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ABSTRACT

Despite the considerable advancements in Deep Neural Networks (DNNs), their in-
trinsic opacity remains a challenge from their foundational design. In this study, we
elucidate a novel phenomenon wherein the representation of cumulative gradients
(the aggregate changes in iterative gradients) exhibits a certain independence from
the initial computation point of the gradients. This implies that learned gradients
can be assigned to other arbitrarily initialized yet well-trained neural networks,
while retaining a comparable representation to the original network. This suggests
that the cumulative gradients can be assigned to other arbitrarily initialized but
adequately trained neural networks, maintaining a representation like the original
one. This occurrence is counterintuitive and can not be well explained via existing
optimization theories. Additionally, we observe that the learned model weights can
also be reassigned to different neural networks. In essence, these learned gradients
can be viewed as a neural network with analogous representations. Futhermore,
this reassignment of gradients and model weights can potentially mitigate catas-
trophic forgetting when learning multi-tasks. We provide a theoretical framework
to support this claim. Our extensive experiments clearly illustrate this phenomenon
and its potential to mitigate catastrophic forgetting.

1 INTRODUCTION

Deep Neural Networks (DNNs) have demonstrated remarkable success in a variety of machine
learning tasks, including but not limited to computer vision Simonyan & Zisserman (2015); He et al.
(2016), natural language processing Devlin et al. (2019), and robotics Duan et al. (2017); Plappert
et al. (2018). Nonetheless, the learning processes of DNNs, particularly with optimization methods
such as Stochastic Gradient Descent (SGD) Wijnhoven & de With (2010) and Adam Kingma & Ba
(2015), remain theoretically unexplained. This lack of understanding extends to the organization of
the internal structures of DNNs. Typically, these unresolved issues contribute to the characterization
of DNNs as “black boxes" Alain & Bengio (2017).

In an attempt to better comprehend these “black boxes," researchers Alain & Bengio (2017) have
utilized linear classifiers as “probes" to enhance intuition about DNN layers. Other studies have
demonstrated the role and dynamics of each layer Yosinski et al. (2014) and provided innovative
visualization techniques to offer insights into the layers of DNNs Zeiler & Fergus (2014). Moreover,
previous research Tishby & Zaslavsky (2015) has analyzed the mutual information values between
input and output variables for each DNN layer. It was concluded that the primary objective of
the learning process at each DNN layer is related to the information bottleneck tradeoff between
the compression of input information and prediction. Subsequent research Shwartz-Ziv & Tishby
(2017) built on this concept, demonstrating that DNNs spend most of the learning process epochs on
compressing input information rather than memorizing labels.

This understanding provides some plausible explanations for the well-known generalization problem
in deep learning Zhang et al. (2017), a problem that cannot be addressed by conventional regular-
ization and minimal generalization errors. This issue is attributed to the intriguing phenomenon
that DNNs using stochastic gradient methods can easily memorize randomly labeled data. Despite
its counterintuitive nature, this phenomenon elucidates the generalization capabilities of DNNs,
informing future researches Zhang et al. (2018); Mathis et al. (2018); Gu et al. (2018).
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Typically, DNNs employ standard optimization methods, such as SGD and Adam, to iteratively
update parameters. For instance, during training, SGD estimates the gradients at the initial point using
randomly selected examples Wijnhoven & de With (2010). Consequently, it is intuitive to believe that
the gradients heavily rely on the initial point of computation, and that optimal representations can
only be obtained through a combination of both. However, our experiments revealed that the primary
factor influencing the representations is embedded within the structure of the gradients and can be
expressed independently of the initial point.

In this study, we introduce an intriguing phenomenon: the representation of cumulative gradients
– the aggregated changes of numerous iterative gradients – does not solely rely on the initial point
from which the gradients are computed. Consequently, these cumulative gradients can be assigned
to newly initialized, well-trained neural networks (of identical architecture), yielding similar rep-
resentations to the original network. Furthermore, these cumulative gradients can be treated as a
new model, encapsulating representations comparable to the original network. Like Zhang et al.
(2017), this phenomenon is counterintuitive and cannot be explained using conventional theories.
Under traditional neural network optimization theory Nguyen & Hein (2017); Li et al. (2018), all
local minima are approximations of the global optimum, implying that virtually all local minima are
global optima. However, this principle seems to contradict the above-described phenomenon. This is
because the cumulative gradients can be assigned to different points, which are not necessarily close
to each other, while still preserving the representations.

In this work, we shed light on the novel phenomenon of cumulative gradients. This phenomenon
challenges the traditional perspective on non-convex optimization of neural networks and provides
further insight into the “black boxes" of DNNs. Our main contributions are as follows:

• We introduce a compelling phenomenon: the representation of corresponding gradients
does not entirely depend on the initial point from which the gradients are computed. This
discovery provides valuable insights into understanding the “black boxes" of DNNs.

• Like cumulative gradient assignment, model fusion (assigning the weights of one network to
another) is another method to transfer learned representations to different models, potentially
leading to superior representations.

• Both cumulative gradient assignment and model fusion can mitigate the catastrophic for-
getting problem in neural networks. We provide a theoretical analysis to support this
claim.

• Extensive experiments have clearly illustrated this phenomenon across a multitude of
different types of neural networks, including 5-layer convolution networks and ResNets.

2 RELATED WORK

The study of neural network representation power has a rich history Cybenko (1989); Delalleau &
Bengio (2011), with a multitude of research focusing on applying universal approximation theorems
for DNNs Mhaskar (1993); Telgarsky (2016); Cohen & Shashua (2016); Eldan & Shamir (2016).
These methods characterize the range of mathematical functions that DNNs can express from a
population-level perspective. However, due to the “black-box" nature of neural networks, traditional
techniques often struggle to interpret them. For instance, the crucial generalization problem of deep
learning cannot be clarified by conventional regularization and small generalization errors Zhang
et al. (2017). Such issues primarily arise from the representation problem caused by noisy labels
during training. In contrast, this paper emphasizes the representation of cumulative gradients and
explores how this representation changes when assigned to different models, which are not the initial
points for computing the gradients.

The initialization of neural networks is widely recognized as a crucial factor in training an effective
network. An appropriate initialization scheme can facilitate the training of basic CNNs, exceeding
ten thousand layers, without the need for additional architectural strategies Xiao et al. (2018). Novel
methods He et al. (2015) for nonlinear activation functions, inspired by the same premise, have been
proposed. Notably, initializing the weights from the orthogonal group has demonstrated accelerated
convergence Hu et al. (2020).

2



Under review as a conference paper at ICLR 2024

Beyond appropriate initialization values, parameter optimization is a key to effective network training.
Stochastic Gradient Descent (SGD) and its optimized versions have been successfully employed to
train deep neural networks across a range of machine learning tasks. Simple averaging of multiple
points along the SGD trajectory, coupled with a cyclical or constant learning rate, typically results
in superior generalization compared to traditional training Izmailov et al. (2018). Moreover, phase-
wise parameter averaging has been proposed to enhance SGD Kobayashi (2021). Trainable weight
averaging further optimizes the averaging coefficients, significantly reducing the estimation error
of stochastic weight averaging Li et al. (2022). Another novel optimization strategy for some SGD
variants begins with batch size. Post-local SGD has been proposed to address the generalization issue
of large-batch training, enabling scaling of training to a much higher number of parallel devices and
reaching flatter minima Lin et al. (2020).

The above methods aim to optimize the training process from various stages and perspectives, with the
ultimate goal of producing models with more information and superior generalization capabilities. In
this work, we find that the representation of a well-trained neural network comprises two components:
one from the initial point and the other from the cumulative gradients. Even though the cumulative
gradients are computed from the initial point, their representation does not entirely depend on the
initial point.

3 THE REPRESENTATION OF GRADIENTS

3.1 ASSIGNING THE ACCUMULATIVE GRADIENTS TO DIFFERENT MODELS

This section aims to explore the relationship between gradients and their corresponding initial
points, as well as their impact on the representations within a given neural network. We employ a
methodology of empirical randomization tests to provide experimental evidence towards this goal.
This empirical evidence suggests that the cumulative gradients can be assigned to different neural
networks, given that they share the same architecture, enabling these networks to hold the same or
most of the representations as the original one.

