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Abstract

Diffusion models have recently gained considerable attention in 3D human motion
generation due to their ability to handle complex human movements. However,
existing models fail to incorporate the nuances presented by individual physical
fitness levels. Therefore, we address this gap by integrating Functional Move-
ment Screen (FMS) scores into diffusion models through fine-tuning, enabling the
generation of fitness-aware motions. This approach transforms FMS data into Hu-
manML3D format, optimises a base diffusion model, and introduces conditioning
based on FMS scores. As a result, our fine-tuned model is capable of generating
motions tailored to individual fitness levels and shows significant improvements
in motion generation fidelity. Producing synthetic human motions conditioned on
fitness levels is a novel approach that can be highly beneficial for various fields
such as healthcare, sports, and entertainment.
Keywords: Diffusion; Human Motion; Fine-Tuning

1 Introduction

Human motion generation has been focusing on type-based motion, conditioning on pre-defined
action classes (e.g. “jumping”, “throwing a ball”) or mechanical description of actions (e.g. “running
in a circle with arms raised”). While this level of specificity suffices for some tasks, other applications
are crucially dependent on the quality of the movement that reflects the fitness level of the subject.
Furthermore, induced by the absence of physical constraints during training, human motion diffusion
models are highly artefact-prone.

Therefore, we take the first steps in making 3D motion diffusion models fitness-aware. With our
proposed fine-tuning approach, the models can generate 3D motions consistent with a given level
of athleticism or injury severity. To achieve this goal, we incorporate Functional Movement Screen
(FMS) score Xing et al. (2022) into existing human motion diffusion models Tevet et al. (2023) to
generate motions that are graded by quality. FMS is used to identify movement pattern asymmetries
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Figure 1: Method Overview. Firstly, an MDM Tevet et al. (2023) is trained on HumanML3D with
text-motion pairs Guo et al. (2022b). Then, model is fine-tuned conditioned on fitness level using
FMS data, where the text-motion pairs are enriched with an FMS grade label.

or deficiencies, providing a simple measure to rate and rank basic movement patterns essential for
daily physical activity. By conditioning on the score, we aim to create a more holistic and accurate
human motion representation by taking into account individuals’ physical capabilities. To the best of
our knowledge, our work is the first attempt to close this research gap. Our research could facilitate
the development of personalised and accurate human movement models, essential to applications
including healthcare, sports, and entertainment.

In this work, we present Fitness-Aware 3D Human Motion Generation. We incorporate FMS score
Xing et al. (2022) as condition for existing human motion generation methods Tevet et al. (2023),
enabling the production of 3D human motions conditioned on fitness quality.

To summarize, our main contributions are:

1. A fitness-aware 3D human motion generation method, a previously unseen class of human
motion generation methods.

2. A pipeline to transform FMS data into format compatible with HumanML3D and hyper-
parameter optimization that improves specificity and multimodality of motion diffusion
models.

3. Comprehensive evaluation, including training of a customized FMS classifier to validate
that our model indeed generates movements that are distinct according to FMS value.

2 Related Work

2.1 Human Motion Generation

Human motion generation is an essential area of study in computer vision and animation which has
various applications such as virtual reality Lee et al. (2023a); Winkler et al. (2022); Ye et al. (2022),
gaming Holden et al. (2017); Starke et al. (2022), human behavior analysis Chong et al. (2020); Guo
et al. (2023); Liu et al. (2022); Yang et al. (2023); Zhang et al. (2023d), and robotics Christen et al.
(2023); Li et al. (2023b); Wan et al. (2022); Yamane et al. (2013). The generated motion can be
conditioned on a diverse range of multi-modal inputs, such as action labels Guo et al. (2020); Lee et al.
(2023b); Petrovich et al. (2021); Xu et al. (2023), textual descriptions Ahuja and Morency (2019);
Dabral et al. (2023); Guo et al. (2022b,a); Kong et al. (2023); Petrovich et al. (2022), incomplete pose
sequences Harvey et al. (2020); Wan et al. (2022); Duan et al. (2021), control signals Holden et al.
(2017); Liao et al. (2022); Pi et al. (2023); Shi et al. (2023); Zhang et al. (2023b), and auditory inputs
like music Lee et al. (2019); Li et al. (2022, 2021); Pang et al. (2023).

Yet to our knowledge, no prior work has attempted the generation of human motion conditioned on
fitness level.
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2.2 Diffusion Models and Diverse Generative Techniques

Diffusion models are a type of generative model inspired by the thermodynamic stochastic diffusion
process, where a neural network learns to gradually recover unseen images from a noisy distribution
Song and Ermon (2020); Zhang et al. (2022). Diffusion generative models have shown impressive
results across a range of fields Chou et al. (2023); Liu et al. (2023); Müller et al. (2023); Rombach
et al. (2022); Yu et al. (2023); Po et al. (2023); Long et al. (2023). They have been successfully
applied in various areas such as image synthesis Rombach et al. (2022); Ramesh et al. (2022); Saharia
et al. (2022); Sinha et al. (2021); Vahdat et al. (2021), video creation Luo et al. (2023); Yang et al.
(2022), adversarial attacks Zhuang et al. (2023); Nie et al. (2022), motion prediction Wei et al. (2023);
Chen et al. (2023a), music-to-dance synthesis Li et al. (2023a); Tseng et al. (2023), and text-to-motion
conversion Chen et al. (2023b); Ren et al. (2023); Tevet et al. (2022); Yuan et al. (2022); Zhang et al.
(2022).

Recently, diffusion models have been leveraged frequently for generating human motion Zhang
et al. (2022); Tevet et al. (2023); Chen et al. (2023b); Zhang et al. (2023c); Wang et al. (2023).
Among these methods, MotionDiffuse Zhang et al. (2022) marks the first use of diffusion models in
text-to-motion applications. MDM Tevet et al. (2023) processes motion diffusion by working with
raw motion data to learn how it relates to the specified input conditions. MLD Chen et al. (2023b)
employs a VAE model to encode motion and diffuse it within a latent space. ReMoDiffuse Zhang
et al. (2023c) retrieves motion related to textual input to aid in motion generation. Fg-T2M Wang et al.
(2023) applies a fine-grained approach to extract both local and overall semantic linguistic features.
Recently, EMDM Zhou et al. (2023) leverages kinematics-based methods and textual descriptions to
synthesize human motion through a diffusion model, capturing complex denoising distributions in a
few sampling steps. Moreover, PriorMDM Shafir et al. (2023) introduced a fine-tuning approach to
enhance the MDM for generating human interactions from text-motion data.

