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ABSTRACT

Objects in a 2D image are influenced by factors like perspective, illumination, and
occlusion in the corresponding 3D scene. This results in the challenge of iden-
tifying objects across different viewpoints. Humans can effortlessly identify ob-
jects from different viewpoints by recognizing their invariant characteristics in 3D
dimensions. Motivated by this observation, we propose an object-centric learn-
ing method named Learning Object-centric Representation from Multi-viewpoint
(LORM), which learns the representations of objects from multi-viewpoint scenes
without any supervision. LORM leverages a novel slot attention encoder to de-
compose the representation of a scene into two distinct components: a view-
point representation and several object representations. The former encompasses
the viewpoint-dependent attributes (i.e., camera position and lighting) of the
image observed from each viewpoint, while the latter captures the viewpoint-
independent features (i.e., appearance, shape, scale, rotation and position) of the
object across various perspectives. We propose a mixture patch decoder to enable
LORM to simultaneously handle complex scenes and reconstruct an individual
object’s 2D appearance and shape at a specific viewpoint through the correspond-
ing object representation and viewpoint representation. Extensive experiments are
conducted on three complex simulation datasets, and the results demonstrate that
our proposed method outperforms compared methods in individual object recon-
struction while achieving comparable performance in scene decomposition.

1 INTRODUCTION

When humans observe their surrounding world, numerous objects are regarded as features to under-
stand the world (Johnson, 2010). Compared with perceiving the whole scene directly, knowledge can
be acquired from the surrounding world more efficiently through compositional perception (Fodor
& Pylyshyn, 1988). Therefore, to make the artificial intelligence systems learn the knowledge of
the world as efficiently as human beings, it is crucial to perceive the scene in a compositional way
(Lake et al., 2017). Object-Centric Learning (OCL) is a compositional scene perception method
that focuses on separately learning the representations of individual objects in a scene.

Recently, object-centric representation learning has attracted much attention and multiple outstand-
ing works have been summarized (Yuan et al., 2022a). For example, the methods, such as AIR
(Eslami et al., 2016), GMIOO (Yuan et al., 2019), SPACE (Lin et al., 2019), Slot Attention (Lo-
catello et al., 2020), GENESIS-v2 (Engelcke et al., 2021), SLATE (Singh et al., 2022a), DINOSAUR
(Seitzer et al., 2023) etc., work well on the static scene. The methods, such as SQAIR (Kosiorek
et al., 2018), SCALOR (Jiang et al., 2019), G-SWM (Lin et al., 2020), etc., learn better compo-
sitional scene representations by modeling the motions and relationships of objects in the scene.
The methods, such as SIMONe (Kabra et al., 2021), MulMON (Li et al., 2020), OCLOC (Yuan
et al., 2022b), focus on observing the scene from multiple viewpoints. The methods, such as SAVi
(Kipf et al., 2022), SAVi++ (Elsayed et al., 2022), STEVE (Singh et al., 2022b), apply object-centric
learning to videos. Despite the proficiency of the above methods in extracting object-centric repre-
sentations, they still have some limitations in processing complex scenes. On the one hand, methods
such as Slot Attention, OCLOC, and SIMONe cannot segment the object in the complex scenes well.
On the other hand, methods such as DINOSAUR and STEVE face difficulties constructing individ-
ual object images through their corresponding representations to obtain the gratifying performance
of decomposition on complex scenes.
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A fundamental ability of the human brain is invariant object recognition, which involves the rapid
and precise identification of objects based on their relatively consistent (invariant) features despite
variances in size, rotation, and position (Karimi-Rouzbahani et al., 2017). What’s more, humans
have the ability to distinguish between relatively consistent (invariant) features and view-specific
(non-invariant) features of an object from different viewpoints (Turnbull et al., 1997). Inspired by
these human cognitive capabilities, we propose learning the viewpoint-independent representation
of objects in 3D scenes to identify consistent objects in the image viewed from multiple perspectives.

In this paper, we propose a novel object-centric learning method, called Learning Object-centric
Representation from Multi-viewpoint (LORM), for learning object-centric representation from
multiple-viewpoint scenes in an unsupervised manner. Specifically, we assume that a compositional
scene representation consists of viewpoint and multiple object representations. Viewpoint represen-
tations correspond to the scene’s global view-specific elements (such as camera position). Object
representations indicate objects’ viewpoint-independent attributes (such as appearance, shape, scale
and position) in 3D scenes. The former is the output of a viewpoint encoder, and the latter is ob-
tained by a slot attention encoder with the image feature and viewpoint representation as inputs.
Moreover, we propose a mixture patch decoder to reconstruct the individual object image observed
from a specific viewpoint by the corresponding object and viewpoint representations. It can not only
decompose complex scenes but also reconstruct the individual object image.

The experiment section uses three complex simulations (i.e., CLEVR-A (Johnson et al., 2017),
SHOP (Nazarczuk & Mikolajczyk, 2020) and GSO (Greff et al., 2022)) multi-view scene data to
evaluate the proposed method. Two representative multi-viewpoint-based methods, OCLOC (Yuan
et al., 2022b) and SIMONe (Kabra et al., 2021), and two with outstanding performance in complex
scenes, DINOSAUR (Seitzer et al., 2023) and STEVE (Singh et al., 2022b), are selected as com-
parison methods. The abundant experimental results show that the proposed method not only has
outstanding performance of decomposition on complex scenes but also can reconstruct the individ-
ual object image well.

In summary, the contributions of this work are as follows:

1) We propose a novel object-centric representation learning method that learns object repre-
sentation from multi-view scenes without supervision.

