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ABSTRACT

Conventional flow matching and diffusion-based policies sample through iterative
denoising from standard noise distributions (e.g., Gaussian), and require condi-
tioning modules to repeatedly incorporate visual information during the generative
process, incurring substantial time and memory overhead. To reduce the complexity,
we develop VITA (VIsion-To-Action policy), a noise-free and conditioning-free
flow matching policy learning framework that directly flows from visual repre-
sentations to latent actions. Since the source of the flow is visually grounded,
VITA eliminates the need of visual conditioning during generation. As expected,
bridging vision and action is challenging, because actions are lower-dimensional,
less structured, and sparser than visual representations; moreover, flow matching
requires the source and target to have the same dimensionality. To overcome this,
we introduce an action autoencoder that maps raw actions into a structured latent
space aligned with visual latents, trained jointly with flow matching. To further
prevent latent space collapse, we propose flow latent decoding, which anchors the
latent generation process by backpropagating the action reconstruction loss through
the flow matching ODE (ordinary differential equation) solving steps. We evalu-
ate VITA on 9 simulation and 5 real-world tasks from ALOHA and Robomimic.
VITA achieves 1.5×-2× faster inference compared to conventional methods with
conditioning modules, while outperforming or matching state-of-the-art policies.

1 INTRODUCTION

VITA Policy: Noise-Free Flow Matching
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Figure 1: A comparison between VITA and conventional flow matching and diffusion policies. Unlike
conventional methods that sample noise from standard distributions and inject input modalities via
conditioning, VITA poses no constraints on the source distribution, and flows directly from latent
visual representations to latent actions, eliminating the need for conditioning modules.

Flow matching and diffusion models have demonstrated remarkable success across a wide range
of cross-modal generation tasks, from text-to-image generation (Rombach et al., 2022; Peebles &
Xie, 2023; Ma et al., 2024; Liu et al., 2024a; He et al., 2025; Zhang et al., 2023), text-to-video
generation (Ho et al., 2022; Li et al., 2023; Jin et al., 2024), to visuomotor (vision-to-action)
policies (Chi et al., 2023; Ren et al., 2024a; Gao et al., 2025; Su et al., 2025; Zhang et al., 2025;
Rouxel et al., 2024; Braun et al., 2024; Black et al.). Conventional flow matching and diffusion
methods (Lipman et al., 2023; Sohl-Dickstein et al., 2015) generate samples by starting with noise
sampled from a basic source distribution (often Gaussian) and progressively “denoising” them into the
target modality. This process requires repeatedly injecting visual information at each denoising step
through additional conditioning modules (Rombach et al., 2022; Zhang et al., 2023; Chi et al., 2023;
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Dasari et al., 2024), resulting in substantial time and space overheads (Liu et al., 2024a; He et al.,
2025). In particular, cross-attention, AdaLN (Peebles & Xie, 2023), or FiLM (Perez et al., 2018) are
often used for visual conditioning. Cross-attention incurs quadratic time and space complexity, while
AdaLN and FiLM avoid quadratic complexity but require extra modulation networks to generate
feature-wise parameters at every denoising step.

Minimizing complexity is essential for real-time robot control, e.g., Pi-0.5 (Intelligence et al.) operates
at 50 Hz and Helix (Figure AI, 2025) at up to 200 Hz, imposing stringent requirements on inference
latency. The primary objective of this paper is to overcome the inefficiencies inherent to conditioning
mechanisms in conventional flow matching methods. To this end, we develop VITA (VIsion-To-
Action policy), a noise-free flow matching policy learning framework that directly maps visual
representations to latent actions. As depicted in Figure 1, unlike conventional methods that flow
from a Gaussian prior, VITA imposes no constraints on the source distribution and flows directly
from visual latents, obviating the need for repeated visual conditioning during the flow. Consequently,
VITA significantly reduces time and space overheads, and simplifies network architectures.

Learning vision-to-action flow matching, however, presents several new challenges. Bridging two
distinct modalities is inherently difficult (Liu et al., 2024a), particularly in robotics where action
data is limited, unstructured, and sparse, whereas visual representations exhibit rich structures and
semantics, and far higher dimensions. Additionally, flow matching requires that the source and target
have equal dimensionalities, which prevents directly pairing raw actions with visual representations.

To address these challenges, we propose two key designs for VITA. 1) Learned target latent actions
for flow matching. We introduce a structured latent action space, learned via an action autoencoder,
that ‘lifts’ action representations to match the higher dimensionality of visual representations and
serves as a structured target distribution for flow matching. The action encoder up-samples raw
actions into target latent actions, and a decoder reconstructs raw actions from these latents. 2)
Flow latent decoding. In conventional flow matching methods such as latent diffusion for image
generation (Rombach et al., 2022), the target latent space can be pre-trained with abundant image
data and then frozen as reliable flow matching targets; in contrast, we show that a pre-trained and
frozen latent action space for learning vision-to-action flows yields poor performance (discussed in
Appendix B.2), since action data is too sparse and limited to learn reliable targets and frozen targets
cannot be corrected. It is therefore plausible to jointly train the flow model with the action autoencoder.
To prevent model collapse of the target latent action space (which happens by naively reducing flow
matching and autoencoder losses), we introduce flow latent decoding which backpropagates the
reconstruction loss of latent actions generated by solving flow matching ordinary differential equations
(ODEs), anchoring latent generation using ground-truth actions. This approach also bridges the
training-inference gap of latent actions: during training, the flow matching model learns to match the
targets given by the action encoder, and the decoder is trained to reconstruct these targets, whereas at
test time, the decoder must reconstruct ODE-generated latent actions.

We evaluate VITA on both real-world and simulated tasks using ALOHA (Chuang et al., 2024; Fu
et al., 2024b; Zhao et al., 2024) and Robomimic (Mandlekar et al., 2021). VITA achieves 1.5×− 2×
faster inference and 18.6%-28.7% lower memory usage compared to conventional flow matching
with similar model sizes, while outperforming or matching state-of-the-art policies in success rates.
Additionally, compared to state-of-the-art methods that necessitate complex architectures (e.g.,
transformers (Ma et al., 2024)), VITA naturally simplifies architecture designs. For instance, with
vector-based visual representations, VITA reduces the flow-matching network to a conditioning-free
vector-to-vector mapping, allowing for the use of simple MLPs; with higher-dimensional grid-
based visual representations, VITA scales to more complex architectures such as transformers while
eliminating costly conditioning modules like cross-attention.

Our main contributions are summarized as follows:

Noise-Free Flow Matching for Visuomotor Learning. We propose VITA, a noise-free policy that
directly evolves latent visual representations into latent actions via flow matching. VITA learns a
structured latent action space aligned with visual representations to bridge the modality gap. To
prevent latent collapse during end-to-end training, we propose flow latent decoding, which refines
latent actions by backpropagating through the flow matching ODE solving steps.

Efficient Policy Architectures. By visually grounding the source of the flow, VITA obviates costly
conditioning required by flow matching policies to repeatedly inject visual inputs. VITA enables
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lightweight implementations. To our knowledge, VITA is the first MLP-only flow matching policy to
succeed on tasks as challenging as ALOHA bimanual manipulation.

State-of-the-Art Efficiency and Performance. We validate VITA’s efficiency and performance on
9 simulation and 5 real-world tasks spanning both bimanual and single-arm manipulation. VITA
delivers 1.5×-2× faster inference and 18.6%-28.7% lower memory usage compared to conventional
flow matching, while surpassing or matching state-of-the-art policies in success rates.

