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Abstract

While recent advances in preference learning
have enhanced alignment in human feedback,
mathematical reasoning remains a persistent
challenge. We investigate how data diversi-
fication strategies in preference optimization
can improve the mathematical reasoning abil-
ities of large language models (LLMs). We
evaluate three common data generation meth-
ods—temperature sampling, Chain-of-Thought
prompting, Monte Carlo Tree Search (MCTS),
and introduce Diversified-ThinkSolve (DTS), a
novel structured approach that systematically
decomposes problems into diverse reasoning
paths. Our results show that with strategically
diversified preference data, models can substan-
tially improve mathematical reasoning perfor-
mance, with the best approach yielding gains
of 7.1% on GSM8K and 4.2% on MATH over
the base model. Despite its strong performance,
DTS incurs only a marginal computational over-
head (1.03x) compared to the baseline, while
MCTS is nearly five times more costly with
lower returns. These findings demonstrate
that structured exploration of diverse problem-
solving methods creates more effective pref-
erence data for mathematical alignment than
traditional approaches.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities across a wide range of
tasks, but mathematical reasoning remains a partic-
ularly challenging domain (Luo et al., 2023; Light-
man et al., 2023). While recent work has shown
that Reinforcement Learning from Human Feed-
back (RLHF) (Stiennon et al., 2020) and preference
optimization techniques like Direct Preference Op-
timization (DPO) (Rafailov et al., 2023) can sub-
stantially improve LLM performance on general
tasks, their application to mathematical reasoning
has received less attention.

In standard preference optimization scenarios,
datasets typically consist of unmodified prefer-

ence pairs drawn from human annotations or
model-generated evaluations. While such datasets
can yield performance improvements (Guo et al.,
2024b; Tunstall et al., 2023; Xia et al., 2024) in
alignment with human preference, we hypothesize
that more structured and diverse preference data
can lead to significantly better performance specifi-
cally tailored to mathematical reasoning (Liu et al.,
2024b).

Our work explores how strategically designed
data generation and diversification methods can
enhance the effectiveness of preference optimiza-
tion for mathematical reasoning. We propose sev-
eral approaches to generate preference data that
incorporate diverse reasoning strategies, problem
reformulations, and solution methodologies. By
leveraging techniques such as Chain-of-Thought
(CoT) prompting (Wei et al., 2022; Kojima et al.,
2022), Monte Carlo Tree Search (MCTS) (Silver
et al., 2016; Feng et al., 2023), and specialized
thought-reflection mechanisms, we create datasets
that expose LLMs to a richer space of mathemat-
ical problem-solving strategies during preference
optimization.

Among these approaches, we introduce
Diversified-ThinkSolve (DTS), a novel structured
method that systematically decomposes problems
into diverse problem-solving approaches before
generating solutions. DTS explicitly separates
the thought generation process from solution
execution, enabling exploration of multiple
problem-solving strategies while maintaining
computational efficiency. This approach addresses
a fundamental limitation of traditional sampling
methods—their inability to systematically explore
diverse thinking pathways.

We conduct a comprehensive comparative analy-
sis of these strategies across standard mathematics
benchmarks. Our DTS approach yields significant
improvements in both GSM8K and MATH over
the base model, while incurring only marginal com-



putational overhead. Our findings highlight that
structured exploration of analytical approaches cre-
ates more effective preference data for mathemati-
cal alignment than traditional approaches, and that
data quality and diversity can be more crucial than
optimizing algorithmic approaches.

2 Background

In this section, we provide the necessary back-
ground and information regarding alignment train-
ing for LLMs. We start by providing a background
on the RLHF process and then we discuss post-
training alignment techniques utilized in this paper.

2.1 Reinforcement Learning from Human
Feedback

Often after we pre-train a model we want to further
adapt it to meet certain needs or specifications (Sti-
ennon et al., 2020; Bai et al., 2022a; Ouyang et al.,
2022). Reinforcement Learning from Human Feed-
back (RLHF) has become a standard approach for
aligning large language models with human pref-
erences and values (Christiano et al., 2017; Leike
et al., 2018). RLHF emerged as a solution to the
challenge of aligning Al systems with human val-
ues and preferences when these values were diffi-
cult to specify mathematically yet easy to judge.
While RLHF requires relatively small amounts of
comparison data to be effective compared to other
approaches, sourcing high-quality preference data
remains an expensive process. This technique has
become particularly crucial for LLMs, where it
helps guide these powerful systems toward produc-
ing outputs that humans find helpful, harmless, and
honest (Bai et al., 2022a,b).

The RLHF process typically consists of three
stages:

1. Supervised Fine-Tuning (SFT): The model
is first fine-tuned on demonstrations that ex-

emplify desired behavior, producing a model
SFT.

2. Reward Modeling: Human annotators com-
pare model responses, and these comparisons
train a reward model 74(z,y) that predicts
human preferences. The reward model is
trained using maximum likelihood on prefer-
ence pairs (z, ¥y, y;) using the Bradley-Terry
Model (Bradley and Terry, 1952; Plackett,
1975) to model the preference probability.

3. RL Optimization: The language model is
then optimized further using reinforcement
learning, typically with Proximal Policy Opti-
mization (PPO), to maximize the reward while
maintaining proximity to the reference model
(Jaques et al., 2017, 2020; Schulman et al.,
2017).

2.2 Preference Optimization Methods

Recent work has introduced more efficient alterna-
tives to the full RLHF pipeline. Direct Preference
Optimization (DPO) (Rafailov et al., 2023) elim-
inates the need for an explicit reward model and
RL training by directly optimizing a policy from
preference data:

'CDPO = _E(x,yw,yl)wD [IOgO'(ﬁ(Tw - ’f’l))]

where r,, and r; are the log probability ratios of the
preferred and dispreferred responses relative to a
reference model. This approach has shown com-
parable or superior performance to RLHF while
being more computationally efficient and stable.

More recent methods include Simple Preference
Optimization (SimPO) (Meng et al., 2024), which
eliminates the need for a reference model while
maintaining strong performance:

Lsimpo = _E(x,yw Y1)~D [log o (B(S’LU - Sl) - 7)]

where s,, and s; are length-normalized log proba-
bilities, 3 controls preference signal strength, and
v is a target margin.

We also compare with Odds Ratio Preference
Optimization (ORPO) (Hong et al., 2024), which
combines supervised fine-tuning with preference
optimization through a log odds ratio term, en-
abling effective alignment without a reference
model. ORPO’s loss function balances a supervised
term for the preferred completion with a preference
term based on log odds ratios.

3 Data Diversification Methods

In this section, we describe our proposed data diver-
sification strategies on creating high-quality prefer-
ence data for fine-tuning and preference optimiza-
tion.

3.1 Baseline Strategy

Our baseline strategy follows standard practice in
preference optimization, generating multiple com-
pletions from the base model with only temperature



sampling for diversity. During generation, we set
the max_tokens to 1,024, the temperature to 2,
top_p to 0.75, and top_k to 50. We generate 5
completions from the base model 75FT using the
following system prompt template:

“You will be given a math problem.
Provide a step-by-step solution, clearly
showing all calculations and reasoning.
Ensure that each step is explained and
justified. After your detailed solution, on
a new line, give the final numerical an-
swer in the format: ‘Final Answer: [num-
ber]’. Do not include any units in the
final answer. Double-check your calcula-
tions to ensure accuracy.”

3.2 Chain-of-Thought Strategy

Chain-of-Thought (CoT) prompting (Wei et al.,
2022; Kojima et al., 2022) encourages LLMs to
generate step-by-step reasoning before producing
a final answer. This approach has shown sig-
nificant improvements in mathematical problem-
solving, particularly for complex multi-step prob-
lems (Havrilla et al., 2024). For generation, we
used OptiLLM’s cot-reflection inference proxy to
illicit chain of thought reasoning for our model
during inference time'. This method implements
chain-of-thought reasoning with <thinking>, <re-
flection>, and <output> section tags in the prompt.
We set our temperature to 0.7 and max_tokens to
1,024 to avoid context length issues with increased
token counts from chain-of-thought.

