing problem with a group Lasso based
regularizer [37, 18]. In the population case, the loss is defined as

Lpop(U) + λR(U), where R(U) =

k∑
i=1

∥Uei∥2. (3)

Note that λ > 0 is a properly selected regularization parameter. Imposing R as a penalty on the
layer weights of a neural network is a special case of a widely used approach commonly known
as Structured Sparsity Learning (SSL) [12]. The regularizer promotes sparsity across “groups” as
discussed by [37]. Here, the groups correspond to the columns of U . The use of matrix mixed-norms
as a regularizer for sparsity was also considered in [38]. Furthermore, a connection of the group

1All proofs in the paper go through as long as the noise is i.i.d. sub-Gaussian with variance proxy σ2. We
study the Gaussian case for simplicity of exposition.
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Lasso penalty with the Schatten-1/2 norm was considered in [39], where the authors show that
stationary points of the factored objective also serve as stationary points of the unfactored objective
and heuristically argue that the regularizer promotes sparse solutions.

As we prove in Section 4, the solution obtained by minimizing a smooth version of the regularized
loss in (3), denoted by Uout, is approximately column-sparse, i.e., k − r of its columns have small
ℓ2 norm. As a result, it is suitable for the simple greedy pruning scheme which we also introduce
in Algorithm 1. Interestingly, in Section 3, we will first show a negative result - the model obtained
by minimizing the unregularized loss, Lpop(U) (eq. (2)) using gradient descent updates could fail
to learn a solution which is suitable for greedy pruning. This shows the importance of adding some
form of regularization during the training phase of the overparameterized model.

Greedy Pruning. The greedy pruning approach posits training a model (possibly a large neural
network) on the empirical loss, followed by pruning the resulting trained network greedily based on
some criteria. The resulting model is often fine-tuned via a few gradient descent iterations before
outputting. In the literature, various criteria have been proposed for greedy pruning. Magnitude-based
approaches prune away the individual weights/neurons based on some measure of their size such as
ℓ1/ℓ2 norm of the associated vectors [16, 10].

In this work, we also focus on the idea of greedy pruning and study a mechanism to prune the
solution obtained by minimizing the regularized empirical loss. Specifically, once an approximate
second-order stationary point of the loss in Section 4, we only keep its columns whose ℓ2 norm
are above a threshold (specified in Algorithm 1) and the remaining columns with smaller norm are
removed. We further show that post pruning, the obtained model Uprune continues to have a small
empirical loss, i.e., small Lemp(Uprune), while having exactly r columns.

Post-pruning fine-tuning. As mentioned above, it is common to fine-tune the smaller pruned
model with a few gradient updates before the evaluation process [40]. We show that the pruned
model Uprune has the correct rank and is reasonably close to the ground-truth model U⋆ in terms of its
population loss. By running a few gradient updates on the mean square error, it can be ensured that
UUT converges to U⋆U

T
⋆ at a linear rate. Algorithm 1 summarizes the framework that we study.

3 Implicit regularization does not lead to greedy pruning-friendly models

In various overparameterized learning problems, it has been shown that first-order methods, starting
from a small initialization, implicitly biases the model toward “simple” solutions, resulting in models
that generalize well [41, 42], a phenomenon known as implicit regularization. In particular, for matrix
sensing, [43, 19, 24] show that in the absence of any regularization, running gradient descent on the
population loss starting from a small initialization biases UUT to low rank solutions, and learns
the correct outer product UUT ≈ U⋆U

T
⋆ . However, as discussed earlier, low-rank solutions are not

necessarily column sparse, nor is it clear how to sparsify them without computing an SVD. It is
unclear whether implicit regularization suffices to learn models that are amenable for greedy pruning.

In this section, we address this question and show that minimizing the unregularized population loss
Lpop leads to models which are not suitable for greedy pruning, i.e., have many columns with large ℓ2
norm. Specifically, we show that by running gradient flow from a small random initialization, even if
the ground truth U⋆ is just a single column and r = 1, the learnt solution U has a large number of
columns that are “active”, i.e. having ℓ2-norm comparable to that of the column with maximum norm.
Thus, in the absence of the knowledge of r, it is unclear how to determine it from just observing the
columns ℓ2 norm. We thus claim that such trained models are not compatible with greedy pruning. In
the following theorem, we formally state our result.