2 RELATED WORK

Imitation Learning for Visuomotor Policy. Imitation learning enables robots to learn complex
behaviors by mimicking expert demonstrations. Behavior cloning is a prominent imitation learning
paradigm that learns a policy that maps observations to actions (Zhao et al., 2023; Lee et al., 2024) via
supervised learning. Recent advancements in behavioral cloning have widely adopted autoregressive
modeling (Fu et al., 2024a; Gong et al., 2024; Su et al., 2025) and generative modeling (Chi
et al., 2023). Generative modeling learns a conditional distribution of actions given an observation,
leveraging conditional variational autoencoders (CVAEs) (Zhao et al., 2023; Lee et al., 2024),
diffusion (Dasari et al., 2024; Chi et al., 2023), or flow matching (Zhang & Gienger, 2024; Zhang et al.,
2025). Generative models ubiquitously require conditioning modules (e.g., cross-attention (Dasari
et al., 2024), AdaLN (Dasari et al., 2024), FiLM (Perez et al., 2018; Chi et al., 2023)) to inject
observations at each step of the generation process. VITA removes the visual conditioning module by
developing a noise-free vision-to-action flow.

Diffusion and Flow Matching for Generative Modeling. Unlike diffusion which samples from
a Gaussian distributions, flow matching theoretically places no constraints on the choice of source
distribution (Tong et al., 2024). A few works have explored this property to learn the direct transport
within the same modality (Albergo & Vanden-Eijnden, 2022; Tong et al., 2023b). Recently, Liu et al.
(2024a) and He et al. (2025) extended this to more challenging cross-modal generation between text
and image. VITA learns to bridge vision and action for visuomotor control, where the action modality
presents unique challenges because of limited data and its unstructured nature. Different from flow
matching for image generation, which typically pre-trains and freezes the latent image space when
learning the flow (Rombach et al., 2022; Liu et al., 2024a), VITA resorts to a fully end-to-end pipeline
training to effectively learn the latent action space from limited and sparse action data along with flow
matching. We propose flow latent decoding to backpropagate action reconstruction losses through
the latent action generation process (ODE solving steps) during training.

3 PRELIMINARIES

Flow matching models learn to transport samples from a source distribution p0 to a target distribution
p1 by learning a velocity vector field vθ (Lipman et al., 2023; Liu et al., 2022c). The generative
process is defined by an ODE dzt

dt = vθ(zt, t), where t ∈ [0, 1] is continuous time, and zt denotes a
sample at time t. The goal is for the learned flow to transport z0 ∼ p0 to z1 ∼ p1.

Training. For a linear interpolation between two samples, the interpolation path is zt = (1−t)z0+tz1.
The ground-truth velocity along this path is dzt

dt = z1− z0. The flow matching loss trains vθ to match
this supervised vector field:

LFM = Et, z0, z1

[
∥vθ(zt, t)− (z1 − z0)∥2

]
. (1)

Inference. Given a source sample z0, a target sample is obtained by solving the ODE from t = 0 to
t = 1: ẑ1 = z0 +

∫ 1

0
vθ(zt, t) dt. In practice, we apply an Euler solver with K discretization steps,

yielding updates of the form ztk+1
= ztk +∆t vθ(ztk , tk), where ∆t = 1/K.

4 VITA: VISION-TO-ACTION FLOW MATCHING

The key challenge in VITA is the large dimensionality gap between vision and action, compounded
by the sparsity and unstructured nature of action data. In this section, we present the core designs of
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VITA developed to address these issues. We first introduce the mathematical formulation of VITA
(Section 4.1) and its overall architecture (Section 4.2). We then show why constructing a latent
action space is essential for resolving dimensionality mismatch (Section 4.3), and propose flow
latent decoding to address model collapse. Finally, we describe the objectives that enable effective
end-to-end VITA learning from scratch (Section 4.4).

4.1 FLOWING FROM VISION TO ACTION

VITA learns a policy π(A|O) that directly maps observations O to a corresponding sequence of
future actions A. The observations O encompasses raw visual inputs I ∈ RH×W×C and, optionally,
the robot’s proprioceptive states S. Actions are represented as temporal sequences over a prediction
horizon, formally defined as A ∈ RTpred×Daction , where Tpred is the prediction horizon and Daction is the
dimensionality of the action space. We employ action chunking with Tpred > 1 to enhance temporal
consistency (Zhao et al., 2023).

Conventional vs. VITA Flow Matching. Conventional flow matching policies generate actions
by evolving samples from a noise prior, typically z0 ∼ N (0, I). To incorporate visual information,
these models learn a conditional velocity field vθ(zt, t | O), requiring conditioning modules (e.g.,
cross-attention) to inject observations O at every denoising step. In contrast, VITA directly treats
the visual latent as the source of the flow z0. Because the flow is visually grounded at the source,
VITA learns a conditioning-free velocity field for flow matching, vθ(zt, t), eliminating the need for
repetitive conditioning and yielding a noise-free framework with enhanced efficiency.

Critically, flow matching requires z0 and z1 to share identical dimensionality, necessitating the
construction of a latent action space that matches the dimensionality of visual representations (Sec-
tion 4.3). During inference, the current observation Ocurr is first encoded into its latent visual
representation z0 = Ev(Ocurr), which is subsequently evolved into a predicted latent action represen-
tation, ẑ1, by numerically solving the ODE from t = 0 to t = 1 using the learned velocity field vθ.
In other words, ẑ1 is an approximation to the target latent z1. The resulting latent action ẑ1 is then
decoded through the action decoder to yield the final action sequence Â = Da(ẑ1).

4.2 VITA ARCHITECTURE DESIGN

Vision 
Encoder 𝒛𝟎

Flow Matching

Action 
Encoder

Action 
Decoder

𝒛𝟏

Flow
Latent
Decoding

ො𝒛𝟏

Ground-truth

𝒛𝟎: latent images
ො𝒛𝟏: generated latent actions
𝒛𝟏: target latent actions

Camera Image

𝓛𝑭𝑳𝑫
Action 

Decoder

ODE Solving

𝓛𝑨𝑬

Figure 2: An overview of the VITA architecture: The vision encoder maps observations into a source
latent representation z0 for the flow; the action encoder provides a target latent representation z1
for flow matching training. The action decoder learns to decode ẑ1 (latent actions generated by
solving ODEs) to actions via flow latent decoding losses, and decode z1 to actions (latent actions
from action encoder) via autoencoder losses. The flow matching network learns the velocity field
over a continuous flow matching path from z0 to z1.

As depicted in Figure 2, VITA is composed of three primary components: 1) The Vision Encoder
first (Ev) maps raw camera images into the image representation I . The observation O to the policy
consists of I and, optionally, the robot’s proprioceptive states S. Then, O is mapped into a latent
z0 = Ev(O), where z0 ∈ RDlatent is the source of flow matching. 2) The Action Autoencoder
(AE) consists of the Action Encoder and the Action Decoder, and learns a compact representation
for action chunks. The Action Encoder (Ea) maps the ground-truth action chunk A to latent actions
z1 = Ea(A), where z1 ∈ RDlatent serves as the target for flow matching; the Action Decoder (Da)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

reconstructs an action chunk Â = Da(ẑ1) from latent actions ẑ1. 3) The Flow Matching Network
(vθ) is learned to predict the velocity field at arbitrary t.

4.3 BRIDGING THE MODALITY GAP BETWEEN VISION AND ACTION

A key constraint of flow matching is that the source and target distributions must share the same
dimensionality. This poses a critical challenge for vision-to-action policies, since action spaces are
typically much lower-dimensional than visual representations. For example, action dimensionalities
range from 2 on PushT to 21 on ThreadNeedle, whereas visual representations can be 512-
dimensional (Zhao et al., 2024) or even higher when using grid-based features.

To bridge the gap, one naive option is to down-sample latent visual representations to action chunk
dimensionalities which, however, causes severe information loss and degrades performance. Alterna-
tively, one can up-sample actions with zero-padding, yielding sparse, unstructured targets that hinder
flow matching learning (see Appendix B.1). A third alternative is a pre-trained, frozen action AE,
akin to common practice in latent diffusion for image generation (Rombach et al., 2022), but this
proves ineffective for learning vision-to-action flow: with sparse, limited action data the induced
latent space is unreliable as a flow target and cannot be corrected once frozen (see Appendix B.2). As
another alternative, jointly training the action AE with flow matching may still fail, and our empirical
studies identify the root cause as latent space collapse induced by a training-inference gap in the
latent actions used for decoding as detailed below.