3.3 MCTS Strategy

Methods incorporating search algorithms like
Monte Carlo Tree Search (MCTS) have shown
promise for enhancing mathematical reasoning
(Feng et al., 2023; Yao et al., 2023; Liu et al.,
2024a). These approaches explore multiple
solution paths and can identify effective rea-
soning strategies through simulation. For this
strategy, we leverage MCTS through the Op-
tiLLM inference proxy (codelion, 2024) to sys-
tematically explore the solution space’. For
each mathematical problem, we initialize a
dialogue-based MCTS search with the problem
as the initial query and a structured solution

"https://github.com/codelion/optillm/blob/
main/optillm/cot_reflection.py

2h’ctps ://github.com/codelion/optillm/blob/
main/optillm/mcts.py

prompt as the system prompt. We set our
exploration_weight to 0.2, num_simulations
to 2, and our simulation_depth to 1, which is the
default configuration for the MCTS approach, and
set temperature to 0.7 and max_tokens to 1,024
for our generation configuration. At the end, the N
(in our case 5) most promising complete solution
paths are picked.

This lightweight MCTS approach enables ef-
ficient yet effective exploration of the solution
space, finding diverse high-quality solutions that
may not be discovered through simpler sampling
approaches.

3.4 Diversified-ThinkSolve (DTS) Strategy

While the previously described strategies offer cer-
tain improvements, they exhibit key limitations in
generating truly diverse mathematical reasoning
approaches. Temperature sampling produces varia-
tions that often follow similar reasoning patterns,
and Chain-of-Thought, despite encouraging step-
by-step reasoning, tends to converge on a single
solution path. MCTS explores alternative branches
but incurs substantial computational costs. To ad-
dress these limitations, we introduce Diversified-
ThinkSolve (DTS), a novel strategy specifically de-
signed to generate diverse, high-quality mathemat-
ical reasoning paths with minimal computational
overhead.

DTS leverages DSPy, a declarative program-
ming paradigm for language models, that enables
modular and structured reasoning (Khattab et al.,
2023b,a). Unlike traditional prompting approaches
that produce variations of the same solution or
chain-of-thought strategies that follow a single rea-
soning flow, DTS explicitly decomposes the math-
ematical problem-solving process into two distinct
phases: multiple approach generation followed by
targeted execution. This decomposition enables
systematic exploration of the solution space while
maintaining reasoning coherence.

We implement DTS through two specialized
modules. First, a ThoughtGenerator construct
generates N = 5 distinct reasoning approaches
using the following prompt template:

“Given the math problem: {problem},
provide 5 possible approaches or initial
thoughts on how to solve it, including
any relevant mathematical concepts, for-
mulas, or techniques that may be applied.
Consider multiple perspectives and po-
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"Given the math problem: {probiem}..."

“Using approach: {approach)..."
Figure 1: Diversified-ThinkSolve (DTS) modular rea-
soning pipeline for generating diverse mathematical
problem solutions. Each math problem is first processed
by a ThoughtGenerator to propose multiple solution
approaches. Then utilizing the SolutionGenerator with

each approach, we are given multiple solutions, con-
tributing to a diverse set of preference data.

tential solution paths, and describe each
thought in 1-2 sentences.”

Then, for each generated approach, a
SolutionGenerator module produces a complete
solution following that particular reasoning
pathway: “Given the math problem: {problem}
Using this approach: {approach} Please provide a
detailed solution showing all work and steps.”

Figure 1 illustrates this process. By decoupling
reasoning approach generation from solution im-
plementation, DTS systematically explores diverse
problem-solving strategies while ensuring each so-
lution maintains consistent reasoning flow. The
modularity of this approach allows for easy adjust-
ment of the number and type of reasoning paths
without modifying the entire pipeline.

A key advantage of DTS over other strategies
is its explicit promotion of strategic diversity—it
doesn’t merely produce different ways to present
the same solution, but fundamentally different
problem-solving approaches. This structured di-
versity creates more informative preference pairs
that expose the model to a richer set of mathemati-
cal reasoning patterns during alignment.

4 Experiment Setup
4.1 Datasets and Models

We conduct our experiments using the Meta-
MathQA dataset (Yu et al., 2023) composed of
395k training examples which are all augmented
from the training sets of GSM8K and MATH.
Since this dataset consists of duplicated problems
with distinct queries, we decided to use a dedu-
plicated version containing 13,929 unique mathe-
matical queries and solutions. For evaluation, we
use GSMS8K’’s test set of 1,319 problems and the
MATH-500 test subset.

For training, we use meta-llama/Llama-3.1-8B-
Instruct (Meta Al, 2024) as our base model for
all experiments. For scoring completions, we
use Nvidia’s Llama-3.1-Nemotron-70B-Reward-
HF (NVIDIA NeMo Team, 2024), which demon-
strated the highest accuracy in our reward model
evaluation (Section 4.2).

4.2 Reward Model Selection

We evaluated several candidate reward models from
the top models on RewardBench (Lambert et al.,
2024) by having them score both model-generated
completions and ground truth solutions on the
GSMBSK test set. We tracked four key metrics:
correct_higher (model’s correct output received
higher reward than ground truth), correct_lower
(model’s correct output received lower reward
than ground truth), incorrect_higher (model’s
incorrect output received higher reward than
ground truth), and incorrect_lower (model’s in-
correct output received lower reward than ground
truth). An effective reward model should mini-
mize incorrect_higher cases, which represent
instances where incorrect solutions are scored
above correct ones.

As shown in Figure 2, Nvidia’s Llama-3.1-
Nemotron-70B-Reward-HF demonstrated the low-
est rate of incorrect_higher judgments, with an
average inaccuracy rate of 3.11% on the GSM8K
test set. We further validated this model on a ran-
dom sample of 4,919 problems from the harder
MetaMathQA dataset, finding a comparable inac-
curacy rate of 2.76%. More details can be found in
Appendix A.2.

4.3 Preference Data Generation and Filtering

For each data generation strategy described in Sec-
tion 3, we generated preference data from the Meta-
MathQA dataset. We applied a "mixed correctness"
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Figure 2: Reward Model Accuracy Comparison. Bars
represent average counts of prediction outcomes for
different reward models.

filtering approach, selecting only cases where 2-3
out of 5 model generations were correct, ensuring
the model learns to distinguish between correct
and incorrect reasoning patterns. We then used our
reward model to select the highest-scored correct
completion as ¥, and the highest-scored incorrect
completion as y; for preference training.

For each strategy, we created preference datasets
of comparable size: Baseline (1,097 samples,
30.4% filtered rate from 3,610 problems), DTS
(1,293 samples, 17.2% from 7,500 problems),
Chain-of-Thought (1,247 samples subsampled
from 2,493, 17.9% from the full dataset), and
MCTS (1,586 samples subsampled from 3,172,
22.8% from the full dataset). For training con-
sistency, we used comparable dataset sizes across
all strategies, sampling half of the subsets from the
larger CoT and MCTS datasets.

5 Results

We present results comparing our different data
generation strategies across various preference op-
timization methods.

5.1 Analysis of Data Generation Strategies

As shown in Table 1, DTS consistently outperforms
other methods, achieving a 7.1% improvement over
the base Llama-3.1-8B-IT model on GSM8K and
a 4.2% improvement on MATH. The optimal fine-
tuning method varies by benchmark, with SimPO
yielding the best results for GSM8K and DPO per-
forming best for MATH.

