
Data Diversification Methods In Alignment Enhance Math Performance In
LLMs

Anonymous ACL submission

Abstract
While recent advances in preference learning001
have enhanced alignment in human feedback,002
mathematical reasoning remains a persistent003
challenge. We investigate how data diversi-004
fication strategies in preference optimization005
can improve the mathematical reasoning abil-006
ities of large language models (LLMs). We007
evaluate three common data generation meth-008
ods—temperature sampling, Chain-of-Thought009
prompting, Monte Carlo Tree Search (MCTS),010
and introduce Diversified-ThinkSolve (DTS), a011
novel structured approach that systematically012
decomposes problems into diverse reasoning013
paths. Our results show that with strategically014
diversified preference data, models can substan-015
tially improve mathematical reasoning perfor-016
mance, with the best approach yielding gains017
of 7.1% on GSM8K and 4.2% on MATH over018
the base model. Despite its strong performance,019
DTS incurs only a marginal computational over-020
head (1.03×) compared to the baseline, while021
MCTS is nearly five times more costly with022
lower returns. These findings demonstrate023
that structured exploration of diverse problem-024
solving methods creates more effective pref-025
erence data for mathematical alignment than026
traditional approaches.027

1 Introduction028

Large language models (LLMs) have demonstrated029

remarkable capabilities across a wide range of030

tasks, but mathematical reasoning remains a partic-031

ularly challenging domain (Luo et al., 2023; Light-032

man et al., 2023). While recent work has shown033

that Reinforcement Learning from Human Feed-034

back (RLHF) (Stiennon et al., 2020) and preference035

optimization techniques like Direct Preference Op-036

timization (DPO) (Rafailov et al., 2023) can sub-037

stantially improve LLM performance on general038

tasks, their application to mathematical reasoning039

has received less attention.040

In standard preference optimization scenarios,041

datasets typically consist of unmodified prefer-042

ence pairs drawn from human annotations or 043

model-generated evaluations. While such datasets 044

can yield performance improvements (Guo et al., 045

2024b; Tunstall et al., 2023; Xia et al., 2024) in 046

alignment with human preference, we hypothesize 047

that more structured and diverse preference data 048

can lead to significantly better performance specifi- 049

cally tailored to mathematical reasoning (Liu et al., 050

2024b). 051

Our work explores how strategically designed 052

data generation and diversification methods can 053

enhance the effectiveness of preference optimiza- 054

tion for mathematical reasoning. We propose sev- 055

eral approaches to generate preference data that 056

incorporate diverse reasoning strategies, problem 057

reformulations, and solution methodologies. By 058

leveraging techniques such as Chain-of-Thought 059

(CoT) prompting (Wei et al., 2022; Kojima et al., 060

2022), Monte Carlo Tree Search (MCTS) (Silver 061

et al., 2016; Feng et al., 2023), and specialized 062

thought-reflection mechanisms, we create datasets 063

that expose LLMs to a richer space of mathemat- 064

ical problem-solving strategies during preference 065

optimization. 066

Among these approaches, we introduce 067

Diversified-ThinkSolve (DTS), a novel structured 068

method that systematically decomposes problems 069

into diverse problem-solving approaches before 070

generating solutions. DTS explicitly separates 071

the thought generation process from solution 072

execution, enabling exploration of multiple 073

problem-solving strategies while maintaining 074

computational efficiency. This approach addresses 075

a fundamental limitation of traditional sampling 076

methods—their inability to systematically explore 077

diverse thinking pathways. 078

We conduct a comprehensive comparative analy- 079

sis of these strategies across standard mathematics 080

benchmarks. Our DTS approach yields significant 081

improvements in both GSM8K and MATH over 082

the base model, while incurring only marginal com- 083

1

putational overhead. Our findings highlight that084

structured exploration of analytical approaches cre-085

ates more effective preference data for mathemati-086

cal alignment than traditional approaches, and that087

data quality and diversity can be more crucial than088

optimizing algorithmic approaches.089

2 Background090

In this section, we provide the necessary back-091

ground and information regarding alignment train-092

ing for LLMs. We start by providing a background093

on the RLHF process and then we discuss post-094

training alignment techniques utilized in this paper.095

2.1 Reinforcement Learning from Human096

Feedback097

Often after we pre-train a model we want to further098

adapt it to meet certain needs or specifications (Sti-099

ennon et al., 2020; Bai et al., 2022a; Ouyang et al.,100

2022). Reinforcement Learning from Human Feed-101

back (RLHF) has become a standard approach for102

aligning large language models with human pref-103

erences and values (Christiano et al., 2017; Leike104

et al., 2018). RLHF emerged as a solution to the105

challenge of aligning AI systems with human val-106

ues and preferences when these values were diffi-107

cult to specify mathematically yet easy to judge.108

While RLHF requires relatively small amounts of109

comparison data to be effective compared to other110

approaches, sourcing high-quality preference data111

remains an expensive process. This technique has112

become particularly crucial for LLMs, where it113

helps guide these powerful systems toward produc-114

ing outputs that humans find helpful, harmless, and115

honest (Bai et al., 2022a,b).116

The RLHF process typically consists of three117

stages:118

1. Supervised Fine-Tuning (SFT): The model119

is first fine-tuned on demonstrations that ex-120

emplify desired behavior, producing a model121

πSFT.122

2. Reward Modeling: Human annotators com-123

pare model responses, and these comparisons124

train a reward model rϕ(x, y) that predicts125

human preferences. The reward model is126

trained using maximum likelihood on prefer-127

ence pairs (x, yw, yl) using the Bradley-Terry128

Model (Bradley and Terry, 1952; Plackett,129

1975) to model the preference probability.130

3. RL Optimization: The language model is 131

then optimized further using reinforcement 132

learning, typically with Proximal Policy Opti- 133

mization (PPO), to maximize the reward while 134

maintaining proximity to the reference model 135

(Jaques et al., 2017, 2020; Schulman et al., 136

2017). 137

2.2 Preference Optimization Methods 138

Recent work has introduced more efficient alterna- 139

tives to the full RLHF pipeline. Direct Preference 140

Optimization (DPO) (Rafailov et al., 2023) elim- 141

inates the need for an explicit reward model and 142

RL training by directly optimizing a policy from 143

preference data: 144

LDPO = −E(x,yw,yl)∼D
[
log σ

(
β(rw − rl)