Training-Inference Gap between Encoder-Based and ODE-Generated Latent Actions. During
training, the decoder reconstructs actions from encoder-based latent actions z1, whereas at inference
it decodes ẑ1 generated by solving the flow matching ODE. Since ẑ1 is an approximation and does
not always align with z1, the decoder can fail to map them into meaningful actions. To address this
gap, we propose flow latent decoding, which enforces the model to decode from ODE-generated
latent actions ẑ1 during training, anchoring the latent generation process with ground-truth actions.

4.4 VITA LEARNING OBJECTIVES

Building upon our analysis of the training-inference gap, we now formulate a comprehensive learning
framework for VITA that prevents latent collapse while ensuring effective end-to-end optimization.
Our framework includes three essential objectives: flow latent decoding (FLD), flow matching (FM),
and action autoencoder (AE) losses, each addressing distinct aspects of the learning challenge.

Flow Latent Decoding (FLD). FLD addresses the training-inference gap by anchoring ODE-
generated actions using ground-truth actions during training. Formally, FLD is defined as the
reconstruction loss using ODE-generated latent actions, LFLD =

∥∥Da(ẑ1) − A
∥∥, where ẑ1 is

obtained by solving the flow ODE with an Euler solver during training. FLD propagates gradients
through the decoder and the ODE solver into both vθ and Ev. By decoding ẑ1 into actions and
measuring reconstruction error directly in action space, FLD effectively minimizes the discrepancies
between encoder-based and ODE-generated latents.

Flow Latent Consistency (FLC). To gain deeper insight into the mechanics of FLD, we introduce
flow latent consistency (FLC), a minimalist surrogate that directly aligns ODE-generated and encoder-
based latents without decoding. Formally, FLC is defined as LFLC =

∥∥ẑ1 − z1
∥∥. Under mild local

regularity assumptions on Da (stated below), FLC and FLD provide locally equivalent training signals
for the same ẑ1. Empirically, FLC also prevents collapse without explicit action reconstruction,
though convergence is slightly slower than with FLD (Section 5.3). This theoretical connection not
only validates our approach but also offers computational flexibility in implementation. A sketch of
the analysis is given below, with full proofs and corollaries deferred to Appendix A.

Assumption 1 (Decoder locally well-behaved). Da is C1 in a neighborhood of z1, with Jacobian
singular values bounded as m≤σmin≤σmax≤L on that neighborhood. Let εAE := ∥Da(z1)−A∥
denote the local AE reconstruction error.

Theorem 1 (Local equivalence of FLD and FLC). Under Assumption 1, for any ẑ1 in the neighbor-
hood, we have m ∥ẑ1 − z1∥ − εAE ≤ ∥Da(ẑ1)−A∥ ≤ L ∥ẑ1 − z1∥+ εAE.

5
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If εAE = 0, the minimizers of LFLD and LFLC coincide and equal {z1}; if εAE > 0, any minimizer
of LFLD lies within radius εAE/m of z1.

This theoretical result confirms that FLD and FLC target the same underlying optimization objective.

We further discuss this in Section 5.3, showing that including the flow latent decoding loss with a
non-zero λFLD is critical for avoiding latent space collapse and training successful VITA policies. We
will also ablate the effects of λFLD, λFLC, and λAE in Figure 6.

Flow Matching and Autoencoder Losses. The flow matching loss supervises the flow network
vθ by minimizing the MSE between the predicted velocity and the ground-truth velocity as shown
in Equation (1). The action autoencoder loss trains (Ea,Da) to reconstruct action chunks using an
L1 loss, LAE = ∥A − Da(Ea(A))∥1, where z1 = Ea(A) serves as a structured target latent with
small reconstruction bias and good local conditioning. This structured latent space strengthens the
theoretical link between FLD and FLC and further stabilizes training.

The training objective is a weighted sum of all three losses: LVITA = λFMLFM+λFLDLFLD+λAELAE.

5 EXPERIMENTS

We evaluate VITA on 9 simulation and 5 real-world tasks, both spanning bimanual and single-arm
manipulation. The bimanual tasks include 5 simulation (Figure 3) and 2 real-world tasks (Figure 4)
on AV-ALOHA (Chuang et al., 2024), which augments ALOHA (Zhao et al., 2024) with an active-
vision camera mounted on an additional 7-DoF arm. This challenging suite features high precision
requirements, non-stationary observations using active vision, and 21-DoF high-dimensional actions.
The single-arm tasks include 3 real-world tasks using one ALOHA arm (Figure 4), featuring high
randomization in object positions or colors, and 4 simulated tasks, including 2 Robomimic tasks (7D
actions), PushT (2D actions), and CloseBox (9D actions) from RLBench (James et al., 2020).

For simulation tasks, each environment provides 100-200 demonstrations. AV-ALOHA demonstra-
tions were collected via expert teleoperation in VR, using the left-eye image as input; single-arm
ALOHA demonstrations were collected using a leader arm. For the remaining tasks, we use publicly
available datasets. In real-world AV-ALOHA experiments, each task is trained from 50 demon-
strations using the left stereo image, and the single-arm ALOHA tasks are trained from 50-100
demonstrations using the wrist camera and an overhead camera. See Appendix D for details.

Figure 3: Autonomous rollouts of VITA across 5 AV-ALOHA tasks (CubeTransfer,
SlotInsertion, HookPackage, PourTestTube, ThreadNeedle), and 2 Robomimic
tasks (Square, Can). Notably, the AV-ALOHA tasks demand high-precision control, such as
accurately pouring a small ball into a narrow tube opening, or threading a needle through a tiny hole.

5.1 EXPERIMENT SETTINGS

Flow Matcher. We adopt OT-CFM (Tong et al., 2023a), which is based on optimal transport, and
solve the ODE with an Euler solver using 6 linearly interpolated time steps t for both VITA and FM.

Vision Encoding. We use ResNet-18 (He et al., 2016) as the vision encoder. A common practice in
visuomotor policy learning is to use the vector-based visual features after global average pooling (Su
et al., 2025; Chi et al., 2023), in which case VITA operates entirely on vector representations for both

6
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Hidden Pickup Transfer From Box Pick Ball Tooth Brush Store Drawer

Figure 4: Autonomous rollouts of VITA on five challenging real-world tasks, including two bimanual
AV-ALOHA tasks, HiddenPick, and TransferFromBox using active vision, and three single-
arm ALOHA tasks, PickBall, ToothBrush and StoreDrawer

vision and action. We additionally evaluate a variant of VITA using the 9× 512 ResNet grid-based
features to preserve more spatial information and assess VITA ’s scalability.

Baselines. Our baselines include state-of-the-art policies, including flow matching (FM) pol-
icy (Zhang & Gienger, 2024), diffusion policy (DP) (Chi et al., 2023), and action chunking transformer
(ACT) (Zhao et al., 2023). We evaluate both efficiency and performance in Section 5.2.

Training. We train VITA and baselines to predict action chunks of length 16, of which the first 8
actions are executed. We train VITA and FM on each task for 25K-50K steps. We follow the ACT
and DP implementations in LeRobot (Cadene et al., 2024). Since VITA and FM converge much faster
than DP or ACT (a known advantage of FM methods (Lipman et al., 2023)), we extend DP training
to 100K steps, and ACT to 100K-200K steps. The training batch size is 128. See Appendix G for
more detailed training settings.

Evaluation. We use 6 ODE steps for VITA and FM, and 10 DDPM (Denoising Diffusion Probabilistic
Model) steps for DP (Ho et al., 2020). In simulation, we evaluate the policy every 500 training steps
using 50 episodes per evaluation, and report the best success rate (SR) averaged over 3 seeds (Table 2).
For real-world tasks, we evaluate over 20 episodes per checkpoint on three single-arm tasks (Table 3)
and two bimanual manipulation tasks (Appendix D.2.1). Efficiency gains of VITA are analyzed in
Section 5.2.1, with all latency and memory measurements obtained on a single NVIDIA RTX 4090.