In addition to diffusion models, which utilize continuous motion representation, discrete token-
based approaches using Vector Quantized Variational Autoencoders (VQ-VAEs) have also achieved
promising outcomes. Notable examples are TM2T Guo et al. (2022a), T2M-GPT Zhang et al.
(2023a), MotionGPT Jiang et al. (2023). Specifically, MoMask Guo et al. (2024a) introduces a
masked modeling framework that incorporates a hierarchical quantization scheme and bidirectional
transformers to enhance the quality and detail of generated motions. Recently, both CoMo Huang
et al. (2024) and FineMoGen Zhang et al. (2024) have utilized language models to generate edit texts
for part-based body editing, showing promising outcomes, while CoMo’s autoregressive method
allows for the generation of motion sequences of arbitrary length. TLControl Wan et al. (2023) uses a
disentangled latent space to produce a wide range of human motions, enabling high-fidelity synthesis
that aligns with both language descriptions and specific trajectories. Guo et al. Guo et al. (2024b)
use the latent space of pre-trained motion models to improve how they extract and integrate motion
content and style.

However, these models do not account for the fitness level of the generated 3D human motion, thus
coming short of meaningfully differentiating the physique of generated humans.

2.3 Fitness in Human Movement.

Several studies were conducted on classifying movement fitness from human movement Spilz and
Munz (2023); Remedios et al. (2020); Chen et al. (2022), and some of these approaches aim to derive
Functional Movement Screen score from exercises. A previous study Spilz and Munz (2023) uses a
combination of visual neural networks to assign FMS scores to exercise repetitions. Another research
paper Remedios et al. (2020) uses an unsupervised approach to identify clustered “phenotypes” from
movement to distinguish between two FMS groups. Lin et al. (2023) integrates an I3D network
with an attention mechanism and a multilayer perceptron to assess Functional Movement Screening
(FMS).

However, these studies only tackles the the classification of movement fitness, and fail to address the
generation of 3D human motion conditioned on this fitness level.
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3 Method

3.1 Human Motion Diffusion Model.

We formulate the problem of conditional 3D human motion generation as generating a sequence of N
frames, x1:N ≡ {x(1), ..., x(N)} given some condition c Tevet et al. (2023). Each frame xi ∈ RJ×D,
where J is the number of joints and D is the dimension of the joint representation, describes a
human pose by the positions of each joint in the model skeleton. For our purposes, we set D = 3,
representing the x, y, and z Cartesian coordinates, while c serves as a natural language prompt
describing the action to be generated. We are interested in the distribution p(x1:N |c), which we
model through a reverse diffusion process.

The diffusion forward process, denoted as q, sequentially introduces noise to the input via a Gaussian
distribution following the Markov process. The hyperparameter αt governs the denoising schedule.

q(x1:N
t |x1:N

t−1) = N (
√
αtx

1:N
t−1, (1− αt)I). (1)

Motion synthesis is achieved by the denoising (reverse) process, which successively “removes” noise
to recover the human motion x1:N

0 conditioned on c. The process is modelled by a stack of encoder-
only transformers Vaswani et al. (2017). Each frame is projected onto the transformers’ hidden
dimensions and added to a standard positional embedding. At the first timestep, this is concatenated
with the vector ztk, which is the sum of the representations of the condition c and the denoising
timestep t.

For text-to-motion, the representation of c is obtained through the linear projection of pre-trained
CLIP embeddings Radford et al. (2021) of the text prompt. Meanwhile, t is encoded using a distinct
linear projection. The final result of this iterative process yields a prediction x̂1:N

0 = G(xt, t, c),
which is trained to draw from the distribution p(x1:N |c) by optimising with the simple L2 objective
Ho et al. (2020):

Lc = Ex0∼q(x0|c),t∈[1,T ]

(∣∣x0 −G(xt, t, c)
∣∣2
2

)
, (2)

where T is the number of denoising timesteps.

Sampling is performed iteratively. Starting with a random Gaussian noise at x1:N
t at t = T , we

apply the G to produce an estimate x̂1:N
0 , which is then noised by the diffusion forward process

back to xN−1
t−1 . In Tevet et al. (2023), G is trained to learn both the conditioned and unconditioned

distributions by randomly setting the condition x = ∅ for 10% of the samples. Consequently,
the sampling process can flexibly tune between relevance to the c and diversity of unconditioned
sampling, via a linear combination controlled by s:

Gs(xt, T, c) := G(xt, t,∅) + s · (G(xt, t, c)−G(xt, t,∅)) . (3)

The overview of our proposed approach is outlined in Figure 1.

3.2 Functional Movement Screen.

To enable fitness-aware 3D movement generation, a tangible and consistent measure of fitness is
required. To this end, the Functional Movement Screen (FMS) is a widely used diagnostic tool
for identifying physical asymmetries and deficiencies. FMS offers a standardized framework for
evaluating movements, making it ideal for our objectives. FMS encompasses seven core movements
(Deep Squat, Hurdle Step, In-Line Lunge, Shoulder Mobility Distance, Active Straight Leg Raise,
Truck Stability Push Up, and Rotary Stability Quadruped), which are assessed on a scale from 0 to
3. We leverage a recent motion-capture dataset of FMS movements, annotated by type and score,
as assembled by Xing et al. (2022). The FMS dataset Xing et al. (2022) captures motion data,
including color images, depth images, quaternions, 2D pixel trajectories of joints, and 3D skeleton
joint positions, utilizing two Azure Kinect depth sensors. The recordings feature 45 human subjects,
aged 18–59, executing 15 distinct movements that illustrate the 7 movement patterns assessed by a
standard Functional Movement Screen. These movements are annotated by three FMS experts using
the standard 0 to 3 scale, with criteria detailed in the supplementary material’s table interpreting each
FMS grade. Notably, the dataset does not include movements labeled with grade 0.
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Figure 2: Skeleton models of FMS Xing et al. (2022) and HumanAct12 Guo et al. (2020). (Left)
FMS skeleton with 32 joints Xing et al. (2022). (Right) HumanAct12 skeleton with 24 joints Guo
et al. (2020).