)]
145

where rw and rl are the log probability ratios of the 146

preferred and dispreferred responses relative to a 147

reference model. This approach has shown com- 148

parable or superior performance to RLHF while 149

being more computationally efficient and stable. 150

More recent methods include Simple Preference 151

Optimization (SimPO) (Meng et al., 2024), which 152

eliminates the need for a reference model while 153

maintaining strong performance: 154

LSimPO = −E(x,yw,yl)∼D [log σ (β(sw − sl)− γ)] 155

where sw and sl are length-normalized log proba- 156

bilities, β controls preference signal strength, and 157

γ is a target margin. 158

We also compare with Odds Ratio Preference 159

Optimization (ORPO) (Hong et al., 2024), which 160

combines supervised fine-tuning with preference 161

optimization through a log odds ratio term, en- 162

abling effective alignment without a reference 163

model. ORPO’s loss function balances a supervised 164

term for the preferred completion with a preference 165

term based on log odds ratios. 166

3 Data Diversification Methods 167

In this section, we describe our proposed data diver- 168

sification strategies on creating high-quality prefer- 169

ence data for fine-tuning and preference optimiza- 170

tion. 171

3.1 Baseline Strategy 172

Our baseline strategy follows standard practice in 173

preference optimization, generating multiple com- 174

pletions from the base model with only temperature 175

2

sampling for diversity. During generation, we set176

the max_tokens to 1,024, the temperature to 2,177

top_p to 0.75, and top_k to 50. We generate 5178

completions from the base model πSFT using the179

following system prompt template:180

“You will be given a math problem.181

Provide a step-by-step solution, clearly182

showing all calculations and reasoning.183

Ensure that each step is explained and184

justified. After your detailed solution, on185

a new line, give the final numerical an-186

swer in the format: ‘Final Answer: [num-187

ber]’. Do not include any units in the188

final answer. Double-check your calcula-189

tions to ensure accuracy.”190

3.2 Chain-of-Thought Strategy191

Chain-of-Thought (CoT) prompting (Wei et al.,192

2022; Kojima et al., 2022) encourages LLMs to193

generate step-by-step reasoning before producing194

a final answer. This approach has shown sig-195

nificant improvements in mathematical problem-196

solving, particularly for complex multi-step prob-197

lems (Havrilla et al., 2024). For generation, we198

used OptiLLM’s cot-reflection inference proxy to199

illicit chain of thought reasoning for our model200

during inference time1. This method implements201

chain-of-thought reasoning with <thinking>, <re-202

flection>, and <output> section tags in the prompt.203

We set our temperature to 0.7 and max_tokens to204

1,024 to avoid context length issues with increased205

token counts from chain-of-thought.206

3.3 MCTS Strategy207

Methods incorporating search algorithms like208

Monte Carlo Tree Search (MCTS) have shown209

promise for enhancing mathematical reasoning210

(Feng et al., 2023; Yao et al., 2023; Liu et al.,211

2024a). These approaches explore multiple212

solution paths and can identify effective rea-213

soning strategies through simulation. For this214

strategy, we leverage MCTS through the Op-215

tiLLM inference proxy (codelion, 2024) to sys-216

tematically explore the solution space2. For217

each mathematical problem, we initialize a218

dialogue-based MCTS search with the problem219

as the initial query and a structured solution220

1https://github.com/codelion/optillm/blob/
main/optillm/cot_reflection.py

2https://github.com/codelion/optillm/blob/
main/optillm/mcts.py

prompt as the system prompt. We set our 221

exploration_weight to 0.2, num_simulations 222

to 2, and our simulation_depth to 1, which is the 223

default configuration for the MCTS approach, and 224

set temperature to 0.7 and max_tokens to 1,024 225

for our generation configuration. At the end, the N 226

(in our case 5) most promising complete solution 227

paths are picked. 228

This lightweight MCTS approach enables ef- 229

ficient yet effective exploration of the solution 230

space, finding diverse high-quality solutions that 231

may not be discovered through simpler sampling 232

approaches. 233

3.4 Diversified-ThinkSolve (DTS) Strategy 234

While the previously described strategies offer cer- 235

tain improvements, they exhibit key limitations in 236

generating truly diverse mathematical reasoning 237

approaches. Temperature sampling produces varia- 238

tions that often follow similar reasoning patterns, 239

and Chain-of-Thought, despite encouraging step- 240

by-step reasoning, tends to converge on a single 241

solution path. MCTS explores alternative branches 242

but incurs substantial computational costs. To ad- 243

dress these limitations, we introduce Diversified- 244

ThinkSolve (DTS), a novel strategy specifically de- 245

signed to generate diverse, high-quality mathemat- 246

ical reasoning paths with minimal computational 247

overhead. 248

DTS leverages DSPy, a declarative program- 249

ming paradigm for language models, that enables 250

modular and structured reasoning (Khattab et al., 251

2023b,a). Unlike traditional prompting approaches 252

that produce variations of the same solution or 253

chain-of-thought strategies that follow a single rea- 254

soning flow, DTS explicitly decomposes the math- 255

ematical problem-solving process into two distinct 256

phases: multiple approach generation followed by 257

targeted execution. This decomposition enables 258

systematic exploration of the solution space while 259

maintaining reasoning coherence. 260

We implement DTS through two specialized 261

modules. First, a ThoughtGenerator construct 262

generates N = 5 distinct reasoning approaches 263

using the following prompt template: 264

“Given the math problem: {problem}, 265

provide 5 possible approaches or initial 266

thoughts on how to solve it, including 267

any relevant mathematical concepts, for- 268

mulas, or techniques that may be applied. 269

Consider multiple perspectives and po- 270

3

https://github.com/codelion/optillm/blob/main/optillm/cot_reflection.py
https://github.com/codelion/optillm/blob/main/optillm/cot_reflection.py
https://github.com/codelion/optillm/blob/main/optillm/mcts.py
https://github.com/codelion/optillm/blob/main/optillm/mcts.py

Figure 1: Diversified-ThinkSolve (DTS) modular rea-
soning pipeline for generating diverse mathematical
problem solutions. Each math problem is first processed
by a ThoughtGenerator to propose multiple solution
approaches. Then utilizing the SolutionGenerator with
each approach, we are given multiple solutions, con-
tributing to a diverse set of preference data.

tential solution paths, and describe each271

thought in 1-2 sentences.”272

Then, for each generated approach, a273

SolutionGenerator module produces a complete274

solution following that particular reasoning275

pathway: “Given the math problem: {problem}276

Using this approach: {approach} Please provide a277

detailed solution showing all work and steps.”278

Figure 1 illustrates this process. By decoupling279

reasoning approach generation from solution im-280

plementation, DTS systematically explores diverse281

problem-solving strategies while ensuring each so-282

lution maintains consistent reasoning flow. The283

modularity of this approach allows for easy adjust-284

ment of the number and type of reasoning paths285

without modifying the entire pipeline.286

A key advantage of DTS over other strategies287

is its explicit promotion of strategic diversity—it288

doesn’t merely produce different ways to present289

the same solution, but fundamentally different290

problem-solving approaches. This structured di-291

versity creates more informative preference pairs292

that expose the model to a richer set of mathemati-293

cal reasoning patterns during alignment.294

4 Experiment Setup 295

4.1 Datasets and Models 296

We conduct our experiments using the Meta- 297

MathQA dataset (Yu et al., 2023) composed of 298

395k training examples which are all augmented 299

from the training sets of GSM8K and MATH. 300

Since this dataset consists of duplicated problems 301

with distinct queries, we decided to use a dedu- 302

plicated version containing 13,929 unique mathe- 303

matical queries and solutions. For evaluation, we 304

use GSM8K’s test set of 1,319 problems and the 305

MATH-500 test subset. 306

For training, we use meta-llama/Llama-3.1-8B- 307

Instruct (Meta AI, 2024) as our base model for 308

all experiments. For scoring completions, we 309

use Nvidia’s Llama-3.1-Nemotron-70B-Reward- 310

HF (NVIDIA NeMo Team, 2024), which demon- 311

strated the highest accuracy in our reward model 312

evaluation (Section 4.2). 313

4.2 Reward Model Selection 314

We evaluated several candidate reward models from 315

the top models on RewardBench (Lambert et al., 316

2024) by having them score both model-generated 317

completions and ground truth solutions on the 318

GSM8K test set. We tracked four key metrics: 319

correct_higher (model’s correct output received 320

higher reward than ground truth), correct_lower 321

(model’s correct output received lower reward 322

than ground truth), incorrect_higher (model’s 323

incorrect output received higher reward than 324

ground truth), and incorrect_lower (model’s in- 325

correct output received lower reward than ground 326

truth). An effective reward model should mini- 327

mize incorrect_higher cases, which represent 328

instances where incorrect solutions are scored 329

above correct ones. 330

As shown in Figure 2, Nvidia’s Llama-3.1- 331

Nemotron-70B-Reward-HF demonstrated the low- 332

est rate of incorrect_higher judgments, with an 333

average inaccuracy rate of 3.11% on the GSM8K 334

test set. We further validated this model on a ran- 335

dom sample of 4,919 problems from the harder 336

MetaMathQA dataset, finding a comparable inac- 337

curacy rate of 2.76%. More details can be found in 338

Appendix A.2. 339

4.3 Preference Data Generation and Filtering 340

For each data generation strategy described in Sec- 341

tion 3, we generated preference data from the Meta- 342

MathQA dataset. We applied a "mixed correctness" 343

4

Figure 2: Reward Model Accuracy Comparison. Bars
represent average counts of prediction outcomes for
different reward models.

filtering approach, selecting only cases where 2-3344

out of 5 model generations were correct, ensuring345

the model learns to distinguish between correct346

and incorrect reasoning patterns. We then used our347

reward model to select the highest-scored correct348

completion as yw and the highest-scored incorrect349

completion as yl for preference training.350

For each strategy, we created preference datasets351

of comparable size: Baseline (1,097 samples,352

30.4% filtered rate from 3,610 problems), DTS353

(1,293 samples, 17.2% from 7,500 problems),354

Chain-of-Thought (1,247 samples subsampled355

from 2,493, 17.9% from the full dataset), and356

MCTS (1,586 samples subsampled from 3,172,357

22.8% from the full dataset). For training con-358

sistency, we used comparable dataset sizes across359

all strategies, sampling half of the subsets from the360

larger CoT and MCTS datasets.361

5 Results362

We present results comparing our different data363

generation strategies across various preference op-364

timization methods.365

5.1 Analysis of Data Generation Strategies366

As shown in Table 1, DTS consistently outperforms367

other methods, achieving a 7.1% improvement over368

the base Llama-3.1-8B-IT model on GSM8K and369

a 4.2% improvement on MATH. The optimal fine-370

tuning method varies by benchmark, with SimPO371

yielding the best results for GSM8K and DPO per-372

forming best for MATH.373

Baseline Strategy: The standard approach of374

generating completions with temperature sampling375

showed moderate improvements over the base376

model, particularly when combined with SimPO,377

Method GSM8K MATH

Best Avg Best Avg

Llama-3.1-8B-IT 76.1% – 48.2% –
Llama-3.1-70B-IT 85.4% – 61.6% –
Llama-3.2-1B-IT 44.9% – 23.4% –
Llama-3.2-3B-IT 73.1% – 44.8% –

Baseline+SFT 76.7% 74.2% 48.4% 47.7%
Baseline+ORPO 77.6% 76.5% 51.8% 49.1%
Baseline+DPO 77.6% 76.8% 52.2% 49.6%
Baseline+SimPO 80.7% 78.9% 50.8% 48.0%

CoT+SFT 76.7% 73.7% 50.6% 49.0%
CoT+ORPO 77.4% 77.1% 51.2% 48.2%
CoT+DPO 77.6% 74.5% 50.8% 48.1%
CoT+SimPO 77.6% 53.0% 50.4% 48.1%

MCTS+SFT 76.7% 76.6% 48.8% 47.6%
MCTS+ORPO 79.0% 77.9% 50.8% 49.0%
MCTS+DPO 77.8% 77.3% 49.2% 42.8%
MCTS+SimPO 78.0% 59.7% 50.6% 24.2%

DTS+SFT 76.7% 75.7% 49.6% 48.8%
DTS+ORPO 77.2% 76.8% 50.6% 49.7%
DTS+DPO 81.2% 79.3% 52.4% 50.2%
DTS+SimPO 83.2% 81.5% 52.0% 49.6%

Table 1: Mathematical reasoning accuracy (%) on
GSM8K (0-shot) and MATH-500 across different data
generation strategies and preference optimization meth-
ods. We report both the best and average performance
across 5 epochs for the optimal hyperparameter setting
for each fine-tuning method and data generation strat-
egy.