Theorem 1. Consider the population loss in eq. (2), for r = 1 and k ≫ 1 and suppose ∥U⋆∥op = 1.
Further, suppose the entries of the initial model U0 are i.i.d. samples from N (0, α2), where α ≤
c1/k

3d log(kd) for some constant c1 > 0. For another absolute constant c′1 > 0, as t → ∞, the
iterates of gradient flow with probability ≥ 1 − O(1/kc

′
1) converge to a model Ugd where Ω̃(kc

′
1)

active columns satisfy
∥Ugdei∥2

maxj∈[k] ∥Ugdej∥2
≥ 0.99. (4)
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Figure 1: We run gradient updates to minimize the loss in eq. (2) until convergence. The model is highly
overparameterized with d = k = 500 and r = 4. In the left figure, the vertical axis represents the fraction of
columns having their norm at least x times the largest norm across columns, with x ∈ [0, 1] on the horizontal
axis. In the right figure, for the same experiment we plot a histogram of column norms. Using regularization
leads to solutions with most of the columns having small ℓ2 norm, and only a few significant columns. Without
regularization, a large number of columns have their ℓ2 norm comparable to the largest column norm. Thus,
training with explicit regularization leads to models that are more suitable for pruning.

Theorem 1 claims that the iterates of gradient descent converge to a solution for which a large number
(Ω(kc

′
1)) of columns of Ugd have their ℓ2 norm at least 0.99 times the maximum. An inspection of

the proof shows that the constant 0.99 is arbitrary and can be extended to any constant bounded
away from 1. Therefore, the models learnt by vanilla gradient descent cannot be reduced to the right
sparsity level by simply pruning away columns with ℓ2 norm below any fixed constant threshold.

We provide a general guarantee in Theorem 22 (Appendix A). It is worth noting that from [19]
that the learned model Ugd ∈ Rd×k is guaranteed to achieve a small generalization error, i.e.,
UgdU

T
gd ≈ U⋆U

T
⋆ . Hence, the algorithm does learn the correct ground-truth product - what we show

is that the learnt model is not “pruning-friendly” - it cannot be sparsified to the correct level by on
any simple norm based pruning strategies. This is also observed in Figure 1: the model trained with
implicit regularization has many significant columns and it is unclear how many to prune. We provide
a proof sketch below, and refer the reader to Appendix A for more details.

Proof sketch of Theorem 1. Without loss of generality we assume in the proof that ∥U⋆∥2 = 1.
Defining U(t) as the iterate at time t, gradient flow on Lpop follows the below dynamic,

dU

dt
= −∇Lpop(U) = −(UUT − U⋆U

T
⋆ )U, (5)

where for ease of notation we drop the explicit dependence on t in U(t). In our proof, we exactly
characterize the limiting point of gradient flow as a function of the initialization in a certain sense,
which may be of independent interest. In particular, up to a small multiplicative error, we show,

∀i ∈ [k], ∥Ugdei∥2 ≈
|⟨U⋆, U(0)ei⟩|
∥UT

⋆ U(0)∥2
. (6)

Also, with Gaussian initialization, ⟨U⋆, U(0)ei⟩
i.i.d.∼ N (0, α2) across different values of i. In

particular, we show that for some constant c′1 > 0, Ω̃(kc
′
1) columns will have correlations comparable

to the maximum, with |⟨U⋆, U(0)ei⟩| ≥ 0.99maxj∈[k] |⟨U⋆, U(0)ej⟩|. For any of these columns, i,

∥Ugdei∥2 ≈
|⟨U⋆, U(0)ei⟩|
∥UT

⋆ U(0)∥2
≥ 0.99max

j∈[k]

|⟨U⋆, U(0)ej⟩|
∥UT

⋆ U(0)∥2
≈ 0.99max

j∈[k]
∥Ugdej∥2, (7)

which completes the proof sketch of Theorem 1.