4 Experiments

4.1 Overview

Following Tevet et al. (2023), we first train a base motion diffusion model (MDM) on HumanML3D
dataset Guo et al. (2022b) of text-motion pairs, We then fine-tune the model on the aforementioned
FMS dataset Xing et al. (2022) by enriching text-motion pairs with FMS grade labels. We experiment
with two approaches to conditioning: (a) specifying the FMS grade as an integer, or (b) as a descriptive
adjectival modifier. Thus, our final model demonstrates the capability to generate motions based on
both FMS scores and action type descriptions, whereas the base model Tevet et al. (2023) is limited
to generating motions solely based on the action type.

We integrated FMS into 3D human motion generation (HMG) to render the process fitness-aware.
This consists of: (a) aligning FMS data with existing HMG data for training (Section 4.2), and (b)
incorporating FMS into established methods (Section 4.3 and 4.4).

4.2 Data Preprocessing

We use HumanML3D Guo et al. (2022b) to train the motion diffusion model. This dataset, based on
HumanAct12 Guo et al. (2020) and AMASS Mahmood et al. (2019), is utilised in recent text-driven
human motion generation methods Tevet et al. (2023); Guo et al. (2022b), addressing the challenge
of creating diverse and natural motion sequences accurately depicting the content in text descriptions.
However, texts alone are not sufficient to accurately and comprehensively describe the corresponding
motion clips. To address this, we incorporate FMS movements and annotations from Xing et al.
(2022). Below we detail how we map transformed FMS data to minimise distributional shift relative
to the HumanML3D.

We leverage scripts provided by Guo et al. (2022b) to transform the HumanAct12 and AMASS to a
consistent specification for ingestion by the diffusion model, which we subsequently apply to the
transformed FMS dataset.

As shown in Figure 2, the FMS skeleton comprises 32 joints whereas the HumanAct12 comprises
24; moreover, the latter is not a subset of the former. We discard the hands, thumbs, neck, eyes,
and ears joints from the FMS skeleton. The FMS 1-2 chain corresponds to the navel-chest axis,
whereas HumanAct12 represents this body part with the 3-6-9 chain. Aligning the navel joints, we
assume that the corresponding HumanAct12 3-6-9 chain forms a straight line determined by FMS
1-2, and interpolate the positions of HumanAct12 6 and 9 according to the empirically observed mean
interjoint distances observed in both datasets. The remaining FMS joints have relatively unambiguous
counterparts among the HumanAct12 joints, so we use them directly.
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Then, we rotate all FMS positions into a coordinate system that is perpendicularly aligned with the
ground, to adjust for the 6◦ downwards tilt of the Kinect cameras as described in Xing et al. (2022).
Lastly, we apply a uniform translation to all FMS positions to align the mean position of the navel
joint with that of the HumanAct12 dataset.

4.3 Motion Diffusion Model Pretraining

Prior to conditioning the motion diffusion model on the FMS score, we first train the model from
scratch for better accuracy and performance beyond that of the official pretrained model provided
Tevet et al. (2023). Following Tevet et al. (2023), we adopt a similar transformer-based diffusion
model architecture, wherein each denoising step predicts the signal rather than the noise. The
model is optimised with a simple L2 reconstruction loss on the joints’ cartesian coordinates, as
shown in Equation 2. We select different hyperparameters to facilitate a gradual enhancement in
the model’s ability to denoise by employing a lower learning rate over extended training iterations.
Simultaneously, we incorporate weight decay Loshchilov and Hutter (2019) to mitigate overfitting.

4.4 FMS-Conditioned Motion Fine-tuning

After the initial training steps outlined in Section 4.3, we fine-tune the trained MDM on FMS-
conditioned movements. We experiment with two representations for the FMS labels:

• Numerical. The FMS score is appended to the end of the action text as a number in the
format: FMS score x. For example: “a person performs deep squat with their
heels on the floor, FMS score 1”.

• Textual. The FMS score is appended to the beginning of the action text as a verbatim
description with the following mapping:

– FMS Score 1: an injured
– FMS Score 2: moderately fit
– FMS Score 3: a very athletic

For example: “an injured person performs deep squat with their heels on
the floor”.

During the FMS-conditional finetuning steps, we finetune the pretrained MDM on the FMS dataset
with FMS labels. This process results in two fitness-aware methods, which we refer to as the
numerical model and textual model respectively.

R@3 ↑ FID ↓ M.D. ↓ DIV. → M. ↑
Ground Truth 0.798±0.002 0.002±0.000 2.976±0.008 9.507±0.065 −
PT-HP1 0.623±0.006 0.295±0.027 5.465±0.039 9.657±0.108 2.982±0.133

PT-HP2 0.632±0.007 0.399±0.047 5.372±0.039 9.647±0.083 2.798±0.147

FT-HP1 0.586±0.004 0.571±0.053 5.623±0.023 9.366±0.079 2.744±0.203

FT-HP2 0.614±0.006 0.949±0.090 5.448±0.026 9.537±0.084 3.403±0.142

Base MDM 0.611±0.007 0.544±0.044 5.566±0.027 9.560±0.086 2.799±0.072

Fine-tuned MDM 0.614±0.006 0.949±0.090 5.448±0.026 9.537±0.084 3.403±0.142

Table 1: Quantitative Results on HumanML3D. “↑”: higher is better. “↓”: lower is better. “→”:
closer to Ground Truth is better. ± is 95% confidence interval. The fine-tuned MDM model uses
numerical FMS scores. Bold indicates best result.

Table 1 shows the quantitative comparison with the base fitness-unaware MDM Tevet et al. (2023). We
report five standard evaluation metrics Guo et al. (2020): R-Precision (topk, R@K), FID, Multimodal
Distance (M.D.), Diversity (DIV.), and Multimodality (M.). MDM is the base fitness-unaware
model Tevet et al. (2023). The last four columns are ablation studies on training strategies and
hyperparameter settings, where “PT” and “FT” means pretraining (Section 4.3) and finetuning
(Section4.4), respectively. Our method achieves significantly better results regarding the five standard
metrics. We also conduct ablation studies on the two-stage training strategies (pretraining and
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finetuning, abbreviated as PT and FT respectively) and two different hyperparameter choices (HP1
and HP2). HP1 is set so that the learning rate matches Tevet et al. (2023)’s value of 1e-4, reduce the
batch size to 32, and increase the number of steps to 600,000. HP2 is set so that the learning rate is
decreased to 3e-5, the batch size is decreased further to 8, and the number of steps further increased
to 2,400,000. The weight decay is set as 3e-06. Results are in the last four columns in the table.