2) We propose an object-centric encoder, consisting of a viewpoint encoder and slot attention
encoder, to disentangle the scene representation into viewpoint and object representation.

3) We propose a mixture patch decoder to reconstruct an object image with the individual
object and corresponding viewpoint representations as inputs.

4) LORM is the first object-centric learning method that can decompose complex scenes and
reconstruct the image of individual objects simultaneously.

2 RELATED WORKS

In recent years, a large number of object-centric representation learning methods have been proposed
to learn compositional scene representations, which are a collection of representations of objects in
the scene. According to the form of the input image, the current methods can be roughly divided
into three categories: Single-image-based, Video-based and Multi-view-based.

Single-image-based: N-EM (Greff et al., 2017) and AIR (Eslami et al., 2016) are two of the ear-
lier representative methods. The former initializes the representations of all objects and iteratively
updates them, while the latter extracts the representations of objects in sequence according to the
attention mechanism. GMIOO (Yuan et al., 2019) improvs N-EM and AIR by handling occlusions
between objects and models objects and the background separately. MONet (Burgess et al., 2019)
uses the U-Net(Ronneberger et al., 2015) to predict the masks of objects, which are used to serially
extract the representations of objects via a variational autoencoder (Kingma & Welling, 2013) with
concatenated the scene image as input. IODINE (Greff et al., 2019) utilizes iterative variational
inference to learn the representation of objects in the scene. SPACE (Lin et al., 2019) can effectively
handle scenes with complex backgrounds and a large number of foreground objects by modeling the
background with spatial mixture models and extracting the representations of foreground objects
with parallel spatial attention. GNM (Jiang & Ahn, 2020) models the layout of the scene, while
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GENESIS (Engelcke et al., 2019) models the interrelationship between objects in an autoregressive
manner. GENESIS-V2 (Engelcke et al., 2021) improves the performance of GENESIS by predict-
ing mask attention of objects with the Instance Colouring Stick-Breaking Process. Slot Attention
(Locatello et al., 2020) first initializes the representations of the object and iteratively updates them
according to the similarity between the representations and the local features of the scene image.
DINOSAUR (Seitzer et al., 2023) uses a pre-trained self-supervised transformer (Caron et al., 2021)
to handle real-world scenes. DINOSAUR is similar to our work in that it reconstructs patch features.
However, DINOSAUR cannot reconstruct the individual objects and the whole scene.

Video-based: Rational-NEM (van Steenkiste et al., 2018) discovers objects from video scenes and
learns the physical interactions between them in an unsupervised manner. SQAIR (Kosiorek et al.,
2018) extends the discovery and propagation modules in AIR to discover and track objects through-
out the sequence of frames. In addition, SQAIR can generate future frames conditioning on the
motion of objects in the current frame. SCALOR (Jiang et al., 2019) proposes a spatially parallel
attention and proposal-rejection mechanism to focus on the learning of compositional scene repre-
sentations for the scene with a large number of objects. G-SWM (Lin et al., 2020) unifies the critical
attributes of previous models in a framework of principles and proposes two crucial new abilities:
multimodal uncertainty and situation awareness. SAVi (Kipf et al., 2022) and SAVi++ (Elsayed
et al., 2022) use optical flow supervision to learn temporal information between object representa-
tions of adjacent frames. Based on the transformer decoder, STEVE (Singh et al., 2022b) makes
significant improvements on various complex and naturalistic videos. Similar to STEVE, our work
also uses a Discrete VAE (DVAE)(Im Im et al., 2017)to reconstruct the whole scene. The difference
with STEVE is that our method can reconstruct the image of the individual object.

Multi-view-based: MulMON (Li et al., 2020) is the method that first learns the compositional rep-
resentation of a multi-object scene by leveraging multiple views information and iteratively updating
object representations in a scene over multiple viewpoints based on IODINE. SIMONe (Kabra et al.,
2021) learns the frame latent variables that capture time-varying information and object latent vari-
ables that are invariant and time-independent, respectively, with the frames in the sequence as input.
ROOTS (Chen et al., 2021) divides a 3-dimensional scene int grid cells extending SPACE (Lin
et al., 2019) and then estimates the size and position of each object in 3-dimensional space. The
sizes and positions of objects in 3-dimensional grids are converted to the 2-dimensional coordinates
in each viewpoint image according to annotated viewpoints. The representation of each object is
obtained by encoding the features of objects over multiple viewpoints. Inspired by humans’ abil-
ity for so-called ‘object constancy’, OCLOC (Yuan et al., 2022b) learns the representation of 3D
objects from a scene with multiple unspecified viewpoints by disentangling viewpoint-dependent
and viewpoint-independent latent variables. Like SIMONe and OCLOC, our method learns the dis-
entangled representation of viewpoint and object from multi-view scenes through an unsupervised
approach. The performance of SIMONe and OCLOC in complex scenes is unsatisfactory.

3 METHOD

The proposed LORM comprises three components: (1) Object-Centric Encoder, which extracts
viewpoint and object representations; (2) Mixture Patch Decoder, which reconstructs the entire scene
and the image of individual objects; and (3) Image Encoder-Decoder, which encodes the scene into
a single representation and converts it into the whole scene via a decoder. The overview of LORM
is shown in Figure 1.