First, we introduce the notations and primary definitions. During the standard training process of
a neural network, the goal of cumulative gradient is to to minimize the information in the weights
I(z;n) by either compressing the nuisances variable n or injecting new information from new
samples into the weights Shwartz-Ziv & Tishby (2017). According to traditional optimization theory,
in the parameter space of a neural network, one or several local optima or global optima exist that
can represent a given task A Nguyen & Hein (2017); Li et al. (2018). Specifically, for a set of
randomly initialized networks {θ0, θ1, θ2, . . . , θm}, they can learn task A via the stochastic gradient
optimization method. Formally, the training processes are as follows:

θ′0 = θ0 − β▽θ0

∑
(x,y)∈DA

LA, (1)

θ′1 = θ1 − β1▽θ1

∑
(x,y)∈DA

LA, (2)

θ′2 = θ2 − β2▽θ2

∑
(x,y)∈DA

LA, (3)

· · ·

θ′m = θm − βm▽θm

∑
(x,y)∈DA

LA, (4)

where DA is the dataset of task A, (x, y) represents the corresponding data point sampled from DA, β
is the learning rate, and LA is the loss function of task A. Note that, at the beginning of the epoch, θi
will be updated by a batch of data from DA to θ′i, where i ∈ {0, 1, 2, . . . ,m}. Then, the new weights
θ′i will be updated in the next iteration. For simplicity and clarity, we use the one-step iteration
θi − ▽θ0

∑
(x,y)∈DA

LA to denote it. Henceforth, we adopt the same formulation. The conclusions
in Equation equation 4 have been supported by numerous empirical results Nguyen & Hein (2017);
Li et al. (2018).
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Figure 1: Empirical results for gradient assignment with different randomly initialized models. (a)
depicts the results of assigning small-scale cumulative gradients to various randomly initialized
models. (b) and (c) illustrate the results on medium and large scales, respectively. (d) presents the
results of testing the gradient-assigned model on the test set. The vertical axis represents the accuracy
of the gradient-assigned model tested on the CIFAR10 dataset, while the horizontal axis indicates
different values of the scaling factor α.

Let g represent the cumulative gradients of θ0:

g = −β▽θ0

∑
(x,y)∈DA

LA = θA − θ0. (5)

Interestingly, we found through experimentation that instead of directly computing the gradient with
the corresponding position (e.g., θi) to update the model, the cumulative gradients (e.g., g) can be
directly assigned to any other networks θi and still maintain (most of) the learned representation of
task A:

θ̃i = θi + αg, (6)
where α is a scale factor. This observation, although counterintuitive, is intriguing and opens up new
areas of exploration.

3.2 EMPIRICAL RESULTS FOR GRADIENT ASSIGNMENT

We carried out several experiments with varying initial random points to investigate the relationships
between the gradients and their respective initial points. Additionally, we conducted tests using
different well-trained models, all of which yielded consistent results.

The experiments were conducted using the CIFAR10 dataset Krizhevsky (2009), which is a simple
10-way image classification dataset. To analyze the impact of cumulative gradients more clearly,
we conducted experiments at three different scales: small, medium, and large. Specifically, the
small-scale experiments were trained on 4 samples per class randomly selected from the dataset.
Correspondingly, the medium-scale experiments were trained on 100 randomly selected samples
(including the 4 samples from the small-scale experiment) per class, while the large-scale experiments
involved training on the entire dataset. For model testing, we use the training samples from the
small-scale experiments to test and thus directly reflect the representations implied by the cumulative
gradients. Additionally, we present the results of the test set with cumulative gradients computed on
the entire training set.

To mitigate the influence of the neural network architecture and clearly showcase the effectiveness of
the proposed method, we deliberately opted for a simple, shallow, and widely adopted neural network
structure without any architectural modifications throughout all our experiments. Specifically, in
Section 3 and Section 4, we employed the original convolution network as our network architecture.
In Section 5, we utilized the residual structures He et al. (2016). For further insights into the
experimental settings, please refer to Section A in Appendix.

From Figure 1, we find that when assigning the cumulative gradients g to different randomly initialized
models θi, the new model θn = θi + αg still results in robust representation. The specific values
of Figure 1(a) are shown in Table 1. As seen in the table, the classification accuracy of θn on the
CIFAR10 dataset increases with the scale factor α. When α exceeds 5, the new models achieve an
accuracy greater than 0.7. This accuracy is sufficient to demonstrate that θn contains categorical
information about the dataset, but it is interesting to note that θn is stitched together from irrelevant
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Table 1: Assigning the small-scale accumulative gradients g to different random initialized models,
where θi is random initialized model. The accuracy of model θA is 1.0. The accuracy of only gradient
g is 0.72.

Dataset CIFAR10

Scale factor θ1 + αg θ2 + αg θ3 + αg θ4 + αg θ5 + αg

α=0.01 0.10 0.10 0.10 0.10 0.10
α=0.1 0.10 0.10 0.10 0.07 0.10
α=0.2 0.10 0.07 0.05 0.07 0.10
α=0.5 0.12 0.17 0.07 0.20 0.25
α=0.8 0.17 0.30 0.27 0.32 0.32
α=1.0 0.35 0.35 0.42 0.35 0.40
α=5.0 0.75 0.72 0.72 0.77 0.72
α=10 0.77 0.80 0.72 0.77 0.75
α=20 0.77 0.80 0.77 0.77 0.75
α=30 0.77 0.80 0.77 0.77 0.77
α=40 0.77 0.80 0.77 0.77 0.77
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Figure 2: Empirical results for gradient assignment with different well-trained models. (a), (b), (c),
(d) respectively show the results obtained on the small, medium, and large-scale models and the
results on the test set. θ1 through θ5 respectively denote the parameters of the trained model on
five different datasets: CIFAR100 Krizhevsky (2009), Caltech256 Griffin et al. (2022a), Food-101
Bossard et al. (2014), MNIST LeCun et al. (1998), and STL-10 Coates et al. (2011).

initial points θi and gradients g. However, none of them achieves an accuracy close to 1.0, as observed
in the original model. This suggests that assigning cumulative gradients leads to some representation
loss. This could be attributed to two reasons. (1) Although θ0 is randomly initialized, it contains some
basic structures that can accurately represent some of the training samples, achieving approximately
0.1 accuracy for this 10-way classification problem. These structures do not need to be altered by
the cumulative gradients, so the cumulative gradients g will not contain the representations from
such basic structures. This results in some performance loss when assigned to other models. (2) The
randomly initialized part in the weights of other models θi has strong cancellation structures with the
cumulative gradients g Li & Liang (2018), which could also result in some performance loss.

Similar to the results on randomly initialized points, we observe an increase in accuracy when adding
the cumulative gradient g to well-trained models with the rise of α. These results are depicted
in Figure 2. Remarkably, the new models θn at the medium-scale are able to achieve accuracies
exceeding 0.8, despite not being trained on CIFAR10. Furthermore, the gradient-assigned models
also exhibit promising performance on the test set, as depicted in Figure 2(d) and Table 2.

Comparing the first three subfigures, we observe the accuracies at the large scale are significantly
lower than those at the small and medium scales. This is expected as the model trained on the larger
dataset is more complex, increasing the likelihood of information loss during the transfer process.
However, upon closer inspection, we note that the gap between the curves becomes negligible when
α is sufficiently large (greater than 10). This suggests that as the proportion of gradient g increases,
the impact caused by the difference in θi diminishes.
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Table 2: Putting the large-scale gradient-assigned model on test set, where θi is well-trained model.
The accuracy of model θA on test set is 0.61. The accuracy of only gradient g on test set is 0.40.

Dataset CIFAR10

Scale factor θ1 + αg θ2 + αg θ3 + αg θ4 + αg θ5 + αg

α=0.01 0.10 0.12 0.13 0.07 0.23
α=0.1 0.11 0.11 0.14 0.08 0.21
α=0.2 0.11 0.10 0.14 0.09 0.18
α=0.5 0.11 0.11 0.13 0.11 0.15
α=0.8 0.12 0.14 0.17 0.12 0.17
α=1.0 0.13 0.16 0.20 0.15 0.20
α=2.0 0.25 0.30 0.35 0.29 0.32
α=3.0 0.30 0.35 0.38 0.35 0.36
α=4.0 0.33 0.37 0.39 0.36 0.37
α=5.0 0.35 0.38 0.39 0.37 0.38
α=10 0.37 0.39 0.39 0.38 0.38
α=20 0.37 0.38 0.38 0.38 0.38
α=30 0.37 0.38 0.38 0.38 0.38
α=40 0.37 0.38 0.38 0.37 0.38

Given these empirical results, we can conclude that the cumulative gradients g can be assigned
to a new model θn, regardless of whether the model is randomly initialized or well-trained, to
facilitate knowledge transfer from model θA to θn. Interestingly, the representations of the cumulative
gradients g only partially depend on the corresponding initial point. Despite being counterintuitive,
this phenomenon offers a new perspective on the knowledge transfer process in neural networks.

4 MODEL FUSION

4.1 ASSIGNING WEIGHTS OF A LEARNED MODEL TO DIFFERENT MODELS

In this section, we introduce the concept of “model fusion", which extends the idea of assigning
accumulative gradients to the assignment of model weights. As we discussed in Section 3, our
empirical results demonstrate that the accumulative gradients g can be assigned to a fresh model
θn, no matter it is randomly initialized or well-trained, to facilitate knowledge transfer from model
θA to θn. In fact, we can consider the well-trained model θA, which encompassing the knowledge
embedded in g, as accumulative gradients that can be assigned to a new model to achieve knowledge
transfer. Hence, analogous to assigning accumulative gradients, we can directly assign the learned
weights θA to a new model θn as follows:

θ̃n = θn + αθA. (7)

In alignment with Section 3, we executed experiments on several randomly initialized models and
well-trained models, all denoted as θn. The models used as θA were trained on the CIFAR10 dataset.
We conducted experiments at three distinct scales: small, medium, and large, with settings and
network structures consistent with those outlined in Section 3. The five well-trained models were
trained on various datasets, including CIFAR100, Caltech256, Food-101, MNIST, and STL-10.