4.5 Classifier Results on Numerical and Textual FMS

To further evaluate our FMS-conditioned models, we build a classifier to recognise FMS scores based
on motions. We choose to use a Long-short term memory architecture Yu et al. (2019), implement
the following model:

LSTM_1(
(lstm): LSTM(input_size=360, hidden_size=120)
(relu): ReLU()
(fc): Linear(in_features=120, out_features=3, bias=True)
(softmax): Softmax(dim=1)

)

The model is used to do 3-label classification given a motion. Classification is performed on the
following datasets:

• Original FMS dataset Xing et al. (2022) - 1812 movements based on real videos capture
from human experiments in an isolated environment.

• Base Model FMS dataset - we use the base pre-trained motion diffusion model to generate
an evenly distributed dataset. For each combination of action class(15) and FMS score(3),
we generate 40 motions to obtain a total of 1800 synthetic motions with FMS labels. This
dataset is used as baseline for comparison to the datasets generated by our fine-tuned models.

• Numerical Model FMS dataset - similarly to 4.5, we generate 1800 motions with FMS
labels.

• Textual Model FMS dataset - 1800 motions with FMS labels 4.5.

Since the original FMS dataset Xing et al. (2022) is heavily distributed towards FMS score 2, we use
a Focal Loss function to addresses class imbalance Lin et al. (2018). Focal Loss applies a modulating
term to the Cross-Entropy Loss in order to focus learning on hard misclassified examples Lin et al.
(2018):

FL (pt) = − (1− pt)
γ
log (pt) (4)

We use an Adam optimizer with a 5× 10−4 learning rate and a 1× 10−5 weight decay. The model is
trained on the original dataset for 64 epochs and on the remaining 3 datasets for 512 epochs.

Metric Original Base Numerical Textual

Accuracy 84% 39% 61% 75%
Precision F1 81% 41% 62% 76%
Recall F1 74% 39% 61% 75%
Macro F1 77% 36% 61% 75%
Micro F1 84% 39% 62% 75%

Table 2: Classification Results

Table 2 shows the results for the four datasets. On the original FMS dataset, the classifier achieves
84% accuracy, 81% precision and 74% recall. With the dataset produced by the base diffusion model
without fine-tuning, the classifier gets results close to random guessing with 39% (random is 33.3%).
On the numerical dataset, where FMS scores are represented as numbers produced by our fine-tuned
diffusion model, the classifier achieves significantly higher results than the baseline. The accuracy
and the recall are improved by 22% to 61%, precision is improved by 19% to 62%. On the dataset
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produced by our textual fine-tuned diffusion model, there is an even more significant increase. The
accuracy and precision are further increased to 75% and the precision is improved to 76%. Comparing
the original dataset to the synthetic textual one produced by our model, there is only 9% difference in
the classifier’s accuracy. Even more impressive is the fact that the classifier achieves higher recall on
the synthetic textual dataset compared to the original real dataset.

Figure 5 in the supplementary materials shows the confusion matrices of the classifier for the four
datasets. The original FMS is very imbalanced towards FMS class 2, as the classifier achieves 94%
for class 2 but only around 60% for class 1 and 2. With the base dataset, the classifier’s predictions
deviate towards random classification. On the numerical dataset from our fine-tuned model, the
classifier achieves much more balanced predictions in the range of 53% to 69% accuracy. Since the
model is fine-tuned on the original FMS dataset, there is still slight bias towards class 2, although is
significantly lessened. On the textual dataset from our fine-tuned model, the classifier achieves better
results on class 1(80%) and 3(76%) compared to the original dataset. In the textual FMS dataset, all
three action class achieve at least 70%.

In summary, the results from the LSTM classifier show that our fine-tuned models produce high-
quality movement data that is well-balanced across all FMS scores. On our best synthetic dataset, the
classifier achieved higher recall (76%) than the on the original dataset (75%), while also maintaining
similar accuracy and precision (75%). Furthermore, with our best synthetic dataset, the classifier
achieved higher prediction accuracy on two of the three FMS classes (class 1 - 80% compared to
65%, class 3 - 78% compared to 63%).

5 Limitations

While our work to condition human motion diffusion models on fitness grades is novel and promising,
some limitations remain. One main challenge in human motion generation is the low availability of
diverse and comprehensive datasets. The FMS dataset has some such limitations:

• The dataset focuses on seven specific FMS movements collected from 45 participants, which
does not capture the full diversity of human movements necessary for broader applications
in accurate motion generation. The complexity and variety of human motion might require
larger datasets for the model to generate fully accurate motions.

• The dataset lacks participant diversity, with data collected from 45 individuals aged 18-59
recruited on a university campus. This limits the model’s ability to generalise across different
demographic groups.

• Each motion in the FMS dataset is annotated from 0 to 3 by FMS experts. While the use of
experts promotes quality, this labelling is unavoidably subjective.

• HumanML3D already allows sampling with textual descriptions of physique (e.g., “the
person is walking like they are tired”). FMS scores may be less intuitive for users compared
to descriptive text about physique.

• The AMASS dataset includes shape parameters that describe variations in physique, such
are not included in our FMS fine-tuning method.

Finally, interpretability is another limitation. Diffusion models often operate as “black boxes“, making
it difficult to understand how and why they generate specific motions. This lack of interpretability
can be a limitation, especially in fields like healthcare where understanding the rationale behind a
movement pattern is crucial.

6 Conclusion

In this paper we present the first fitness-aware 3D human motion generation method. Our method
conditions human motion diffusion models to generate 3D movements based on FMS scores, enabling
the generation of motions sensitive to the subject’s fitness level. Our contribution extends diffusion
models to incorporate fitness awareness, allowing the model to focus on the physical condition of the
individual instead of relying on type-based motions.
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Supplementary Material

Training setup

Our method is closely related to human Motion Diffusion Model (MDM) Tevet et al. (2023). Please
refer to Figure 3 for schematic. We also provide discussion in the main paper.

Figure 3: (Left) the Motion Diffusion Model combines a conditioning token with joint positions to
iteratively clean a noised x1:N

t back to the clean motion x̂1:N
0 . (Right) sampling from the motion

diffusion model is done by applying iteratively the Motion Diffusion Model to x1:N
t and noising it

back to x1:N
t−1. The figures are taken from Tevet et al. (2023).