5.2 PERFORMANCE

The main objective of this paper is to improve the time and space efficiency of visuomotor policies.
This section demonstrates that VITA is a fast and precise visuomotor control policy, delivering
efficiency gains (Section 5.2.1) while matching or surpassing state-of-the-art policies (Section 5.2.2).

5.2.1 EFFICIENCY

FM and DP are typically parameterized using U-Nets (Ronneberger et al., 2015) or diffusion trans-
formers (DiTs) (Peebles & Xie, 2023), which are trained to predict velocity fields or noise at each
denoising step. U-Nets and DiTs are often large and computationally costly, which limits their
real-time deployment that requires highly efficient inference. These architectures rely on explicit
visual conditioning modules, e.g., cross-attention, FiLM, or AdaLN, which must be executed at every
denoising step and inevitably increase both inference time and memory footprint.

A key determinant of efficiency in both conventional FM and VITA is the choice of visual latent
representation. In conventional methods, vector-based and grid-based latents require different
conditioning modules and thus incur different computational costs. In VITA, the visual and action
latents must share the same dimensionality, so the latent choice directly determines the FM network
architecture. We therefore analyze efficiency in these two settings separately. As shown below, VITA
supports highly efficient architectures in both cases. We describe the implementations of VITA and
conventional FM under each setting and explain why VITA yields efficiency advantages in both.

7
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Vector-Based Visual Latents. With vector-based visual features, conventional methods typically
employ FiLM (Perez et al., 2018) or AdaLN (Peebles & Xie, 2023) to condition the FM network.
These methods compute modulation parameters via a separate conditioning network at every denoising
step. FiLM modulates network outputs at each feature channel; AdaLN modulates normalization
statistics at each network layer. The FM network is often implemented using transformers or U-Nets to
effectively process noisy action chunks of shape Tpred ×Daction, and fuse in visual latents. In contrast,
since VITA uses vector-based latents for both the vision source and action targets, the FM network
vθ reduces to a vector-to-vector mapping, with no need to fuse visual information. This enables a
highly lightweight MLP-only architecture choice. We show that MLP-based VITA achieves better
efficiency (both latency and memory) than the most efficient FM baseline (MLP-based), while
matching the task performance of the strongest FM baseline (transformer-based).

Grid-Based Visual Latents. With grid-based features (e.g., 9× 512), cross-attention is often used in
transformers to fuse visual tokens and action chunks for conditioning (Dasari et al., 2024), which
introduces quadratic time and space complexity. In contrast, VITA eliminates cross-attention in
transformer-based implementations. As shown in Appendix B.6.2, VITA attains strong performance
while being more efficient (Table 1 grid-based settings).

To provide a comprehensive efficiency comparison, we implement two FM parameterizations
(DiTs (Peebles & Xie, 2023) and U-Nets (Ronneberger et al., 2015)) and three conditioning mecha-
nisms: AdaLN (Peebles & Xie, 2023) and FiLM (Perez et al., 2018) for vector-based features, and
cross-attention (Gong et al., 2024) for grid-based features.

We compare the inference latency, and inference memory usage of VITA and other FM based methods
in Table 1 for both vector-based and grid-based representations. VITA achieves an inference wall-
clock time of 0.22 ms (vector-based) and 0.25 ms (grid-based) per action chunk, which is 1.5× and
2× faster than the best-performing FM baseline (transformer-based FM with similar model sizes) that
incurs higher latency (∼0.33 ms and ∼0.51 ms). VITA effectively reduces memory usage: the peak
memory is 18.6% less than FM in the vector-based setting, and 28.7% less in the grid-based setting.
Additionally, we discuss the training time and space efficiency in Appendix B.7. We further compare
against FM accelerated with simple MLP architectures of similar model size to isolate the effect of
architecture design in the vector-based setting. VITA remains 1.3× faster at inference and uses 19.3%
less memory, while FM with MLPs fails to achieve competitive success rates (Appendix B.6.1).

Table 1: Comparison of the time and space efficiency of VITA and flow-matching baselines, grouped
by the type of visual latents used (“Vector” or “Grid” based). Metrics include: model size, inference
latency (ms/chunk, batch size 1), and inference memory (MiB), (see Appendix B.7.2 for inference
memory measurement details).

Visual Model Architecture Conditioning Params Latency Memory

Vector

VITA MLP N/A 31.09M 0.2215 333.86
FM Transformer AdaLN 31.16M 0.3307 410.38
FM U-Net FiLM 84.05M 0.3650 818.79
FM MLP AdaLN 32.20M 0.2831 413.95

DDPM U-Net FiLM 81.82M 2.5985 801.47

Grid VITA Transformer N/A 31.80M 0.2502 377.55
FM Transformer Cross-Attn 29.06M 0.5102 529.16

5.2.2 SUCCESS RATES

We evaluate VITA against state-of-the-art policies on 9 simulated tasks and 5 real-world tasks.
We report SRs for FM using the transformer-based FM with AdaLN, as it achieves the strongest
performance among the FM variants evaluated in Section 5.2.1; other variants such as MLP-based FM
perform poorly (Appendix B.6.1), while FM using cross-attention or U-Net reaches similar SRs but is
substantially slower to train. Across the 9 simulation tasks (Table 2) and the 3 real-world single-arm
ALOHA tasks (Table 3), VITA consistently outperforms or matches state-of-the-art methods. We
further evaluate VITA on 2 challenging real-world bimanual AV-ALOHA tasks (Appendix D.2.1)
featuring 21-DoF high-dimensional actions and active vision. We discuss the under-performance of
DP in Appendix B.8.2, which is largely due to the stringent success criteria of multi-stage ALOHA

8
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tasks. Appendix E.1 demonstrates VITA’s robustness to online perturbations, and Appendix E.2
evaluates its generalization to unseen objects.

Table 2: SRs on simulation tasks on AV-ALOHA, Robomimic, PushT, and CloseBox. We report
the mean and the standard deviation of the best SRs during validation across 3 random seeds.

Task VITA FM DP ACT

ThreadNeedle 91.33±1.15 90±2 59.33±1.89 44.67±14.47
SlotInsertion 78±2 82±2 50.67±5.03 47.33±2.31
PourTestTube 78.67±2.31 86±2.31 46±0 42±7.21
HookPackage 86±2 82±2 37.33±6.11 32±2
CubeTransfer 100±0 100±0 94.67±3.06 99.33±1.16
PushT 88±2 83.33±1.16 74.67±6.11 28±5.29
Square 95.33±4.16 87.33±3.06 84±2 72±2
Can 100±0 100±0 95.33±1.16 88.67±2.31
CloseBox 95.33±1.16 85.33±2.31 85.33±1.16 72±5.29

Table 3: Comparison of SRs on three real-world single-arm ALOHA manipulation tasks. Each task
is decomposed into subtasks, and SRs are reported per subtask.

PickBall StoreDrawer ToothBrush

Pick Place Pick Place Close Pick Insert

VITA 0.75 0.70 1.00 0.95 0.95 0.80 0.50
FM 0.75 0.65 0.90 0.90 0.90 0.90 0.50
DP 0.60 0.60 1.00 0.95 0.90 0.60 0.30
ACT 0.50 0.45 0.65 0.65 0.50 0.70 0.30

5.3 ABLATION OF FLOW LATENT DECODING

We investigate the importance of FLD (LFLD) for effectively training VITA policies. As demonstrated
by Figure 5(a), the generated latent actions at inference may not decode into meaningful actions
because of the training-inference gap between encoder-based latent actions z1 and ODE-generated
latent actions ẑ1 discussed in Section 4.3. To bridge this gap, we propose two objectives that
backpropagate through ODEs to explicitly minimize the discrepancy: 1) FLD, which enforces
accurate reconstruction in the raw action space by comparing Da(ẑ1) against the ground-truth action;
and 2) FLC, which directly aligns ODE-generated latents ẑ1 with encoder-based latents z1.

a) VITA b) VITA w/o FLD

Ground-truth Actions Ground-truth Actions

Figure 5: Comparison of reconstructed actions between (a)
VITA, and (b) VITA without FLD. Reconstruction fails with-
out FLD because of latent space collapse.
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Figure 6: Success rates using differ-
ent objectives.