3.1 OBJECT-CENTRIC ENCODER

A visual scene is assumed to consist of multiple objects and can be observed from V different view-
points. K is the maximum number of objects that can appear in the scene. Given images x1:V of the
3D scene randomly observed from V viewpoints, LORM can extract V viewpoint representations
and K object representations by the Objec-Centric Encoder which includes View Encoder f view

enc and
Slot Attention Encoder f sa

enc. f view
enc consists of a convolutional neural network and two layers of fully

connected networks, which extract viewpoint-dependent attributes representation sview
v (1 ≤ v ≤ V )

that is the same for all objects from each viewpoint image xv(1 ≤ v ≤ V ). Unlike existing object-
centric learning methods, the Slot Attention Encoder f sa

enc in this work is input the multiple viewpoint
representations sview

1:V and the corresponding multi-view images x1:V together to obtain K object rep-
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Figure 1: The overview of LORM. LORM consists of three parts:(1) Object-Centric Encoder, which
converts the multi-view images into two disentanglement representations of viewpoint-dependent
sview
1:V and viewpoint-independent sobj

1:K ; (2) Mixture Patch Decoder, which mixes each patch of
each viewpoint image by weighted summing av,1:K,l with mv,1:K,l as weights; (3) Image Encoder-
Decoder, which encodes and decodes images from each viewpoint as a whole and is used to calculate
the reconstruction loss only during the training process.

resentations sobj
1:K containing viewpoint-independent attributes. The process of extracting viewpoint

representation and object representation can be expressed as follows:

sview
v = f view

enc (xv), 1 ≤ v ≤ V, sobj
1:K = f view

enc (x1:V , s
view
1:V ).

The detail of f sa
enc is presented in Algorithm 1. First, the features of the vth viewpoint image simg

v

are extracted by a neural networks f img
enc . Next, the intermediate variables sobj

1:K are initialized by
sampling from two Gaussian distributions with learnable parameters (µ̃obj and σ̃obj) respectively,
and then iteratively updated. sobj

k denotes the viewpoint-independent features of the kth object in 3D
scene. In each step of the iterative updates, the full intermediate variable sfull

1:V,1:K can be obtained
by broadcasting and concatenating sview

1:V and sobj
1:K . The attention map ãv,1:K (1 ≤ v ≤ V ) are

calculated separately for each viewpoint by normalizing the similarities between the keys fkey(s
img
v )

and the quries fqry(s
full
v,1:K) with the temperature

√
Dkey. fkey and fqry are two linear transformation

networks, and Dkey are the last dimension of the output of fkey. uv,1:K contains the information
updating sobj

1:K and is measured as the weighted average of the values fval(s
img
v ) across N pixels,

with attention maps tildeav,1:K (1 ≤ v ≤ V ) as weights. fval is a linear transformation network.
Finally, the intermediate variable sobj

v,k is updated via a Gated Recurrent Unit f upd
GRU with sobj

k and uv,k

as inputs, and the updated sobj
1:V,1:K is further averaged on the viewpoint dimension, which indicates

sobj
k captures viewpoint-independent attributes of the kth object.

3.2 MIXTURE PATCH DECODER

One of the object-centric learning methods’ essential and fundamental abilities is reconstructing the
image of individual objects in the scene. However, it is a massive challenge for object-centric learn-
ing methods applied to complex and naturalistic scenes. To decompose complex natural scenes,
DINOSAUR reconstructs the patch features extracted by a pre-trained self-supervised transformer
(Caron et al., 2021), while STEVE reconstructs the whole scenes through the DVAE decoder. There-
fore, we combine the advantages of DINOSAUR and STEVE and propose a mixture patch decoder
to obtain the ability to decompose complex scenes without losing the ability to reconstruct the image
of the individual objects.
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Algorithm 1 Slot Attention Encoder
Input: Images of V viewpoints x1:V , viewpoint representations sview

1:V

Output: object representations sobj
1:K

simg
v = f img

enc (xv),∀1 ≤ v ≤ V

sobj
k ∼ N

(
µ̃obj, diag(σ̃obj)2

)
,∀1 ≤ k ≤ K

for t← 1 to T do {∀1 ≤ v ≤ V, 1≤k≤K in the loop}
sfull
v,k ←

[
sview
v , sobj

k

]
ãv,k ← SoftmaxK

((
fkey(s

img
v ) · fqry(s

full
v,1:K)

)
/
√

Dkey

)
uv,k ←

∑
N SoftmaxN (log ãv,k)fval(s

img
v

)
supd
v,k ← f upd

GRU(s
obj
k ,uv,k)

sobj
k ← MeanV (s

upd
1:V,k)

end for
return sobj

1:K

The viewpoint representations sview
1:V and object representations sobj

1:K indicate the compositional scene
representations of the input 3D scene and are input into a patch decoder gpatch

dec after broadcasting and
concatenating. Multiple fully connected layers are used to consist of gpatch

dec to reduce the complexity
of the model construct as much as possible. L is the number of the patch feature. The output of patch
decoder av,k,l and mv,k,l (1 ≤ v ≤ V, 1 ≤ k ≤ K, 1 ≤ l ≤ L) denote the features and mask of
the lth patch belong to the kth object observed from the vth viewpoint. m1:V,1:K,1:L is normalized
in the object dimension using a softmax function. Each patch observed from each viewpoint is
obtained by weighted summing the patch features av,1:K,l (1 ≤ v ≤ V, 1 ≤ l ≤ L) with the
normalized mv,1:K,l (1 ≤ v ≤ V, 1 ≤ l ≤ L) as weights. Each mixed patch can be converted
into the log probabilities o1:V,1:L for a categorical distribution with N classes similar to STEVE
via a multilayer perceptron gmlp. During the training process, o1:V,1:L is encouraged to approximate
the output of the DVAE encoder f dvae

enc as close as possible through a cross-entropy loss. During the
testing process, ov,1:L is used to reconstruct the whole scene image observed from vth viewpoint
via a DVAE decoder gdvae

dec . The process of mixture patch decoder can be expressed as follows:

a1:V,1:K,1:L,m1:V,1:K,1:L = gpatch
dec

(
sobj
1:K , sview

1:V

)
,

m̂v,1,l, · · · , m̂v,K,l = softmax(mv,1,l, · · · ,mv,K,l), 1 ≤ v ≤ V, 1 ≤ l ≤ L,

ov,l = gmlp

(∑K

k=1
mv,k,l · av,k,l

)
, 1 ≤ v ≤ V, 1 ≤ l ≤ L,

x̃v = gdvae
dec (ov,1:L), 1 ≤ v ≤ V.