All training is performed with the PyTorch framework Paszke et al. (2019). We use AdamW
Loshchilov and Hutter (2019) optimiser with default learning rate of 1e-4 and no weight decay. The
batch size is 32. Training proceeds by a standard loop: within an epoch, on each batch of motion and
condition pairs, we run a forward pass through the model and take a gradient step with the optimiser.
We evaluate and save checkpoint every 50,000 steps.

We proceed to train the Motion Diffusion Model Tevet et al. (2023) from scratch and then further
fine-tune it for FMS conditioned generation Xing et al. (2022). We employ two hyperparameter
choices to train the motion diffusion model. The first hyperparameter choice (HP1) sets learning rate
to match Tevet et al. (2023)’s value of 1e-4, reduce the batch size to 32, and increase the number of
steps to 600,000. The second hyperparameter choice (HP2) sets learning rate to 3e-5, the batch size
is decreased further to 8, and the number of steps further increased to 2,400,000. The weight decay is
set as 3e-06.

For FMS-conditional finetuning steps, we start from the 2,400,000-step checkpoint and train a further
600,000 steps only on the FMS dataset with FMS labels Xing et al. (2022). We use the same learning
rate of 3e-05, weight decay of 3e-06, and batch size of 8 as in HP2, which shows the superior
performance in the MDM pretraining.

Evaluation Metrics

We report five evaluation metrics: R-Precision, Multimodal Distance, Diversity, Multimodality, and
FID. For their implementation please see Guo et al. (2020). All metrics require comparing motions
and prompt text in latent space. This is achieved by two pretrained bidirectional Gated Recurrent
Unit (GRU) encoders, which respectively embed the text and motion into a common representation.
The encoders are trained with contrastive loss to minimise the distance between matched text-motion
embeddings and separate mismatched text-motion embeddings with some margin Guo et al. (2022b).
We describe each metric below:

R-Precision and Multimodal Distance

measure the alignment between the input prompt text and generated output motion Guo et al. (2022b).
For top-k R-Precision, we calculate the euclidean distances between a motion embedding and its
corresponding text embedding, and to the text embeddings of 31 additional randomly selected
mismatched descriptions. The ground truth falling within the top-k rankings is considered “success”.
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Multimodal Distance is the mean euclidean distance between matched text and motion embeddings
in the test set.

FID

quantifies the dissimilarity between the ground truth distribution and the diffusion model’s generated
distribution. This similarity is again computed as the euclidean distance in the latent space defined by
the aforementioned GRU encoders Guo et al. (2020).

Diversity

captures the variance of motions across all text prompts Guo et al. (2020). Two subsets of equal size
are sampled from the global set of motions, and their mean euclidean distance in the latent space is
reported. Ideally, the diversity of generated motions is similar to the diversity of the ground truth.

Multimodality

calculates the variance of motions generated from a single text prompt Guo et al. (2020). This is
computed as the average euclidean distance between a text feature and its corresponding motion
features. Conditional on the motion still being relevant, as measured by R-Precision and Multimodal
Distance, we desire multimodality to be high. However, in practice, the achievable multimodality in
a good model is not expected to deviate significantly from the ground truth multimodality.

Datasets

HumanML3D Dataset

Guo et al. (2022b) is a 3D human motion-language dataset that combines the HumanAct12 Guo
et al. (2020) and Amass Plappert et al. (2016) datasets. It includes a wide range of human actions,
encompassing daily activities like walking and jumping, sports activities such as swimming and
playing golf, acrobatics like cartwheels, and artistic movements including dancing.

The dataset comprises 14,616 motion clips and 44,970 text descriptions, with motions downsampled
to 20 fps. Each motion clip lasts between 2 to 10 seconds, totalling approximately 28.59 hours of
motion data. The average motion length is about 7.1 seconds, and each description is, on average, 12
words long.

Movement Variation
Deep squat Heels on the floor

Heels on a 2-inch board

Hurdle step Left leg up
Right leg up

In-line lunge Left leg in front
Right leg in front

Shoulder mobility Left arm up
Right arm up

Active straight raise Left leg up
Right leg up

Trunk stability push-up Support on the ground with both hands

Rotary stability Left limb up
Right limb up
Left arm and right leg up
Right arm and left leg up

Table 3: Description of FMS Movements.
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Functional Movement Screen (FMS) Dataset

Xing et al. (2022) is a vision-based autonomous dataset of 1,812 recordings collected using two
Azure Kinect depth sensors. The recordings depict 45 human subjects, aged 18–59, performing
fifteen distinct movements demonstrating the seven movement patterns evaluated by a standard FMS
score. Example descriptions of FMS movements are in Table 3.

Grade Description

0 Complete with pain in any part of the body.
1 Incomplete.
2 Complete with compensation or deviation from the stand, or both.
3 Complete without compensation.

Table 4: Interpretation of each FMS grade, according to Xing et al. (2022).

The motion data includes colour images, depth images, quaternions, 2D pixel trajectories of joints,
and 3D skeleton joint positions. We use only the latter, in line with HumanML3D Guo et al. (2022b).
Movements are labelled by three FMS experts with the standard 0 to 3 scale. The criteria for each
grade is described in Table 4. The dataset contains no movements labelled with the grade 0.

Additional Evaluations

Qualitative results

We qualitatively compare samples generated by three models: base fitness-unaware MDM Tevet et al.
(2023) (base model), the “numerical” method (numerical model), and the “textual” method (verbatim
model). The latter two are obtained through FMS-grade-aware fine-tuning.

When generating new motion, files with joint coordinates and mp4 videos are produced. We generate
motions for 5 action classes using the best numerical and verbatim, as well as for the base model that
the authors provide (with numerical FMS scores). After we obtain videos, we further process them to
produce SMPL meshes (each object mesh corresponds to one movement frame). We use Blender
with a plugin called Stop-motion-obj Neverhood and Xiaosong (2021) to generate videos in SMPL-X
Pavlakos et al. (2019) format.