achieving 80.7% accuracy on GSM8K. This sug- 378

gests that even simple diversity through temper- 379

ature sampling can enhance performance. How- 380

ever, this strategy was consistently outperformed by 381

more sophisticated diversification methods except 382

when paired with SimPO, indicating that tempera- 383

ture sampling alone provides insufficient diversity 384

for optimal mathematical reasoning. 385

Chain-of-Thought Strategy: CoT showed 386

mixed results with significant stability issues, par- 387

ticularly with SimPO where average performance 388

dropped to 53.0% on GSM8K despite reasonable 389

best-case performance (77.6%). Analysis revealed 390

that incorrect CoT responses often contained repet- 391

itive patterns and low-quality reasoning, creating 392

preference pairs with extremely poor rejected com- 393

pletions that may have hindered learning. 394

MCTS Strategy: While MCTS showed promis- 395

ing results with ORPO (79.0% on GSM8K), it ex- 396

hibited considerable instability with SimPO, where 397

5

performance degraded substantially across epochs398

(average 59.7% on GSM8K, 24.2% on MATH).399

Despite MCTS’s systematic exploration capabili-400

ties, its high computational cost and inconsistent401

performance make it less practical than DTS.402

DTS Strategy: The DTS thought-based ap-403

proach demonstrated substantial improvements404

across all fine-tuning methods, with the highest405

scores in both benchmarks. By explicitly gen-406

erating multiple solution approaches before solv-407

ing problems, this method effectively exposes the408

model to diverse reasoning paths. The structured409

exploration of different mathematical strategies410

appears to provide the model with a richer learn-411

ing signal during preference optimization. When412

combined with SimPO, this approach achieved the413

highest average (81.5%) and best (83.2%) GSM8K414

scores, while pairing with DPO yielded the best415

MATH performance (52.4%). This suggests that416

decomposing mathematical reasoning into distinct417

thought processes creates more effective preference418

data for alignment.419

Interestingly, the baseline strategy with SimPO420

outperformed both the CoT and MCTS strategies421

on average, highlighting that sophisticated data gen-422

eration methods must be carefully integrated with423

the appropriate preference optimization technique.424

The clear winner across both benchmarks is the425

DTS approach, which consistently produced high-426

quality, diverse preference data that translated to427

substantial improvements in mathematical reason-428

ing capabilities.429

5.2 Hyperparameter Sensitivity Analysis430

Understanding the impact of hyperparameter431

choices on model performance is crucial when op-432

timizing preference learning for mathematical rea-433

soning. While prior work has explored hyperparam-434

eter tuning for general preference learning (Tang435

et al., 2024), the unique challenges of mathemati-436

cal reasoning tasks may require different optimal437

configurations. Additionally, different data genera-438

tion strategies might interact with hyperparameters439

in unexpected ways, potentially requiring strategy-440

specific tuning. We conduct this analysis to identify441

the most effective hyperparameter configurations442

for each data generation method and to provide443

practical guidance for researchers applying prefer-444

ence optimization to mathematical domains.445

As shown in Table 2, SimPO consistently demon-446

strates superior performance across most data gen-447

eration strategies, particularly with the DTS ap- 448

proach where it achieves remarkable performance 449

(83.2% on GSM8K). The performance advantage 450

of SimPO is particularly pronounced with the DTS 451

strategy, where all hyperparameter configratuions 452

yield strong and stable results, consistently outper- 453

forming other fine-tuning methods. Notably, for 454

both CoT and MCTS strategies, the performance 455

margin is more modest, and in the case of MCTS, 456

ORPO actually provides the best results for both 457

GSM8K (79.0%) and MATH (50.8%). 458

SFT: For supervised fine-tuning, we examined 459

learning rates of 1e-5 and 3e-5, with 2e-5 being the 460

standard default in most SFT implementations. Our 461

results indicate minimal differences between these 462

learning rates on GSM8K performance, with all 463

configurations yielding identical accuracy (76.7%). 464

However, the lower learning rate of 1e-5 consis- 465

tently produced slightly better results on the more 466

challenging MATH benchmark across all data gen- 467

eration strategies, improving performance by 0.6- 468

2.4%. 469

ORPO: For ORPO, we found that the standard 470

learning rate of 8e-6 recommended in the original 471

work was excessive for mathematical reasoning 472

tasks, significantly degrading model performance 473

(see Appendix B.3). Our experiments with lower 474

learning rates (5e-7, 2e-7, and 7e-8) revealed dis- 475

tinct optimal configurations for different data gen- 476

eration strategies. For MCTS, higher learning rates 477

performed better, while the other strategies bene- 478

fited from progressively lower learning rates. The 479

best overall ORPO performance was achieved with 480

MCTS at a learning rate of 5e-7, yielding 79.0% 481

on GSM8K and 50.8% on MATH—the highest 482

scores for any MCTS configuration across fine- 483

tuning methods. In our ORPO ablations, we set 484

the λ weighing parameter by default to 1 which 485

remained constant. 486

DPO: Following recent findings that lower learn- 487

ing rates are beneficial for reasoning-intensive do- 488

mains (Shen et al., 2024), we conducted a thorough 489

grid search across learning rates (1e-7, 3e-7, 5e-7, 490

7e-7) and beta values (0.01, 0.05, 0.1). Our re- 491

sults show that smaller learning rates (e.g., 5e-7) 492

are more suitable for mathematical reasoning, with 493

the optimal configuration varying by data gener- 494

ation strategy. DPO showed particularly strong 495

performance on the MATH benchmark, achieving 496

the highest overall MATH scores for both baseline 497

(52.2%) and DTS (52.4%) strategies, representing 498

6

Method η β γ Baseline CoT MCTS DTS

GSM8K MATH GSM8K MATH GSM8K MATH GSM8K MATH

SFT
1× 10−5 — — 76.7 48.4 76.7 50.6 76.7 48.8 76.7 49.6
3× 10−5 — — 76.7 48.2 76.7 48.0 76.7 48.2 76.7 49.0

DPO

7× 10−7 0.01 — 75.8 52.2* 76.0 47.8 76.1 48.2 80.5 50.6
5× 10−7 0.01 — 76.9 51.6 77.6 47.6 77.0 49.2 81.2 50.4
3× 10−7 0.01 — 76.9 50.6 76.8 50.4 77.0 48.4 79.2 52.4*
1× 10−7 0.01 — 77.6 48.2 77.5 50.2 77.8 48.4 77.5 49.2
3× 10−7 0.05 — 76.7 51.6 77.3 50.4 76.9 49.0 78.6 51.2
1× 10−7 0.05 — 77.6 51.2 77.0 50.8 77.3 48.8 77.7 49.0
3× 10−7 0.1 — 77.2 48.6 76.7 48.8 77.3 48.2 78.2 51.6
1× 10−7 0.1 — 77.2 50.8 77.3 49.2 77.1 48.6 77.3 49.0

ORPO
5× 10−7 — — 76.7 49.0 76.7 51.0 79.0* 50.8* 76.7 50.6
2× 10−7 — — 77.6 51.8 77.0 51.2* 77.3 49.0 76.8 50.4
7× 10−8 — — 76.7 49.0 77.4 48.6 77.2 49.6 77.2 48.8

SimPO

1× 10−6 10 0.3 80.7* 49.4 75.7 48.6 77.9 49.6 82.8 48.8
8× 10−7 10 0.3 79.5 49.8 77.3 46.4 77.6 48.8 83.2 49.0
5× 10−7 10 0.3 78.0 49.6 77.4 50.4 77.9 49.2 83.2* 52.0
8× 10−7 10 0.5 78.5 50.2 77.6* 49.8 77.6 47.2 82.9 50.6
1× 10−6 2.5 0.55 77.7 50.8 76.7 50.2 77.9 49.6 82.5 50.6
8× 10−7 2.5 0.55 78.2 49.4 77.5 49.4 78.0 50.6 82.5 47.0

Table 2: Unified hyperparameter sweep across fine–tuning methods and data–generation strategies. For every
hyperparameter setting we report the best–epoch accuracy (%) on GSM8K and MATH. The highest score for each
fine-tuning method’s data-generation strategy is bold. Overall best result for each data-generation strategy is *.

a 4.2% improvement over the base model. The499

optimal beta value was consistently 0.01 across500

strategies, suggesting that a mild KL constraint is501

preferable for mathematical reasoning tasks.502

SimPO: Recent work has shown that when us-503

ing online data with a reward model for preference504

data creation, increasing beta to 10 can substan-505

tially improve performance with the right learning506

rate (Meng et al., 2024). Our results strongly sup-507

port this finding, as the best hyperparameters for508

baseline, DTS, and CoT all featured higher beta509

values (10) combined with carefully tuned learning510

rates. We also examined β = 2.5 and γ = 0.55,511

which were found promising in the original SimPO512

work for Llama 3 Instruct. Interestingly, while513

this configuration performed well, it was consis-514

tently outperformed by the higher beta configura-515

tions. The most striking result was achieved with516

DTS+SimPO at η = 5e− 7, β = 10, and γ = 0.3,517

which produced the highest overall performance518

on GSM8K (83.2%) while also maintaining strong519

MATH performance (52.0%).520

5.3 Training Dynamics 521

Figure 3 illustrates performance evolution across 522

training epochs for each data generation strategy. 523

For GSM8K, we observe distinct patterns: DTS 524

shows strong and consistent improvement, rising 525

sharply after epoch 1 (78.2% to 81.4%) and main- 526

taining growth through epoch 4 (83.2%). In stark 527

contrast, CoT performance degrades heavily after 528

epoch 1, dropping from 77.6% to 72.6% by epoch 529

3, indicating significant instability. Baseline and 530

MCTS follow similar trajectories with steady im- 531

provements until epoch 4 followed by slight regres- 532

sion. 533

For MATH, all strategies exhibit substantial vari- 534

ability. Baseline and MCTS display a "dip-and- 535

recover" pattern, with performance decreasing in 536

the middle epochs before climbing to their peaks 537

at epoch 5 (52.2% and 50.8% respectively). DTS 538

shows similar volatility, achieving its highest per- 539

formance at epoch 2 (52.4%) before dipping and 540

partially recovering. CoT exhibits the opposite be- 541

havior, with performance increasing until epoch 542

4 (51.2%) before declining sharply at epoch 5 543

(47.6%). 544

7

1 2 3 4 5
72

74

76

78

80

82

84

Epoch

A
cc

ur
ac

y
(%

)
GSM8K Performance

1 2 3 4 5
46

47

48

49

50

51

52

53

Epoch

A
cc

ur
ac

y
(%

)

MATH Performance

Baseline
DTS
CoT
MCTS

Figure 3: Performance progression across training epochs for different data generation strategies using optimal
hyperparameters.

These dynamics highlight that DTS offers the545

most stable improvements for GSM8K, while all546

strategies demonstrate significant epoch-to-epoch547

variability on the more challenging MATH bench-548

mark.549

5.4 Computational Efficiency Considerations550

Each data generation pipeline incurs a distinct to-551

ken budget that corresponds to GPU hours and552

cost. We look at the cost of a strategy given the553

expected number of generated tokens per problem.554

The computation for the relative compute for each555

data generation strategy can be found in Appendix556

A.5.557

Despite MCTS requiring significantly more com-558

putational resources, it does not yield proportional559

performance improvements, failing to match either560

DTS or even the baseline approach with SimPO.561

The DTS strategy offers an exceptional balance be-562

tween performance and computational efficiency563

with only a 1.03x compute overhead compared to564

baseline, making it highly suitable for resource-565

constrained scenarios. Even with minimal addi-566

tional computation, DTS achieves the best per-567

formance on both GSM8K (83.2%) and MATH568

(52.4%).569

CoT occupies a middle ground at 1.99x base-570

line compute, but its unstable training dynamics571

and inferior performance make it less attractive de-572

spite its moderate computational requirements. The573

baseline approach, while computationally efficient,574

cannot match DTS’s performance despite extensive575

hyperparameter optimization.576

Strategy Relative
Compute

GSM8K MATH

Baseline 1.00x 80.7% 52.2%
DTS 1.03x 83.2% 52.4%
CoT 1.99x 77.6% 51.2%
MCTS 4.85x 79.0% 50.8%

Table 3: Computational requirements and best perfor-
mance for different data generation strategies combined
with their respective optimal fine-tuning method.