4.2 EMPIRICAL RESULTS FOR MODEL FUSION

The experiment results are presented in Figure 3. The accuracy curves in all four subfigures exhibit
an increasing trend with increasing α. Surprisingly, the fused models achieve accuracies of 0.8 and
above on CIFAR10, even with accuracies close to 1.0 (e.g., 0.93) being achieved under small and
medium scales. The corresponding experimental values of Figure 3(a) are summarized in Table 3.

In this table, the test accuracy of the fusion model on CIFAR10 significantly improves when the
value of α is increased to 0.4. With the increase of α, the accuracy can reach up to 0.93, as shown in
the third column of the penultimate row of Table 3. Although the highest accuracy achieved in the
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Figure 3: Empirical results for model fusion with random initialized parameters. θ1 through θ5 are
five different model parameters. (a), (b) and (c) respectively show the results on small, medium and
large scales. (d) shows the results on test set.

Table 3: Assigning the learned weights θA, updated by small-scale accumulative gradients, to random
initialized models, where θi is random initialized model. The test accuracy of model θA is 1.0.

Dataset CIFAR10

Scale factor θ1 + αθA θ2 + αθA θ3 + αθA θ4 + αθA θ5 + αθA

α=0.1 0.10 0.10 0.10 0.08 0.10
α=0.2 0.10 0.10 0.10 0.10 0.10
α=0.3 0.10 0.10 0.15 0.13 0.13
α=0.4 0.23 0.13 0.18 0.30 0.23
α=0.5 0.35 0.28 0.30 0.48 0.30
α=0.6 0.48 0.40 0.43 0.53 0.43
α=0.7 0.73 0.53 0.65 0.60 0.48
α=0.8 0.70 0.63 0.80 0.65 0.50
α=0.9 0.85 0.70 0.93 0.70 0.55
α=1.0 0.88 0.75 0.90 0.80 0.63

other columns is not more than 0.9, an accuracy of 0.88 is still remarkable for an untrained fusion
model. These results present a significant improvement compared with the results in Section 3, where
only the gradients are added to the model. It indicates that the training information contained in the
weights is more comprehensive compared with the gradient.

The experimental results with well-trained models also demonstrate similar outcomes. Figure 4
presents the accuracy under small and medium scale can exceed 0.95, which can mostly recover the
original accuracy of θA. The accuracies of fusion with each θn at the large-scale experiments are also
greater than 0.6, which is a considerable improvement compared with the results of the large scale in
Section 3.2. Furthermore, the fusion model also exhibits promising performance on the test set, as
depicted in Figure 4(d) and Table 4. The results suggest that weights θA offer better guidance to the
model than gradients g in classifying the CIFAR10 dataset.

Another noteworthy point is that comparing Figure 1 and Figure 3, the accuracy of the fusion models
grows faster than the accuracy of the gradient-assigned models. The model obtained by one-to-one
fusion with the randomly initialized θn does not work well when only the gradients are assigned
(even with poor results, see the small-scale results represented in subfigure (a)). Accuracy improves
only when α becomes larger, e.g., to 5. However, summing with weights, α=0.8 gives a high
accuracy. This again supports the view that the information contained in the model weights is more
comprehensive than that contained in the gradients and thus can affect θn faster and more significantly.
This validates the first reason discussed in Section 3.2. More precisely, the randomly initialized
θ0 contained some basic and useful structures for the given task A, and the stochastic gradient
optimization method does not change this structure. A learned neural network representation consists
of accumulative gradients and such structure.

The results presented above demonstrate that the learned weights θA can be assigned to a new
model θn using a simple summation operation, just like accumulative gradients. This operation can
effectively transfer the dataset information contained in θA to the new weights, resulting in good
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Figure 4: Empirical results for model fusion with different well-trained models. θ1 ∼ θ5 represent
the same content as Figure 2, which are the trained models on the CIFAR100, Caltech256, Food-101,
MNIST, and STL-10 datasets.

Table 4: Putting the large-scale fusion model on test set, where θi is well-trained model. The accuracy
of model θA on test set is 0.61.

Dataset CIFAR10

Scale factor θ1 + αθA θ2 + αθA θ3 + αθA θ4 + αθA θ5 + αθA

α=0.1 0.11 0.11 0.14 0.08 0.21
α=0.5 0.11 0.12 0.14 0.11 0.15
α=1.0 0.18 0.22 0.30 0.26 0.24
α=1.5 0.30 0.35 0.43 0.39 0.34
α=2.0 0.37 0.43 0.48 0.45 0.41
α=3.0 0.43 0.49 0.51 0.49 0.47
α=4.0 0.46 0.52 0.51 0.50 0.49
α=5.0 0.47 0.52 0.51 0.50 0.50

performance on the task at hand. Furthermore, our experiments show that the learned weights θA
contain basic structures for good representations that the accumulative gradients g may not capture.
This suggests that model fusion can lead to much better knowledge transfer from model θA to θn.

5 DEALING WITH CATASTROPHIC FORGETTING

5.1 DIFFERENCE BETWEEN GRADIENT ASSIGNMENT AND NORMAL TRAINING

Recent studies suggest that the mammalian brain can reduce the plasticity of synapses, which is
critical to previously learned tasks, to avoid catastrophic forgetting. This strategy is also useful
for neural networks, and Kirkpatrick et al. Kirkpatrick et al. (2017) implemented an elastic weight
consolidation algorithm by constraining neural network parameters to stay close to the previously
learned parameters. However, such constraint can limit the learning process of new tasks and lead
to lower performance. Based on the empirical results of Section 3 and Section 4, we can assign
accumulative gradients g or the parameters of a model θA to another new model θn. In fact, if the
new model θn is trained on other tasks, e.g., task B, the new model θ̃n may have a chance to maintain
knowledge from both tasks A and B simultaneously.

Why assigning accumulative gradients and model fusion can alleviate catastrophic forgetting? To
answer this question, we first formalize the derivations to demonstrate the difference between gradient
assignment and the normal training process, training task B first and task A later. Then, we employ
Taylor series expansion to approximate those two processes to demonstrate how the cancellation
structure leads the model to catastrophic forgetting. Finally, we provide empirical results to verify
this theoretic analysis and draw a conclusion that assigning accumulative gradients and model fusion
can alleviate catastrophic forgetting. For clarity, we put the full derivation and analysis process in
Section B.1 in Appendix.
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Table 5: Results of traditional training methods.

Model
Dataset Training set Test set

CIFAR10 CIFAR100 CIFAR10 CIFAR100

CIFAR10->100 25 100 23 88
CIFAR100->10 100 9 88 11

Table 6: The fine-grained results of putting the fusion model trained by large-scale on testing set of
CIFAR10.

αθA + βθB CIFAR10-test-finegrained

β
α 0.50 0.60 0.70 0.80 0.90 1.00 2.00 3.00 4.00 5.00

0.50 79.74 82.61 83.99 84.92 85.48 85.80 86.98 87.15 87.23 87.17
0.60 74.90 79.73 82.44 83.57 84.49 85.13 86.82 87.07 87.15 87.22
0.70 67.52 75.65 79.77 82.21 83.29 84.19 86.72 87.01 87.12 87.18
0.80 57.83 70.42 76.40 79.78 81.82 82.97 86.42 86.92 87.08 87.18
0.90 47.74 62.97 72.14 76.94 79.77 81.67 86.10 86.82 87.04 87.11
1.00 37.99 54.36 66.39 73.39 77.27 79.77 85.82 86.77 86.99 87.09
2.00 14.31 16.75 19.66 23.99 30.37 38.03 79.74 84.52 85.84 86.44
3.00 12.04 12.87 13.76 14.98 16.73 18.71 63.08 79.76 83.62 85.14
4.00 11.42 11.83 12.21 12.86 13.50 14.35 38.04 70.47 79.76 82.94
5.00 11.23 11.39 11.70 12.00 12.30 12.87 24.02 54.42 73.46 79.77

5.2 EMPIRICAL RESULTS FOR CATASTROPHIC FORGETTING

To demonstrate the effectiveness of our method in addressing the catastrophic forgetting problem,
we first sequentially train on the CIFAR10 and CIFAR100 datasets using the traditional method and
record the test results. As shown in Table 5, CIFAR10->100 indicates that the initialized model
parameter θ0 is first trained on CIFAR10 and then used for training on CIFAR100. CIFAR100->10
means the reverse order.

The values in the table indicate that the model performs significantly better on the last trained dataset
compared with the previous one. This suggests that the model tends to remember information only
from the last training dataset while forgetting most of the information learned from previous training
experiences.

In contrast, the experimental results of our proposed fusion model on these two datasets are presented
in Table 6. More detailed results can be found in Section B.3 in Appendix. Experimentally, our
method has demonstrated the ability to alleviate this phenomenon to some extent. In this table, θA
represents the well-trained model on the CIFAR10 dataset, and θB represents the model trained on
the CIFAR100 dataset. Both models are initialized with θ0. The coefficients α and β are used for
weight fusion. The accuracies in the table are reported on a hundred-point scale.