3.3 IMAGE ENCODER-DECODER

Similar to STEVE, we use a Discrete VAE (Im Im et al., 2017) to encode the image xv of the 3D
scene observed from vth viewpoint into L patches and reconstruct the whole image. The DVAE
encoder network f dvae

enc can convert each image xv into L patches zv,l(1 ≤ l ≤ L) indicating the log
probability for a categorical distribution with N classes. The whole image xv can be constructed
via DVAE decoder gdvae

dec with zv,l:L as inputs.

During the training process, the reconstruction x̂v decoded from zv,l:L is used to calculate the
reconstruction loss according to the mean square error between xv and x̂v . zv,l:L is used to calculate
the cross-entropy loss with ov,l:L. The loss function of the proposed method can be written as

L = Lrec + Lce, Lrec =

V∑
v=1

||xv − x̂v||22, Lce =

V∑
v=1

L∑
l=1

Cross-Entropy(zv,l,ov,l).
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Table 1: Performance comparison of LORM, OCLOC, SIMONe, STEVE, and DINOSAUR in terms
of all metrics on three datasets. ‘SIMONe (video)’ and ‘STEVE (video)’ denote the corresponding
models that are trained and tested by inputting images observed from sequential viewpoints. Bold
values indicate the best performance and underlined values indicate the next best performance. All
the reported results are based on 3 times evaluations of the test sets.

Data set Model AMI-A↑ ARI-A↑ AMI-O↑ ARI-O↑ mIOU↑

CLEVR-A

OCLOC 0.550±2e-3 0.645±2e-3 0.886±4e-3 0.893±5e-3 0.007±2e-3
SIMONe 0.131±3e-5 0.040±2e-5 0.466±6e-5 0.372±4e-5 0.218±1e-4

SIMONe (video) 0.262±3e-5 0.074±1e-6 0.909±1e-4 0.920±6e-5 0.460±2e-5
STEVE 0.702±6e-4 0.824±7e-4 0.760±1e-3 0.736±2e-3 0.715±1e-3

STEVE (video) 0.715±3e-4 0.830±7e-4 0.776±4e-4 0.759±8e-4 0.752±8e-4
DINOSAUR 0.145±8e-5 0.010±1e-4 0.962±3e-4 0.964±9e-4 0.138±1e-4

LORM 0.141±1e-4 0.015 ±1e-3 0.899±1e-3 0.879±1e-3 0.147±1e-3

SHOP

OCLOC 0.528±3e-3 0.656±3e-3 0.698±5e-3 0.665±8e-3 0.010±3e-4
SIMONe 0.183±5e-5 0.070±3e-5 0.461±2e-4 0.322±1e-4 0.218±8e-5

SIMONe (video) 0.368±3e-5 0.147±8e-6 0.749±6e-5 0.686±1e-4 0.475±3e-5
STEVE 0.633±5e-4 0.731±6e-4 0.742±2e-3 0.757±2e- 3 0.651±3e-3

STEVE (video) 0.667±9e-4 0.766±1e-3 0.781±3e-3 0.808±4e-3 0.710±4e-3
DINOSAUR 0.302±9e-4 0.144±2e-3 0.948±8e-4 0.949±2e-3 0.338±1e-3

LORM 0.258±1e-3 0.060±1e-3 0.904±1e-3 0.900±1e-3 0.290±1e-3

GSO

OCLOC 0.001±1e-3 0.001±2e-3 0.003±2e-3 0.003±3e-3 0.146±4e-4
SIMONe 0.000±6e-6 0.000±7e-7 0.000±2e-5 0.000±3e-6 0.029±1e-6

SIMONe (video) 0.000±7e-6 0.00±2e-6 0.00±2e-5 0.00±1e-6 0.056±2e-6
STEVE 0.457±8e-4 0.299±1e-3 0.793±1e-3 0.801±1e-3 0.579±1e-3

STEVE (video) 0.458±1e-3 0.300±1e-3 0.795±2e-3 0.799±3e-3 0.582±5e-4
DINOSAUR 0.602±6e-4 0.654±5e-4 0.941±1e-3 0.954±2e-3 0.639±7e-4

LORM 0.318±1e-3 0.131 ±1e-3 0.910±1e-3 0.918±1e-3 0.398±1e-3

4 EXPERIMENTS

The performance of the proposed LORM is evaluated from several aspects, including the decompo-
sition of scenes, the reconstruction of the individual object, disentanglement learning and viewpoint
learning on three complex synthetic scene datasets.

Datasets: Three 3D multi-object scenes with multiple viewpoints datasets are used in the exper-
iments. CLEVR-A is an augmentation of CLEVR (Johnson et al., 2017), which is a benchmark
dataset for object-centric learning methods. To make the scene more complex, we expanded the
number of object categories from 3 to 10. SHOP (Nazarczuk & Mikolajczyk, 2020) is a 3D scene
dataset with more complex textures and shapes than CLEVR-A, and is generated according to the
official code by selecting 10 objects to make up all the scenes. GSO is a 3D scene dataset, the
background and objects of which are much more complex than those of CLEVR-A and SHOP. GSO
is generated by selecting 10 objects and 10 complex backgrounds to render the scene with Kubric
(Greff et al., 2022). Further details of all datasets are described in the Supplementary Material.