6 Conclusion 577

Our findings demonstrate that strategic diversifica- 578

tion of preference data can substantially enhance 579

mathematical reasoning capabilities in LLMs. Sev- 580

eral key insights emerge from our experiments: 581

Diversity of reasoning paths is crucial: Strate- 582

gies that explore multiple problem-solving ap- 583

proaches consistently outperformed the baseline, 584

indicating that exposure to diverse reasoning paths 585

develops more robust mathematical capabilities. 586

Data quality trumps optimization algorithm: 587

While SimPO and DPO performed best, the differ- 588

ences between optimization methods were smaller 589

than those between data generation strategies, sug- 590

gesting that research should prioritize data quality 591

and diversity over algorithm selection. 592

Structured exploration outperforms random 593

sampling: DTS’s superior performance highlights 594

that systematic exploration of the solution space 595

is more effective than random variations through 596

temperature sampling for generating high-quality 597

preference data. 598

8

7 Limitations599

7.1 Benchmark Scope and Generalizability600

Our study demonstrates improvements on GSM8K601

and MATH benchmarks, which, while represen-602

tative, capture only a subset of mathematical rea-603

soning tasks. The effectiveness of our strategies604

may vary across different mathematical domains,605

complexity levels, or applications. Future work606

should evaluate these methods on a broader range607

of mathematical reasoning tasks and real-world ap-608

plications.609

7.2 Reward Model Dependencies610

Despite our careful selection process (achieving611

error rates below 3%), our reliance on automated612

reward models introduces potential biases in pref-613

erence data generation. These models occasionally614

make incorrect judgments, which could impact the615

quality of preference pairs and subsequent model616

training. Developing more robust mathematical617

evaluation methods remains an important avenue618

for future research.619

7.3 Model Scale Considerations620

Our experiments focused on a single model size621

(8B parameters). The relative effectiveness of dif-622

ferent data diversification strategies might vary623

with model scale, potentially yielding different pat-624

terns of improvement in larger or smaller archi-625

tectures. Extending this analysis to diverse model626

scales would provide valuable insights into the scal-627

ability of our approaches.628

7.4 Computational Efficiency Tradeoffs629

The computational requirements of more sophis-630

ticated strategies, particularly MCTS (4.85× base-631

line compute), limit their practical applicability632

in resource-constrained environments. While our633

DTS approach achieves an excellent balance be-634

tween performance and efficiency (1.03× baseline635

compute), further work on optimizing data genera-636

tion pipelines could improve accessibility.637

8 Ethical Considerations638

Our research aims to improve mathematical rea-639

soning capabilities in language models, which has640

broadly positive applications in education, scien-641

tific research, and various technical domains.642

We have made deliberate efforts to ensure re-643

search accessibility by providing comprehensive644

methodology details and implementation guidance.645

This openness helps democratize advanced mathe- 646

matical capabilities across the research community 647

and prevents the concentration of such capabilities 648

in well-resourced organizations. 649

While enhanced mathematical reasoning could 650

potentially enable more sophisticated applications 651

in sensitive domains like finance or cryptography, 652

we believe the educational and scientific benefits 653

significantly outweigh potential risks. Mathemat- 654

ical reasoning fundamentally supports objective 655

problem-solving rather than inherently harmful ca- 656

pabilities. 657

Our data generation methods rely on existing lan- 658

guage models, which may contain biases. However, 659

we focused specifically on mathematical problem- 660

solving, which operates in a relatively objective 661

domain with well-defined evaluation criteria, re- 662

ducing (though not eliminating) the risk of perpet- 663

uating harmful biases. 664

We view our research as augmenting rather than 665

replacing human mathematical reasoning, with the 666

goal of creating more useful tools that complement 667

human capabilities in educational and scientific 668

contexts. 669

References 670

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda 671
Askell, Anna Chen, Nova DasSarma, Dawn Drain, 672
Stanislav Fort, Deep Ganguli, Tom Henighan, 673
Nicholas Joseph, Saurav Kadavath, John Kernion, 674
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac 675
Hatfield-Dodds, Danny Hernandez, Tristan Hume, 676
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel 677
Nanda, Catherine Olsson, Dario Amodei, Tom 678
Brown, Jack Clark, Sam McCandlish, Chris Olah, 679
Ben Mann, and Jared Kaplan. 2022a. Training a 680
helpful and harmless assistant with reinforcement 681
learning from human feedback. arXiv preprint 682
arXiv:2204.05862. 683

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, 684
Amanda Askell, John Kernion, Andy Jones, Anna 685
Chen, Anna Goldie, Azalia Mirhoseini, Cameron 686
McKinnon, Carol Chen, Catherine Olsson, Christo- 687
pher Olah, Danny Hernandez, Dawn Drain, Deep 688
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, 689
Jamie Kerr, Jamie Mueller, Jared Ladish, Joshua 690
Landau, Kamal Ndousse, Kamile Lukosuite, Liane 691
Lovitt, Michael Sellitto, Nelson Elhage, Nova 692
Schiefer, Nelson Mercado, Nova DasSarma, Robert 693
Lasenby, Robin Larson, Sam Ringer, Scott John- 694
ston, Shauna Kravec, Sheer El Showk, Stanislav Fort, 695
Thomas Lanham, Thomas Telleen-Lawton, Tom 696
Conerly, Tom Henighan, Tristan Hume, Samuel R. 697
Bowman, Zac Hatfield-Dodds, Ben Mann, Dario 698
Amodei, Nicholas Joseph, Sam McCandlish, Tom 699

9

Brown, and Jared Kaplan. 2022b. Constitutional700
ai: Harmlessness from ai feedback. arXiv preprint701
arXiv:2212.08073.702

Ralph Allan Bradley and Milton E. Terry. 1952. Rank703
analysis of incomplete block designs: I. the method704
of paired comparisons. Biometrika, 39(3/4):324–705
345.706

Howard Chen, Zexuan Rong, Kwan Li, Percy Liang, and707
Omar Khattab. 2024a. Assisting in writing wikipedia-708
like articles from scratch with large language models.709
arXiv preprint arXiv:2402.14207.710

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa711
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-712
vasan, Tianyi Zhou, Heng Huang, and Hongxia Jin.713
2024b. Alpagasus: Training a better alpaca with714
fewer data. arXiv preprint arXiv:2307.08701.715

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-716
tic, Shane Legg, and Dario Amodei. 2017. Deep717
reinforcement learning from human preferences. Ad-718
vances in Neural Information Processing Systems,719
30.720

codelion. 2024. Optillm: A framework for optimizing721
llm generations. https://github.com/codelion/722
optillm.723

Tri Dao. 2024. FlashAttention-2: Faster attention with724
better parallelism and work partitioning. In Inter-725
national Conference on Learning Representations726
(ICLR).727

Shunyu Feng, Lisa Yuan, Aditya Sharma, Xiang Li, An-728
tonio Torralba, Leslie Kaelbling, Joshua Tenenbaum,729
and Lerrel Pinto. 2023. Alphazero-like tree-search730
can guide large language model decoding and train-731
ing. arXiv preprint arXiv:2309.17179.732

Luca Gallo and Sandiway Karmakar. 2024. A com-733
parative study of dspy teleprompter algorithms for734
aligning large language models evaluation metrics to735
human evaluation. arXiv preprint arXiv:2405.10345.736

Saujas Guo, Karan Gupta, Sanjeev Arora, Angela Fan,737
and Danqi Chen. 2024a. Optimizing instructions738
and demonstrations for multi-stage language model739
programs. arXiv preprint arXiv:2406.00330.740

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu,741
Misha Khalman, Felipe Llinares, Alexandre Rame,742
Thomas Mesnard, Yao Zhao, Bilal Piot, Johan Ferret,743
and Mathieu Blondel. 2024b. Direct language model744
alignment from online ai feedback.745

Suchin Gururangan, Xiaoxuan Wang, Percy Liang, Kai-746
Wei Chang, and Nanyun Peng. 2024. In-context747
learning for extreme multi-label classification. arXiv748
preprint arXiv:2401.12178.749

Alex Havrilla, Sharath Raparthy, Christoforus Nalm-750
pantis, Jane Dwivedi-Yu, Maksym Zhuravinskyi,751
Eric Hambro, and Roberta Railneau. 2024. Glore:752
When, where, and how to improve llm reasoning753

via global and local refinements. arXiv preprint 754
arXiv:2402.10963. 755

Jiwoo Hong, Noah Lee, and James Thorne. 2024. Orpo: 756
Monolithic preference optimization without refer- 757
ence model. arXiv preprint arXiv:2403.07691. 758

Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, 759
José Miguel Hernández-Lobato, Richard E Turner, 760
and Douglas Eck. 2017. Sequence tutor: Conserva- 761
tive fine-tuning of sequence generation models with 762
kl-control. In International Conference on Machine 763
Learning, pages 1645–1654. PMLR. 764

Natasha Jaques, Judy Hanwen Shen, Asma Ghande- 765
harioun, Craig Ferguson, Agata Lapedriza, Noah 766
Jones, Shixiang Shane Gu, and Rosalind Picard. 2020. 767
Human-centric dialog training via offline reinforce- 768
ment learning. arXiv preprint arXiv:2010.05848. 769

Omar Khattab, Amereen Alagesan, Ziqiao Zhuang, 770
Cameron Harris, Percy Liang, and Matei Zaharia. 771
2024. Fine-tuning and prompt optimization: Two 772
great steps that work better together. arXiv preprint 773
arXiv:2407.00183. 774

Omar Khattab, Christopher Potts, Percy Liang, and 775
Matei Zaharia. 2023a. Dspy assertions: Computa- 776
tional constraints for self-refining language model 777
pipelines. arXiv preprint arXiv:2312.13382. 778

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, 779
David Hall, Percy Liang, Christopher Potts, and 780
Matei Zaharia. 2023b. Dspy: Compiling declarative 781
language model calls into self-improving pipelines. 782
arXiv preprint arXiv:2412.15298. 783

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, 784
Kyle Richardson, Peter Clark, and Ashish Sabharwal. 785
2022. Demonstrate-search-predict: Composing re- 786
trieval and language models for knowledge-intensive 787
nlp. arXiv preprint arXiv:2212.14024. 788

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu- 789
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan- 790
guage models are zero-shot reasoners. Advances in 791
Neural Information Processing Systems, 35:22199– 792
22213. 793