6 CONCLUSION AND FUTURE WORK

In this work, we presented a simple yet intriguing phenomenon, which sheds light on the black box
nature of deep neural networks and their associated gradients. Through extensive experiments, we
have demonstrated that the representation captured by accumulative gradients is not solely reliant on
the initial point from which these gradients are computed. Consequently, these accumulated gradients
can be effectively assigned to different models, enabling the transfer of learned representations.

We have also observed that the weights of a neural network can also be regarded as gradients and
assigned to different models for knowledge transfer. Additionally, our experiments have revealed that
simply scaling the weights or accumulated gradients has minimal impact on the overall representation.
These results indicate the existence of numerous unexplored black boxes within deep neural networks,
leaving ample room for future investigation.
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A EXPERIMENTS SETTING

A.1 DATASETS

We are primarily concerned with image classification datasets, where model A is trained on the
CIFAR10 dataset. The other five datasets, namely CIFAR100, Caltech256, Food101, MNIST and
STL-10, are used as θi0. The experiments involve various classes, end the descriptions of these classes
are provided below. The images used for each class are randomly selected.

CIFAR10: The CIFAR-10 datasetKrizhevsky (2009) comprises 60,000 32x32 color images divided
into 10 classes, with 6,000 images in each category. The dataset is further split into a training set
of 50,000 images and a test set of 10,000 images. The test set consists of precisely 1,000 images
randomly selected from each class, while the training set contains exactly 5,000 images from each
class. The CIFAR-10 dataset includes the following classes: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck, a total of 10 classes.

CIFAR100: The CIFAR100 datasetKrizhevsky (2009) is similar to CIFAR-10, but it consists of 100
classes with 600 images per class. Each category in CIFAR-100 contains 500 training images and
100 testing images. For our experiments, we have chosen 10 specific classes: seal, man, palm-tree,
woman, wardrobe, beaver, plain, pickup-truck, skyscraper, and possum.

Caltech256: The Caltech-256 datasetGriffin et al. (2022b) is a widely used object recognition dataset
that consists of 30,607 real-world images of various sizes. It includes a total of 257 classes (256
object classes and an additional clutter class). Each class is represented by a mininum of 80 images.
For our experiments, we select 10 specific classes from the Caltech-256 dataset: beer-mug, car-tire,
hummingbird, killer-whale, knife, mushroom, scorpion-101, speed-boat, teapot, and tomato.

Food101: The Food101 datasetBossard et al. (2014) is a popular dataset for food classification,
containing 101 food classes with 101,000 images. Each class includes 250 human-censored test
images and 750 training images. In our experiments, we have focused on 10 specific classes from
Food101 dataset: spaghetti-bolognese, carrot-cake, pad-thai, french-toast, garlic-bread, tiramisu,
creme-brulee, samosa, chocolate-mousse, and poutine.

MINIST: The MINIST datasetLeCun et al. (1998) is a widely used dataset for handwritten digit
recognition. It consists of 70,000 grayscale images of handwritten digits with a resolution of 28x28
pixels. The dataset is divided into a training set of 60,000 examples and a test set of 10,000 examples.
The digits in the images have been size normalized and centered within the fixed-size image. The
dataset includes ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, and ’9’, making a total of 10 classes.

STL-10: The STL-10 datasetCoates et al. (2011) is a well-known image recognition dataset used for
various tasks in machine learning. It contains a total of 10 classes, includingairplane, bird, car, cat,
deer, dog, horse, monkey, ship, and truck. The dataset consists of 500 training images and 800 testing
images per class, amounting to a total of 5,000 training images and 8,000 testing images. All images
in the dataset have a resolution of 96x96 pixels and are in color.

A.2 ARCHITECTURE OF THE NETWORK

To ensure the generalizability of the experimental results and minimize the impact of neural network
architecture, we perform all experiments using simple and widely adopted network structures. The
details of these architectures are provided below.

Assigning Accumulative Gradients: In this set of experiments, we employ a standard convolution
neural network (CNN) architecture. The images are processed through a sequence of two convolution
layers and three fully-connected layers, with the Rectified Linear Unit (Relu) activation function
applied after each layer. Both convolutional layers have a kernel size of 5, and the number of output
channels is set to 6 and 16 respectively. Following each convolutional layer, a maximum pooling
layer is applied to downsample the feature maps.

Model Fusion: Same as the architecture described in the previous section (Assigning Accumulative
Gradients).

Catastrophic Forgetting: In this part of the experiments, we utilize residual structures proposed by
He et al.He et al. (2016). The architecture includes multiple convolution blocks, each containing a
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convolutional layer, a Batch Normalization (BN) layerIoffe & Szegedy (2015), and a ReLU activation
layer. The images are processed through a total of 8 convolution blocks. To introduce shortcut
connections and enable easier flow of gradients during training, a shortcut connection is inserted
between the output ends of the second and fourth convolution blocks. Similarly, another shortcut
connection is added after the sixth and eighth convolution blocks. Finally, the output of the last
convolution block is passed through a classifier, which consists of a maximum pooling layer for
downsampling and a linear layer for the final classification.

B DEALING WITH CATASTROPHIC FORGETTING

B.1 THE DIFFERENCE BETWEEN GRADIENTS ASSIGNMENT AND NORMAL TRAINING

Recent studies have highlighted the phenomenon of reduced synapse plasticity in the mammalian
brain, which serves as a mechanism to prevent catastrophic forgetting of previously learned tasks.
This adaptive strategy has also been explored in neural networks. Kirkpatrick et al. ? implemented
the Elastic weight consolidation algorithm, which constrains the parameters of a neural network to
remain close to the parameters learned from previous tasks. However, such constraints can impede
the learning process of new tasks and result in decreased performance. Building upon the empirical
findings presented in the previous sections (Section 3 and Section 4 in the main text), we propose an
alternative approach to address catastrophic forgetting. Specifically, we investigate the assignment
of accumulative gradients g or the parameters of a well-trained model θA to a new model θn. By
employing this strategy, if the new model θn is trained on a different task, such as task B, there is
a possibility for the new model, denoted as θ̃n, to retain knowledge from both task A and task B
simultaneously.

The underlying question of why assigning accumulative gradients and utilizing model fusion can
mitigate catastrophic forgetting is of paramount importance. To address this inquiry, we will com-
mence by formalizing the derivations to illustrate the distinction between gradient assignment and
the conventional training procedure, where task B is trained before task A. Subsequently, we will
employ the Taylor series expansion to approximate these two processes, shedding light on how the
cancellation structure within them contributes to catastrophic forgetting. To further substantiate our
theoretical analysis, we will present empirical results that serve to validate the proposed approach.
Through comprehensive experiments, we will demonstrate the efficacy of assigning accumulative
gradients and model fusion in ameliorating catastrophic forgetting.

Formally, given two tasks, A and B, with the corresponding datasets DA and DB , respectively. For a
random initialized model θ0, we first train it with task B to get a well-trained model θB :

θB = θ0 − βB▽θ0

∑
(x,y)∈DB

LB ,

where βB is the learning rate in task B, LB is the loss function of task B. Then, we train task A with
the well-trained model θB . Thus, the normal training process θBA can be formulated as:

θBA = θB − βA▽θB

∑
(x,y)∈DA

LA

= θ0 − βB▽θ0

∑
(x,y)∈DB

LB − βA▽θB

∑
(x,y)∈DA

LA,

where βA is the learning rate in task A, LA is the loss function of task A.

In contrast, the process of assigning accumulative gradients θ′BA can be formulated as:
θ′BA = θB + αg

= θB − αβA▽θ0

∑
(x,y)∈DA

LA

= θ0 − βB▽θ0

∑
(x,y)∈DB

LB − αβ▽θ0

∑
(x,y)∈DA

LA

= θ0 − βB▽θ0

∑
(x,y)∈DB

LB − βA▽θ0

∑
(x,y)∈DA

LA (α = 1).
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Note that, for simple and clear, we assume both task A and task B start from the same initial point
θ0, though different initial point for task A and task B can also obtain similar results. Note that
if we set α = 1, the difference between normal training process θAB and assigning accumulative
gradients θ′AB are the terms gAB = βA▽θB

∑
(x,y)∈DA

LA and g′AB = βA▽θ0

∑
(x,y)∈DA

LA. In
term βA▽θB

∑
(x,y)∈DA

LA of normal training process, model θBA is updated from θB . In contrast,
in term βA▽θ0

∑
(x,y)∈DA

LA of assigning accumulative gradients, model θ′BA is updated from θ0.
Such difference leads to different results for θBA and θ′BA over task A and task B. Specifically,
θBA almost forgets the learned knowledge of task B, but θ′BA can still hold some useful structure to
represent the learned knowledge of task B. Next, we will analyze what leads to these differences.