Comparison Methods: Two multi-view based methods, i.e. SIMONe (Kabra et al., 2021) and
OCLOC (Yuan et al., 2022b), are used to evaluate the scene decomposition performance of the
proposed method. SIMONe learns object-centric representations from continuous multi-view scenes
without supervision. Unlike SIMONe, OCLOC is trained unsupervised by inputting the randomly
selected image from multiple viewpoints, which is similar to the proposed method. Two state-of-the-
art methods for the complex and naturalistic scenes, DINOSAUR (Seitzer et al., 2023) and STEVE
(Singh et al., 2022b), are also selected as comparison methods. They are used to compare the ability
of the proposed method to decompose complex scenes.

Evaluation Metrics: Several metrics are used to evaluate the performance of scene decomposi-
tion. Adjusted Mutual Information (AMI) (Vinh et al., 2009), Adjusted Rand Index (ARI) (Hubert &
Arabie, 1985), and mean Intersection over Union (mIOU) are used to assess the quality of segmen-
tation. In this paper, AMI-A and ARI-A are computed considering both objects and background,
while AMI-O and ARI-O are calculated considering only objects. The better the performance, the
higher the value of ARI, AMI and mIOU.
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Figure 2: The visualization of unsupervised object segmentation of LORM, OCLOC, SIMONe,
STEVE and DINOSAUR on CLEVR-A, SHOP and GSO datasets. ‘Image’ represents input
images observed from four random viewpoints. ‘DISA’ is the abbreviation for DINOSAUR.

4.1 DECOMPOSITION OF SCENES

This section will evaluate the scene decomposition performance of LORM, OCLOC, SIMONe,
STEVE and DINOSAUR from qualitative and quantitative aspects. LORM and OCLOC are trained
and tested by inputting the random viewpoint images. SIMONe and STEVE are trained by inputting
sequential viewpoint images and tested by random and sequential viewpoint images. DINOSAUR
is trained and tested by inputting a single image.

Quantitative results: The comparison quantitative results of LORM, OCLOC, SIMONe, STEVE
and DINOSAUR for segmentation metrics on all datasets are shown in Table 1. The segmentation
metrics AMI-O and ARI-O of LORM on the most complex dataset (i.e. GSO) are significantly
higher than the comparative methods (OCLOC, SIMONe and STEVE), among which the OCLOC
and SIMONe methods have almost no effect on the GSO dataset. DINOSAUR performs better than
LORM on all datasets due to the use of a pre-trained self-supervised Transformer, while LORM uses
a simple neural network structure for end-to-end learning in an unsupervised manner. On the most
complex GSO dataset, the value of AMI-O and ARI-O of LORM is slightly lower than DINOSAUR.
It is worth noting that the value of AMI-O and ARI-O of LORM is much higher than STEVE on all
datasets. It implies that LORM is better than STEVE at segmenting objects in complex scenes.

Qualitative results: We show the visualization of the segmentation performance of LORM,
OCLOC, SIMONe, STEVE, and DINOSAUR on three datasets in Figure 2. In all datasets, LORM
can accurately segment all objects in the scene, although the predicted object masks are a bit rough.
On the contrary, STEVE can predict more befitting object masks but may miss certain objects when
segmenting the scene. For example, as shown in Figure 1, the black pan is divided into the back-
ground in the segmentation map of the last viewpoint (column) image in the shop dataset. The black
hat is also divided into the background in the GSO dataset. LORM can pick them out accurately.
It is worth noting that SIMONe and OCLOC hardly segment foreground objects from the complex
scene dataset, although they have impressive performance in CLEVR and SHOP datasets.

4.2 RECONSTRUCTION OF INDIVIDUAL OBJECTS

In this section, we evaluate LORM’s ability to reconstruct individual objects. The visualization
of the comparison of the reconstruction of the individual object between LORM, STEVE, and SI-
MONe is shown in Figure 3. As can be seen from Figure 3, STEVE can hardly reconstruct the
corresponding images through the representation of a single foreground object on the simple scene
dataset (i.e., SHOP) and the complex scene datasets (i.e., GSO). The reason may be that STEVE
only focuses on reconstructing the entire scene, and during training, all object representations must
be input into the decoder to reconstruct the whole scene. This causes the decoder to be unable to
reconstruct when there is only a single object representation as input. On the simple scene dataset
(i.e., SHOP), SIMONe can reconstruct the corresponding object image by the representation of a
single foreground object. In contrast, on the complex scene dataset(i.e., GSO), SIMONe cannot
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Figure 3: The visualization of the individual object reconstruction of SIMONe, STEVE and
LORM on SHOP and GSO datasets. Figure a) shows the visualization of the individual object
reconstructed by SIMONe, STEVE and LORM on the SHOP dataset. Figure b) shows the visual-
ization of a single object reconstructed by SIMONe, STEVE and LORM on the GSO dataset.
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Figure 4: The visualization of disentanglement learning of LORM on GSO dataset. ‘In-
put1’ and ‘Input2’ represent two scene images observed from four random viewpoints. ‘Rec V1’
and ‘Rec V2O2’ represent reconstruction observed from four random viewpoints of two scenes.
‘Rec V2O1’ and ‘Rec V1O2’ represent, respectively, an image reconstructed using the object rep-
resentation of ‘Scene1’ with the viewpoint representation of ‘Scene2’ and an image reconstructed
using the object representation of ‘Scene2’ with the viewpoint representation of ‘Scene1’.