Nathan Lambert, Valentina Pyatkin, Jacob Daniel Mor- 794
rison, Lester James Validad Miranda, Bill Yuchen 795
Lin, Khyathi Raghavi Chandu, Nouha Dziri, Sachin 796
Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and 797
Hanna Hajishirzi. 2024. Rewardbench: Evaluat- 798
ing reward models for language modeling. arXiv 799
preprint arXiv:2403.13787. 800

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, 801
Vishal Maini, and Shane Legg. 2018. Scalable agent 802
alignment via reward modeling: a research direction. 803
arXiv preprint arXiv:1811.07871. 804

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri 805
Edwards, Bowen Baker, Teddy Lee, Jan Leike, 806
John Schulman, Ilya Sutskever, and Karl Cobbe. 807
2023. Let’s verify step by step. arXiv preprint 808
arXiv:2305.20050. 809

10

https://doi.org/10.2307/2334029
https://doi.org/10.2307/2334029
https://doi.org/10.2307/2334029
https://doi.org/10.2307/2334029
https://doi.org/10.2307/2334029
https://github.com/codelion/optillm
https://github.com/codelion/optillm
https://github.com/codelion/optillm
http://arxiv.org/abs/2402.04792
http://arxiv.org/abs/2402.04792
http://arxiv.org/abs/2402.04792

Chen Liu, Kun Zhang, Shuai Sun, Kehan Chen, Qingx-810
ing Ye, Yingjun Wu, Chin-Yew Lin, and Ming Zhou.811
2024a. Monte carlo tree search boosts reasoning812
via iterative preference learning. arXiv preprint813
arXiv:2405.00676.814

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and815
Junxian He. 2024b. What makes good data for816
alignment? a comprehensive study of automatic817
data selection in instruction tuning. arXiv preprint818
arXiv:2312.15685.819

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-820
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei821
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-822
ardmath: Empowering mathematical reasoning for823
large language models via reinforced evol-instruct.824
arXiv preprint arXiv:2308.09583.825

Yu Meng, Mengzhou Xia, and Danqi Chen. 2024.826
Simpo: Simple preference optimization with a827
reference-free reward.828

Meta AI. 2024. Llama 3.1 8b instruct.829
https://huggingface.co/meta-llama/830
Meta-Llama-3.1-8B-Instruct. Accessed:831
June 2024.832

NVIDIA NeMo Team. 2024. Llama-3.1-nemotron-70b-833
reward-hf. https://huggingface.co/nvidia/834
Llama-3.1-Nemotron-70B-Reward-HF. Accessed:835
June 2024.836

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-837
roll L. Wainwright, Pamela Mishkin, Chong Zhang,838
Sandhini Agarwal, Katarina Slama, Alex Ray, John839
Schulman, Jacob Hilton, Fraser Kelton, Luke E.840
Miller, Maddie Simens, Amanda Askell, Peter Welin-841
der, Paul Francis Christiano, Jan Leike, and Ryan J.842
Lowe. 2022. Training language models to follow in-843
structions with human feedback. Advances in Neural844
Information Processing Systems.845

Robin L. Plackett. 1975. The analysis of permutations.846
Journal of the Royal Statistical Society. Series C (Ap-847
plied Statistics), 24(2):193–202.848

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-849
pher D Manning, Stefano Ermon, and Chelsea Finn.850
2023. Direct preference optimization: Your language851
model is secretly a reward model. In Thirty-seventh852
Conference on Neural Information Processing Sys-853
tems.854

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,855
and Yuxiong He. 2020. Deepspeed: System opti-856
mizations enable training deep learning models with857
over 100 billion parameters. Proceedings of the 26th858
ACM SIGKDD International Conference on Knowl-859
edge Discovery & Data Mining.860

John Schulman, Filip Wolski, Prafulla Dhariwal,861
Alec Radford, and Oleg Klimov. 2017. Proxi-862
mal policy optimization algorithms. arXiv preprint863
arXiv:1707.06347.864

Yue Shen, Junxian He, Yuhuai Wu, Tsung-Hsien Kuo, 865
and Xiang Lisa Li. 2024. Unveiling the secret recipe: 866
A guide for supervised fine-tuning small llms. arXiv 867
preprint arXiv:2406.09778. 868

David Silver, Aja Huang, Chris J Maddison, Arthur 869
Guez, Laurent Sifre, George Van Den Driessche, Ju- 870
lian Schrittwieser, Ioannis Antonoglou, Veda Pan- 871
neershelvam, Marc Lanctot, et al. 2016. Mastering 872
the game of go with deep neural networks and tree 873
search. Nature, 529(7587):484–489. 874

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel 875
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, 876
Dario Amodei, and Paul F Christiano. 2020. Learn- 877
ing to summarize with human feedback. Advances 878
in Neural Information Processing Systems, 33:3008– 879
3021. 880

Wenpin Tang, David D. Yao, Shi-Xiong Zhang, and 881
Sambit Sahu. 2024. A survey on human preference 882
learning for large language models. arXiv preprint 883
arXiv:2406.11191. 884

Together AI. 2024. Llama 3.1 8B Instruct API. https: 885
//www.together.ai/models/llama-3-1. Ac- 886
cessed: May 19, 2025. 887

Lewis Tunstall, Edward Beeching, Nathan Lambert, 888
Nazneen Rajani, Shengyi Huang, Kashif Rasul, 889
Alexander M. Rush, and Thomas Wolf. 2023. 890
The alignment handbook. https://github.com/ 891
huggingface/alignment-handbook. 892

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 893
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022. 894
Chain-of-thought prompting elicits reasoning in large 895
language models. Advances in Neural Information 896
Processing Systems, 35:24824–24837. 897

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, 898
Sanjeev Arora, and Danqi Chen. 2024. Less: Se- 899
lecting influential data for targeted instruction tuning. 900
arXiv preprint arXiv:2402.04333. 901

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin 902
Liu, Zhiyu Mei, Guangju Wang, Chao Yu, and 903
Yi Wu. 2024. Is dpo superior to ppo for llm align- 904
ment? a comprehensive study. arXiv preprint 905
arXiv:2404.10719. 906

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 907
Thomas L Griffiths, Yuan Cao, and Karthik 908
Narasimhan. 2023. Tree of thoughts: Deliberate 909
problem solving with large language models. arXiv 910
preprint arXiv:2305.10601. 911

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, 912
Zhengying Liu, Yu Zhang, James T Kwok, Zhen- 913
guo Li, Adrian Weller, and Weiyang Liu. 2023. 914
Metamath: Bootstrap your own mathematical ques- 915
tions for large language models. arXiv preprint 916
arXiv:2309.12284. 917

11

http://arxiv.org/abs/2405.14734
http://arxiv.org/abs/2405.14734
http://arxiv.org/abs/2405.14734
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward-HF
https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward-HF
https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward-HF
https://doi.org/10.2307/2346567
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/2406.11191
https://arxiv.org/abs/2406.11191
https://arxiv.org/abs/2406.11191
https://www.together.ai/models/llama-3-1
https://www.together.ai/models/llama-3-1
https://www.together.ai/models/llama-3-1
https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook
https://github.com/huggingface/alignment-handbook

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan918
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,919
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,920
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging921
llm-as-a-judge with mt-bench and chatbot arena.922

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao923
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,924
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,925
Luke Zettlemoyer, and Omer Levy. 2023. Lima:926
Less is more for alignment. Advances in Neural927
Information Processing Systems.928

Jeffrey Zhou, Ki Ren Cheong, Alison Wang, and Karthik929
Narasimhan. 2024. Prompt-based monte carlo tree930
search for mitigating hallucinations in large language931
models. arXiv preprint arXiv:2403.11315.932