B.2 HOW IS THE CANCELLATION STRUCTURE LEADING TO CATASTROPHIC FORGETTING

In this section, we will introduce the Taylor series expansion as a means to reframe the process of
assigning accumulative gradients and the normal training process into two forms of cancellation
terms. By employing this expansion, we can gain a comprehensive understanding of the factors that
contribute to the degradation of the representation of task B during the training process of task A.
This deeper understanding enables us to point out that instead of the conventional one-by-one training
process, combining and leveraging the gradients obtained from multiple tasks can effectively mitigate
catastrophic forgetting and enhance the overall performance of the model. We will use the following
definitions:

gi = L′
i(θi−1), (gradient of corresponding loss)

Hi = L′′
i (θi−1), (Hessian of corresponding loss)

θi = θi−1 − αgi, (parameter vectors)

ĝA = L′
A(θ0), (gradient at the initial point)

ĤA = L′′
A(θ0), (Hessian at the initial point)

ĝB = L′
B(θ0), (gradient at the initial point)

ĤB = L′′
B(θ0), (Hessian at the initial point)

where i ∈ [0, A,B]. Next, let’s approximate the SGD gradient term gAB = ▽θA

∑
(x,y)∈DB

LB of
normal training process to the initial point θ0 to O

(
θ2B

)
as follow:

gAB = L′
A(θB) = L′

A(θ0) + L′′
A(θ0)(θB − θ0)

+O(∥θB − θ0∥2)︸ ︷︷ ︸
=O(β2

B)

(Taylor’s theorem)

= ĝA + ĤA(θB − θ0) +O(β2
B)

(using definition of ĝi, Ĥi)

= ĝA − βBĤAĝB +O(β2
B),

(using θB − θ0 = −βB ĝB)

Then, we can reformulate the SGD gradient term g′AB = βA▽θ0

∑
(x,y)∈DA

LA of assigning accu-
mulative gradients as follow:

g′AB = βA▽θ0

∑
(x,y)∈DA

= ĝA.

That is to say, if we ignore the infinitesimal term O
(
θ2B

)
, the difference between θAB and θAB

is the only term −βBĤAĝB . So, the question is, what is the effect of such a term and what is its
relationship to catastrophic forgetting?

To answer such a question, we first discuss the effect of such a term in the same task. As discussed in
Nichol et al. (2018), if the gradients Ĥ and ĝ comes from different mini-batches of a given task T ,
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the term ĤT ĝT can improve generalization of model. In addition, as stated in Lu et al. (2020), the
gradients come from different samples and can be treated as regularization on the model. Thus, in a
given task T , the effect of the term ĤT ĝT is to regularize the representation of ĝT of a given model
θT = θ0 + αĝT to improve generalization.

Similarly, in multi-task settings, e.g., task A and task B, the gradients that come from different tasks
can also be treated as regularization on the model. However, unlike gradients, gT come from one
task can lead the model to the same optimal (or local optimal), ĝA and ĝB lead to different points,
which are optimal (or local optimal) for task A and task B, respectively. As a consequence, the effect
of the term −βBĤAĝB is to regularize the representation of ĝB of a given model θB = θ0 + αĝB
to the optimal (or local optimal) of task A and improve generalization over task A. In other words,
the learned structure of task B of model θB will be destroyed (the representation of ĝB has been
regularized) by the newly updating via the gradient ĝA from task A. Finally, the well-trained model
θAB will only hold the representation of task A and can not represent task B. As a result, the
catastrophic forgetting problem happens.

We name such critical term −βBĤAĝB as the Gradient of Gradient Cancellation (GGC) term. With
extra GGC term, gAB will lead more significant performance decline over task B than gAB ′. Due to
the representation of ĝB has been destroyed. However, the representation of ĝB is not only affected
by the term GGC but also by the conflicting gradients Liu et al. (2021) between ĝB and ĝA. When
this conflict is large, the following gradients will decrease the performance on the former learned
knowledge.

B.3 EMPIRICAL RESULTS FOR CATASTROPHIC FORGETTING

To demonstrate the effectiveness of our method in addressing the catastrophic forgetting problem,
we conducted sequential training on the CIFAR10 and CIFAR100 using the traditional approach.
The test results are presented in Table 5 in the main text. In this table, CIFAR10->100 denotes the
scenario where the model parameter θ0 is initially trained on CIFAR10 and subsequently fine-tuned
on CIFAR100. Conversely, CIFAR100->10 refers to the reverse order of training.

The results presented in the table clearly indicate that the performance of the model sinificantly
improves on the last trained dataset compared to the previous one. These findings suggest that the
model tends to primarily retain the information from the most recent training dataset while forgetting
a substantial portion of the knowledge acquired in the previous training experiences.

The finegrained experimental results of the proposed fusion model on the CIFAR10 and CIFAR100
datasets are presented in Table 6 (see the main text) and Table 1 (see the Appendix). These tables
illustrate the impact of our method on alleviating the phenomenon of catastrophic forgetting.

In the tables, θA represents the well-trained model on the CIFAR10 dataset, while θB represents the
well-trained model on the CIFAR100 dataset. Both models are initialized with θ0. The coefficients of
weights fusion, denoted as α and β, play a crucial role in our fusion model. The accuracies reported
in the tables are based on a hundred-point system.

The accuracy of the model on CIFAR10 is higher when the coefficient α is larger and β is smaller.
Conversely, when α is smaller and β is larger, the model achieves higher accuracy on CIFAR100.
Therefore, the values in the two tables exhibit precisely opposite trends. On CIFAR10, the accuracies
gradually increase towards the upper right corner of the table, whereas on CIFAR100, high accuracies
are concentrated in the lower left corner. Notably, we have identified a set of values near the diagonal
of the table where their corresponding α and β yield a fusion model that performs well on both
datasets. This set of values has been highlighted in bold in the table. Specifically, when α = 2 and
β = 3, the fusion model achieves an accuracy exceeding 0.6 on the test sets for both CIFAR10 and
CIFAR100. This remarkable finding demonstrates that, compared to the traditional approach outlined
in Table 5 (see the main text), our proposed method successfully mitigates catastrophic forgetting by
identifying a balanced model that effectively retains information from both datasets.

B.3.1 DETAILED RESULTS FOR GRADIENTS ASSIGNMENT

The present section provides a comprehensive overview of the empirical results obtained from the
accumulative gradients experiments. These experiments encompass small, medium, and large-scale
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Table 1: The finegrained results of putting the fusion model trained by large-scale on testing set of
CIFAR100.
αθA + βθB CIFAR100-test-finegrained

β
α 0.50 0.60 0.70 0.80 0.90 1.00 2.00 3.00 4.00 5.00

0.50 29.90 23.10 20.10 17.50 15.70 14.70 11.40 10.20 9.80 9.70
0.60 42.00 29.90 24.20 21.10 18.90 16.70 12.50 10.80 10.20 9.80
0.70 54.20 39.00 29.90 24.60 21.50 20.00 13.30 11.10 10.20 10.10
0.80 68.70 50.80 37.30 29.90 25.10 22.20 13.70 11.80 10.80 10.30
0.90 74.40 61.80 47.30 36.70 29.70 25.60 14.00 12.60 11.00 10.30
1.00 77.20 70.50 57.10 45.00 35.90 29.70 14.50 12.90 11.50 10.80
2.00 85.60 84.80 84.40 82.80 80.60 77.10 29.70 19.00 14.50 13.80
3.00 86.60 86.30 85.70 85.20 84.80 84.40 62.20 29.70 21.30 17.00
4.00 87.10 86.70 86.30 86.30 85.90 85.60 77.10 51.00 29.70 22.10
5.00 87.00 87.10 86.80 86.70 86.20 86.30 82.80 70.90 45.00 29.80

scenarios conducted on the CIFAR10 and CIFAR100 datasets. Table 2 ∼ 11 display the performance
outcomes on the training and test sets. In these experiments, we assessed the impact of assigning
different scaled gradients to the model on mitigating catastrophic forgetting. The models used to
conduct the experiments were all initialized with the same parameter, denoted as θ0. Coefficients α
and β denote the different proportions of the assigned gradients. g1 represents the gradient of the
well-trained model on the CIFAR10 dataset, and g2 represents that on the CIFAR100 dataset.

Table 2 ∼ 11 can be divded into five distinct groups of experiments: (1) small-scale experiments
(Table 2 and 3), (2) medium-scale experiments (Table 4 and 5), (3) large-scale experiments (Table
6 and 7), (4) large-scale experiments on the test set (Table 8 and 9), and (5) finegrained results of
large-scale experiments on the test set (Table 10 and 11). The table within a group shows the results
of the same model on CIFAR10 and CIFAR100, respectively.

Within each group, we sought to identify a pair of values for α and β (highlighted in bold within
the tables) that produced a model exhibiting excellent performance on both datasets. For instance,
considering 10 and Table 11, when α is set to 0.6 and β to 1.0, the model θ0+αg1+βg2 achieves an
accuracy exceeding 55 on both the CIFAR10 and CIFAR100 test sets, specifically 65.03 and 57.20,
respectively. In comparison to the performance exhibited on the test sets in Table 5 (see the main
text), our proposed method successfully accommodates both datasets.