Baseline Strategy: The standard approach of
generating completions with temperature sampling
showed moderate improvements over the base
model, particularly when combined with SimPO,

Method GSMSK MATH
Best Avg Best Avg
Llama-3.1-8B-IT 76.1% - 482% -
Llama-3.1-70B-IT 854% - 61.6% -
Llama-3.2-1B-IT 449% - 234% -
Llama-3.2-3B-IT  73.1% - 44.8% -
Baseline+SFT 76.7% 742% 48.4% 47.7%
Baseline+ORPO  77.6% 76.5% 51.8% 49.1%
Baseline+DPO 77.6% 76.8% 52.2% 49.6%
Baseline+SimPO  80.7% 78.9% 50.8% 48.0%
CoT+SFT 76.7% 73.7% 50.6% 49.0%
CoT+ORPO 77.4% T7.1% 51.2% 48.2%
CoT+DPO 77.6% 74.5% 50.8% 48.1%
CoT+SimPO 77.6% 53.0% 50.4% 48.1%
MCTS+SFT 76.7% 76.6% 48.8% 47.6%
MCTS+ORPO 79.0% 77.9% 50.8% 49.0%
MCTS+DPO 77.8% 773% 49.2% 42.8%
MCTS+SimPO 78.0% 59.7% 50.6% 24.2%
DTS+SFT 76.7% 75.7% 49.6% 48.8%
DTS+ORPO 77.2% 76.8% 50.6% 49.7%
DTS+DPO 81.2% 79.3% 52.4% 50.2%
DTS+SimPO 83.2% 81.5% 52.0% 49.6%

Table 1: Mathematical reasoning accuracy (%) on
GSMBSK (0-shot) and MATH-500 across different data
generation strategies and preference optimization meth-
ods. We report both the best and average performance
across 5 epochs for the optimal hyperparameter setting
for each fine-tuning method and data generation strat-

egy.

achieving 80.7% accuracy on GSMS8K. This sug-
gests that even simple diversity through temper-
ature sampling can enhance performance. How-
ever, this strategy was consistently outperformed by
more sophisticated diversification methods except
when paired with SimPO, indicating that tempera-
ture sampling alone provides insufficient diversity
for optimal mathematical reasoning.

Chain-of-Thought Strategy: CoT showed
mixed results with significant stability issues, par-
ticularly with SimPO where average performance
dropped to 53.0% on GSMB8K despite reasonable
best-case performance (77.6%). Analysis revealed
that incorrect CoT responses often contained repet-
itive patterns and low-quality reasoning, creating
preference pairs with extremely poor rejected com-
pletions that may have hindered learning.

MCTS Strategy: While MCTS showed promis-
ing results with ORPO (79.0% on GSM8K), it ex-
hibited considerable instability with SimPO, where



performance degraded substantially across epochs
(average 59.7% on GSMS8K, 24.2% on MATH).
Despite MCTS’s systematic exploration capabili-
ties, its high computational cost and inconsistent
performance make it less practical than DTS.

DTS Strategy: The DTS thought-based ap-
proach demonstrated substantial improvements
across all fine-tuning methods, with the highest
scores in both benchmarks. By explicitly gen-
erating multiple solution approaches before solv-
ing problems, this method effectively exposes the
model to diverse reasoning paths. The structured
exploration of different mathematical strategies
appears to provide the model with a richer learn-
ing signal during preference optimization. When
combined with SimPO, this approach achieved the
highest average (81.5%) and best (83.2%) GSM8K
scores, while pairing with DPO yielded the best
MATH performance (52.4%). This suggests that
decomposing mathematical reasoning into distinct
thought processes creates more effective preference
data for alignment.

Interestingly, the baseline strategy with SimPO
outperformed both the CoT and MCTS strategies
on average, highlighting that sophisticated data gen-
eration methods must be carefully integrated with
the appropriate preference optimization technique.
The clear winner across both benchmarks is the
DTS approach, which consistently produced high-
quality, diverse preference data that translated to
substantial improvements in mathematical reason-
ing capabilities.

5.2 Hyperparameter Sensitivity Analysis

Understanding the impact of hyperparameter
choices on model performance is crucial when op-
timizing preference learning for mathematical rea-
soning. While prior work has explored hyperparam-
eter tuning for general preference learning (Tang
et al., 2024), the unique challenges of mathemati-
cal reasoning tasks may require different optimal
configurations. Additionally, different data genera-
tion strategies might interact with hyperparameters
in unexpected ways, potentially requiring strategy-
specific tuning. We conduct this analysis to identify
the most effective hyperparameter configurations
for each data generation method and to provide
practical guidance for researchers applying prefer-
ence optimization to mathematical domains.

As shown in Table 2, SimPO consistently demon-
strates superior performance across most data gen-

eration strategies, particularly with the DTS ap-
proach where it achieves remarkable performance
(83.2% on GSMS8K). The performance advantage
of SimPO is particularly pronounced with the DTS
strategy, where all hyperparameter configratuions
yield strong and stable results, consistently outper-
forming other fine-tuning methods. Notably, for
both CoT and MCTS strategies, the performance
margin is more modest, and in the case of MCTS,
ORPO actually provides the best results for both
GSMSK (79.0%) and MATH (50.8%).

SFT: For supervised fine-tuning, we examined
learning rates of 1e-5 and 3e-5, with 2e-5 being the
standard default in most SFT implementations. Our
results indicate minimal differences between these
learning rates on GSM8K performance, with all
configurations yielding identical accuracy (76.7%).
However, the lower learning rate of le-5 consis-
tently produced slightly better results on the more
challenging MATH benchmark across all data gen-
eration strategies, improving performance by 0.6-
2.4%.

ORPO: For ORPO, we found that the standard
learning rate of 8e-6 recommended in the original
work was excessive for mathematical reasoning
tasks, significantly degrading model performance
(see Appendix B.3). Our experiments with lower
learning rates (5e-7, 2e-7, and 7e-8) revealed dis-
tinct optimal configurations for different data gen-
eration strategies. For MCTS, higher learning rates
performed better, while the other strategies bene-
fited from progressively lower learning rates. The
best overall ORPO performance was achieved with
MCTS at a learning rate of 5e-7, yielding 79.0%
on GSMS8K and 50.8% on MATH—the highest
scores for any MCTS configuration across fine-
tuning methods. In our ORPO ablations, we set
the A weighing parameter by default to 1 which
remained constant.

DPO: Following recent findings that lower learn-
ing rates are beneficial for reasoning-intensive do-
mains (Shen et al., 2024), we conducted a thorough
grid search across learning rates (le-7, 3e-7, Se-7,
7e-7) and beta values (0.01, 0.05, 0.1). Our re-
sults show that smaller learning rates (e.g., 5e-7)
are more suitable for mathematical reasoning, with
the optimal configuration varying by data gener-
ation strategy. DPO showed particularly strong
performance on the MATH benchmark, achieving
the highest overall MATH scores for both baseline
(52.2%) and DTS (52.4%) strategies, representing



Method n B v Baseline CoT MCTS DTS
GSMS8K MATH GSMS8K MATH GSMS8K MATH GSMS8K MATH
SFT 1x107% — — 76.7 48.4 76.7 50.6 76.7 48.8 76.7 49.6
3x107° — — 76.7 48.2 76.7 48.0 76.7 48.2 76.7 49.0
7x1077 001 — 75.8 52.2% 76.0 47.8 76.1 48.2 80.5 50.6
5x 1077 001 — 76.9 51.6 77.6 47.6 77.0 49.2 81.2 50.4
3x1077 001 — 76.9 50.6 76.8 50.4 77.0 48.4 79.2 52.4*
DPO 1x1077 0.01 — 77.6 48.2 77.5 50.2 77.8 48.4 77.5 49.2
3x1077 005 — 76.7 51.6 77.3 50.4 76.9 49.0 78.6 51.2
1x1077 0.05 — 77.6 51.2 77.0 50.8 77.3 48.8 77.7 49.0
3x1077 0.1 — 77.2 48.6 76.7 48.8 77.3 48.2 78.2 51.6
1x1077 01 — 77.2 50.8 77.3 49.2 77.1 48.6 77.3 49.0
5x 1077 —  — 76.7 49.0 76.7 51.0 79.0%  50.8% 76.7 50.6
ORPO 2x1077 — — 77.6 51.8 77.0 51.2% 77.3 49.0 76.8 50.4
7Tx107% —  — 76.7 49.0 77.4 48.6 77.2 49.6 77.2 48.8
1x107% 10 03 80.7% 49.4 75.7 48.6 77.9 49.6 82.8 48.8
8§x 1077 10 03 79.5 49.8 77.3 46.4 77.6 48.8 83.2 49.0
SimPO 5x 1077 10 0.3 78.0 49.6 77.4 50.4 77.9 49.2 83.2% 52.0
8§x 1077 10 0.5 78.5 50.2 77.6* 49.8 77.6 47.2 82.9 50.6
1x107% 25 055 7717 50.8 76.7 50.2 77.9 49.6 82.5 50.6
8x 1077 25 055 782 49.4 77.5 49.4 78.0 50.6 82.5 47.0