Please refer to our Supplementary Video, which summarises all SMPL-X videos for the five action
classes generated by the base, numerical, and textual models. It can be observed the base model
hallucinates for action classes “deep squat”, “hurdle step”, and “in line lunge”, producing different and
irrelevant movements. In comparison, our numerical model gives considerably better performance for
those three classes - the FMS scores are distinctive as well. The textual model hallucinates somewhat
as well, but still provides some meaningful movements. For action class “shoulder mobility”, the
base model produces satisfactory outputs, the numerical one generates very well-defined movements
and the verbatim model hallucinates completely.

Qualitative Evaluation

Upon inspection of the results generated by the base, numerical, and verbatim models, the base
model hallucinates for action classes such as “deep squat”, “hurdle step”, and “in-line lunge”, and
generates entirely different and irrelevant movements. In comparison, the numerical model performs
significantly better for these three classes, with distinct FMS scores as well.While the verbatim model
also exhibits hallucinations, it still provides some meaningful movements occasionally.

Figure 4 shows three images of a squat with FMS score 2 generated by the numerical model. The
images visualize the movement with five objects depicted at different time frames of the movement.
We can observe that the movement looks realistic - it is clear that the person is performing a “squat”.
Although there is some slight floating above the ground at frame 4 and 5, the frames represent a
consistent motion sequence of a moderately fit person performing a squat. The SMPL-X Pavlakos
et al. (2019) videos demonstrate that the numerical model is more accurate and hallucinates far less
than the verbatim one. One possible explanation is that the verbatim model adds significantly more
text to the initial prompt, which confuses the model.
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(a) Side View (30) (b) Side View (90) (c) Front View (Above)

Figure 4: Qualitative Results. The examples feature the Squat action with an FMS score of 2 from
the numerical model at three viewpoints.

Classifier Results

To further evaluate our FMS-conditioned models, we build a classifier to recognise FMS scores based
on motions. The architecture of the classifier and the the main results are discussed in section .The
model is trained on the original dataset for 64 epochs and on the remaining 3 datasets for 512 epochs,
using an Adam optimiser with a 5e-4 learning rate and a 1e-5 weight decay.

(a) Original (b) Base

(c) Numerical (d) Textual

Figure 5: Confusion Matrices of the Classifier for Each Dataset.
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In this supplementary document, we provide further insights, experiments and analyses. Section pro-
vides more details on Implementation, Evaluation Metrics, Datasets, and the MDM Tevet et al.
(2023). Section presents additional experiments to showcase the advantages of the proposed method.
Lastly, Section discuss in more details the limitations, potential applications, and future directions
of our proposed method.

Implementation

Training setup

Our method is closely related to human Motion Diffusion Model (MDM) Tevet et al. (2023). Please
refer to Figure 1 for schematic. We also provide discussion in the main paper.

Fig. 1: (Left) the Motion Diffusion Model combines a conditioning token with joint positions to
iteratively clean a noised x1:N

t back to the clean motion x̂1:N
0 . (Right) sampling from the motion

diffusion model is done by applying iteratively the Motion Diffusion Model to x1:N
t and noising it

back to x1:N
t−1. The figures are taken from Tevet et al. (2023).

All training is performed with PyTorch framework Paszke et al. (2019). We use AdamW Loshchilov
and Hutter (2019) optimiser with default learning rate of 1e-4 and no weight decay. The batch size
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is 32. Training proceeds by a standard loop: within an epoch, on each batch of motion and condition
pairs, we run a forward pass through the model and take a gradient step with the optimiser. We
evaluate and save checkpoint every 50,000 steps.

We proceed to train the Motion Diffusion Model Tevet et al. (2023) from scratch and then further
fine-tune it for FMS conditioned generation Xing et al. (2022). We employ two hyperparameter
choices to train the motion diffusion model. The first hyperparameter choice (HP1) sets learning
rate to match Tevet et al. (2023)’s value of 1e-4, reduce the batch size to 32, and increase the number
of steps to 600,000. The second hyperparameter choice (HP2) sets learning rate to 3e-5, the batch
size is decreased further to 8, and the number of steps further increased to 2,400,000. The weight
decay is set as 3e-06.

For FMS-conditional finetuning steps, we start from the 2,400,000-step checkpoint and train a fur-
ther 600,000 steps only on the FMS dataset with FMS labels Xing et al. (2022). We use the same
learning rate of 3e-05, weight decay of 3e-06, and batch size of 8 as in HP2, which shows the
superior performance in the MDM pretraining.

Evaluation Metrics

We report five evaluation metrics: R-Precision, Multimodal Distance, Diversity, Multimodality, and
FID Heusel et al. (2017). For their implementation please see Guo et al. (2020). All metrics require
comparing motions and prompt text in latent space. This is achieved by two pretrained bidirec-
tional Gated Recurrent Unit (GRU) encoders, which respectively embed the text and motion into
a common representation. The encoders are trained with contrastive loss to minimise the distance
between matched text-motion embeddings and separate mismatched text-motion embeddings with
some margin Guo et al. (2022). We describe each metric below:

R-Precision and Multimodal Distance

measure the alignment between the input prompt text and generated output motion Guo et al. (2022).
For top-k R-Precision, we calculate the euclidean distances between a motion embedding and its
corresponding text embedding, and to the text embeddings of 31 additional randomly selected mis-
matched descriptions. The ground truth falling within the top-k rankings is considered “success”.
Multimodal Distance is the mean euclidean distance between matched text and motion embeddings
in the test set.

FID

quantifies the dissimilarity between the ground truth distribution and the diffusion model’s generated
distribution. This similarity is again computed as the euclidean distance in the latent space defined
by the aforementioned GRU encoders Guo et al. (2020).

Diversity

captures the variance of motions across all text prompts Guo et al. (2020). Two subsets of equal size
are sampled from the global set of motions, and their mean euclidean distance in the latent space is
reported. Ideally, the diversity of generated motions is similar to the diversity of the ground truth.

Multimodality

calculates the variance of motions generated from a single text prompt Guo et al. (2020). This is
computed as the average euclidean distance between a text feature and its corresponding motion
features. Conditional on the motion still being relevant, as measured by R-Precision and Multimodal
Distance, we desire multimodality to be high. However, in practice, the achievable multimodality in
a good model is not expected to deviate significantly from the ground truth multimodality.
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Datasets

HumanML3D Dataset

Guo et al. (2022) is a 3D human motion-language dataset that combines the HumanAct12 Guo
et al. (2020) and Amass Plappert et al. (2016) datasets. It includes a wide range of human actions,
encompassing daily activities like walking and jumping, sports activities such as swimming and
playing golf, acrobatics like cartwheels, and artistic movements including dancing.