Figure 6 shows that the model completely fails to learn without FLD (i.e., λFLD = 0) due to latent
collapse, while applying FLD succeeds in learning the policy. FLC provides a weaker signal compared
to FLD (because FLD directly anchors generation using the ground-truth actions), resulting in slightly
slower convergence. However, we found that using a combination of both objectives in practice yields
the best performance due to richer learning signals in both raw and latent action spaces.
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5.4 VITA DENOISING PROCESS

Figure 7 compares the denoising processes of VITA and conventional FM. By jointly optimizing
the vision-to-action flow and the latent action space via FLD, VITA induces highly structured latent
spaces for both vision and actions. Consequently, even latent images express action semantics: latent
images can be directly decoded into coherent action trajectories using the action decoder and are then
progressively refined by the ODE.

Step 1 2
(b) VITA Denoising

6

(a) Conventional Flow Matching Denoising

Source
(Latent Image)

53 4

Action Decoder

Step 1 2 6Source
(Gaussian Noise)

53 4

Figure 7: Conventional flow matching (a) evolves random Gaussian noise into action chunks by
solving ODEs, gradually denoising noisy actions; in contrast, VITA (b) flows directly from latent
images, and refines latent actions over ODE steps. Notably, by bridging vision and actions via VITA
learning, the latent visual representations begin to express action semantics and can be decoded into
action trajectories using the action decoder.

6 CONCLUSION

We developed VITA, an efficient and high-performing visuomotor policy, which generates actions in a
noise-free manner. VITA directly evolves visual latents into latent actions. VITA eliminates the need
for conditioning modules such as cross-attention, simplifying architectures and enhancing efficiency.
When employing vector representations for both latent images and actions, VITA reduces the flow
matching network to a conditioning-free vector-to-vector mapping, enabling a simple MLP-only
architecture for complex visuomotor tasks. Two designs are critical to VITA’s success: learning a
structured latent action space as the flow matching target, and backpropagating across ODE solving
steps, allowing VITA to effectively learn in a fully end-to-end manner. Extensive experiments
demonstrate that VITA achieves state-of-the-art performance on ALOHA and Robomimic in both
real and simulation tasks. VITA achieves 1.5×-2× faster inference and 18.6%-28.7% less memory
usage compared to conventional flow matching.

7 ETHICS STATEMENT

All experiments were conducted in simulation environments or on standard robotic platforms without
involving human subjects, sensitive user data, or any form of personal information. Thus, there
are no privacy, security, or human participant concerns. The datasets we use are publicly available
benchmark datasets, and no proprietary or restricted data were employed. No conflicts of interest or
external sponsorships influence the reported findings.

8 REPRODUCIBILITY STATEMENT

We take multiple steps to ensure reproducibility of our results. A detailed description of our model
architecture, training objectives, and algorithmic choices is provided in the main text. Hyper-
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parameters, training configurations, and ablations are reported in the Appendix. For theoretical
derivations (e.g., flow matching formulation), complete proofs and assumptions are included in the
supplementary materials. To facilitate replication, we include anonymous source code with training
scripts, evaluation pipelines, and configuration files as part of the supplementary material during
review. All datasets used are publicly available (Robomimic, ALOHA).
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A PROOF OF FLD AND FLC EQUIVALENCE

A.0.0.1 Preliminaries. All norms below are vector norms with induced operator norms. We use
the ball B(z1, r) = {x : ∥x− z1∥ < r}. Assumption 1 in the main text holds throughout.
Lemma 1 (Local bi-Lipschitzness from Jacobian bounds). For any ẑ1 ∈ B(z1, r),

m ∥ẑ1 − z1∥ ≤ ∥Da(ẑ1)−Da(z1)∥ ≤ L ∥ẑ1 − z1∥.

Proof of Lemma 1. Let γ(s) = z1 + s(ẑ1 − z1) for s ∈ [0, 1]. The mean-value integral formula gives

Da(ẑ1)−Da(z1) =

∫ 1

0

JDa(γ(s)) (ẑ1 − z1) ds.

Taking norms and using, for any matrix J and vector v ̸= 0, σmin(J)∥v∥ ≤ ∥Jv∥ ≤ σmax(J)∥v∥,
together with m ≤ σmin(JDa

(γ(s))) and σmax(JDa
(γ(s))) ≤ L for all s, yields the bounds.

Proof of Theorem 1. Add and subtract Da(z1) and apply triangle/reverse-triangle inequalities:

∥Da(ẑ1)−A∥ ≤ ∥Da(ẑ1)−Da(z1)∥+ ∥Da(z1)−A∥,

∥Da(ẑ1)−A∥ ≥ ∥Da(ẑ1)−Da(z1)∥ − ∥Da(z1)−A∥.
Invoke Lemma 1 and set εAE = ∥Da(z1)−A∥ to obtain the two-sided inequality stated in Theorem 1.
The minimizer claims follow immediately: if εAE = 0, both losses are minimized at ẑ1 = z1;
otherwise any minimizer of FLD must satisfy ∥ẑ1 − z1∥ ≤ εAE/m.

A.0.0.2 Corollary A.1 (squared-loss version). Assume εAE = 0. Then

m2 ∥ẑ1 − z1∥2 ≤ ∥Da(ẑ1)−A∥2 ≤ L2 ∥ẑ1 − z1∥2.

With εAE = 0, Lemma 1 gives m∥ẑ1−z1∥ ≤ ∥Da(ẑ1)−Da(z1)∥ ≤ L∥ẑ1−z1∥. Since both sides
are nonnegative, squaring preserves the inequalities. Thus the squared FLD objective is sandwiched
between m2 and L2 times the squared FLC objective. Consequently, the map ẑ1 7→ ∥Da(ẑ1)−A∥22
is locally L2-smooth and m2-strongly convex along latent directions (intuitively, its curvature is
controlled by J⊤

Da
JDa

whose eigenvalues lie in [m2, L2]).

A.0.0.3 Corollary A.2 (gradient scaling for squared losses). Let J := JDa
(ẑ1) and assume

εAE = 0. For the squared losses,

∇ẑ1
L(2)
FLD = 2J⊤(Da(ẑ1)−A

)
, ∇ẑ1

L(2)
FLC = 2 (ẑ1 − z1).

Then
m2

∥∥∇L(2)
FLC

∥∥ ≤
∥∥∇L(2)

FLD

∥∥ ≤ L2
∥∥∇L(2)

FLC

∥∥.
Use ∥J⊤y∥ ∈ [m∥y∥, L∥y∥] (by singular-value bounds) with y = Da(ẑ1)−A = Da(ẑ1)−Da(z1),
and Lemma 1 to get m ∥y∥ ≤ ∥J⊤y∥ ≤ L ∥y∥ and m ∥ẑ1−z1∥ ≤ ∥y∥ ≤ L ∥ẑ1−z1∥. Multiplying
the bounds yields m2∥ẑ1 − z1∥ ≤ ∥J⊤y∥ ≤ L2∥ẑ1 − z1∥. Since ∥∇L(2)

FLC∥ = 2∥ẑ1 − z1∥, this
gives the stated inequality (up to the common factor 2). It follows that step-size sensitivity is governed
by the squared condition number (L/m)2.