Table 2: Unified hyperparameter sweep across fine—tuning methods and data—generation strategies. For every
hyperparameter setting we report the best—epoch accuracy (%) on GSM8K and MATH. The highest score for each
fine-tuning method’s data-generation strategy is bold. Overall best result for each data-generation strategy is *.

a 4.2% improvement over the base model. The
optimal beta value was consistently 0.01 across
strategies, suggesting that a mild KL constraint is
preferable for mathematical reasoning tasks.

SimPO: Recent work has shown that when us-
ing online data with a reward model for preference
data creation, increasing beta to 10 can substan-
tially improve performance with the right learning
rate (Meng et al., 2024). Our results strongly sup-
port this finding, as the best hyperparameters for
baseline, DTS, and CoT all featured higher beta
values (10) combined with carefully tuned learning
rates. We also examined 8 = 2.5 and v = 0.55,
which were found promising in the original SimPO
work for Llama 3 Instruct. Interestingly, while
this configuration performed well, it was consis-
tently outperformed by the higher beta configura-
tions. The most striking result was achieved with
DTS+SimPO at = 5e — 7, 8 = 10, and v = 0.3,
which produced the highest overall performance
on GSMB8K (83.2%) while also maintaining strong
MATH performance (52.0%).

5.3 Training Dynamics

Figure 3 illustrates performance evolution across
training epochs for each data generation strategy.
For GSMSK, we observe distinct patterns: DTS
shows strong and consistent improvement, rising
sharply after epoch 1 (78.2% to 81.4%) and main-
taining growth through epoch 4 (83.2%). In stark
contrast, CoT performance degrades heavily after
epoch 1, dropping from 77.6% to 72.6% by epoch
3, indicating significant instability. Baseline and
MCTS follow similar trajectories with steady im-
provements until epoch 4 followed by slight regres-
sion.

For MATH, all strategies exhibit substantial vari-
ability. Baseline and MCTS display a "dip-and-
recover” pattern, with performance decreasing in
the middle epochs before climbing to their peaks
at epoch 5 (52.2% and 50.8% respectively). DTS
shows similar volatility, achieving its highest per-
formance at epoch 2 (52.4%) before dipping and
partially recovering. CoT exhibits the opposite be-
havior, with performance increasing until epoch
4 (51.2%) before declining sharply at epoch 5
(47.6%).



GSMB8K Performance
84 T T T 53
82 |- | 52
S RS ol
> > 50
g ) |z
5 5 v
< 76) 1< 48
74| s A7
2 | | | | | 4
7 1 2 3 4 5 6
Epoch

MATH Performance

| =8 Baseline
DTS
4 e COT
| | | | | MCTS
1 2 3 4 5
Epoch

Figure 3: Performance progression across training epochs for different data generation strategies using optimal

hyperparameters.

These dynamics highlight that DTS offers the
most stable improvements for GSM8K, while all
strategies demonstrate significant epoch-to-epoch
variability on the more challenging MATH bench-
mark.

5.4 Computational Efficiency Considerations

Each data generation pipeline incurs a distinct to-
ken budget that corresponds to GPU hours and
cost. We look at the cost of a strategy given the
expected number of generated tokens per problem.
The computation for the relative compute for each
data generation strategy can be found in Appendix
AS.

Despite MCTS requiring significantly more com-
putational resources, it does not yield proportional
performance improvements, failing to match either
DTS or even the baseline approach with SimPO.
The DTS strategy offers an exceptional balance be-
tween performance and computational efficiency
with only a 1.03x compute overhead compared to
baseline, making it highly suitable for resource-
constrained scenarios. Even with minimal addi-
tional computation, DTS achieves the best per-
formance on both GSM8K (83.2%) and MATH
(52.4%).

CoT occupies a middle ground at 1.99x base-
line compute, but its unstable training dynamics
and inferior performance make it less attractive de-
spite its moderate computational requirements. The
baseline approach, while computationally efficient,
cannot match DTS’s performance despite extensive
hyperparameter optimization.

Strategy Relative GSMSK MATH
Compute

Baseline 1.00x 80.7% 52.2%

DTS 1.03x 83.2% 52.4%

CoT 1.99x 77.6% 51.2%

MCTS 4.85x 79.0% 50.8%

Table 3: Computational requirements and best perfor-
mance for different data generation strategies combined
with their respective optimal fine-tuning method.

6 Conclusion

Our findings demonstrate that strategic diversifica-
tion of preference data can substantially enhance
mathematical reasoning capabilities in LLMs. Sev-
eral key insights emerge from our experiments:

Diversity of reasoning paths is crucial: Strate-
gies that explore multiple problem-solving ap-
proaches consistently outperformed the baseline,
indicating that exposure to diverse reasoning paths
develops more robust mathematical capabilities.

Data quality trumps optimization algorithm:
While SimPO and DPO performed best, the differ-
ences between optimization methods were smaller
than those between data generation strategies, sug-
gesting that research should prioritize data quality
and diversity over algorithm selection.

Structured exploration outperforms random
sampling: DTS’s superior performance highlights
that systematic exploration of the solution space
is more effective than random variations through
temperature sampling for generating high-quality
preference data.



7 Limitations

7.1 Benchmark Scope and Generalizability

Our study demonstrates improvements on GSM8K
and MATH benchmarks, which, while represen-
tative, capture only a subset of mathematical rea-
soning tasks. The effectiveness of our strategies
may vary across different mathematical domains,
complexity levels, or applications. Future work
should evaluate these methods on a broader range
of mathematical reasoning tasks and real-world ap-
plications.

7.2 Reward Model Dependencies

Despite our careful selection process (achieving
error rates below 3%), our reliance on automated
reward models introduces potential biases in pref-
erence data generation. These models occasionally
make incorrect judgments, which could impact the
quality of preference pairs and subsequent model
training. Developing more robust mathematical
evaluation methods remains an important avenue
for future research.

7.3 Model Scale Considerations

Our experiments focused on a single model size
(8B parameters). The relative effectiveness of dif-
ferent data diversification strategies might vary
with model scale, potentially yielding different pat-
terns of improvement in larger or smaller archi-
tectures. Extending this analysis to diverse model
scales would provide valuable insights into the scal-
ability of our approaches.

7.4 Computational Efficiency Tradeoffs

The computational requirements of more sophis-
ticated strategies, particularly MCTS (4.85x base-
line compute), limit their practical applicability
in resource-constrained environments. While our
DTS approach achieves an excellent balance be-
tween performance and efficiency (1.03x baseline
compute), further work on optimizing data genera-
tion pipelines could improve accessibility.

8 Ethical Considerations

Our research aims to improve mathematical rea-
soning capabilities in language models, which has
broadly positive applications in education, scien-
tific research, and various technical domains.

We have made deliberate efforts to ensure re-
search accessibility by providing comprehensive
methodology details and implementation guidance.

This openness helps democratize advanced mathe-
matical capabilities across the research community
and prevents the concentration of such capabilities
in well-resourced organizations.