4 Explicit regularization gives pruning-friendly models: population analysis

In this section, we study the properties of the squared error augmented with group Lasso regularization
in the population (infinite sample) setting. We show that second-order stationary points of the
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Algorithm 1 Greedy pruning based on group-Lasso regularization
Inputs: Measurements {(Ai, yi) where yi = ⟨Ai, U⋆U

T
⋆ ⟩+ εi}ni=1 (in the population setting n = ∞);

Initialization: Set parameters: λ, β, ϵ, γ and mfine-tune.
Greedy pruning phase:

1: Find an (ϵ, γ)-approximate SOSP of femp (resp. fpop), U , satisfying ∥U∥op ≤ 3.
2: Let S = {i ∈ [k] : ∥Uei∥2 ≤ 2

√
β denote the set of columns with small ℓ2 norm.

Create a new matrix Uprune which only preserves the columns of U in [k] \ S, deleting the columns in S.
Fine-tuning phase:

1: Run mfine-tune iterations of gradient descent on Lpop(U) (resp. Lemp(U)) initialized at Uprune to get Uout.
2: return Uout.

regularized loss are suitable for greedy pruning, while at the same time achieving a small but non-zero
generalization error. Note that the ℓ2 norm is a non-smooth function at the origin, and therefore, the
overall regularized loss is non-smooth and non-convex. While there are several notions of approximate
stationary points for non-differentiable and non-convex functions, for technical convenience, we
replace R by a smooth proxy. In particular, for a smoothing parameter β > 0, define a smooth
version of the ℓ2 norm, and the corresponding smooth regularizerRβ as,

Rβ(U) =

k∑
i=1

ℓβ2 (Uei), where ℓβ2 (v) =
∥v∥22√
∥v∥22 + β

. (8)

Note that the smaller the value of β is, the closer is ℓβ2 (v) to ∥v∥2. Considering this definition, the
overall regularized loss we study in the population setting is

fpop(U) = Lpop(U) + λRβ(U), (9)

where Lpop = ∥UUT −U⋆U
T
⋆ ∥2F as defined in eq. (2). The above optimization problem is nonconvex

due to the structure of Lpop(U), and finding its global minimizer can be computationally prohibitive.
Fortunately, for our theoretical results, we do not require achieving global optimality and we only
require an approximate second-order stationary point of the loss in eq. (9), which is defined below.
Definition 2. We say that U is an (ϵ, γ)-approximate second-order stationary point of f if,

1. The gradient norm is bounded above by ϵ, i.e., ∥∇f(U)∥2 ≤ ϵ.

2. The eigenvalues of the Hessian are larger than −γ, i.e., λmin(∇2f(U)) ≥ −γ.

The full algorithmic procedure that we analyze in this section is summarized in Algorithm 1. Once we
find an (ϵ, γ)-approximate second-order stationary point (SOSP) of eq. (9) for some proper choices
of ϵ and γ, we apply greedy pruning on the obtained model U and by eliminating all of its columns
with ℓ2 norm below a specific threshold. As a result, the pruned model Uprune has fewer columns than
the trained model U . In fact, in our following theoretical results, we show that if the parameters are
properly selected, Uprune has exactly r columns, which is the same as U⋆. Finally, we fine-tune the
pruned solution by running gradient descent on the unregularized loss Lpop (resp. Lemp). Next, we
state the properties of the pruned model generated by Algorithm 1 in the infinite sample setting.
Theorem 3. Consider the population loss with regularization in eq. (9), where U⋆ has rank r and
its smallest singular value is denoted by σ⋆

r . Moreover, consider Uprune as the output of the pruning
phase in Algorithm 1 with parameters β, λ, ϵ, γ satisfying the conditions2,

β = cβ
(σ⋆

r )
2

r
, λ = cλ

(σ⋆
r )