B DISCUSSIONS

B.1 DIMENSIONALITY MATCHING FOR VISION-TO-ACTION FLOW

A constraint of flow matching is that the source and target must have identical shapes. In visuomotor
contexts, the visual latent representations (z0) are typically much higher-dimensional than raw action
chunks (A). A naive solution would be to down-sample the visual representation to match the action
dimensionality, which, nevertheless, leads to significant information loss and poor performance,
particularly when the dimensional gap is large.

Therefore, we adopt the opposite strategy: we map the raw action chunks into a higher-dimensional
latent space that matches the dimensionality of the visual latent representations.
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A naive approach is to use fixed linear transformations. When the action dimension is smaller than
the latent dimension, we construct a lossless mapping by embedding the actions into the higher-
dimensional latent space through zero-padding. The inverse mapping simply discards the padding.
Our experiments show that action representations produced by such transformations are insufficient
for learning reasonable flow matching policies. We found that learning well-structured action latent
spaces via autoencoders as the target distributions for flow matching can be crucial for the success of
vision-to-action flow. We develop an action encoder (Ea), which does not simply remap dimensions,
but also learns structured latent action spaces, making the complex flow from vision to action more
tractable.

Table 4: Task SR (%) on ThreadNeedle with different action up-sampling strategies.

Up-sampling Strategy SR (%)

Zero-Padding 0
Action AE (w/o FLD) 0
Action AE (w/ FLD) 92

B.2 ABLATION OF FROZEN TARGET FOR FLOW MATCHING

Learning a flow when the target distribution lies in a learned latent space is inherently challenging.
Jointly optimizing the flow and the latent encoder creates a moving target, as the latent space
continually shifts during training; it also introduces a training-inference gap: flow matching does not
guarantee that ODE-generated latents are decodable during inference, since the decoder is trained to
reconstruct encoder-based latents.
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Figure 8: Success rates (left) and log-scaled action MSEs (right) comparing end-to-end VITA training
with VITA using a frozen action AE on ThreadNeedle. EMA = 0.9.

A natural solution is to follow the strategy in latent diffusion models Rombach et al. (2022): pre-train
the latent space on large-scale data and freeze it when training the flow. We evaluate this approach by
pre-training the action autoencoder for 100k steps using a reconstruction loss, LAE, then freezing
it while training the VITA policy for 25k steps (same as VITA trained from scratch). As shown in
Figure 8, this frozen-latent setup yields poor online success rates and high offline MSEs that plateau
early. In contrast, end-to-end VITA training enabled by FLD performs substantially better. The
underlying issue is that, unlike image generation, robotics action data is sparse and limited; pure
latent pre-training produces a weak representation that cannot be improved once the latent space is
frozen.

B.3 CONTRASTIVE LATENT ALIGNMENT

Section 4.4 introduced two key objectives, FLD and its surrogate FLC, which are both designed to
prevent latent space collapse and enable effective VITA learning. Empirically, we find that FLD
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alone outperforms FLC alone, as it provides a more direct training signal by anchoring the generation
process to the ground-truth actions. However, the most robust performance is achieved by combining
them, which enforces consistency in both latent space and action space.

Additionally, motivated by the ability of contrastive learning to improve representations and pre-
vent latent collapse Liu et al. (2024a), we introduced a contrastive loss between vision and action
latents (Radford et al., 2021). We show that this objective can further boost performance be-
yond FLD and FLC on some tasks by encouraging the model to learn representations where the
similarity between corresponding vision-action pairs is maximized, while the similarity between
non-corresponding pairs is minimized.

We employ InfoNCE (Noise-Contrastive Estimation) for contrastive learning between vision and
action. For a given batch of size N , the vision latent z0,i and action latent z1,i from the same data
sample are treated as a positive pair. All other non-corresponding combinations (z0,i, z1,j) where
i ̸= j are considered negative pairs. The loss aims to maximize the similarity of positive pairs while
minimizing the similarity of negative pairs. The symmetric InfoNCE loss is defined as:

Lcontrastive = − 1

2N

N∑
i=1

[
log

exp(sim(z0,i, z1,i)/τ)∑N
j=1 exp(sim(z0,i, z1,j)/τ)

+ log
exp(sim(z1,i, z0,i)/τ)∑N
j=1 exp(sim(z1,i, z0,j)/τ)

]
where sim(·, ·) denotes the cosine similarity between L2-normalized feature vectors and τ is a
temperature hyperparameter.

As shown in Figure 9, the contrastive objective, when used alone, is insufficient for effective VITA
learning and underperforms VITA with only the FLD loss (see Figure 6). However, it provides
additional performance gains when combined with the FLD and FLC losses, as it helps create a more
robust and well-structured latent space.
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Figure 9: Success rates using different VITA learning objectives with or without contrastive losses.

B.4 ABLATION OF THE VARIATIONAL ACTION AUTOENCODER

In our experiments, a deterministic autoencoder (AE) learns the target latent space for actions. To
investigate the effect of imposing a prior on this latent space, we conducted an ablation study replacing
the AE with a variational autoencoder (VAE) (Kingma et al., 2013). This change introduces a KL
divergence regularization term, weighted by λKL, which encourages the encoder’s posterior output,
q(z1 |A), to match a standard normal prior:

LKL = DKL

(
q(z1 | A)

∥∥ p(z1)), p(z1) = N (0, I).

As shown by the training curves in Figure 10(a) and Figure 21, incorporating this variational objective
with various weights (λKL) can degrade model performance.
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Figure 10: Ablation of VAE for action (a) and vision (b) on ThreadNeedle.

B.5 ABLATION OF THE VARIATIONAL VISION ENCODER

As described in our main architecture (Figure 2), the source latent variable z0 = Ev(O) ∈ RDlatent is
produced by a deterministic vision encoder. We performed a similar ablation to assess the impact of
making the vision encoding stochastic. Specifically, we replaced the deterministic encoder with a
variational one that models the posterior q(z0 |O) and introduces a corresponding KL divergence
loss (weighted by λobs

KL):

Lobs
KL = DKL

(
q(z0 | O)

∥∥ p(z0)), p(z0) = N (0, I).

As shown in Figure 10(b), using a VAE for the vision encoder drastically degrades performance.

Although using a VAE to model the source distribution introduces stochasticity that is often desirable
for generative tasks emphasizing diversity Liu et al. (2024a), we found that making the visual
latent encoding stochastic degrades VITA performance. In robotics tasks that demand extremely
high precision, such as ThreadNeedle, where millimeter-level errors cause complete failure,
variational objectives tend to blur latent representations, discarding critical visual details. As a result,
deterministic vision encodings yield substantially better precision and performance.

B.6 ABLATION OF NETWORK ARCHITECTURE

VITA, when using vector representations for both vision and actions, reduces the flow matching
network to a conditioning-free vector-to-vector mapping. We find that even an MLP-only architecture
can successfully learn challenging, high-precision visuomotor tasks, including bimanual manipulation
with active vision on AV-ALOHA. To the best of our knowledge, VITA is the first visuomotor policy
to master such complex tasks using MLPs.

B.6.1 FM USING MLP

We evaluate FM using the same 4-layer MLP architecture as VITA (with a similar parameter count
of ∼30M). Concretely, we remove self-attention from the DiT-based FM network and retain only
AdaLN (which is also MLP-based) for visual conditioning. However, the MLP-only FM fails to learn
effective policies: on PushT, the reward remains around 0.4 and success rate remains 0% even after
100K training steps, as the task requires high-precision control (successful only when reward exceeds
0.95). In contrast, VITA and transformer-based FM achieve 88% and 83% success, respectively. This
failure arises because an MLP is insufficient for processing noisy action chunks and integrating visual
conditioning at each denoising step, leading to poor control precision, as shown in Figure 11(b),
where action MSEs of MLP-based FM plateau while VITA yields significantly lower MSEs. Since
success rates are sparse on PushT, we also report online reward curves (see Figure 11(a)) to more
clearly compare MLP-based FM and VITA.