While enhanced mathematical reasoning could
potentially enable more sophisticated applications
in sensitive domains like finance or cryptography,
we believe the educational and scientific benefits
significantly outweigh potential risks. Mathemat-
ical reasoning fundamentally supports objective
problem-solving rather than inherently harmful ca-
pabilities.

Our data generation methods rely on existing lan-
guage models, which may contain biases. However,
we focused specifically on mathematical problem-
solving, which operates in a relatively objective
domain with well-defined evaluation criteria, re-
ducing (though not eliminating) the risk of perpet-
uating harmful biases.

We view our research as augmenting rather than
replacing human mathematical reasoning, with the
goal of creating more useful tools that complement
human capabilities in educational and scientific
contexts.
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A Additional Experimental Details

A.1 Implementation Details

We implemented all models and training proce-
dures using the HuggingFace Transformers library
(version 4.43.1). For preference optimization, we
used the DPO and ORPO implementations from
the TRL library (version 0.9.6), which provide op-
timized implementations of these algorithms. All
training procedures were conducted on a compute
cluster with 8 NVIDIA A100 80GB GPUs using
mixed-precision training (bfloat16) to accelerate
training while maintaining numerical stability for
mathematical operations.

For baseline model inference and data genera-
tion, we accessed the Llama-3.1-8B-Instruct model
through the Together Al API (Together Al, 2024)
with consistent generation parameters across ex-
periments (unless otherwise specified). All model
evaluations on the test sets were performed with
greedy decoding (temperature = 0) to ensure de-
terministic outputs and fair comparisons across
methods. For the different data generation strate-
gies, we used OptiLLM (version 0.1.8) for MCTS
and CoT implementations, and developed our cus-
tom DTS pipeline using core components from
the DSPy framework (version 2.6.16). For repro-
ducibility, we set random seeds consistently (42)
across all experiments.

A.2 Reward Model Analysis

Selecting an appropriate reward model is crucial
for effective preference data creation, as it directly
affects the quality of paired examples used dur-
ing optimization. An ideal reward model should
consistently assign higher scores to correct mathe-
matical solutions than to incorrect ones, ensuring
that the preference signal aligns with mathematical
accuracy.

We conducted a comprehensive evaluation of
several reward models using the GSMSK test set.
For each problem, we generated solutions using
various LLMs and compared the reward scores as-
signed to these solutions against those assigned to
ground truth solutions. We tracked four key met-
rics, as defined in Section 4.2: correct_lower
(CL), correct_higher (CH), incorrect_lower
(IL), and incorrect_higher (IH). The most criti-
cal metric is IH, which represents cases where an
incorrect solution received a higher reward than the
ground truth—these cases directly undermine the
preference learning objective.
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As shown in Table 4, Llama-3.1-Nemotron-70B-
Reward-HF demonstrated the highest reliability,
achieving the lowest error rate of 3.11% when
evaluating Llama-3.2-3B-IT outputs. The URM-
LLama-3.1-8B model also performed well with er-
ror rates below 3.5% for the Llama-3 series, though
it struggled more with Mistral-7B outputs. In con-
trast, the original Skywork-Reward-Gemma-2-27B
model showed the highest error rates (>12%), fre-
quently assigning higher rewards to incorrect solu-
tions, though its v0.2 iteration showed substantial
improvement.

To further validate our reward model selection,
we extended our evaluation to the more challeng-
ing MetaMathQA dataset, sampling 4,919 prob-
lems. The Llama-3.1-Nemotron-70B-Reward-HF
model maintained consistent performance with a
2.76% error rate (136 IH cases out of 4,919 total
evaluations), confirming its robustness across dif-
ferent mathematical problem distributions. Based
on these results, we selected Llama-3.1-Nemotron-
70B-Reward-HF as our reward model for all pref-
erence data generation in our experiments.

A.3 Judgment and Completion Scoring Setup

Accurate assessment of mathematical solutions re-
quires a robust scoring mechanism that can evaluate
both the correctness of final answers and the qual-
ity of intermediate reasoning steps. To achieve this,
we implemented a structured judgment framework
using Nvidia’s Llama-3.1-Nemotron-70B-Instruct-
HF model as our scoring engine.

A.3.1 Scoring Protocol

We normalized scores on a 0-100 scale, where
100 represents completely correct solutions with
high-quality reasoning, and O indicates entirely in-
correct solutions with flawed reasoning paths. To
ensure consistent and meaningful evaluations, we
designed a comprehensive system prompt that in-
structs the judge model to:

1. Evaluate correctness relative to reference so-
lutions

2. Award partial credit for correct reasoning
steps (up to 60 points)

3. Reserve scores of 80+ for completely correct
solutions

4. Provide detailed explanations for point deduc-
tions

The full judgment prompt is structured as fol-
lows:



Reward Model Generator Model CLL. CH IL IH Error (%)
Mistral-7B-IT-v0.1 345 222 657 95 7.20%
Gemma-2-9B-IT 313 853 73 80 6.07%
URM-LLama-3.1-88 Llama-3.2-3B-IT 691 349 235 44  3.34%
Llama-3.1-8B-IT 735 364 175 45 341%
Gemma-2-9B-IT 479 455 322 63 4.78%
Llama-3.1-Nemotron-70B-Reward-HF Llama-3.2-3B-IT 398 647 233 41 3.11%
Llama-3.1-8B-IT 406 697 173 43 3.26%
Llama-3.2-3B-IT 28 1012 119 160 12.13%
Skywork-Reward-Gemma-2-27B Llama-3.1-8B-IT 32 1048 78 161 12.21%
Skywork-Reward-Gemma-2-27B-v0.2 Llama-3.1-8B-IT 560 545 146 68 5.16%

Table 4: Reward Model Evaluation on the GSMS8K Test Set. We evaluate various reward models against different
generator models, tracking: CL (Correct Lower)—model’s correct output received lower reward than ground
truth; CH (Correct Higher)—model’s correct output received higher reward than ground truth; IL (Incorrect
Lower)—model’s incorrect output received lower reward than ground truth; IH (Incorrect Higher)—model’s
incorrect output received higher reward than ground truth. The Error rate shows the percentage of incorrect outputs
receiving higher rewards than ground truth, calculated as IH/(CL+CH+IL+IH).

Here is a math question: {question}
Here is the gold answer: {gold_answer}
Here is a student answer: {gener-
ated_answer}

You are a math teacher grading a stu-
dent’s answer. You need to judge if the
student answer is correct based on the
gold answer. You need to follow the fol-
lowing rubrics: 1. The score should be
between 0 and 100. 2. If the student
answer is not correct based on the gold
answer, deduct points from the score
for each wrong step. Add points to the
score for each correct step, up to a max-
imum of 60 points. 3. If the student
answer is correct based on the gold an-
swer, please give a final score above 80.
4. Please give a detailed explanation in
bullet points for each point deducted. In
the end, the score and explanation should
be in the following format. Note that the
final output should be parsed as a json
object.

<explanation>

{"correct": true/false, "score": integer}

A.3.2 Implementation Details

To ensure scoring consistency and determinism, we
set the generation parameters to temperature=0.0
and max_tokens=4,096. The structured JSON
output format ({correct, score}) facilitated au-
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tomated extraction and processing using regular
expressions. In rare cases where the judge model
produced malformed outputs or failed to follow the
required format, we assigned a score of -1 and ex-
cluded these samples from subsequent analysis to
maintain data quality.

The MetaMathQA dataset provided high-quality
reference solutions that served as our gold standard
for comparison. As noted in our reward model
analysis (Table 4), we observed occasional cases
where reference solutions received lower scores
than incorrect model-generated solutions.

In our preliminary analysis, we found that this
judgment approach provided more nuanced and
informative scores compared to simple binary cor-
rectness checks, enabling finer distinctions between
solutions with similar final answers but different
reasoning quality. The detailed explanations pro-
duced by the judge model also provided valuable
insights for qualitative analysis of model perfor-
mance patterns and failure modes.