3

√
kr

, γ ≤ cγ
(σ⋆

r )
3

√
kr5/2

, ϵ ≤ cϵ
(σ⋆

r )
7/2

√
kr5/2

, (10)

for some absolute constants cβ , cλ, cϵ, cγ > 0. Then, we have

1. Uprune has exactly r columns.

2. ∥UpruneU
T
prune − U⋆U

T
⋆ ∥F ≤ 1

2 (σ
⋆
r )

2.
2This style of result exists for LASSO as well (see [44, Theorem 1]), where the optimal choice of the

regularization parameter, λ⋆, depends on the true sparsity r, but a general guarantee can be established as
well, which degrades as λ deviates from λ⋆. In practice λ is chosen using cross-validation. For simplicity of
presentation, we state the result when r and σ⋆

r are known up to constants.
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This result relies on showing that all bounded SOSPs of the regularized loss in eq. (9) are suitable for
greedy pruning: removing the columns of U below a certain ℓ2-norm threshold results in a solution
Uprune having exactly r columns, while at the same time having a small generalization error. Hence, it
can serve as a proper warm-start for the fine-tuning phase.

Proof sketch of Theorem 3. The key idea is to identify that if we have a matrix U such that
UUT = U⋆U

T
⋆ , and the columns of U are orthogonal to one another, then U has exactly r non-zero

columns, where r is the rank of U⋆. This statement can be shown to hold even when UUT ≈ U⋆U
T
⋆

and the columns of U are only approximately orthogonal. The main observation we prove is that a
bounded (ϵ, γ)-approximate SOSPs of eq. (9) denoted by U satisfies the following condition:

∀i, j : ∥Uei∥2, ∥Uej∥2 ≥ 2
√
β,

⟨Uei, Uej⟩
∥Uei∥2∥Uej∥2

≈ 0. (11)

In other words, all the large columns of U have their pairwise angle approximately 90◦. Thus, by
pruning away the columns of U that have an ℓ2 norm less than 2

√
β, the remaining columns of U ,

i.e., the columns of Uprune, are now approximately at 90◦ angles to one another. If β is chosen to
be sufficiently small, after deleting the low-norm columns, the approximation UpruneU

T
prune ≈ UUT

holds. By the second order stationarity of U , we also have that UUT ≈ U⋆U
T
⋆ . Together, this

implies that UpruneU
T
prune ≈ U⋆U

T
⋆ and UpruneU

T
prune is close to a rank r matrix. Since Uprune has

orthogonal columns, this also means that it has exactly r columns. Finally, to establish a bound
on the approximation error, we simply use the triangle inequality that ∥UpruneU

T
prune − U⋆U

T
⋆ ∥F ≤

∥UUT − U⋆U
T
⋆ ∥F + ∥UUT − UpruneU

T
prune∥F . The former is small by virtue of the fact that U is an

approximate second order stationary point of fpop ≈ Lpop when λ is small; the latter term is small by
the fact that only the small norm columns of U were pruned away.

Now the only missing part that remains to justify is why theRβ regularizer promotes orthogonality
in the columns of approximate second order stationary points and the expression in eq. (11) holds.
This is best understood by looking at the regularized loss for the case β = 0, which is equivalent
to ∥UUT − U⋆U

T
⋆ ∥2F + λ

∑k
i=1 ∥Uei∥2 and consider any candidate first-order stationary point U

of this objective. Let Z ∈ Rd×k be a variable constrained to satisfy ZZT = UUT . Stationarity
of U implies that the choice Z = U must also be a first-order stationary point of the constrained
optimization problem,

Minimize: ∥ZZT − U⋆U
T
⋆ ∥2F + λ

k∑
i=1

∥Zei∥2, Subject to: ZZT = UUT . (12)

The first term in the objective is a constant under the constraint and we may remove it altogether.
When U is a full-rank stationary point, constraint qualification holds, and it is possible to write down
the necessary KKT first-order optimality conditions, which reduce to,

∀i ∈ [k], −λ Zei
∥Zei∥2

+ (Λ + ΛT )Zei = 0 (13)

where Λ ∈ Rd×d is the set of optimal dual variables. Since Z = U is a first-order stationary point of
the problem in eq. (12) and it satisfies eq. (13), the above condition means that the columns Uei are
the eigenvectors of the symmetric matrix Λ + ΛT . If all the eigenvalues of Λ + ΛT were distinct,
then this implies that the eigenvectors are orthogonal and Uei ⊥ Uej for all i ̸= j.