B.3.2 DETAILED RESULTS FOR MODEL FUSION

The following section presents the empirical results obtained from the model fusion experiments.
These experiments encompass small, medium, and large-scale scenarios conducted on the CIFAR10
and CIFAR100 datasets. Table 12 ∼ 19 display the performance outcomes on the training and test
sets. In these experiments, we explored the effectiveness of model fusion by combining well-trained
models on the CIFAR10 and CIFAR100 datasets. The fusion process involved integrating the models
using coefficients of weights fusion, denoted as α and β. All models shared a common initialization
parameter, θ0. θ1 represents the well-trained model on the CIFAR10 dataset, and θ2 represents that
on the CIFAR100 dataset.

Table 12 ∼ 19 can be divided into four groups of experiments: (1) small-scale experiments (Table 12
and 13), (2) medium-scale experiments (Table 14 and 15), (3) large-scale experiments (Table 16 and
17), (4) experiments on the test set (Table 18 and 19).

Similar to the findings from the gradients assignment experiments, the results of the model fusion
experiments exhibit regular patterns. In these four groups of tables, the accuracies on CIFAR10
gradually increase towards the upper right corner of the table. Conversely, on CIFAR100, high
accuracies are concentrated in the lower left corner of the table. This observation allows us to easily
identify a set of α and β values along the diagonal of the table, which effectively enable the fusion
model to perform well on both datasets. Regarding the finegrained results of the model fusion
experiments on the test set, we have provided a detailed description in the previous Section B.3.
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Table 2: The results of putting the gradient-assigned model trained by small-scale on training set of
CIFAR10.
θ0 + αg1 + βg2 CIFAR10

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.0 20.0 30.0 40.0 50.0

0.00 25.0 25.0 65.0 100.0 100.0 52.5 30.0 30.0 27.5 27.5 27.5
0.01 25.0 27.5 65.0 100.0 100.0 52.5 30.0 30.0 27.5 27.5 27.5
0.10 22.5 32.5 62.5 100.0 100.0 52.5 30.0 30.0 27.5 30.0 27.5
0.50 12.5 12.5 42.5 92.5 97.5 55.0 27.5 27.5 27.5 30.0 25.0
1.00 22.5 22.5 27.5 65.0 90.0 52.5 25.0 27.5 27.5 27.5 27.5
5.00 17.5 17.5 17.5 20.0 25.0 25.0 25.0 25.0 22.5 27.5 27.5
10.0 20.0 20.0 20.0 22.5 25.0 27.5 25.0 22.5 22.5 22.5 25.0
20.0 22.5 22.5 22.5 22.5 22.5 27.5 25.0 20.0 15.0 17.5 22.5
30.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 17.5 10.0 12.5
40.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 22.5 17.5 10.0 7.50
50.0 12.5 12.5 12.5 12.5 12.5 12.5 20.0 20.0 17.5 7.50 7.50

Table 3: The results of putting the gradient-assigned model trained by small-scale on training set of
CIFAR100.
θ0 + αg1 + βg2 CIFAR100

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.0 20.0 30.0 40.0 50.0

0.00 17.5 17.5 15.0 15.0 15.0 17.5 10.0 17.5 20.0 17.5 15.0
0.01 17.5 17.5 17.5 20.0 15.0 17.5 10.0 17.5 20.0 17.5 15.0
0.10 42.5 42.5 40.0 37.5 15.0 17.5 10.0 17.5 20.0 17.5 15.0
0.50 100.0 100.0 100.0 85.0 52.5 20.0 12.5 17.5 20.0 17.5 15.0
1.00 100.0 100.0 100.0 100.0 72.5 17.5 12.5 15.0 20.0 17.5 15.0
5.00 62.5 62.5 62.5 65.0 60.0 25.0 25.0 15.0 17.5 17.5 15.0
10.0 50.0 50.0 47.5 47.5 47.5 32.5 17.5 22.5 17.5 17.5 15.0
20.0 35.0 35.0 35.0 37.5 35.0 30.0 22.5 17.5 20.0 22.5 10.0
30.0 25.0 25.0 25.0 25.0 25.0 27.5 22.5 17.5 17.5 22.5 20.0
40.0 22.5 22.5 22.5 22.5 22.5 20.0 20.0 25.0 17.5 15.0 20.0
50.0 22.5 22.5 22.5 22.5 22.5 20.0 15.0 22.5 15.0 15.0 12.5

These findings demonstrate the efficacy of our approach in handling catastrophic forgetting. By
appropriately fusing the models using suitable values of α and β, we attain a model that performs
exceptionally well on both CIFAR10 and CIFAR100. Furthermore, when comparing these results
to those obtained using the traditional approach outlined in Table 5 (see the main text), it becomes
evident that our proposed method effectively overcomes the limitations of catastrophic forgetting,
thereby accommodating the unique characteristics of both datasets.
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Table 4: The results of putting the gradient-assigned model trained by medium-scale on training set
of CIFAR10.
θ0 + αg1 + βg2 CIFAR10

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.0 20.0 30.0 40.0 50.0

0.00 10.6 11.7 26.9 97.5 100.0 55.6 25.5 15.5 14.2 14.0 13.1
0.01 11.2 12.2 27.0 97.5 100.0 55.5 25.5 15.5 14.2 14.0 13.1
0.10 12.0 13.0 24.5 96.6 100.0 54.7 24.5 15.2 13.9 13.7 13.1
0.50 14.4 14.5 15.6 44.7 98.5 50.3 23.3 14.2 13.5 13.2 13.0
1.00 13.9 14.0 14.5 17.6 43.2 44.2 21.2 12.9 13.1 12.6 12.8
5.00 12.3 12.3 12.1 12.2 13.0 14.1 12.4 11.2 10.4 11.3 12.0
10.0 12.0 12.0 12.3 12.8 12.5 11.8 11.8 10.6 11.6 11.4 10.6
20.0 11.3 11.2 11.0 11.3 11.3 11.6 11.2 10.6 11.1 12.0 12.4
30.0 11.0 11.0 11.1 11.2 11.4 11.7 10.5 10.8 10.7 11.9 12.9
40.0 10.8 10.8 10.8 10.9 11.1 10.6 11.2 10.8 11.1 11.9 12.1
50.0 10.2 10.2 10.2 10.3 10.2 10.6 10.4 11.0 11.4 12.2 12.9

Table 5: The results of putting the gradient-assigned model trained by medium-scale on training set
of CIFAR100.
θ0 + αg1 + βg2 CIFAR100

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.0 20.0 30.0 40.0 50.0

0.00 15.6 16.1 15.5 9.5 9.1 5.3 4.1 4.7 4.8 4.9 5.9
0.01 16.5 17.1 17.9 10.1 9.2 5.3 4.1 4.7 4.8 4.8 5.9
0.10 40.7 41.3 39.2 13.6 10.0 5.2 4.2 4.7 4.7 4.7 5.8
0.50 98.2 98.2 98.3 81.8 23.3 5.5 4.0 4.7 4.7 4.8 6.2
1.00 100.0 100.0 100.0 99.7 81.8 6.4 4.2 4.6 4.7 4.9 6.1
5.00 57.5 57.6 57.5 54.8 50.9 21.1 9.1 5.8 5.8 5.9 5.9
10.0 33.3 33.2 32.9 31.7 30.9 21.7 14.6 9.7 7.0 7.4 7.0
20.0 22.0 22.0 22.2 21.8 22.1 20.8 16.4 11.4 10.6 9.5 9.5
30.0 21.2 21.2 21.2 21.3 21.5 19.7 18.2 12.9 12.5 11.4 10.3
40.0 21.6 21.6 21.6 21.4 21.1 20.6 19.4 15.3 13.0 13.6 11.8
50.0 20.9 20.9 20.9 21.2 21.2 20.4 19.0 16.6 13.9 13.1 12.5

Table 6: The results of putting the gradient-assigned model trained by large-scale on training set of
CIFAR10.
θ0 + αg1 + βg2 CIFAR10

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.00 20.00 30.00 40.00 50.00

0.00 12.51 13.34 31.83 97.67 100.00 44.83 12.92 10.63 10.28 10.24 10.20
0.01 12.54 13.34 31.84 97.71 100.00 44.76 12.91 10.63 10.28 10.25 10.20
0.10 13.30 14.09 30.50 97.95 100.00 44.28 12.89 10.63 10.28 10.25 10.20
0.50 11.95 12.09 14.51 93.80 99.86 42.09 12.79 10.62 10.26 10.23 10.20
1.00 10.95 11.03 11.83 49.10 94.42 39.25 12.66 10.63 10.26 10.24 10.19
5.00 9.49 9.49 9.50 9.49 9.42 19.10 11.70 10.60 10.24 10.20 10.13
10.0 9.06 9.05 8.98 8.84 8.43 10.23 10.72 10.51 10.19 10.16 10.12
20.0 9.31 9.31 9.24 8.94 8.67 10.00 9.64 10.32 10.14 10.06 10.01
30.0 9.44 9.43 9.48 9.80 10.16 9.99 9.38 10.03 9.99 9.95 9.89
40.0 10.29 10.30 10.33 10.70 10.93 9.94 9.53 9.60 9.88 9.79 9.80
50.0 10.30 10.31 10.36 10.47 10.63 9.82 9.40 9.24 9.56 9.66 9.64
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Table 7: The results of putting the gradient-assigned model trained by large-scale on training set of
CIFAR100.
θ0 + αg1 + βg2 CIFAR100