B.6.2 VITA USING TRANSFORMERS
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Figure 11: Reward curves and the action MSEs (log-scaled) of MLP-only VITA and MLP-only
FM on PushT. FM learning is ineffective because lack of precision, and performs poorly online,
necessitating effective architectures to process action chunks and fuse in conditions.

Additionally, we show that VITA is not limited to vector-based features or MLP. We evaluate VITA
using grid-based features (in particular, 9 × 512 spatial features obtained via ResNet-18), and
use transformer for the flow matching network. The flow matching network does not require any
conditioning for spatial tokens such as costly cross-attention compared to FM using transformers.

We evaluate VITA on multiple challenging tasks, demonstrating that VITA yield high success rates
(see Figure 12) while retaining the efficiency gains (see Table 1 and Appendix B.7).

0 10 20 30 40 50
Step (* 10^4)

0

20

40

60

80

100

Su
cc

es
s R

at
e

CubeTransfer

VITA (MLP)
VITA (Transformer)

0 10 20 30 40 50
Step (* 10^4)

0

20

40

60

80

100

Su
cc

es
s R

at
e

Can

VITA (MLP)
VITA (Transformer)

0 10 20 30 40 50
Step (* 10^4)

0

20

40

60

80

100

Su
cc

es
s R

at
e

ThreadNeedle

VITA (MLP)
VITA (Transformer)

Figure 12: Comparing success rates of VITA using MLP and vector-based features and VITA using
transformers and grid-based features.

B.7 EXTENDED EFFICIENCY METRICS

B.7.1 TRAINING TIME & SPACE OVERHEADS OF FLOW LATENT DECODING

Recall that we introduce FLD during training to enable effective end-to-end learning, which requires
solving 6-step ODEs. Although this inevitably adds some training-time overhead, we trade a modest
increase in training cost for significantly more efficient inference, which is critical for real-time
robotic deployment. For MLP-based VITA, the training time increases from 0.677 ms/chunk (without
FLD) to 0.740 ms/chunk (with FLD), corresponding to only a 9.3% overhead. For transformer-
based VITA, the cost rises from 0.766 ms/chunk to 0.951 ms/chunk, a 24.1% overhead. A similar
trend appears for GPU memory usage: for MLP-based VITA, peak training memory increases from
2716.62 MiB (without FLD) to 2835.86 MiB (with FLD), a relatively small 4.4% increase. Despite
these modest training-time and memory overheads, FLD enables stable end-to-end optimization
and yields markedly improved inference-time efficiency, a critical requirement for real-time robotic
deployment. Additionally, VITA maintains the lowest training-time memory usage compared to all
baselines even with FLD enabled, while achieving comparable training latency.
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B.7.2 TRAINING MEMORY USAGE

We have reported the absolute peak memory usage of each policy architecture in Table 1, measured
via torch.cuda.max_memory_allocated for fair comparison. Importantly, we exclude the
shared visual encoder, which transforms raw RGB images into visual latents and is used identically
across all methods. This observer accounts for approximately 1732.5 MiB of peak GPU memory
across all methods, and does not help differentiating memory usage across policies. For instance,
after removing observer cost, VITA (MLP) peaks at 333.86 MiB, FM (MLP, AdaLN) peaks at
413.95 MiB, and FM (Transformer, Cross-Attn) reaches 529.16 MiB. These numbers reflect the true
architectural and conditioning differences in the policy modules themselves. Consequently, VITA
(MLP) reduces peak memory usage by 19.4% relative to FM (MLP, AdaLN), 18.6% relative to
FM (Transformer, AdaLN), and 36.9% relative to FM (Transformer, Cross-Attn), highlighting its
inference-time efficiency gains from a conditioning-free formulation.

In Table 5, we report the absolute peak memory usage during training for each policy. As
with inference, we ablate the memory consumed by the shared visual encoder, and record peak
memory after vision encoding. For VITA, we also include the peak usage observed during the
flow_latent_decoding phase, which accounts for the highest memory load. This choice
ensures that the reported number reflects the true upper bound of VITA training footprint with FLD.

Table 5: Comparison of the conditioning parameter overhead, training-time cost, and training-time
memory usage of VITA and baselines, grouped by the type of visual latents used (“Vector” or “Grid”
based). Metrics include (i) parameters introduced solely by conditioning modules, (ii) training time
per chunk (ms), and (iii) peak GPU memory during training (MiB).

Visual Model Architecture Conditioning Cond. Params (M) Time Memory

Vector

VITA MLP N/A 0.00 0.740 2835.86
FM MLP AdaLN 11.82 0.664 2926.60
FM Transformer AdaLN 6.58 0.697 3071.88
FM U-Net FiLM 11.33 0.782 3676.38

DDPM U-Net FiLM 9.49 0.779 3643.04

Grid VITA Transformer N/A 0.00 0.951 2977.10
FM Transformer Cross-Attn 4.47 0.812 3585.06

B.8 CONTROL PRECISION AND SAMPLING STOCHASTICITY

B.8.1 VITA WITH SAMPLING STOCHASTICITY

Since stochastic image encodings degraded performance (as discussed in Section B.5), and we
hypothesized this was due to precision loss from blurred latent representations, we further investigated
the trade-off between stochasticity and control performance. We examined VITA variants with
different sources of sampling stochasticity. Introducing dropout in the network, or variance (σ) in
flow matching, where σ injects Gaussian noise along the interpolation path, consistently reduced
performance. In contrast, adding covariance to the source distribution produced results comparable to
deterministic encoding. Likewise, using a variational objective in the action autoencoder performed
similarly to the deterministic action autoencoder, whereas applying a variational objective to the
image encoder significantly harmed performance (see Figure 10).

These findings resonate with our observation that DP underperforms FM or VITA on ALOHA tasks
that require high precision. DP is based on an SDE (stochastic differential equation) while FM uses a
deterministic ODE formulation. FM introduces stochasticity only through sampling the Gaussian
prior, VITA goes even further by removing the Gaussian prior sampling, instead using a visually
grounded and deterministic initial state for the flow. Together, these results can suggest a broader
trend: for fast and precise real-time control, reducing stochasticity can be beneficial in, e.g., speeding
up convergence, producing more precise and faster policies.

B.8.2 ANALYZING UNDER-PERFORMANCE OF DP AND ACT ON ALOHA TASKS
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We followed DP and ACT implementation from LeRobot (Cadene et al., 2024). However, DP and
ACT perform poorly ( 40% SRs compared to 80%-90% of VITA and FM) on ALOHA tasks such as
ThreadNeedle and PourTestTube, which demand high precision.

This section examines the stringent success criteria of these tasks and explains why even small
action errors lead to failures. We further show that VITA and FM achieve substantially better action
precision with far fewer training steps, which contributes to their superior performance on these
precision-demanding tasks.

Success Criteria. We observed that DP and ACT learn reasonable trajectories, but small millimeter-
level errors lead to binary failures. For example, because success requires completing all five subtasks
on ThreadNeedle, failing at the third stage still counts as a full failure, yielding low SRs when the
average reward exceeds 3. In contrast, as depicted in Figure 13, both VITA and FM learn sufficiently
precise control to complete the final subtask with fewer training steps, achieving high success rates
on these tasks.
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Figure 13: Success rate and reward curves of VITA and DP on ThreadNeedle.

As shown in Figure 14, DP can complete multiple subtasks yet fail the episode due to millimeter-level
precision errors, such as threading a needle through a very small opening. In contrast, we find that
VITA and FM exhibit higher control precision on these tasks.

Failure

Success

Figure 14: A failure and a success case on ThreadNeedle. DP may complete most subtasks but
still fail the final insertion due to millimeter-level errors.

Action Precision. We now examine why VITA and FM overall achieve higher action precision. As
shown in Table 3, VITA outperforms all baselines on most tasks, and FM achieves SRs comparable to
VITA. To better understand this, we analyze the offline action MSE during training for VITA, FM, DP,
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and ACT in Figure 15. We observe that VITA and FM consistently converge to lower MSEs, whereas
ACT plateaus at substantially higher errors, and DP uses much more training steps to converge. This
trend aligns with prior findings (e.g., on image generation) showing that flow matching methods
enjoy faster convergence (Lipman et al., 2024) and can achieve higher generation fidelity (Gupta &
Taiwade, 2025).
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Figure 15: Comparison of action MSE on three real-world single-arm ALOHA tasks.