A.4 Preference Optimization Configuration

Effective preference optimization requires care-
ful configuration of training parameters to balance
learning dynamics, computational efficiency, and
model stability. We implemented a consistent train-
ing infrastructure across all fine-tuning methods,
varying only the specific hyperparameters detailed
in our ablation study (Section 5.2).

Our training infrastructure leveraged DeepSpeed



ACCELERATE_LOG_LEVEL=info accelerate

launch \

--config_file deepspeed_zero3.yaml \

--dataset_name dpo_dataset \

--model_name_or_path meta-1lama/
Llama-3.1-8B-Instruct \

--learning_rate 3.0e-7 \

--beta 0.01 \

--1r_scheduler_type cosine \

--bf16 true \

--num_train_epochs 5 \

--per_device_train_batch_size 1 \

--gradient_accumulation_steps 16 \

--gradient_checkpointing \

--gradient_checkpointing_kwargs
use_reentrant”: false}’ \

--logging_steps 25 \

--eval_strategy ’'no’

--optim adamw_torch \

--attn_implementation
flash_attention_2 \

--save_strategy epoch \

--seed 42 \

--warmup_ratio 0.1 \

--no_remove_unused_columns

,{,,

\

Figure 4: Representative DPO training configuration
used for fine-tuning. We maintained this base configu-
ration across all preference optimization methods, ad-
justing only the method-specific hyperparameters (e.g.,
learning rate, beta, gamma) according to our ablation
studies.

ZeRO-3 for memory optimization (Rasley et al.,
2020), FlashAttention-2 for efficient attention com-
putation (Dao, 2024), and mixed-precision training
(bfloat16) to accelerate training while maintaining
numerical stability. We employed gradient check-
pointing to reduce memory requirements, enabling
us to process longer mathematical reasoning se-
quences without compromising batch size.

For all preference optimization methods (DPO,
ORPO, SimPO), we maintained a global batch size
of 16, configured as per GPU batch size of 1 with
16 gradient accumulation steps. This batch size
was selected based on prior work (Meng et al.,
2024) suggesting that moderate batch sizes (16-32)
achieve optimal performance for preference learn-
ing across diverse domains. Each training run was
executed for 5 epochs with a cosine learning rate
schedule and 10% warmup ratio to ensure stable
optimization dynamics.

Figure 4 shows a representative configuration
for DPO training. When implementing other meth-
ods, we maintained this base configuration while
adjusting method-specific parameters:

* DPO: Varying learning rates (le-7 to 7e-7)
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and beta values (0.01, 0.05, 0.1)

* ORPO: Varying learning rates (7e-8 to 5e-7)
with lambda fixed at 1.0

* SimPO: Varying learning rates (5e-7 to le-6),
beta values (2.5, 10), and gamma values (0.3,
0.5, 0.55)

For each method-strategy combination, we con-
ducted a grid search over these hyperparameters as
detailed in Section 5.2, totaling 76 distinct train-
ing runs. This comprehensive approach enabled
us to identify optimal configurations for each data
generation strategy, revealing important patterns
in how hyperparameter sensitivity varies with data
characteristics.

A.5 Token Count Estimation for
Computational Efficiency Analysis

To quantify the computational resources required
by each data generation strategy, we developed a
systematic approach for estimating relative com-
pute costs based on token processing requirements.
We use a normalized compute ratio expressed as:

tp +to

Relative Compute = ————
tp + to

Where t,, represents the mean prompt token
count for the strategy being measured, ¢, is the
mean output token count, and the denominator
contains the corresponding values for our baseline
strategy. This metric captures the computational
overhead of each strategy relative to the simplest
approach.

A.5.1 Strategy-Specific Token Analysis

Baseline Strategy: For our reference implementa-
tion, we measured an average problem length of 41
tokens, a system prompt of 77 tokens, and a mean
generation length of 364 tokens, resulting in a total
token count of 41 + 77 + 364 = 482 tokens per
problem.

Chain-of-Thought: Implemented using Op-
tiLLM’s Chain-of-Thought framework?, this ap-
proach uses a structured thinking template of 258
tokens combined with the problem (41 tokens),
totaling 299 input tokens. We observed signif-
icantly longer generations averaging 661 tokens
(due to the explicit reasoning steps and occasional
verbose output), bringing the total to 960 tokens

3https://github.com/codelion/optillm/blob/
main/optillm/cot_reflection.py


https://github.com/codelion/optillm/blob/main/optillm/cot_reflection.py
https://github.com/codelion/optillm/blob/main/optillm/cot_reflection.py

per problem. This corresponds to a compute ratio
of 960/482 = 1.99x.

Monte Carlo Tree Search: Our MCTS im-
plementation uses a simulation depth of 1 and
performs 2 simulations. Based on the OptiLLM
MCTS implementation*, each problem requires a
total of 8 model calls: an initial expansion, plus 4
LLM calls per simulation (generate_actions(), ap-
ply_action(), and evaluation_state()) (Zhou et al.,
2024; Feng et al., 2023). With an average output of
292 tokens per model call, this strategy consumes
approximately 292 x 8 = 2, 336 tokens, yielding a
compute ratio of 2,336/482 = 4.85x.

Diversified-ThinkSolve (DTS): This strategy
requires two sequential LLM calls per problem:

* Thought Generation: System prompt (56 to-
kens) + problem (41 tokens) = 97 input tokens,
producing an average of 50 output tokens

* Solution Generation: System prompt (27 to-
kens) + problem + thought (91 tokens) = 118
input tokens, generating an average of 230
output tokens

The total token count for DTS is (974 118)+ (50 +
230) = 495 tokens, resulting in a compute ratio of
495/482 = 1.03x relative to baseline.

A.5.2 Efficiency Analysis

This token-based analysis reveals significant differ-
ences in computational requirements across strate-
gies. While DTS achieves substantially better per-
formance than baseline (as shown in Section 5.1),
it does so with only a 3% increase in computa-
tional cost. In contrast, MCTS requires nearly 5
times more compute while delivering less impres-
sive results. These efficiency metrics provide cru-
cial context for evaluating the practical utility of
each strategy, especially in resource-constrained
scenarios where computational efficiency is a key
consideration alongside raw performance.

B Additional Results
B.1 GSMSK 5-shot Performance Analysis

While our main evaluation focused on zero-shot
performance, few-shot evaluation provides valu-
able insights into how preference optimization af-
fects model performance when provided with ex-
emplars. Table 5 presents the GSM8K 5-shot ac-

*https://github.com/codelion/optillm/blob/
main/optillm/mcts.py
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Base Model (No fine-tuning): 83.9%

Strategy SFT DPO ORPO SimPO
Baseline 84.2% 86.0% 85.1% 85.9%
CoT 84.1% 85.1% 85.5% 85.3%
MCTS 84.8% 84.9% 853% 85.1%
DTS 84.8% 85.8% 85.8% 85.0%

Table 5: GSM8K 5-shot accuracy (%) across data gener-
ation strategies and optimization methods using optimal
hyperparameter configurations. The highest score for
each fine-tuning method is bold with the best overall
result underlined. All models show improvement over
the base model’s 83.9% accuracy.

curacy results across all strategies and fine-tuning
methods.

B.1.1 Key Findings

All fine-tuned models demonstrated improvements
over the base model’s already strong 5-shot perfor-
mance (83.9%), with gains ranging from modest
(+0.2%) to substantial (+2.1%). Several notable
patterns emerged from our analysis:

* Strategy-Method Interactions: Unlike the
0-shot scenario where DTS consistently out-
performed other strategies, the baseline strat-
egy achieved the highest overall 5-shot accu-
racy (86.0%) when combined with DPO. This
suggests that the benefits of diverse reason-
ing paths may be partially redundant with the
information provided by exemplars.