reconstruct the object and the entire scene. The reason may be that SIMONe reconstructs the whole
scene by weighted summing appearances and shapes of all objects in the scene, which results in it
being too focused on reconstructing a single object and unable to process complex scene images.
As shown in Figure 3, LORM can better reconstruct the corresponding image by the representation
of a single object in simple and complex scenes (both SHOP and GSO datasets). LORM is the only
method to handle complex scenes and reconstruct the corresponding image from a single object rep-
resentation simultaneously. This is due to the proposed mixture patch decoder, which balances the
impact of reconstructing the entire scene and reconstructing a single object by first reconstructing
the characteristics of a single object, allowing the proposed model to handle complex scenes and
reconstruct a single object image well.

4.3 DISENTANGLEMENT LEARNING

LORM utilizes multi-view images to improve the performance in decomposing complex 3D scenes.
The multi-view images can be disentangled into viewpoint representations and object representa-
tions via the slot attention encoder of LORM. In this section, we evaluate LORM’s ability to disen-
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Figure 5: The visualization of viewpoint interpolation of LORM on CLEVR-A, SHOP and
GSO datasets. Each row represents the interpolation visualization of one dataset. Interpolation
between viewpoint representations of the first column image and the last column image of each row.

tangle the 3D scene attributes into viewpoint-dependent and viewpoint-independent representations
according to the reconstruction decoded from exchanged viewpoint representations of two scenes.
Figure 4 shows the comparison of the input images of ‘Scene1’ and ‘Scene2’ (the first row), the
corresponding reconstruction (the second row), and the reconstruction after exchanging the view-
point representation of ‘Scene1’ and ‘Scene2’ (the third row). The figure shows that the observed
2D appearance, shape, scale, and position of objects in the third-row reconstruction differ from the
second-row reconstruction. In contrast, the categories and numbers of objects in the second-row
reconstructions are the same as those in the second-row reconstructions. It demonstrates that the
proposed model can disentangle the viewpoint and object representations in the 3D scene.

4.4 VIEWPOINT LEARNING

In this section, we evaluate the performance of the proposed method in learning viewpoint repre-
sentation from multiple viewpoint images via an unsupervised approach. We evaluate the proposed
method’s viewpoint learning performance by observing a series of images constructed by decoding
interpolating between the two extracted viewpoint representations. Figure 5 shows the visualization
of viewpoint interpolation of the proposed method on three datasets. It can be found from Figure 5
that on the three datasets, LORM can reconstruct the scene image well by interpolating the view-
point representation. As the viewing viewpoint changes, the objects’ appearance, shape, size, and
position in the reconstructed image also change accordingly. It implies that the proposed method
can learn viewpoint representation well without supervision.

4.5 FUTURE DIRECTIONS AND LIMITATIONS

Our method is the first to achieve satisfactory complex scene segmentation capabilities without
losing the ability to reconstruct individual object images. The limitation of the proposed method
is that the reconstruction ability and accurate segmentation of objects need to be improved. The
reason may be that the network construction of the patch decoder only uses multiple fully connected
networks. In future work, the more complex neural networks will be used to replace multiple fully
connected networks in the patch decoder of the proposed method. Another potential work is to use
a flow-based model to encode and decode the entire scene, which is a generative model that can
reversibly transform the images and generate high-quality images.

5 CONCLUSION

In this paper, we propose an object-centric learning method, called Learning Object-centric
Representation from Multi-viewpoint (LORM), to learn the viewpoint-dependent representation
and viewpoint-independent representation from the multi-view scene in an unsupervised manner.
We proposed a novel slot attention encoder to disentangle the scene attributes into viewpoint and
object representations and a mixture patch decoder to reconstruct the image of the individual object
with the corresponding viewpoint and object representations. The experimental results demonstrate
that the proposed method performs more remarkably in decomposing scenes than the comparison
methods and satisfactory disentanglement and viewpoint learning capability.
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A DETAILS OF DATASETS

Configurations of the datasets used in this paper are presented in Table 2 and Table 3. CLEVR-A,
SHOP, and GSO are synthetic 3D scene datasets. CLEVR-A and SHOP are generated based on the
official code provided by (Johnson et al., 2017) and (Nazarczuk & Mikolajczyk, 2020), respectively.
The size of the generated images of CLEVR-A and SHOP is 128 × 128. Code is modified to skip
the check of object visibility because the observations of objects vary as viewpoints change. GSO
is generated by selecting 10 kinds of 3D objects and 10 types of backgrounds to render the scene
images with Kubric (Greff et al., 2022).

B DETAILS OF METRICS

Here we provide the calculation method of each metric, including 1) Adjusted Rand Index (ARI)
(Hubert & Arabie, 1985) 2) Adjusted Mutual Information (AMI) (Vinh et al., 2009) 3) mean Inter-
section over Union (mIoU) 4) Mean Square Error (MSE) 5) Clustering Accuracy (ACC). In order
to better describe the calculation, we define multiple variables here to facilitate use in the following
subsections.