12

http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2306.05685

A Additional Experimental Details933

A.1 Implementation Details934

We implemented all models and training proce-935

dures using the HuggingFace Transformers library936

(version 4.43.1). For preference optimization, we937

used the DPO and ORPO implementations from938

the TRL library (version 0.9.6), which provide op-939

timized implementations of these algorithms. All940

training procedures were conducted on a compute941

cluster with 8 NVIDIA A100 80GB GPUs using942

mixed-precision training (bfloat16) to accelerate943

training while maintaining numerical stability for944

mathematical operations.945

For baseline model inference and data genera-946

tion, we accessed the Llama-3.1-8B-Instruct model947

through the Together AI API (Together AI, 2024)948

with consistent generation parameters across ex-949

periments (unless otherwise specified). All model950

evaluations on the test sets were performed with951

greedy decoding (temperature = 0) to ensure de-952

terministic outputs and fair comparisons across953

methods. For the different data generation strate-954

gies, we used OptiLLM (version 0.1.8) for MCTS955

and CoT implementations, and developed our cus-956

tom DTS pipeline using core components from957

the DSPy framework (version 2.6.16). For repro-958

ducibility, we set random seeds consistently (42)959

across all experiments.960

A.2 Reward Model Analysis961

Selecting an appropriate reward model is crucial962

for effective preference data creation, as it directly963

affects the quality of paired examples used dur-964

ing optimization. An ideal reward model should965

consistently assign higher scores to correct mathe-966

matical solutions than to incorrect ones, ensuring967

that the preference signal aligns with mathematical968

accuracy.969

We conducted a comprehensive evaluation of970

several reward models using the GSM8K test set.971

For each problem, we generated solutions using972

various LLMs and compared the reward scores as-973

signed to these solutions against those assigned to974

ground truth solutions. We tracked four key met-975

rics, as defined in Section 4.2: correct_lower976

(CL), correct_higher (CH), incorrect_lower977

(IL), and incorrect_higher (IH). The most criti-978

cal metric is IH, which represents cases where an979

incorrect solution received a higher reward than the980

ground truth—these cases directly undermine the981

preference learning objective.982

As shown in Table 4, Llama-3.1-Nemotron-70B- 983

Reward-HF demonstrated the highest reliability, 984

achieving the lowest error rate of 3.11% when 985

evaluating Llama-3.2-3B-IT outputs. The URM- 986

LLama-3.1-8B model also performed well with er- 987

ror rates below 3.5% for the Llama-3 series, though 988

it struggled more with Mistral-7B outputs. In con- 989

trast, the original Skywork-Reward-Gemma-2-27B 990

model showed the highest error rates (>12%), fre- 991

quently assigning higher rewards to incorrect solu- 992

tions, though its v0.2 iteration showed substantial 993

improvement. 994

To further validate our reward model selection, 995

we extended our evaluation to the more challeng- 996

ing MetaMathQA dataset, sampling 4,919 prob- 997

lems. The Llama-3.1-Nemotron-70B-Reward-HF 998

model maintained consistent performance with a 999

2.76% error rate (136 IH cases out of 4,919 total 1000

evaluations), confirming its robustness across dif- 1001

ferent mathematical problem distributions. Based 1002

on these results, we selected Llama-3.1-Nemotron- 1003

70B-Reward-HF as our reward model for all pref- 1004

erence data generation in our experiments. 1005

A.3 Judgment and Completion Scoring Setup 1006

Accurate assessment of mathematical solutions re- 1007

quires a robust scoring mechanism that can evaluate 1008

both the correctness of final answers and the qual- 1009

ity of intermediate reasoning steps. To achieve this, 1010

we implemented a structured judgment framework 1011

using Nvidia’s Llama-3.1-Nemotron-70B-Instruct- 1012

HF model as our scoring engine. 1013

A.3.1 Scoring Protocol 1014

We normalized scores on a 0-100 scale, where 1015

100 represents completely correct solutions with 1016

high-quality reasoning, and 0 indicates entirely in- 1017

correct solutions with flawed reasoning paths. To 1018

ensure consistent and meaningful evaluations, we 1019

designed a comprehensive system prompt that in- 1020

structs the judge model to: 1021

1. Evaluate correctness relative to reference so- 1022

lutions 1023

2. Award partial credit for correct reasoning 1024

steps (up to 60 points) 1025

3. Reserve scores of 80+ for completely correct 1026

solutions 1027

4. Provide detailed explanations for point deduc- 1028

tions 1029

The full judgment prompt is structured as fol- 1030

lows: 1031

13

Reward Model Generator Model CL CH IL IH Error (%)

URM-LLama-3.1-8B

Mistral-7B-IT-v0.1 345 222 657 95 7.20%
Gemma-2-9B-IT 313 853 73 80 6.07%
Llama-3.2-3B-IT 691 349 235 44 3.34%
Llama-3.1-8B-IT 735 364 175 45 3.41%

Llama-3.1-Nemotron-70B-Reward-HF
Gemma-2-9B-IT 479 455 322 63 4.78%
Llama-3.2-3B-IT 398 647 233 41 3.11%
Llama-3.1-8B-IT 406 697 173 43 3.26%

Skywork-Reward-Gemma-2-27B
Llama-3.2-3B-IT 28 1012 119 160 12.13%
Llama-3.1-8B-IT 32 1048 78 161 12.21%

Skywork-Reward-Gemma-2-27B-v0.2 Llama-3.1-8B-IT 560 545 146 68 5.16%

Table 4: Reward Model Evaluation on the GSM8K Test Set. We evaluate various reward models against different
generator models, tracking: CL (Correct Lower)—model’s correct output received lower reward than ground
truth; CH (Correct Higher)—model’s correct output received higher reward than ground truth; IL (Incorrect
Lower)—model’s incorrect output received lower reward than ground truth; IH (Incorrect Higher)—model’s
incorrect output received higher reward than ground truth. The Error rate shows the percentage of incorrect outputs
receiving higher rewards than ground truth, calculated as IH/(CL+CH+IL+IH).

Here is a math question: {question}1032

Here is the gold answer: {gold_answer}1033

Here is a student answer: {gener-1034

ated_answer}1035

You are a math teacher grading a stu-1036

dent’s answer. You need to judge if the1037

student answer is correct based on the1038

gold answer. You need to follow the fol-1039

lowing rubrics: 1. The score should be1040

between 0 and 100. 2. If the student1041

answer is not correct based on the gold1042

answer, deduct points from the score1043

for each wrong step. Add points to the1044

score for each correct step, up to a max-1045

imum of 60 points. 3. If the student1046

answer is correct based on the gold an-1047

swer, please give a final score above 80.1048

4. Please give a detailed explanation in1049

bullet points for each point deducted. In1050

the end, the score and explanation should1051

be in the following format. Note that the1052

final output should be parsed as a json1053

object.1054

<explanation>1055

{"correct": true/false, "score": integer}1056

A.3.2 Implementation Details1057

To ensure scoring consistency and determinism, we1058

set the generation parameters to temperature=0.01059

and max_tokens=4,096. The structured JSON1060

output format ({correct, score}) facilitated au-1061

tomated extraction and processing using regular 1062

expressions. In rare cases where the judge model 1063

produced malformed outputs or failed to follow the 1064

required format, we assigned a score of -1 and ex- 1065

cluded these samples from subsequent analysis to 1066

maintain data quality. 1067

The MetaMathQA dataset provided high-quality 1068

reference solutions that served as our gold standard 1069

for comparison. As noted in our reward model 1070

analysis (Table 4), we observed occasional cases 1071

where reference solutions received lower scores 1072

than incorrect model-generated solutions. 1073

In our preliminary analysis, we found that this 1074

judgment approach provided more nuanced and 1075

informative scores compared to simple binary cor- 1076

rectness checks, enabling finer distinctions between 1077

solutions with similar final answers but different 1078

reasoning quality. The detailed explanations pro- 1079

duced by the judge model also provided valuable 1080

insights for qualitative analysis of model perfor- 1081

mance patterns and failure modes. 1082

A.4 Preference Optimization Configuration 1083

Effective preference optimization requires care- 1084

ful configuration of training parameters to balance 1085

learning dynamics, computational efficiency, and 1086

model stability. We implemented a consistent train- 1087

ing infrastructure across all fine-tuning methods, 1088

varying only the specific hyperparameters detailed 1089

in our ablation study (Section 5.2). 1090

Our training infrastructure leveraged DeepSpeed 1091

14

ACCELERATE_LOG_LEVEL=info accelerate
launch \
--config_file deepspeed_zero3.yaml \
--dataset_name dpo_dataset \
--model_name_or_path meta -llama/

Llama -3.1-8B-Instruct \
--learning_rate 3.0e-7 \
--beta 0.01 \
--lr_scheduler_type cosine \
--bf16 true \
--num_train_epochs 5 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 16 \
--gradient_checkpointing \
--gradient_checkpointing_kwargs ’{"

use_reentrant ": false}’ \
--logging_steps 25 \
--eval_strategy ’no’ \
--optim adamw_torch \
--attn_implementation

flash_attention_2 \
--save_strategy epoch \
--seed 42 \
--warmup_ratio 0.1 \
--no_remove_unused_columns

Figure 4: Representative DPO training configuration
used for fine-tuning. We maintained this base configu-
ration across all preference optimization methods, ad-
justing only the method-specific hyperparameters (e.g.,
learning rate, beta, gamma) according to our ablation
studies.

ZeRO-3 for memory optimization (Rasley et al.,1092

2020), FlashAttention-2 for efficient attention com-1093

putation (Dao, 2024), and mixed-precision training1094

(bfloat16) to accelerate training while maintaining1095

numerical stability. We employed gradient check-1096

pointing to reduce memory requirements, enabling1097

us to process longer mathematical reasoning se-1098

quences without compromising batch size.1099

For all preference optimization methods (DPO,1100

ORPO, SimPO), we maintained a global batch size1101

of 16, configured as per GPU batch size of 1 with1102

16 gradient accumulation steps. This batch size1103

was selected based on prior work (Meng et al.,1104

2024) suggesting that moderate batch sizes (16-32)1105

achieve optimal performance for preference learn-1106

ing across diverse domains. Each training run was1107

executed for 5 epochs with a cosine learning rate1108

schedule and 10% warmup ratio to ensure stable1109

optimization dynamics.1110

Figure 4 shows a representative configuration1111

for DPO training. When implementing other meth-1112

ods, we maintained this base configuration while1113

adjusting method-specific parameters:1114

• DPO: Varying learning rates (1e-7 to 7e-7)1115

and beta values (0.01, 0.05, 0.1) 1116

• ORPO: Varying learning rates (7e-8 to 5e-7) 1117

with lambda fixed at 1.0 1118

• SimPO: Varying learning rates (5e-7 to 1e-6), 1119

beta values (2.5, 10), and gamma values (0.3, 1120

0.5, 0.55) 1121

For each method-strategy combination, we con- 1122

ducted a grid search over these hyperparameters as 1123

detailed in Section 5.2, totaling 76 distinct train- 1124

ing runs. This comprehensive approach enabled 1125

us to identify optimal configurations for each data 1126

generation strategy, revealing important patterns 1127

in how hyperparameter sensitivity varies with data 1128

characteristics. 1129

A.5 Token Count Estimation for 1130

Computational Efficiency Analysis 1131

To quantify the computational resources required 1132

by each data generation strategy, we developed a 1133

systematic approach for estimating relative com- 1134

pute costs based on token processing requirements. 1135

We use a normalized compute ratio expressed as: 1136

Relative Compute =
tp + to

tbase
p + tbase

o

1137

Where tp represents the mean prompt token 1138

count for the strategy being measured, to is the 1139

mean output token count, and the denominator 1140

contains the corresponding values for our baseline 1141

strategy. This metric captures the computational 1142

overhead of each strategy relative to the simplest 1143

approach. 1144

A.5.1 Strategy-Specific Token Analysis 1145

Baseline Strategy: For our reference implementa- 1146

tion, we measured an average problem length of 41 1147

tokens, a system prompt of 77 tokens, and a mean 1148

generation length of 364 tokens, resulting in a total 1149

token count of 41 + 77 + 364 = 482 tokens per 1150

problem. 1151

Chain-of-Thought: Implemented using Op- 1152

tiLLM’s Chain-of-Thought framework3, this ap- 1153

proach uses a structured thinking template of 258 1154

tokens combined with the problem (41 tokens), 1155

totaling 299 input tokens. We observed signif- 1156

icantly longer generations averaging 661 tokens 1157

(due to the explicit reasoning steps and occasional 1158

verbose output), bringing the total to 960 tokens 1159

3https://github.com/codelion/optillm/blob/
main/optillm/cot_reflection.py

15

https://github.com/codelion/optillm/blob/main/optillm/cot_reflection.py
https://github.com/codelion/optillm/blob/main/optillm/cot_reflection.py