* Method-Specific Performance: DTS
showed the most consistent performance
across different fine-tuning methods, scoring
strongly with SFT (84.8%), DPO (85.8%),
and ORPO (85.8%). However, it unex-
pectedly underperformed with SimPO
(85.0%) relative to other strategies, despite
SimPO being the optimal method in 0-shot
evaluations.

* Hyperparameter Consistency: We observed
interesting patterns in optimal hyperparame-
ters for 5-shot performance. For both DPO
and ORPO, a learning rate of 5e-7 consis-
tently yielded the best results across all data
generation strategies, with DPO also favoring
B = 0.01. For SimPO, we found strategy-
dependent optimal configurations: baseline,
DTS, and CoT performed best with 8 = 10,


https://github.com/codelion/optillm/blob/main/optillm/mcts.py
https://github.com/codelion/optillm/blob/main/optillm/mcts.py

v = 0.3, and learning rates of 5e-7 or 8e-7,
while MCTS uniquely benefited from § =
2.5, v = 0.55, and a learning rate of 8e-7.

B.1.2 Implications

The differences between 0-shot and 5-shot perfor-
mance patterns suggest that preference optimiza-
tion may operate differently when exemplars are
available. While diverse reasoning paths (as in
DTS) appear critical for strong 0-shot performance,
more conventional approaches like our baseline
strategy may be sufficient when combined with
few-shot prompting.

B.2 Epoch-wise Analysis of MATH
Benchmark Performance

Understanding how mathematical reasoning capa-
bilities evolve during training provides valuable
insights into the learning dynamics of different pref-
erence optimization approaches. Table 6 presents
a comprehensive view of MATH benchmark per-
formance across all five training epochs for each
strategy-method combination.

Our epoch-by-epoch analysis reveals distinct
training patterns across different approaches:

Baseline Strategy: While SFT performance
gradually declined with additional epochs, prefer-
ence optimization methods showed non-monotonic
improvement patterns.  Most notably, DPO
achieved its peak performance (52.2%) at the final
epoch, demonstrating continued learning through-
out training. Both ORPO and SimPO reached their
peak performance in earlier epochs (epochs 3 and
2, respectively) before beginning to decline, sug-
gesting potential overfitting.

Chain-of-Thought (CoT): Interestingly, CoT
methods consistently reached their peak perfor-
mance at later epochs (typically epoch 4) compared
to other strategies. This delayed optimization might
suggest that extracting useful signals from CoT-
generated preferences requires more training time,
perhaps due to the additional reasoning steps that
must be learned.

Monte Carlo Tree Search (MCTS): MCTS ex-
hibited the most unstable training dynamics, par-
ticularly when combined with DPO and SimPO.
While MCTS+SimPO started strongly (50.6%
at epoch 1), it catastrophically collapsed to
single-digit performance by epoch 3. Similarly,
MCTS+DPO declined from 49.2% to below 40%
in later epochs. This instability suggests that pref-
erences generated through MCTS may contain con-
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flicting or inconsistent signals that become increas-
ingly problematic with continued training.

Diversified-ThinkSolve (DTS): The DTS strat-
egy demonstrated remarkable stability across train-
ing epochs, with all methods maintaining strong
performance throughout. The combination of DTS
with DPO achieved the highest overall MATH accu-
racy (52.4%) at epoch 2, followed by a temporary
decline and subsequent recovery in later epochs.
SimPO exhibited a similar pattern with its peak
(52.0%) at epoch 4. This oscillatory behavior might
indicate that models trained on diverse reasoning
paths explore different regions of the solution space
during training.

B.3 ORPO Learning Rate Sensitivity Analysis

Learning Rate GSMS8K 0-shot MATH

8e-6 45.6% 46.4%
2e-6 68.4% 48.2%
Te-7 76.9 % 46.8 %

Table 7: Impact of learning rate on ORPO performance
using the baseline data generation strategy.

While most preference optimization methods are
known to be sensitive to learning rate selection,
ORPO deserves special attention due to the sig-
nificantly higher learning rates recommended in
the original paper (8e-6) compared to our optimal
findings. We conducted targeted experiments to
quantify this sensitivity and determine appropriate
learning rate ranges for mathematical reasoning
tasks.

As shown in Table 7, ORPO’s performance ex-
hibits extreme sensitivity to learning rate selection
when applied to mathematical reasoning tasks. Us-
ing the originally recommended learning rate of 8e-
6 results in catastrophically poor performance on
GSMBK (45.6%), significantly worse than even the
untuned base model (76.1%). Reducing the learn-
ing rate by approximately an order of magnitude (to
7e-T) restores and slightly enhances performance
(76.9%).

This stark difference can be attributed to the
unique characteristics of mathematical reasoning
tasks compared to general instruction-following
or conversational benchmarks. Mathematical rea-
soning typically requires precise manipulation of
symbols and strict adherence to formal rules, which
may be disrupted by aggressive parameter updates.



Strategy Method Epoch1 Epoch 2 Epoch 3 Epoch 4 Epoch 5
SFT 48.4% 47.8% 47.6% 47.4% 47.2%
Baselin DPO 47.4% 50.2% 47.8% 50.2% 52.2%
aselne ORPO  48.8% 49.4% 51.8% 47.6% 48.0%
SimPO  46.6% 50.8% 48.4% 47.4% 47.0%
SFT 48.4% 48.0% 48.0% 50.6% 50.0%
- DPO 47.2% 47.2% 48.4% 50.8% 47.0%
© ORPO  46.8% 46.4% 49.0% 51.2% 47.6%
SimPO  47.0% 50.4% 47.6% 47.2% 48.2%
SFT 47.8% 48.8% 47.4% 47.6% 46.6%
MCTS DPO 48.2% 49.2% 39.2% 39.8% 37.8%
ORPO  49.4% 49.8% 48.0% 47.2% 50.8%
SimPO  50.6% 42.8% 9.8% 9.0% 9.0%
SFT 48.0% 48.6% 49.6% 48.8% 49.2%
DTS DPO 50.4% 52.4% 48.2% 48.4% 51.6%
ORPO  48.0% 50.6% 49.8% 49.4% 50.6%
SimPO  48.8% 51.2% 47.8% 52.0% 48.0%

Table 6: MATH benchmark accuracy (%) progression across training epochs for all data generation strategies and
optimization methods. Results shown represent the best hyperparameter configuration for each strategy-method pair.

The highest score for each combination is highlighted in bold, while the overall best result is underlined.

The optimal learning rate we identified (7e-7) is
approximately 11 times smaller than the originally
recommended value, highlighting the importance
of domain-specific hyperparameter tuning.

Interestingly, while GSM8K performance was
dramatically affected by learning rate selection,
MATH benchmark results showed more modest
variation (46.4% to 48.2%). This differential sensi-
tivity might be explained by the higher complexity
and diversity of problems in the MATH dataset,
which may require more substantial model adapta-
tion regardless of learning rate.

These findings emphasize the critical importance
of carefully tuning learning rates when applying
preference optimization techniques to specialized
domains like mathematical reasoning, rather than
relying on default values established for general-
purpose language tasks.

C Analysis of Generated Solutions

To provide qualitative insights into how different
data generation strategies influence mathematical
reasoning patterns, we examined solution charac-
teristics across models trained with each approach.
This section presents a comparative analysis of so-
lutions to an illustrative problem from the Meta-
MathQA dataset.
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C.1 Example Solutions

Problem: Diego baked 12 cakes for his
sister’s birthday. Donald also baked 4
cakes, but ate x while waiting for the
party to start. There are 15 cakes left.
What is the value of unknown variable
x?

Baseline Solution:

To find the value of the unknown variable
z, let’s follow these steps:

Step 1: Find the total number of cakes
initially made by both Diego and Donald.

We are given that Diego baked 12 cakes,
and Donald baked 4 cakes.

So, total_cakes =
cakes_baked_by_Diego +
cakes_baked_by_Donald = 12+4 = 16

Step 2: Understand the final number of
cakes left.