While this analysis conveys an intuitive picture, there are several challenges in extending this further.
It is unclear how to establish that the eigenvalues of Λ+ΛT are distinct. Moreover, this analysis only
applies for full-rank stationary points and does not say anything about rank deficient stationary points
U , where constraint qualification does not hold. Furthermore, it is even more unclear how to extend
this analysis to approximate stationary points. Our proof will circumvents each of these challenges
by (a) showing that at approximate SOSPs, even if the eigenvalues of Λ + ΛT are not distinct, the
columns of U are orthogonal, and (b) directly bounding the gradient and Hessian of the regularized
loss, rather than studying the KKT conditions to establish guarantees even for approximate stationary
points which may be rank deficient. Having established guarantees for the pruning phase of the
algorithm in the population setting, we next prove a result in the finite sample setting. ■
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5 Finite sample analysis

Next, we extend the results of the previous section to the finite sample setting. Here, we also focus on
the smooth version of the regularizer and study the following problem

femp(U) = Lemp(U) + λRβ(U), (14)

where the empirical loss Lemp is defined in eq. (1) and the smooth version of the group Lasso
regularizerRβ(U) is defined in eq. (8). In the finite sample setting, we assume that the measurement
matrices satisfy the restricted isometry property (RIP) [45], defined below.
Assumption 1. Assume that the measurement matrices {A1, · · · , An} are (2k, δ)-RIP. In other
words, for any d× d matrix with rank ≤ 2k,

(1− δ)∥X∥2F ≤
1

n

n∑
i=1

⟨Ai, X⟩2 ≤ (1 + δ)∥X∥2F . (15)

This condition is satisfied, for instance, if the entries of the Ai’s were sampled N (0, 1/d) (i.e.
Gaussian measurements), as long as n ≳ dk/δ2 [45].
Theorem 4. Consider the empirical loss with smooth regularization in eq. (14), where U⋆ has rank r
and unit spectral norm, with its smallest singular value denoted σ⋆

r , and noise variance σ2. Consider
Uprune as the output of the pruning phase in Algorithm 1 with parameters β, λ, ϵ, γ chosen as per

eq. (10). If Assumption 1 is satisfied with δ ≤ cδ
(σ⋆

r )
3/2

√
kr5/2

and the number of samples is at least

n ≥ C4
σ2

(σ⋆
r )

4 dk
2r5 log(d/η), where C4 > 0 is a sufficiently large constant, then with probability at

least 1− η,

1. Uprune has exactly r columns.

2. Uprune satisfies the spectral initialization condition: ∥UpruneU
T
prune − U⋆U

T
⋆ ∥F ≤ 1

2 (σ
⋆
r )

2.

With Gaussian measurements, the overall sample requirement (including that from the RIP condition)
in Theorem 4 is satisfied when n ≥ Ω̃

(
1+σ2

(σ⋆
r )

4 dk
2r5
)

. The high level analysis of this result largely
follows that of Theorem 3 in the population setting – we approximate the finite-sample gradient
and Hessian by their population counterparts and show that the approximation error decays with the
number of samples as O(1/

√
n).