The dataset comprises 14,616 motion clips and 44,970 text descriptions, with motions downsampled
to 20 fps. Each motion clip lasts between 2 to 10 seconds, totalling approximately 28.59 hours of
motion data. The average motion length is about 7.1 seconds, and each description is, on average,
12 words long.

Movement Variation

Deep squat Heels on the floor
Heels on a 2-inch board

Hurdle step Left leg up
Right leg up

In-line lunge Left leg in front
Right leg in front

Shoulder mobility Left arm up
Right arm up

Active straight raise Left leg up
Right leg up

Trunk stability push-up Support on the ground with both hands

Rotary stability Left limb up
Right limb up
Left arm and right leg up
Right arm and left leg up

Table 1: Description of FMS Movements.

Functional Movement Screen (FMS) Dataset

Xing et al. (2022) is a vision-based autonomous dataset of 1,812 recordings collected using two
Azure Kinect depth sensors. The recordings depict 45 human subjects, aged 18–59, performing
fifteen distinct movements demonstrating the seven movement patterns evaluated by a standard FMS
score. Example descriptions of FMS movements are in Table 1.

Grade Description

0 Complete with pain in any part of the body.
1 Incomplete.
2 Complete with compensation or deviation from the stand, or both.
3 Complete without compensation.

Table 2: Interpretation of each FMS grade, according to Xing et al. (2022).

The motion data includes colour images, depth images, quaternions, 2D pixel trajectories of joints,
and 3D skeleton joint positions. We use only the latter, in line with HumanML3D Guo et al. (2022).
Movements are labelled by three FMS experts with the standard 0 to 3 scale. The criteria for each
grade is described in Table 2. The dataset contains no movements labelled with the grade 0.
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Additional Evaluations

Qualitative results

We qualitatively compare samples generated by three models: base fitness-unaware MDM Tevet
et al. (2023) (base model), the “numerical” method (numerical model), and the “textual” method
(verbatim model). The latter two are obtained through FMS-grade-aware fine-tuning.

When generating new motion, files with joint coordinates and mp4 videos are produced. We generate
motions for 5 action classes using the best numerical and verbatim, as well as for the base model
that the authors provide (with numerical FMS scores). After we obtain videos, we further process
them to produce SMPL meshes (each object mesh corresponds to one movement frame). We use
Blender with a plugin called Stop-motion-obj Neverhood and Xiaosong (2021) to generate videos
in SMPL-X Pavlakos et al. (2019) format.

Please refer to our Supplementary Video, which summarises all SMPL-X videos for the five action
classes generated by the base, numerical, and textual models. It can be observed the base model hal-
lucinates for action classes “deep squat”, “hurdle step”, and “in line lunge”, producing different and
irrelevant movements. In comparison, our numerical model gives considerably better performance
for those three classes - the FMS scores are distinctive as well. The textual model hallucinates some-
what as well, but still provides some meaningful movements. For action class “shoulder mobility”,
the base model produces satisfactory outputs, the numerical one generates very well-defined move-
ments and the verbatim model hallucinates completely.

Qualitative Evaluation.

Below, we present a qualitative comparison with samples generated by three models: the base fitness-
unaware MDM Tevet et al. (2023) (base model), the “numerical” method (numerical model), and
the “textual” method (verbatim model). The latter two are obtained through FMS-grade-aware fine-
tuning.

Upon inspection of the results generated by the base, numerical, and verbatim models, the base
model hallucinates for action classes such as “deep squat”, “hurdle step”, and “in-line lunge”, and
generates entirely different and irrelevant movements. In comparison, the numerical model performs
significantly better for these three classes, with distinct FMS scores as well. While the verbatim
model also exhibits hallucinations, it still provides some meaningful movements occasionally. For
the action class “shoulder mobility”, the base model produces satisfactory outputs, the numerical
one generates very well-defined movements, and the verbatim model completely hallucinates.

(a) Side View (30°) (b) Side View (90°) (c) Front View (Above)

Fig. 2: Qualitative Results. The examples feature the Squat action with an FMS score of 2 from the
numerical model at three viewpoints.

Figure 2 shows three images of a squat with FMS score 2 generated by the numerical model. The
images visualize the movement with five objects depicted at different time frames of the movement.
We can observe that the movement looks realistic - it is clear that the person is performing a “squat”.
Although there is some slight floating above the ground at frame 4 and 5, the frames represent a
consistent motion sequence of a moderately fit person performing a squat. The SMPL-X Pavlakos
et al. (2019) videos demonstrate that the numerical model is more accurate and hallucinates far less
than the verbatim one. One possible explanation is that the verbatim model adds significantly more
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text to the initial prompt, which confuses the model. Presumably, with longer added text for the
FMS score, it becomes unclear for the model which part of the text describes the action class and
which part describes the FMS score. This ambiguity may lead to significantly more hallucinations
and unrealistic movements.

Classifier Results

To further evaluate our FMS-conditioned models, we build a classifier to recognise FMS scores
based on motions. We opt for a long-short term memory (LSTM) architecture Hochreiter and
Schmidhuber (1997), given its superior performance in recognizing patterns in sequences and han-
dling variable-length frames. Since we want our classifier to work on various data formats without
particular bias or change of accuracy, we opt for LSTM. We implement the following model:

LSTM_1(
(lstm): LSTM(input_size=360, hidden_size=120)
(relu): ReLU()
(fc): Linear(in_features=120, out_features=3, bias=True)
(softmax): Softmax(dim=1)

)

The model is employed for 3-label classification given a motion. Classification is conducted on the
following datasets:

– Original FMS Data. This includes 1,812 movements based on real videos capture from
human experiments in an isolated environment Xing et al. (2022).

– Base Model FMS Data. We use the base pretrained motion diffusion model to generate
an evenly distributed dataset. For each combination of action class (15) and FMS score
(3), we generate 40 motions to obtain a total of 1800 synthetic motions with FMS labels.
This dataset is used as baseline for comparison to the datasets generated by our fine-tuned
models.

– Numerical Model FMS Data. Similar to the Base Model FMS Data, we generate 1,800
motions with FMS labels.

– Textual Model FMS Data. Similarly, we generate 1,800 motions with FMS labels.