Suppose the test sets have I visual scenes and each visual scene V images from multiple unspecified
viewpoints. let K̂i be the true maximum number of objects appearing in the ith visual scene. and let
Ki be the estimated maximum number of objects appearing in the ith visual scene. Note that K̂i and

Ki are not necessarily equal. r̂i ∈
{
0, 1

}V×(K̂i+1)×N
and ri ∈

{
0, 1

}V×(Ki+1)×N
respectively

represent the true and estimated one-hot vector of the V viewpoints in the ith scene corresponding to
the pixel-wise partitions (including the foreground and background). Di

v denotes the index sets that
belong to the object areas in the tth viewpoint of the ith scene, i.e.,Di

v =
{
n | xi

v,n ∈ object areas
}

.
Let Û i

v,k be the real index sets w.r.t. object k in the vth viewpoint of the ith scene, i.e., Û i
v,k =

{
n |

xi
v,n ∈ areas of object k

}
(0 ≤ k ≤ K̂i). Let U i

v,k be the estimated index sets w.r.t. object k in
the vth viewpoint of the ith scene. Û i

v,k =
{
n | x̂i

v,n ∈ areas of object k
}
(0 ≤ k ≤ K̂i), where

x̂ is the reconstructed image. Let m̂i ∈
[
0, 1

]V×K̂i×N
and mi ∈

[
0, 1

]V×Ki×N
be the true and

estimated pixel-wise masks that indicate the object(including the background) weight for each pixel

in each viewpoint. Let âi ∈
[
0, 1

]V×K̂i×N×3
and ai ∈

[
0, 1

]V×Ki×N×3
be the true and estimated

appearance of objects in each viewpoint of the ith scene. Let ŷik ∈ [0, ..., C] denote the true label
of the kth object in the ith visual scene, and correspondingly, yik ∈ [0, ..., C] denotes the estimated
label of the kth object in the ith visual scene, where C denotes the category numbers, and the value
greater than C − 1 (i.e. C) indicates it is not an object.

B.1 ADJUSTED RAND INDEX (ARI)

The computation of the Adjusted Rand Index (ARI) is described as:

ARI =
1

I

I∑
i=1

biall − birow · bicol/c
i

(birow + bcol) /2− birow · bicol/c
i
. (1)

In order to explain the meaning of each variable above in detail, C(x, y) is used here to rep-
resent the combination number, i.e., C(x, y) = x!

(x−y)!y! ; vi
k̂,k

denotes the dot product, i.e.,

vi
k̂,k

=
∑

(v,n)∈S(r̂v,k,n · rv,k,n), birow, bicol and ci in Eq 2 are described as:

biall =
∑K̂i

k̂=0

∑K

k=0
C
(
vi
k̂,k

, 2
)
, (2)

birow =
∑K̂i

k̂=0
C
(∑K

k=0
vi
k̂,k

, 2
)
, (3)

bicol =
∑K

k=0
C
(∑K̂i

k̂=0
vi
k̂,k

, 2
)
, (4)

ci = C
(∑K̂i

k̂=0

∑
(v,n)∈S

r̂i
v,k̂,n

, 2
)
, (5)
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Datasets CLEVR-A SHOP
Split Train Valid Test General Train Vaid Test General

# of Images 5000 100 100 100 5000 100 100 100
# of Objects 3∼6 3∼6 3∼6 7∼10 3∼6 3∼6 3∼6 7∼ 10
# of Views 10 10

# of Categories 10 10
# of Backgrounds 1 1

Image Size 128×128 128×128
Azimuth θ [0,2π] [0,2π]
Elevation ρ [10.5,12] [10.5,12]
Distance ϕ [0.15π,0.3π] [0.15π,0.3π]

Table 2: configuration of CLEVR-A and SHOP

Datasets GSO
Split Train Valid Test

# of Images 5000 100 100
# of Objects 3∼6 3∼6 3∼6
# of Views 10

# of Categories 10
# of Backgrounds 10

Image Size 128×128
Azimuth θ [0,2π]
Elevation ρ [7,9]
Distance ϕ [0.35π,0.6π]

Table 3: configuration of GSO

where S =
{
1, 2, ..., V

}
×

{
1, 2, ..., N

}
. When computing ARI-O, pixels in S that do not belong

to objects will be removed, that is S ′ =
{
1, 2, ..., V

}
×

{
n | xn ∈ objects areas

}
; When ARI-A is

calculated, all pixels in S will be used.

B.2 ADJUSTED MUTUAL INFORMATION

The computation of Adjusted Mutual Information (AMI) is described as:

AMI =
1

I

I∑
i=1

V∑
t=1

MI(l̂i, li)− E
[
MI(l̂i, li)

](
H(l̂i) + H(li)

)
/2− E

[
MI(l̂i, li)

] , (6)

where l̂i ∈ RV×(K̂i+1). l̂iv denotes the true probability distribution of the tth viewpoint in the ith
visual scene, i.e.,l̂iv =

{
|Ûv,k|/|Di

v| | 0 ≤ k ≤ K̂i

}
. liv is the estimated probability distribution,

i.e., liv =
{
|Uv,k|/|Di

v| | 0 ≤ k ≤ Ki

}
. H and MI respectively represent the entropy and mutual

information of the distribution and their mathematical forms are described as:

H(l̂i) = −
∑K̂i

k=0

∑V

v=1
l̂iv,k log l̂

i
v,k (7)

H(li) = −
∑Ki

k=0

∑V

v=1
liv,k log l

i
v,k (8)

MI(l̂i, li) =
K̂i∑

m=0

Ki∑
n=0

V∑
v=1

piv,m,n log
( piv,m,n

l̂iv,m · liv,n

)
, (9)

where l̂it,k and lit,k respectively note the true and estimated probability that the pixel in the ith image
is partitioned to object k. piv,m,n denotes the probability w.r.t. pixels in the vth viewpoint of the ith
scene are divided into objects m in the first set and objects n in the second set. pit,m,n is calculated
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as follows:

piv,m,n =
oiv,m,n

|Di
v|

=
|Û i

v,m ∩ U i
v,n|

|Di
v|

. (10)