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.00 20.00 30.00 40.00 50.00

0.00 14.68 14.18 12.08 9.44 7.02 9.34 14.74 9.32 9.84 11.02 11.68
0.01 16.46 16.16 13.52 9.54 7.14 9.36 14.74 9.32 9.84 11.02 11.68
0.10 39.70 39.96 34.32 11.02 7.56 9.58 14.66 9.28 9.82 11.00 11.66
0.50 98.18 98.28 97.28 31.48 11.36 10.40 14.64 9.32 9.84 10.94 11.62
1.00 100.00 100.00 99.98 77.82 23.70 11.42 14.60 9.40 9.86 11.00 11.60
5.00 68.04 68.22 68.86 69.22 66.52 16.94 13.34 9.62 9.90 11.40 11.52
10.0 49.72 49.86 50.28 52.48 52.64 23.40 12.44 9.60 10.30 11.12 11.44
20.0 37.06 37.04 37.00 36.88 35.80 20.00 12.14 9.98 10.18 10.54 11.38
30.0 23.98 23.92 23.80 22.90 21.74 18.84 11.26 10.56 10.18 10.20 10.80
40.0 19.30 19.22 19.28 19.28 19.26 18.18 11.24 11.14 10.58 9.96 10.18
50.0 18.70 18.72 18.66 18.62 18.48 16.44 11.22 11.02 11.64 10.16 10.04

Table 8: The results of putting the gradient-assigned model trained by large-scale on testing set of
CIFAR10.
θ0 + αg1 + βg2 CIFAR10-test

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.00 20.00 30.00 40.00 50.00

0.00 12.04 12.66 26.77 83.02 87.33 56.89 15.41 10.16 9.46 8.97 8.98
0.01 11.99 12.59 26.81 83.03 87.34 56.86 15.40 10.16 9.46 8.97 8.98
0.10 12.18 12.94 25.19 83.07 87.32 56.56 15.40 10.16 9.45 8.96 8.98
0.50 10.71 10.96 13.41 79.74 86.14 55.43 15.39 10.10 9.45 8.98 9.00
1.00 10.45 10.49 11.13 45.54 81.01 53.87 15.28 10.10 9.42 8.98 9.01
5.00 11.52 11.58 11.65 12.55 13.96 39.16 14.47 10.09 9.32 9.01 9.08
10.0 11.86 11.81 11.91 11.94 12.34 17.22 13.23 9.93 9.05 9.03 8.87
20.0 11.88 11.82 11.70 11.53 11.33 10.39 10.58 9.53 9.13 8.83 8.66
30.0 10.92 10.89 10.90 10.71 10.60 10.08 10.11 9.42 8.71 8.61 8.54
40.0 9.17 9.19 9.33 9.23 9.32 9.11 9.33 9.29 8.61 8.28 8.59
50.0 8.50 8.50 8.51 8.54 8.51 8.39 8.50 8.86 8.48 8.25 8.38

Table 9: The results of putting the gradient-assigned model trained by large-scale on testing set of
CIFAR100.
θ0 + αg1 + βg2 CIFAR100-test

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.00 20.00 30.00 40.00 50.00

0.00 15.00 14.60 11.50 11.60 9.10 6.60 10.90 12.30 10.90 9.80 9.30
0.01 16.90 16.80 12.70 11.80 9.10 6.60 10.90 12.30 10.90 9.80 9.30
0.10 40.30 40.20 32.20 13.60 9.60 6.60 10.90 12.30 10.90 9.80 9.30
0.50 81.50 82.00 81.60 29.90 12.60 6.10 11.00 12.20 10.90 9.80 9.30
1.00 87.00 86.90 87.50 72.70 20.00 6.60 11.00 12.30 10.70 9.80 9.30
5.00 68.20 68.10 68.00 67.10 65.30 10.40 11.60 12.00 10.80 10.50 10.00
10.0 58.20 58.10 58.20 58.80 59.20 19.30 12.60 11.30 11.10 10.50 10.10
20.0 48.30 48.30 48.10 46.80 45.40 22.80 13.40 10.50 11.20 10.00 9.50
30.0 36.10 36.10 36.00 35.40 32.10 22.30 14.50 10.20 9.50 10.40 9.30
40.0 26.70 26.60 26.40 24.70 24.30 21.50 16.10 9.60 9.60 9.30 9.50
50.0 22.90 22.90 22.90 23.20 22.30 19.10 15.70 9.60 10.00 10.00 9.60
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Table 10: The finegrained results of putting the gradient-assigned model trained by large-scale on
testing set of CIFAR10.
θ0 + αg1 + βg2 CIFAR10-test-finegrained

β
α 0.50 0.60 0.70 0.80 0.90 1.00 2.00 3.00 4.00 5.00

0.50 79.74 83.60 85.20 86.09 86.01 86.14 82.25 77.29 69.17 55.43
0.60 76.89 82.08 84.20 85.25 85.43 85.43 81.83 77.03 68.94 55.24
0.70 72.16 79.79 82.84 84.16 84.47 84.61 81.44 76.79 68.55 54.95
0.80 65.38 76.58 80.84 82.66 83.46 83.75 81.04 76.58 68.24 54.64
0.90 56.05 71.57 78.34 80.85 81.97 82.65 80.66 76.26 67.97 54.31
1.00 45.54 65.03 74.42 78.26 79.98 81.01 80.29 76.00 67.79 53.87
2.00 15.28 17.20 20.67 26.97 35.59 46.09 74.07 72.09 64.19 50.64
3.00 13.20 13.73 14.46 15.57 16.91 19.07 61.90 66.98 60.11 47.44
4.00 13.03 13.17 13.38 13.75 14.31 14.96 41.77 59.30 54.75 43.25
5.00 12.55 12.78 12.94 13.20 13.65 13.96 26.18 47.60 48.35 39.16

Table 11: The finegrained results of putting the gradient-assigned model trained by large-scale on
testing set of CIFAR100.
θ0 + αg1 + βg2 CIFAR100-test-finegrained

β
α 0.50 0.60 0.70 0.80 0.90 1.00 2.00 3.00 4.00 5.00

0.50 29.90 22.50 18.00 14.90 13.80 12.60 8.70 7.70 7.20 6.10
0.60 38.80 27.30 21.00 17.20 15.10 13.60 9.10 7.50 7.30 6.30
0.70 51.10 33.80 24.30 20.10 16.90 15.00 9.30 7.70 7.30 6.20
0.80 61.40 41.60 30.20 22.90 18.40 16.60 9.50 7.90 7.40 6.40
0.90 68.30 50.60 35.20 26.90 20.60 18.50 9.80 8.30 7.50 6.50
1.00 72.70 57.20 42.50 31.60 24.20 20.00 9.80 8.60 7.40 6.60
2.00 75.80 73.40 69.60 63.10 58.80 53.20 14.00 9.80 8.00 7.20
3.00 73.40 72.10 69.40 67.80 65.60 64.00 26.00 12.20 9.50 8.20
4.00 69.90 69.20 68.50 67.10 66.00 65.10 41.50 17.20 11.20 9.50
5.00 67.10 66.70 66.50 66.10 65.20 65.30 51.10 24.80 13.80 10.40

Table 12: The results of putting the fusion model trained by small-scale on training set of CIFAR10.
αθ1 + βθ2 CIFAR10

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.0 20.0 30.0 40.0 50.0

0.00 10.0 10.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.01 10.0 10.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.10 15.0 20.0 92.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.50 20.0 22.5 30.0 92.5 97.5 100.0 100.0 100.0 100.0 100.0 100.0
1.00 22.5 22.5 27.5 85.0 92.5 100.0 100.0 100.0 100.0 100.0 100.0
5.00 22.5 22.5 22.5 27.5 30.0 92.5 97.5 100.0 100.0 100.0 100.0
10.0 22.5 22.5 22.5 25.0 27.5 85.0 92.5 97.5 100.0 100.0 100.0
20.0 22.5 22.5 22.5 25.0 25.0 40.0 85.0 92.5 95.0 97.5 97.5
30.0 22.5 22.5 22.5 22.5 25.0 30.0 60.0 85.0 92.5 95.0 95.0
40.0 22.5 22.5 22.5 22.5 25.0 27.5 40.0 85.0 87.5 92.5 95.0
50.0 22.5 22.5 22.5 22.5 22.5 27.5 30.0 67.5 85.0 90.0 92.5
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Table 13: The results of putting the fusion model trained by small-scale on training set of CIFAR100.
αθ1 + βθ2 CIFAR100