per problem. This corresponds to a compute ratio1160

of 960/482 = 1.99×.1161

Monte Carlo Tree Search: Our MCTS im-1162

plementation uses a simulation depth of 1 and1163

performs 2 simulations. Based on the OptiLLM1164

MCTS implementation4, each problem requires a1165

total of 8 model calls: an initial expansion, plus 41166

LLM calls per simulation (generate_actions(), ap-1167

ply_action(), and evaluation_state()) (Zhou et al.,1168

2024; Feng et al., 2023). With an average output of1169

292 tokens per model call, this strategy consumes1170

approximately 292× 8 = 2, 336 tokens, yielding a1171

compute ratio of 2, 336/482 = 4.85×.1172

Diversified-ThinkSolve (DTS): This strategy1173

requires two sequential LLM calls per problem:1174

• Thought Generation: System prompt (56 to-1175

kens) + problem (41 tokens) = 97 input tokens,1176

producing an average of 50 output tokens1177

• Solution Generation: System prompt (27 to-1178

kens) + problem + thought (91 tokens) = 1181179

input tokens, generating an average of 2301180

output tokens1181

The total token count for DTS is (97+118)+(50+1182

230) = 495 tokens, resulting in a compute ratio of1183

495/482 = 1.03× relative to baseline.1184

A.5.2 Efficiency Analysis1185

This token-based analysis reveals significant differ-1186

ences in computational requirements across strate-1187

gies. While DTS achieves substantially better per-1188

formance than baseline (as shown in Section 5.1),1189

it does so with only a 3% increase in computa-1190

tional cost. In contrast, MCTS requires nearly 51191

times more compute while delivering less impres-1192

sive results. These efficiency metrics provide cru-1193

cial context for evaluating the practical utility of1194

each strategy, especially in resource-constrained1195

scenarios where computational efficiency is a key1196

consideration alongside raw performance.1197

B Additional Results1198

B.1 GSM8K 5-shot Performance Analysis1199

While our main evaluation focused on zero-shot1200

performance, few-shot evaluation provides valu-1201

able insights into how preference optimization af-1202

fects model performance when provided with ex-1203

emplars. Table 5 presents the GSM8K 5-shot ac-1204

4https://github.com/codelion/optillm/blob/
main/optillm/mcts.py

Base Model (No fine-tuning): 83.9%

Strategy SFT DPO ORPO SimPO

Baseline 84.2% 86.0% 85.1% 85.9%
CoT 84.1% 85.1% 85.5% 85.3%
MCTS 84.8% 84.9% 85.3% 85.1%
DTS 84.8% 85.8% 85.8% 85.0%

Table 5: GSM8K 5-shot accuracy (%) across data gener-
ation strategies and optimization methods using optimal
hyperparameter configurations. The highest score for
each fine-tuning method is bold with the best overall
result underlined. All models show improvement over
the base model’s 83.9% accuracy.

curacy results across all strategies and fine-tuning 1205

methods. 1206

B.1.1 Key Findings 1207

All fine-tuned models demonstrated improvements 1208

over the base model’s already strong 5-shot perfor- 1209

mance (83.9%), with gains ranging from modest 1210

(+0.2%) to substantial (+2.1%). Several notable 1211

patterns emerged from our analysis: 1212

• Strategy-Method Interactions: Unlike the 1213

0-shot scenario where DTS consistently out- 1214

performed other strategies, the baseline strat- 1215

egy achieved the highest overall 5-shot accu- 1216

racy (86.0%) when combined with DPO. This 1217

suggests that the benefits of diverse reason- 1218

ing paths may be partially redundant with the 1219

information provided by exemplars. 1220

• Method-Specific Performance: DTS 1221

showed the most consistent performance 1222

across different fine-tuning methods, scoring 1223

strongly with SFT (84.8%), DPO (85.8%), 1224

and ORPO (85.8%). However, it unex- 1225

pectedly underperformed with SimPO 1226

(85.0%) relative to other strategies, despite 1227

SimPO being the optimal method in 0-shot 1228

evaluations. 1229

• Hyperparameter Consistency: We observed 1230

interesting patterns in optimal hyperparame- 1231

ters for 5-shot performance. For both DPO 1232

and ORPO, a learning rate of 5e-7 consis- 1233

tently yielded the best results across all data 1234

generation strategies, with DPO also favoring 1235

β = 0.01. For SimPO, we found strategy- 1236

dependent optimal configurations: baseline, 1237

DTS, and CoT performed best with β = 10, 1238

16

https://github.com/codelion/optillm/blob/main/optillm/mcts.py
https://github.com/codelion/optillm/blob/main/optillm/mcts.py

γ = 0.3, and learning rates of 5e-7 or 8e-7,1239

while MCTS uniquely benefited from β =1240

2.5, γ = 0.55, and a learning rate of 8e-7.1241

B.1.2 Implications1242

The differences between 0-shot and 5-shot perfor-1243

mance patterns suggest that preference optimiza-1244

tion may operate differently when exemplars are1245

available. While diverse reasoning paths (as in1246

DTS) appear critical for strong 0-shot performance,1247

more conventional approaches like our baseline1248

strategy may be sufficient when combined with1249

few-shot prompting.1250

B.2 Epoch-wise Analysis of MATH1251

Benchmark Performance1252

Understanding how mathematical reasoning capa-1253

bilities evolve during training provides valuable1254

insights into the learning dynamics of different pref-1255

erence optimization approaches. Table 6 presents1256

a comprehensive view of MATH benchmark per-1257

formance across all five training epochs for each1258

strategy-method combination.1259

Our epoch-by-epoch analysis reveals distinct1260

training patterns across different approaches:1261

Baseline Strategy: While SFT performance1262

gradually declined with additional epochs, prefer-1263

ence optimization methods showed non-monotonic1264

improvement patterns. Most notably, DPO1265

achieved its peak performance (52.2%) at the final1266

epoch, demonstrating continued learning through-1267

out training. Both ORPO and SimPO reached their1268

peak performance in earlier epochs (epochs 3 and1269

2, respectively) before beginning to decline, sug-1270

gesting potential overfitting.1271

Chain-of-Thought (CoT): Interestingly, CoT1272

methods consistently reached their peak perfor-1273

mance at later epochs (typically epoch 4) compared1274

to other strategies. This delayed optimization might1275

suggest that extracting useful signals from CoT-1276

generated preferences requires more training time,1277

perhaps due to the additional reasoning steps that1278

must be learned.1279

Monte Carlo Tree Search (MCTS): MCTS ex-1280

hibited the most unstable training dynamics, par-1281

ticularly when combined with DPO and SimPO.1282

While MCTS+SimPO started strongly (50.6%1283

at epoch 1), it catastrophically collapsed to1284

single-digit performance by epoch 3. Similarly,1285

MCTS+DPO declined from 49.2% to below 40%1286

in later epochs. This instability suggests that pref-1287

erences generated through MCTS may contain con-1288

flicting or inconsistent signals that become increas- 1289

ingly problematic with continued training. 1290

Diversified-ThinkSolve (DTS): The DTS strat- 1291

egy demonstrated remarkable stability across train- 1292

ing epochs, with all methods maintaining strong 1293

performance throughout. The combination of DTS 1294

with DPO achieved the highest overall MATH accu- 1295

racy (52.4%) at epoch 2, followed by a temporary 1296

decline and subsequent recovery in later epochs. 1297

SimPO exhibited a similar pattern with its peak 1298

(52.0%) at epoch 4. This oscillatory behavior might 1299

indicate that models trained on diverse reasoning 1300

paths explore different regions of the solution space 1301

during training. 1302

B.3 ORPO Learning Rate Sensitivity Analysis 1303

Learning Rate GSM8K 0-shot MATH

8e-6 45.6% 46.4%
2e-6 68.4% 48.2%
7e-7 76.9% 46.8%

Table 7: Impact of learning rate on ORPO performance
using the baseline data generation strategy.

While most preference optimization methods are 1304

known to be sensitive to learning rate selection, 1305

ORPO deserves special attention due to the sig- 1306

nificantly higher learning rates recommended in 1307

the original paper (8e-6) compared to our optimal 1308

findings. We conducted targeted experiments to 1309

quantify this sensitivity and determine appropriate 1310

learning rate ranges for mathematical reasoning 1311

tasks. 1312

As shown in Table 7, ORPO’s performance ex- 1313

hibits extreme sensitivity to learning rate selection 1314

when applied to mathematical reasoning tasks. Us- 1315

ing the originally recommended learning rate of 8e- 1316

6 results in catastrophically poor performance on 1317

GSM8K (45.6%), significantly worse than even the 1318

untuned base model (76.1%). Reducing the learn- 1319

ing rate by approximately an order of magnitude (to 1320

7e-7) restores and slightly enhances performance 1321

(76.9%). 1322

This stark difference can be attributed to the 1323

unique characteristics of mathematical reasoning 1324

tasks compared to general instruction-following 1325

or conversational benchmarks. Mathematical rea- 1326

soning typically requires precise manipulation of 1327

symbols and strict adherence to formal rules, which 1328

may be disrupted by aggressive parameter updates. 1329

17

Strategy Method Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

Baseline

SFT 48.4% 47.8% 47.6% 47.4% 47.2%
DPO 47.4% 50.2% 47.8% 50.2% 52.2%
ORPO 48.8% 49.4% 51.8% 47.6% 48.0%
SimPO 46.6% 50.8% 48.4% 47.4% 47.0%

CoT

SFT 48.4% 48.0% 48.0% 50.6% 50.0%
DPO 47.2% 47.2% 48.4% 50.8% 47.0%
ORPO 46.8% 46.4% 49.0% 51.2% 47.6%
SimPO 47.0% 50.4% 47.6% 47.2% 48.2%

MCTS

SFT 47.8% 48.8% 47.4% 47.6% 46.6%
DPO 48.2% 49.2% 39.2% 39.8% 37.8%
ORPO 49.4% 49.8% 48.0% 47.2% 50.8%
SimPO 50.6% 42.8% 9.8% 9.0% 9.0%

DTS

SFT 48.0% 48.6% 49.6% 48.8% 49.2%
DPO 50.4% 52.4% 48.2% 48.4% 51.6%
ORPO 48.0% 50.6% 49.8% 49.4% 50.6%
SimPO 48.8% 51.2% 47.8% 52.0% 48.0%

Table 6: MATH benchmark accuracy (%) progression across training epochs for all data generation strategies and
optimization methods. Results shown represent the best hyperparameter configuration for each strategy-method pair.
The highest score for each combination is highlighted in bold, while the overall best result is underlined.