The matrix oi
v ∈ R(K̂i+1)×(Ki+1) is called the contingency table. The expectation of MI can be

analytically computed:

E
[
MI(l̂i, li)

]
=

V∑
v=1

K̂i∑
m=0

Ki∑
n=0

min(ai
v,m,biv,n)∑

k=(ai
v,m+biv,n−N)+

k

N
· log

( N × k

aiv,m × biv,n

)
aiv,m!biv,n!(N − aiv,m)!(N − biv,n)

N !k!(aiv,m − k)!(biv,n − k)!(N − aiv,m − biv,n + k)!
, (11)

where (aiv,m + biv,n −N)+ = max(1, aiv,m + biv,n −N), aiv,m and biv,n respectively represent the
sum of rows and columns w.r.t. oi

v:

aiv,m =
∑Ki

n=0
oiv,m,n, biv,n =

∑K̂i

m=0
oiv,m,n. (12)

Similar to ARI calculation, when calculating AMI-O, we will only consider pixels belonging to the
foreground, while AMI-A needs to consider all pixels.

B.3 MEAN INTERSECTION OVER UNION

In order to compute mean Intersection over Union(mIoU), we need to do the object layer matching
between the true and estimated masks.

ξi = argmaxξi∈Ξi

∑V

v=1

∑K̂i

k=0

∑N

n=1
r̂iv,k,n · riv,ξik,n, (13)

where Ξi is the full arrangement of all entity(including the foreground and background) indexes in
the ith visual scene. The computation of IoU is described as:

mIoU =
1

I

I∑
i=1

1

K̂i

K̂i∑
k=1

∑V
v=1

∑N
n=1 min(m̂i

v,k,n,m
i
v,k,n)∑V

v=1

∑N
n=1 max(m̂i

v,k,n,m
i
v,k,n)

. (14)

B.4 MEAN SQUARE ERROR

Suppose the reconstructed image of the vth viewpoint is described as x̂ ∈ RV×N×3, then the Mean
Square Error (MSE) is computed as:

MSE =
1

V

∑V

v=1

∑N

n=1
∥xv,n − x̂v,n∥22. (15)

C CHOICES OF HYPERPARAMETERS

OCLOC OCLOC was trained with the default hyperparameters described in the
”exp multi/config blender multi.yaml” and ”exp multi/config kubric multi.yaml” files of the
official code repository1 except the number of viewpoints was 6/6/6 on the CLEVR-A/SHOP/GSO
dataset.

SIMONe SIMONe was trained with the default hyperparameters described in SIMONe (Kabra
et al., 2021) except:1) the batch size was 4; 2)the episode length (ep len) was 6; 3) the learning rate
is 2× 10−4. During visualization, we chose 7 reconstructions of objects that have the largest masks
and 1 reconstruction of the background manually for better comparison, even though the number of
slots was 16 during training.

1https://github.com/jinyangyuan/multiple-unspecified-viewpoints
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STEVE The official STEVE implementation2 was used. Models were trained with the hyperpa-
rameters described in the ”train.py” file of the official code repository, except 1)the batch size was
6, and 2)the episode length (ep len) was 6.

DINOSAUR The official DINOSAUR implementation3 was used. Models were trained
with the hyperparameters described in the ”configs/experiment/projects/bridging/dinosaur/movi
c feat rec.yaml” file of the official code repository, except the batch size was 64.

LORM In all datasets, in order to avoid the neural network parameters falling into the local
optimal, LORM was first trained with a single frame for 100 epochs and then trained with ran-
dom 6 frames. The total number of epochs is 500. The batch size is 24/4/4 on the CLEVR-
A/SHOP/GSO dataset. The initial learning rate is 3 × 10−4,1 × 10−4 and 3 × 10−4 for Image
Encoder-Decoder(dVAE),Object-Centric Encoder and Mixture Patch Decoder respectively. Except
for the learning rate of dVAE, they all decayed exponentially with a factor 0.5 every 250,000 steps
after multiplying a parameter that increases linearly from 0 to 1 in the first 30000 steps.

The number of slots is 7/8/8 on the CLEVR-A/SHOP/GSO dataset in order to get the best perfor-
mance. In the slot attention encoder, the number of iterations is 2. In the patch decoder, the number
of patches is 1024. The size of view representations is 4 on all datasets and the size of object
representations is 64/128/64 on the CLEVR-A/SHOP/GSO dataset.

D EXTRA EXPERIMENTAL RESULTS ON THE SHOP AND GSO DATASETS

The qualitative comparison of the proposed LORM, STEVE, DINOSAUR, SIMONe and OCLOC
on the CLEVR, SHOP and GSO datasets is shown in Figures 6 ∼ 10, respectively.

As shown in Figures 6, the proposed method as well as STEVE can segment and reconstruct scenes
well on all datasets.DINOSAUR can also have great segmentations, but it can not reconstruct it
learns object representations from feature space. SIMONe and OCLOC performed well in simple
datasets such as CLEVR-A and SHOP, but they all failed in complex dataset(GSO)

2https://github.com/singhgautam/steve
3https://github.com/amazon-science/object-centric-learning-framework
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Figure 6: The Decomposition results of LORM on three datasets.
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STEVE

CLEVR-A GSOSHOP

Figure 7: The Decomposition results of STEVE on three datasets.
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Figure 8: The Decomposition results of DINOSAUR on three datasets.
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SIMONe
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Figure 9: The Decomposition results of SIMONe on three datasets.
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Figure 10: The Decomposition results of OCLOC on three datasets.
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