5.1 Fine-tuning phase: Realizing the benefits of pruning

In the fine-tuning phase, the learner runs a few iterations of gradient descent on Lemp initialized at the
pruned solution Uprune. Since the model is no longer overparameterized after pruning (by Theorem 4),
there are several works analyzing the generalization performance and iteration complexity of gradient
descent. Here we borrow the local convergence result of [22] which requires the initial condition
that ∥U0U

T
0 − U⋆U

T
⋆ ∥F ≤ c(σ⋆

r )
2, where c is any constant less than 1. As shown in part (b) of

Theorem 4, this initial condition is satisfied by Uprune.
Theorem 5. [22, Corollary 2] Suppose ∥U⋆∥op = 1. If we use the output of the greedy pruning
in Algorithm 1 denoted by Uprune ∈ Rd×r as the initial iterate for the fine-tuning phase, then after
t ≥ mfine-tune = C5 (σ

⋆
1/σ

⋆
r )

10 · log (σ⋆
r/σ

⋆
1 · n/d) iterations, for some sufficiently large absolute

C5 > 0, the iterates {Ut}t≥1 of factored gradient descent on Lemp(·) satisfy,

∥UtU
T
t − U⋆U

T
⋆ ∥F ≲

σ

(σ⋆
r )

2

√
rd

n
. (16)

Theorem 5 shows that in the fine-tuning phase, the iterates of gradient descent converges at a linear
rate to the generalization error floor of σ/(σ⋆

r )
2 ·
√

rd/n, which is also known to be statistically
(minimax) optimal [46, 47]. This is possible because the learner is able to correctly identify the rank of
the model in the pruning phase and operate in the exactly specified setting in the fine-tuning phase. In
contrast, one may ask how this guarantee compares with running vanilla factored gradient descent in
the overparameterized setting. This corresponds to the case where no pruning is carried out to reduce
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the size of the model. [23] presented a guarantee for the convergence of factored gradient descent
from a warm start in the overparameterized setting. In comparison with the exactly specified case, the
generalization error floor limt→∞ ∥UtU

T
t − U⋆U

T
⋆ ∥F is shown to scale as O(σ/(σ⋆

r )
2 ·
√
kd/n)3

which now depends on k. Furthermore, linear convergence can no longer be established for vanilla
gradient descent because of the ill-conditioning of the objective. This is not just an artifact of the
proof - experimentally too, the convergence slowdown was noticed in [23, Figure 1].

This discussion shows that greedy pruning the model first, prior to running gradient descent, in fact
generates solutions which generalize better and also converge much faster.
Remark 6. Based on Theorem 4 and Theorem 5 (eq. (16)), under Gaussian measurements, given

n ≥ nε,η = O

(
σ2

(σ⋆
r )

4

rd

ε2
+

1 + σ2

(σ⋆
r )

4
dk2r5 log(d/η)

)
(17)

samples, with probability ≥ 1 − η, Algorithm 1 produces Uout that has exactly r columns and
satisfies ∥UoutU

T
out − U⋆U

T
⋆ ∥F ≤ ε. Note that the sample complexity depends on the amount of

overparameterization, k, only in the lower order (independent of ε) term.

Note that this result uses the fact that under Gaussian measurements, the RIP condition required in
Theorem 4 is satisfied if n ≥ nε.

6 Implementing Algorithm 1: Smoothness and optimization oracles

In this section we instantiate the optimization oracle in Algorithm 1, which outputs an approximate
SOSP with bounded operator norm. First, we establish that the loss femp is well behaved on the
domain {U : ∥U∥op ≤ 3}, in that its gradient and Hessian are Lipschitz continuous. These conditions
are required by many generic optimization algorithms which return approximate second order
stationary points [48, 49]. We establish these properties for the population loss for simplicity and
leave extensions to the empirical loss for future work.
Theorem 7. Consider the population loss fpop in eq. (9). Assume λ ≤ min{β,

√
β} and ∥U⋆∥op = 1.

The objective fpop(·) defined in eq. (9) satisfies for any U, V ∈ Rd×k such that ∥U∥op, ∥V ∥op ≤ 3,

(a) Lipschitz gradients: ∥∇fpop(U)−∇fpop(V )∥F ≲ ∥U − V ∥F ,

(b) Lipschitz Hessians: ∥∇2fpop(U)−∇2fpop(V )∥op ≲ ∥U − V ∥F .