Since the original FMS dataset Xing et al. (2022) is heavily distributed towards FMS score 2, we use
focal loss Lin et al. (2017) to addresses class imbalance. The focal loss applies a modulating term to
the cross-entropy loss in order to focus learning on hard misclassified examples:

FL (pt) = − (1− pt)
γ
log (pt) . (1)

The model is trained on the original dataset for 64 epochs and on the remaining 3 datasets for 512
epochs, using an Adam optimiser with a 5e-4 learning rate and a 1e-5 weight decay.

The results for the four datasets are in the main paper. On the original FMS dataset, the classi-
fier achieves 84% accuracy, 81% precision and 74% recall. With the dataset produced by the base
diffusion model without fine-tuning, the classifier gets results close to random guessing with 39%
(random is 33.3%). On the numerical dataset, where FMS scores are represented as numbers pro-
duced by our fine-tuned diffusion model, the classifier achieves significantly higher results than the
baseline. The accuracy and the recall are improved by 22% to 61%, precision is improved by 19%
to 62%. On the dataset produced by our textual fine-tuned diffusion model, there is an even more
significant increase. The accuracy and precision are further increased to 75% and the precision is im-
proved to 76%. Comparing the original dataset to the synthetic textual one produced by our model,
there is only 9% difference in the classifier’s accuracy. Even more impressive is the fact that the
classifier achieves higher recall on the synthetic textual dataset compared to the original real dataset.

Figure 3 shows the confusion matrices of the classifier for the four datasets. As shown in Figure 3a,
the original FMS is very imbalanced towards FMS class 2. The classifier achieves 94% for class
2 but only around 60% for class 1 and 2. With the base dataset, as in Figure 3b, the classifier’s
predictions deviate towards random classification. On the numerical dataset from our fine-tuned
model, the classifier achieves much more balanced predictions in the range of 53% to 69% accuracy,
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(a) Original (b) Base (c) Numerical (d) Textual

Fig. 3: Confusion Matrices of the Classifier for Each Dataset.

as shown in Figure 3c. Since the model is fine-tuned on the original FMS dataset, there is still slight
bias towards class 2, although is significantly lessened. On the textual dataset from our fine-tuned
model, as shown in Figure 3d, all three action class achieve at least 70%. The classifier achieves
better results on class 1 (80%) and 3 (76%) compared to the original dataset.

In summary, results from the LSTM classifier show that our fine-tuned models produce high-quality
movement data that is well-balanced across all FMS scores. On our best synthetic dataset, the clas-
sifier achieved higher recall (76%) than the on the original dataset (75%), while also maintaining
similar accuracy and precision (75%). Furthermore, with our best synthetic dataset, the classifier
achieved higher prediction accuracy on two of the three FMS classes (class 1 - 80% compared to
65%, class 3 - 78% compared to 63%).

Limitations and Future Directions

Limitations

While our work to condition human motion diffusion models on fitness grades is novel and promis-
ing, limitations remain. One challenge in human motion generation is the low availability of diverse
and comprehensive datasets. The FMS dataset has such limitations:

– The dataset focuses on seven specific FMS movements collected from 45 participants,
which does not capture the full diversity of human movements necessary for broader ap-
plications in accurate motion generation. The range of motions, while adequate for FMS
assessment, might not be comprehensive for training accurate diffusion models. The com-
plexity and variety of human motion might require larger datasets for the model to generate
fully accurate motions and capture subtle nuances

– The dataset lacks participant diversity, with data collected from 45 individuals aged 18-59
recruited on a university campus. Hence, the data may not be representative of the broader
population’s age, body types, and fitness levels. This limits the model’s ability to generalise
across different demographic groups.

– Each motion in the FMS dataset is annotated from 0 to 3 by FMS experts. While the use of
experts promotes quality, this labelling is unavoidably subjective.

– Non-invasive depth cameras are used to collect this dataset, primarily consists of RGB
images, depth images and skeleton data. This also may not capture all the nuances of human
movements such as subtle variations in muscle engagement or balance, which are also
important for accurate FMS scoring.

Given the complexity of human motions and the subtleties in FMS scoring, the model might “hal-
lucinate” movements that do not align with actual human biomechanics or the intended FMS score.
This is evident in a few of the generated motions. We also observe some common artefacts such as
foot sliding and ground penetration in our generated samples.

Interpretability is another limitation. Diffusion models, like many deep learning models, often oper-
ate as “black boxes”, making it difficult to understand how and why they generate specific motions.
This lack of interpretability can be a limitation, especially in fields like healthcare where understand-
ing the rationale behind a movement pattern is crucial.
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Future Directions

Future work can experiment with more advanced diffusion models, such as PhysDiff Yuan et al.
(2023), which explicitly attempt to correct for such pathologies. PhysDiff reduces the prevalence
of such artefacts using a physics-guided motion engine to denoise the model’s predictions. Their
improvements offers better performance and out-of-the box easier fine-tuning, making it a suitable
option for further experiments on FMS-conditioned motion generation. Human motion is non-linear
and subject to physical and biomechanical constraints. Accounting for these aspects could ensure
that generated motions are not only visually plausible but also biomechanically correct.

Future experiments can also explore alternate methods of encoding the FMS scores for conditioning
the diffusion model. While we focused on “textual” and “numerical” representations of the FMS
labels, another possibility is to directly encode the FMS score in the conditioning token. Future
work could involve collecting fitness data using a wider variety of data modalities. Another way to
address the scarcity of FMS motion data is to perform mirroring of the current FMS movements.
This approach is already effectively applied in the HumanML3D dataset Guo et al. (2022) and can
be used to double the size of the FMS dataset.

Potential Applications

We develop a fitness-aware motion generation method capable of generating human movements
consistent with a given level of athleticism or injury severity, in addition to action type. Such a
method would be beneficial for various domains, including healthcare and sports. We anticipate
broad applications of such a fitness-aware motion model. In medicine and physiotherapy, quality of
movement, reflecting the extent to which a human is physically able, is central to rehabilitation and
diagnosis. Generating fitness-aware motions can enrich the training of medical students and provide
useful references for both patient and doctor during the recovery process. Another application in
sports education is to generate diverse action samples graded by quality. These samples can similarly
provide references and counterexamples to assist in the development of technique and reduce the risk
of strain. Finally, character animations in gaming and virtual reality can significantly enhance their
vividness and authenticity by controlling details of fitness and physical ability.
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