We know that after Donald ate = cakes,
15 cakes are left.

So, the initial total number of cakes mi-
nus the number eaten is equal to 15:

total_cakes — x = 15



Since total_cakes = 16 from Step 1, we
substitute 16 for total_cakes:

16 —x =15

Step 3: Find the value of the unknown
variable x.

Now we will isolate x by getting = on
one side of the equation:

16 —x =15

‘We need to solve for x: x = 16 — 15
Step 4: Perform the operation to isolate
x.

Using simple arithmetic: x = 1

Final Answer: 1

Chain-of-Thought (CoT) Solution:
Thinking:

Let’s denote the total number of cakes
initially as 7'.

Donald initially had 4 cakes and ate x

cakes. Therefore, Donald had 4 —x cakes
left.

Diego initially had 12 cakes, so after
Donald ate some, the total number of
cakes left is the sum of the remaining
cakes from both Diego and Donald. The
equation can be written as: 12 + (4 —
x) = 15.

First, let’s simplify the equation by com-
bining the constants: 12 + 4 — x = 15.

Combine the constants: 16 — x = 15.

Now, let’s isolate the variable = by sub-
tracting 16 from both sides of the equa-
tion. —x = —1.

To isolate x, multiply both sides of the
equation by —1. x = 1.

Reflection:

I have simply applied basic algebraic ma-
nipulations to the given equation. There
are no obvious errors in this process, and
I have checked the steps for consistency
and accuracy. However, it’s essential
to ensure that all variables are correctly
isolated and that the algebraic manipula-
tions are accurately performed.

Output:

z=1.
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Monte Carlo Tree Search (MCTS) Solution:

To find the value of x, we need to deter-
mine the total number of cakes initially.
Diego baked 12 cakes and Donald baked
4 cakes. However, since the information
about how many cakes Donald initially
had baked was not required for solving
the problem you can just sum up Diego
and Donald’s initial cakes to determine
the total.

Initial total cakes = Diego’s cakes + Don-
ald’s cakes = 12 4+ 4 = 16 cakes.

After waiting for the party to start, there
are 15 cakes left.

We subtract the number of remaining
cakes from the total number of cakes to
find z. This equation would be:

Initial total cakes — remaining cakes =

T.
16 —-15==x
r=1.

The value of the unknown variable x is 1.
Donald ate 1 cake while waiting for the
party to start.

Diversified-ThinkSolve (DTS) Solution:

Thought Output: We can use the con-
cept of inverse operations to isolate x.
Subtracting 12 from both sides of the
equation gives us: —x = —b.

Solution Qutput: To find the value of
x, we need to isolate x by using in-
verse operations. The correct equation is
16 — © = 15. Subtracting 16 from both
sides of the equation gives us —x = —1.
Multiplying both sides of the equation
by —1 givesus z = 1.

C.2 Qualitative Analysis of Solution
Characteristics

Our examination of solutions generated across dif-
ferent data strategies reveals distinctive patterns
in reasoning approaches, solution structures, and
error patterns.

Baseline Solutions typically exhibit a highly
structured, step-by-step approach with explicit enu-
meration of each reasoning stage. The solution
organization appears optimized for instructional



clarity, with distinct sections and a formal problem-
solving framework. While effective, this approach
sometimes leads to unnecessarily verbose explana-
tions even for straightforward problems.

CoT Solutions feature extensive explanatory
content with distinct thinking and reflection phases.
The thinking phase often includes variable defini-
tions and elaborate equation formulations, while
the reflection phase provides meta-analysis of the
solution approach. This structure appears to prompt
deeper verification and error-checking, but some-
times at the cost of parsimony. The explicit veri-
fication step may contribute to CoT’s inconsistent
performance observed in our quantitative results.

MCTS Solutions exhibit a remarkably consis-
tent structure across problems, typically beginning
with a standardized phrase ("To find the value of
X, we need to determine...") that suggests conver-
gence toward optimal response templates through
the search process. The solutions tend to be direct
and focused on the most efficient path discovered
during tree search. However, this approach occa-
sionally leads to incorrect convergence on harder
problems when the search depth is insufficient to
fully explore the solution space.

DTS Solutions demonstrate a unique two-phase
structure reflecting the strategy’s decomposition
approach. The initial "thought output" often con-
tains a high-level strategy or alternative solution
approach, while the subsequent "solution output"
provides a direct, efficient solution path. This dual
structure appears to enable a balance between con-
ciseness and reasoning depth. The example solu-
tion illustrates how DTS can derive a more direct
mathematical approach (using inverse operations)
compared to other methods.

D Diversified-ThinkSolve (DTS)
Implementation Details

DTS was implemented using DSPy framework
components, with a modular design that separates
thought generation from solution execution. Our
implementation consists of two primary modules
which can be found in Figure 5 and Figure 6. The
DTS implementation incorporates several key de-
sign elements:

Modularity: By separating thought generation
from solution execution, each component can be
independently optimized.

Robust Error Handling: Comprehensive fall-
back mechanisms prevent pipeline failures during
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batch processing.

Structured Output Processing: Regex-based
parsing extracts individual thoughts from varied
model outputs, ensuring consistent downstream
processing.

Guaranteed Diversity: The system enforces a
minimum of five distinct approaches per problem,
even when the base model tends toward homogene-
ity.

The complete pipeline processes each problem
through ThoughtGenerator, passes each generated
approach to SolutionGenerator, collects the result-
ing solutions, scores them with the reward model,
and creates preference pairs for optimization. This
architecture maintains computational efficiency
(1.03x baseline) while producing the diverse, high-
quality preference data that enabled DTS’s superior
performance.
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class ThoughtGenerator (dspy.Module):
def __init__(self):
super ().__init__()
self.gen_thoughts = dspy.ChainOfThought("math_problem -> thoughts: List[str]
")

def forward(self, math_problem: str) -> List[str]:
try:
prompt_template = (

"Given the math problem: {problem}, provide 5 possible approaches or

"initial thoughts on how to solve it, including any relevant
mathematical "

"concepts, formulas, or techniques that may be applied. Consider
multiple "

"perspectives and potential solution paths, and describe each
thought in 1-2 sentences.”

)

result = self.gen_thoughts(math_problem=prompt_template.format(problem=
math_problem))
thoughts = result.reasoning if hasattr(result, ’'reasoning’) else []

# process thoughts

if isinstance(thoughts, str):
import re
thoughts = re.split(r’\d+\.|[\n\d+\.|\n\d+\)’, thoughts)
thoughts = [t.strip() for t in thoughts if t.strip()]

# ensure exactly 5 thoughts
if len(thoughts) < 5:
while len(thoughts) < 5:
thoughts.append(f”"Alternative approach {len(thoughts) + 1}:
Apply fundamental mathematical principles to solve step by
step.")

return thoughts

except Exception as e:
print(f"Error in ThoughtGenerator: {str(e)}")
return [f"Default approach {i+1}: Solve the problem systematically using
basic mathematical principles.”
for i in range(5)]

Figure 5: ThoughtGenerator module implementation responsible for generating diverse mathematical reasoning
approaches.
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class SolutionGenerator (dspy.Module):
def __init__(self):
super () .__init__()
self.gen_solution = dspy.ChainOfThought("math_problem, approach -> solution:
str")

def forward(self, math_problem: str, approach: str) -> str:
try:
prompt_template = (
"Given the math problem: {problem}\n”
"Using this approach: {approach}\n”
"Please provide a detailed solution showing all work and steps.”

)
result = self.gen_solution(math_problem=math_problem, approach=approach)
return result.reasoning if hasattr(result, ’'reasoning’) else "Unable to

generate solution.”

except Exception as e:
print(f"Error in SolutionGenerator: {str(e)}")
return "Error occurred while generating solution.”

Figure 6: SolutionGenerator module implementation that produces complete solutions based on specific reasoning
approaches.
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