Under the Lipschitz gradients and Lipschitz Hessian condition, a large number of algorithms in
the literature show convergence to an approximate SOSP. A common approach for finding such
a point is using the noisy gradient descent algorithm [50]. However, note that we establish these
Lipschitzness properties on the bounded domain {U : ∥U∥op ≤ 3}, and it remains to verify whether
these algorithms indeed approach such points. A similar concern is present with Algorithm 1, which
requires access to an optimization oracle which finds an (ϵ, δ)-approximate SOSP of femp which are
also bounded, in that ∥U∥op ≤ 3. The final step is to identify conditions under which these algorithms
indeed output stationary points which are bounded, satisfying ∥U∥op ≤ 3. We establish this behavior
for a wide family of perturbed gradient based methods.

Perturbed gradient descent: We consider gradient descent with the following update rule: starting
from the initialization U0, for all t ≥ 0,

Ut+1 ← Ut − α(∇fpop(Ut) + Pt) (18)
where Pt is a perturbation term, which for example, could be the explicit noise (Pt ∼ Unif(B(r)) for
appropriate r) added to escape strict saddle points in [50]. Over the course of running the update rule
eq. (18), we show that ∥Ut∥op remains bounded under mild conditions if the algorithm is initialized
within this ball. In combination with Theorem 7, this shows that the noisy gradient descent approach
of [50] can be used to find the SOSPs required for Algorithm 1.
Theorem 8. Consider optimization of the regularized population loss using the update rule in eq. (18).
Assume that ∥U⋆∥op = 1 and suppose the parameters are selected asα ≤ 1/8 and λ ≤

√
β, and we

have ∥Pt∥op ≤ 1 almost surely for each t ≥ 0. Then, assuming that the condition ∥U0∥op ≤ 3 is
satisfied at initialization, for every t ≥ 1, we have ∥Ut∥op ≤ 3.

3The result is often stated in terms of the smallest non-zero eigenvalue of X⋆ = U⋆U
T
⋆ , which equals (σ⋆

r )
2.
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Thus, when perturbed gradient descent is carried out to optimize the regularized loss fpop eq. (9), the
algorithm always returns bounded iterates. In conjunction with Theorem 7, this implies, for example,
that noisy gradient descent [50] converges to an approximate second-order stationary point of the
regularized population objective. Moreover, the authors of the same paper show the number of gradient
calls made by noisy gradient descent to find an (ϵ, γ)-SOSP is upper bounded by Õ

(
1/min{ϵ2, γ2}

)
for a non-convex objective with O(1)-smooth gradients and Hessians. Combining with the choices of
ϵ and γ in eq. (10) results in the following theorem.
Theorem 9. Assume Gaussian measurements and rescale so that ∥U⋆∥op = 1. Given n ≥ nε,η

samples (eq. (17)), consider the algorithm which uses the output of greedy pruning (Algorithm 1),
Uprune ∈ Rd×r, as the initial iterate for the fine-tuning phase, and runs noisy gradient descent [50]
on Lemp in the fine-tuning phase. Overall, the algorithm makes,

Tϵ = Õ

(
1

(σ⋆
r )

10
log

(
n

dσ⋆
r

)
+

kr5

(σ⋆
r )

7

)
(19)

gradient calls and with probability ≥ 1− η, returns a Uout satisfying ∥UoutU
T
out − U⋆U

T
⋆ ∥F ≤ ε.

7 Conclusion

In this paper, we studied the efficacy of the greedy pruning + fine-tuning pipeline in learning low-
complexity solutions for the matrix sensing problem, as well as for learning shallow neural networks
with quadratic activation functions. We showed that training on the mean squared error augmented
by a natural group Lasso regularizer results in models which are suitable for greedy pruning. Given
sufficiently many samples, after pruning away the columns below a certain ℓ2-norm threshold, we
arrived at a solution with the correct column sparsity of r. Running a few iterations of gradient
descent to fine-tune the resulting model, the population loss was shown to converge at a linear rate to
an error floor of O(

√
rd/n), which is also statistically optimal. We also presented a negative result

showing the importance of regularization while training the model. To the best of our knowledge, our
results provide the first theoretical guarantee on the generalization error of the model obtained via the
greedy pruning + fine-tuning framework.
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