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.0 20.0 30.0 40.0 50.0

0.00 10.0 10.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
0.01 10.0 10.0 22.5 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
0.10 100.0 100.0 85.0 22.5 15.0 15.0 15.0 15.0 15.0 15.0 15.0
0.50 100.0 100.0 100.0 85.0 67.5 15.0 15.0 15.0 15.0 15.0 15.0
1.00 100.0 100.0 100.0 100.0 82.5 25.0 15.0 15.0 15.0 15.0 15.0
5.00 100.0 100.0 100.0 100.0 100.0 82.5 65.0 30.0 20.0 15.0 15.0
10.0 100.0 100.0 100.0 100.0 100.0 100.0 82.5 65.0 47.5 30.0 25.0
20.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 82.5 75.0 65.0 50.0
30.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 82.5 77.5 70.0
40.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 97.5 82.5 80.0
50.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.0 82.5

Table 14: The results of putting the fusion model trained by medium-scale on training set of
CIFAR10.
αθ1 + βθ2 CIFAR10

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.0 20.0 30.0 40.0 50.0

0.00 10.0 10.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.01 10.0 10.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.10 14.7 14.9 45.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.50 13.8 14.1 14.8 44.7 96.6 100.0 100.0 100.0 100.0 100.0 100.0
1.00 13.9 13.9 14.6 18.6 44.5 100.0 100.0 100.0 100.0 100.0 100.0
5.00 13.8 13.8 13.9 14.5 14.9 44.7 96.6 100.0 100.0 100.0 100.0
10.0 13.8 13.7 13.8 14.0 14.5 18.4 44.7 96.6 99.7 100.0 100.0
20.0 13.8 13.7 13.8 14.0 14.0 14.8 18.4 44.7 84.6 96.6 99.3
30.0 13.7 13.8 13.8 13.8 13.9 14.8 15.7 22.4 44.7 75.6 90.5
40.0 13.7 13.8 13.8 13.8 14.0 14.7 14.8 18.4 26.3 44.7 68.9
50.0 13.8 13.8 13.8 13.8 13.8 14.5 14.7 16.6 20.7 28.4 44.7

Table 15: The results of putting the fusion model trained by medium-scale on training set of
CIFAR100.
αθ1 + βθ2 CIFAR100

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.0 20.0 30.0 40.0 50.0

0.00 10.0 10.0 8.9 9.0 9.1 9.1 9.2 9.2 9.2 9.2 9.2
0.01 10.0 10.0 10.5 9.1 9.1 9.1 9.2 9.2 9.2 9.2 9.2
0.10 100.0 100.0 82.6 12.8 10.4 9.2 9.2 9.2 9.2 9.2 9.2
0.50 100.0 100.0 100.0 81.8 26.2 10.3 9.5 9.2 9.2 9.2 9.2
1.00 100.0 100.0 100.0 99.2 81.8 13.2 10.3 9.5 9.1 9.2 9.2
5.00 100.0 100.0 100.0 100.0 100.0 81.7 26.4 14.3 11.8 10.7 10.3
10.0 100.0 100.0 100.0 100.0 100.0 99.2 81.6 26.4 17.4 14.3 13.2
20.0 100.0 100.0 100.0 100.0 100.0 99.8 99.2 81.6 44.8 26.4 19.4
30.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 96.1 81.6 55.9 36.7
40.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.2 94.1 81.6 63.1
50.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.6 98.1 92.4 81.6
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Table 16: The results of putting the fusion model trained by large-scale on training set of CIFAR10.
αθ1 + βθ2 CIFAR10

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.00 20.00 30.00 40.00 50.00

0.00 10.00 10.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.01 10.00 10.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.10 11.32 12.18 93.61 99.99 100.00 100.00 100.00 100.00 100.00 100.00 100.00
0.50 10.97 11.10 13.37 93.80 99.85 100.00 100.00 100.00 100.00 100.00 100.00
1.00 10.95 11.03 11.96 44.27 93.84 99.99 100.00 100.00 100.00 100.00 100.00
5.00 10.93 10.95 11.10 11.92 13.36 93.85 99.86 99.99 100.00 100.00 100.00
10.0 10.93 10.94 11.00 11.36 11.91 44.31 93.84 99.86 99.97 99.99 99.99
20.0 10.93 10.94 10.94 11.15 11.36 14.76 44.31 93.84 99.17 99.86 99.95
30.0 10.94 10.93 10.95 11.05 11.23 12.85 19.07 73.19 93.84 98.45 99.55
40.0 10.94 10.93 10.94 11.01 11.15 12.28 14.75 44.31 81.54 93.84 97.81
50.0 10.94 10.93 10.94 11.01 11.09 11.91 13.38 26.25 63.55 85.13 93.84

Table 17: The results of putting the fusion model trained by large-scale on training set of CIFAR100.
αθ1 + βθ2 CIFAR100

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.00 20.00 30.00 40.00 50.00

0.00 10.00 10.00 7.82 7.14 7.02 7.06 7.00 7.00 7.00 7.00 7.00
0.01 10.00 10.00 8.46 7.18 7.04 7.04 7.04 7.00 7.00 7.00 7.00
0.10 99.98 99.98 31.80 8.44 7.56 7.04 7.04 7.02 7.04 7.08 7.04
0.50 100.00 100.00 99.86 31.48 12.16 7.56 7.22 7.08 7.04 7.02 7.00
1.00 100.00 100.00 100.00 82.76 31.26 8.30 7.56 7.20 7.12 7.08 7.04
5.00 100.00 100.00 100.00 100.00 99.86 31.30 12.08 8.60 8.10 7.76 7.58
10.0 100.00 100.00 100.00 100.00 100.00 82.70 31.30 12.06 9.76 8.60 8.30
20.0 100.00 100.00 100.00 100.00 100.00 99.54 82.68 31.30 16.44 12.06 10.48
30.0 100.00 100.00 100.00 100.00 100.00 99.92 97.56 60.62 31.30 19.14 14.70
40.0 100.00 100.00 100.00 100.00 100.00 99.96 99.54 82.68 50.82 31.30 21.26
50.0 100.00 100.00 100.00 100.00 100.00 100.00 99.86 93.62 69.24 46.38 31.30

Table 18: The results of putting the fusion model trained by large-scale on testing set of CIFAR10.
αθ1 + βθ2 CIFAR10-test

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.00 20.00 30.00 40.00 50.00

0.00 10.00 10.00 87.29 87.28 87.33 87.33 87.31 87.32 87.32 87.32 87.32
0.01 10.00 10.00 87.22 87.18 87.29 87.32 87.32 87.32 87.32 87.33 87.33
0.10 9.60 10.58 79.44 86.99 87.25 87.35 87.34 87.33 87.33 87.33 87.33
0.50 10.36 10.46 12.85 79.74 85.80 87.17 87.29 87.33 87.33 87.32 87.34
1.00 10.45 10.49 11.17 37.99 79.77 87.09 87.17 87.29 87.33 87.33 87.35
5.00 10.51 10.51 10.54 11.23 12.87 79.77 85.86 86.97 87.15 87.22 87.17
10.0 10.50 10.53 10.53 10.80 11.24 38.06 79.77 85.87 86.76 86.97 87.09
20.0 10.51 10.52 10.55 10.60 10.78 14.37 38.06 79.78 84.54 85.87 86.41
30.0 10.52 10.52 10.55 10.54 10.70 12.08 18.74 63.11 79.80 83.63 85.13
40.0 10.52 10.52 10.55 10.55 10.60 11.45 14.38 38.06 70.51 79.81 82.94
50.0 10.52 10.52 10.55 10.54 10.54 11.24 12.87 24.04 54.48 73.42 79.81
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Table 19: The results of putting the fusion model trained by large-scale on testing set of CIFAR100.
αθ1 + βθ2 CIFAR100-test

β
α 0.00 0.01 0.10 0.50 1.00 5.00 10.00 20.00 30.00 40.00 50.00

0.00 10.00 10.00 9.00 9.00 9.10 9.30 9.30 9.30 9.30 9.30 9.30
0.01 10.00 10.00 10.00 9.20 9.10 9.30 9.30 9.30 9.30 9.30 9.30
0.10 87.00 87.40 28.70 10.60 9.70 9.20 9.10 9.20 9.30 9.30 9.30
0.50 87.00 86.90 86.50 29.90 14.70 9.70 9.50 9.30 9.20 9.20 9.10
1.00 87.00 86.90 87.10 77.20 29.70 10.80 9.80 9.50 9.20 9.20 9.20
5.00 86.90 86.90 86.80 87.00 86.30 29.80 14.40 11.50 10.20 9.80 9.80
10.0 86.90 86.90 86.90 87.00 87.00 77.10 29.80 14.40 13.00 11.50 10.80
20.0 86.90 86.90 86.90 86.90 87.00 85.50 77.20 29.80 18.90 14.40 13.80
30.0 86.90 86.90 86.90 86.80 87.00 86.50 84.40 62.30 29.80 21.30 17.00
40.0 86.90 86.90 86.90 86.90 86.90 87.20 85.50 77.20 51.10 29.80 22.10
50.0 86.90 86.90 86.90 86.90 86.80 87.00 86.30 82.80 70.90 45.10 29.80
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