The optimal learning rate we identified (7e-7) is1330

approximately 11 times smaller than the originally1331

recommended value, highlighting the importance1332

of domain-specific hyperparameter tuning.1333

Interestingly, while GSM8K performance was1334

dramatically affected by learning rate selection,1335

MATH benchmark results showed more modest1336

variation (46.4% to 48.2%). This differential sensi-1337

tivity might be explained by the higher complexity1338

and diversity of problems in the MATH dataset,1339

which may require more substantial model adapta-1340

tion regardless of learning rate.1341

These findings emphasize the critical importance1342

of carefully tuning learning rates when applying1343

preference optimization techniques to specialized1344

domains like mathematical reasoning, rather than1345

relying on default values established for general-1346

purpose language tasks.1347

C Analysis of Generated Solutions1348

To provide qualitative insights into how different1349

data generation strategies influence mathematical1350

reasoning patterns, we examined solution charac-1351

teristics across models trained with each approach.1352

This section presents a comparative analysis of so-1353

lutions to an illustrative problem from the Meta-1354

MathQA dataset.1355

C.1 Example Solutions 1356

Problem: Diego baked 12 cakes for his 1357

sister’s birthday. Donald also baked 4 1358

cakes, but ate x while waiting for the 1359

party to start. There are 15 cakes left. 1360

What is the value of unknown variable 1361

x? 1362

Baseline Solution: 1363

To find the value of the unknown variable 1364

x, let’s follow these steps: 1365

Step 1: Find the total number of cakes 1366

initially made by both Diego and Donald. 1367

We are given that Diego baked 12 cakes, 1368

and Donald baked 4 cakes. 1369

So, total_cakes = 1370

cakes_baked_by_Diego + 1371

cakes_baked_by_Donald = 12+4 = 16 1372

Step 2: Understand the final number of 1373

cakes left. 1374

We know that after Donald ate x cakes, 1375

15 cakes are left. 1376

So, the initial total number of cakes mi- 1377

nus the number eaten is equal to 15: 1378

total_cakes − x = 15 1379

18

Since total_cakes = 16 from Step 1, we1380

substitute 16 for total_cakes:1381

16− x = 151382

Step 3: Find the value of the unknown1383

variable x.1384

Now we will isolate x by getting x on1385

one side of the equation:1386

16− x = 151387

We need to solve for x: x = 16− 151388

Step 4: Perform the operation to isolate1389

x.1390

Using simple arithmetic: x = 11391

Final Answer: 11392

Chain-of-Thought (CoT) Solution:1393

Thinking:1394

Let’s denote the total number of cakes1395

initially as T .1396

Donald initially had 4 cakes and ate x1397

cakes. Therefore, Donald had 4−x cakes1398

left.1399

Diego initially had 12 cakes, so after1400

Donald ate some, the total number of1401

cakes left is the sum of the remaining1402

cakes from both Diego and Donald. The1403

equation can be written as: 12 + (4 −1404

x) = 15.1405

First, let’s simplify the equation by com-1406

bining the constants: 12 + 4− x = 15.1407

Combine the constants: 16− x = 15.1408

Now, let’s isolate the variable x by sub-1409

tracting 16 from both sides of the equa-1410

tion. −x = −1.1411

To isolate x, multiply both sides of the1412

equation by −1. x = 1.1413

Reflection:1414

I have simply applied basic algebraic ma-1415

nipulations to the given equation. There1416

are no obvious errors in this process, and1417

I have checked the steps for consistency1418

and accuracy. However, it’s essential1419

to ensure that all variables are correctly1420

isolated and that the algebraic manipula-1421

tions are accurately performed.1422

Output:1423

x = 1.1424

Monte Carlo Tree Search (MCTS) Solution: 1425

To find the value of x, we need to deter- 1426

mine the total number of cakes initially. 1427

Diego baked 12 cakes and Donald baked 1428

4 cakes. However, since the information 1429

about how many cakes Donald initially 1430

had baked was not required for solving 1431

the problem you can just sum up Diego 1432

and Donald’s initial cakes to determine 1433

the total. 1434

Initial total cakes = Diego’s cakes + Don- 1435

ald’s cakes = 12 + 4 = 16 cakes. 1436

After waiting for the party to start, there 1437

are 15 cakes left. 1438

We subtract the number of remaining 1439

cakes from the total number of cakes to 1440

find x. This equation would be: 1441

Initial total cakes − remaining cakes = 1442

x. 1443

16− 15 = x 1444

x = 1. 1445

The value of the unknown variable x is 1. 1446

Donald ate 1 cake while waiting for the 1447

party to start. 1448

Diversified-ThinkSolve (DTS) Solution: 1449

Thought Output: We can use the con- 1450

cept of inverse operations to isolate x. 1451

Subtracting 12 from both sides of the 1452

equation gives us: −x = −5. 1453

Solution Output: To find the value of 1454

x, we need to isolate x by using in- 1455

verse operations. The correct equation is 1456

16− x = 15. Subtracting 16 from both 1457

sides of the equation gives us −x = −1. 1458

Multiplying both sides of the equation 1459

by −1 gives us x = 1. 1460

C.2 Qualitative Analysis of Solution 1461

Characteristics 1462

Our examination of solutions generated across dif- 1463

ferent data strategies reveals distinctive patterns 1464

in reasoning approaches, solution structures, and 1465

error patterns. 1466

Baseline Solutions typically exhibit a highly 1467

structured, step-by-step approach with explicit enu- 1468

meration of each reasoning stage. The solution 1469

organization appears optimized for instructional 1470

19

clarity, with distinct sections and a formal problem-1471

solving framework. While effective, this approach1472

sometimes leads to unnecessarily verbose explana-1473

tions even for straightforward problems.1474

CoT Solutions feature extensive explanatory1475

content with distinct thinking and reflection phases.1476

The thinking phase often includes variable defini-1477

tions and elaborate equation formulations, while1478

the reflection phase provides meta-analysis of the1479

solution approach. This structure appears to prompt1480

deeper verification and error-checking, but some-1481

times at the cost of parsimony. The explicit veri-1482

fication step may contribute to CoT’s inconsistent1483

performance observed in our quantitative results.1484

MCTS Solutions exhibit a remarkably consis-1485

tent structure across problems, typically beginning1486

with a standardized phrase ("To find the value of1487

x, we need to determine...") that suggests conver-1488

gence toward optimal response templates through1489

the search process. The solutions tend to be direct1490

and focused on the most efficient path discovered1491

during tree search. However, this approach occa-1492

sionally leads to incorrect convergence on harder1493

problems when the search depth is insufficient to1494

fully explore the solution space.1495

DTS Solutions demonstrate a unique two-phase1496

structure reflecting the strategy’s decomposition1497

approach. The initial "thought output" often con-1498

tains a high-level strategy or alternative solution1499

approach, while the subsequent "solution output"1500

provides a direct, efficient solution path. This dual1501

structure appears to enable a balance between con-1502

ciseness and reasoning depth. The example solu-1503

tion illustrates how DTS can derive a more direct1504

mathematical approach (using inverse operations)1505

compared to other methods.1506

D Diversified-ThinkSolve (DTS)1507

Implementation Details1508

DTS was implemented using DSPy framework1509

components, with a modular design that separates1510

thought generation from solution execution. Our1511

implementation consists of two primary modules1512

which can be found in Figure 5 and Figure 6. The1513

DTS implementation incorporates several key de-1514

sign elements:1515

Modularity: By separating thought generation1516

from solution execution, each component can be1517

independently optimized.1518

Robust Error Handling: Comprehensive fall-1519

back mechanisms prevent pipeline failures during1520

batch processing. 1521

Structured Output Processing: Regex-based 1522

parsing extracts individual thoughts from varied 1523

model outputs, ensuring consistent downstream 1524

processing. 1525

Guaranteed Diversity: The system enforces a 1526

minimum of five distinct approaches per problem, 1527

even when the base model tends toward homogene- 1528

ity. 1529

The complete pipeline processes each problem 1530

through ThoughtGenerator, passes each generated 1531

approach to SolutionGenerator, collects the result- 1532

ing solutions, scores them with the reward model, 1533

and creates preference pairs for optimization. This 1534

architecture maintains computational efficiency 1535

(1.03× baseline) while producing the diverse, high- 1536

quality preference data that enabled DTS’s superior 1537

performance. 1538

20

1 class ThoughtGenerator(dspy.Module):
2 def __init__(self):
3 super().__init__ ()
4 self.gen_thoughts = dspy.ChainOfThought("math_problem -> thoughts: List[str]

")
5
6 def forward(self , math_problem: str) -> List[str]:
7 try:
8 prompt_template = (
9 "Given the math problem: {problem}, provide 5 possible approaches or

"
10 "initial thoughts on how to solve it, including any relevant

mathematical "
11 "concepts , formulas , or techniques that may be applied. Consider

multiple "
12 "perspectives and potential solution paths , and describe each

thought in 1-2 sentences."
13)
14
15 result = self.gen_thoughts(math_problem=prompt_template.format(problem=

math_problem))
16 thoughts = result.reasoning if hasattr(result , ’reasoning ’) else []
17
18 # process thoughts
19 if isinstance(thoughts , str):
20 import re
21 thoughts = re.split(r’\d+\.|\n\d+\.|\n\d+\)’, thoughts)
22 thoughts = [t.strip() for t in thoughts if t.strip()]
23
24 # ensure exactly 5 thoughts
25 if len(thoughts) < 5:
26 while len(thoughts) < 5:
27 thoughts.append(f"Alternative approach {len(thoughts) + 1}:

Apply fundamental mathematical principles to solve step by
step.")

28
29 return thoughts
30
31 except Exception as e:
32 print(f"Error in ThoughtGenerator: {str(e)}")
33 return [f"Default approach {i+1}: Solve the problem systematically using

basic mathematical principles."
34 for i in range (5)]

Figure 5: ThoughtGenerator module implementation responsible for generating diverse mathematical reasoning
approaches.

21

1 class SolutionGenerator(dspy.Module):
2 def __init__(self):
3 super().__init__ ()
4 self.gen_solution = dspy.ChainOfThought("math_problem , approach -> solution:

str")
5
6 def forward(self , math_problem: str , approach: str) -> str:
7 try:
8 prompt_template = (
9 "Given the math problem: {problem }\n"

10 "Using this approach: {approach }\n"
11 "Please provide a detailed solution showing all work and steps."
12)
13
14 result = self.gen_solution(math_problem=math_problem , approach=approach)
15
16 return result.reasoning if hasattr(result , ’reasoning ’) else "Unable to

generate solution."
17
18 except Exception as e:
19 print(f"Error in SolutionGenerator: {str(e)}")
20 return "Error occurred while generating solution."

Figure 6: SolutionGenerator module implementation that produces complete solutions based on specific reasoning
approaches.

22