B.9 AUTOENCODER LOSS SELECTION.

We utilize the L1 loss for the autoencoder loss, LAE. We found it outperforms the L2 loss, which is
prone to mode-averaging and can result in blurry action reconstruction.

B.10 SUCCESS RATE CURVES DURING VITA LEARNING

VITA exhibits efficient and stable learning on AV-ALOHA and PushT (Figure 16) and Robomimic
tasks (Figure 17).

Figure 16: Success rate curves of VITA training on six tasks (five AV-ALOHA + PushT). The curves
are mean across three random seeds; the shaded region is ±1 standard deviation.
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Figure 17: Success rate curves of VITA training on two Robomimic tasks.

C EXTENDED RELATED WORKS

Imitation Learning for Visuomotor Policy. Imitation learning enables robots to learn complex
behaviors by mimicking expert demonstrations. Behavioral cloning, a prominent imitation learning
paradigm, frames this as a supervised learning problem, learning a policy that maps observations to
actions (Zhao et al., 2023; Lee et al., 2024). Recent advancements in behavioral cloning have widely
adopted two modeling methods: generative modeling and autoregressive modeling. Generative
methods learn a conditional distribution of actions given an observation. This category includes
policies based on conditional variational autoencoders (CVAEs) (Zhao et al., 2023; Lee et al., 2024),
as well as diffusion (Dasari et al., 2024; Chi et al., 2023) and flow matching (Zhang & Gienger,
2024; Zhang et al., 2025). On the other hand, autoregressive methods tokenize actions and frame
policy learning as a sequence modeling task. These methods predict action tokens sequentially,
using next-token prediction (Fu et al., 2024a), next-scale prediction (Gong et al., 2024), or bi-
directional prediction (Su et al., 2025). Generative models ubiquitously require extra conditioning
modules (e.g., cross-attention (Dasari et al., 2024), AdaLN (Dasari et al., 2024), FiLM (Perez et al.,
2018; Chi et al., 2023)) to inject observations at each step of the generation process. Furthermore,
generative and autoregressive methods commonly employ large, expressive networks such as U-
Nets or transformers to succeed on complex, high-dimensional robotics tasks. VITA reduces these
complexity by formulating the policy as a noise-free and conditioning-free vision-to-action flow.

Diffusion and Flow matching for Generative Modeling. Diffusion (Ho et al., 2020), grounded
in stochastic differential equations (SDEs), generates complex data distributions by sampling from
a simple source distribution (typically Gaussian) and iteratively denoising it to the target distribu-
tion (Sohl-Dickstein et al., 2015). Flow matching (Lipman et al., 2023; Liu et al., 2022b) has been
proposed to enable faster training and sampling (Liu et al., 2022b; Tong et al., 2024; Esser et al.;
Lipman et al., 2023) by modeling the map between source and target distributions with an ordinary dif-
ferential equation (ODE). Both diffusion and flow matching models have shown strong performance
across diverse generative tasks, such as image generation (Rombach et al., 2022; Peebles & Xie,
2023; Ma et al., 2024; Zhang et al., 2023; Liu et al., 2024b; Ren et al., 2024b), video generation (Ho
et al., 2022; Li et al., 2023), and visuomotor policies (Chi et al., 2023; Dasari et al., 2024; Black et al.;
Liu et al., 2024c). Unlike diffusion, flow matching theoretically places no constraints on the choice
of source distribution (Tong et al., 2024), and a few works have explored leveraging this property to
learn the direct transport within the same modality (Albergo & Vanden-Eijnden, 2022; Tong et al.,
2023b), e.g., for image-to-image generation tasks (Fischer et al., 2023; Liu et al., 2022a). Recently,
Liu et al. (2024a) and He et al. (2025) extended this to more challenging cross-modal generation
between text and image. VITA focuses on learning to bridge vision and action for visuomotor control,
where the target modality, action, has sparser data and lacks semantic structures, compared to text or
images, presenting unique challenges. Different from flow matching for image generation, which
typically pre-trains and freezes the image encoder and decoder when learning flow matching or
diffusion models for image generation (Rombach et al., 2022; He et al., 2025; Liu et al., 2024a),
VITA resorts to a fully end-to-end pipeline training to effectively learn the latent action space from
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limited and sparse action data. Furthermore, to enable effective joint training of flow matching and
target latent spaces, we propose flow latent decoding to backpropagate action reconstruction losses
through the the latent action generation process (ODE solving steps) during training.

D SIMULATED AND REAL-WORLD TASKS

To comprehensively evaluate the effectiveness of VITA across varying levels of difficulty and action
dimensionality, we conduct extensive experiments on both single-arm and bimanual manipulation
tasks. The action dimensionality spans from 2 to 21, and the tasks include both short- and long-horizon
settings. Overall, AV-ALOHA tasks are particularly challenging due to their 21D action spaces,
non-stationary observations introduced by the active-vision camera, and long-horizon, precision-
demanding task structure (see Figure 18 for real-world examples). Single-arm ALOHA tasks are also
challenging due to randomness, such as varying object types and object poses.

The specifications for each dataset are shown in Table 6. Following the practice of AV-
ALOHA (Chuang et al., 2024), we train all policies at 8.33 FPS (25/3) for simulated AV-ALOHA
tasks and at 11 FPS for real AV-ALOHA tasks, and interpolate to 25 FPS and 33 FPS, respectively,
for inference.

Dataset State Dim Action Dim FPS Image Size Camera
AV-ALOHA (Sim) 21 21 25 240×320 zed_cam_left
AV-ALOHA (Real) 21 21 33 240×320 left_eye_cam

ALOHA (Real) 7 7 33 240×320 overhead_cam,
right_wrist_cam

Robomimic 43 7 20 256×256 agentview_image
PushT 2 2 20 96×96 image
CloseBox 9 9 20 256×256 head_cam

Table 6: Comparison of dataset specifications.

D.1 AV-ALOHA SIMULATION TASKS.

CubeTransfer: Pick up a red cube with the right arm and transfer it to the left arm (200 episodes).

SlotInsertion: Use both arms to pick up a green stick and insert it into a pink slot (100
episodes).

HookPackage: Use both arms to pick up a red box and hook it onto a blue wall-mounted hook
(100 episodes).

PourTestTube: Pick up two test tubes and pour a small red ball from one into the other (100
episodes).

ThreadNeedle: Pick up a green needle and thread it through the hole of a pink object (200
episodes).

D.2 ALOHA REAL TASKS

D.2.1 BIMANUAL MANIPULATION WITH ACTIVE VISION

To evaluate the effectiveness of VITA in real-world settings, we deploy the policy on two challenging
bimanual manipulation tasks using AV-ALOHA (Chuang et al., 2024). Both tasks are long-horizon
and contain multiple stages to succeed. Examples of autonomous rollouts are shown in Figure 18.
Both tasks require precise and coordinated control of three arms, including one arm carrying an active
vision camera, and two arms for bimanual manipulation.

HiddenPick: Lift and open a fabric cover from a box, then pick an object from inside (50 episodes).

TransferFromBox: Pick an object from a box with the right arm, transfer it to the left arm, and
place it in another box (50 episodes).
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Reveal Box Look Inside Pick Up Place(a) HiddenPick

(b) TransferFromBox Look Inside Pick Up Transfer Place

Figure 18: Autonomous rollouts of VITA on two challenging real-world AV-ALOHA tasks,
HiddenPick, and TransferFromBox.

Table 7: SRs of VITA on two real-world bimanual manipulation tasks with active vision on AV-
ALOHA. Each task is decomposed into three subtasks, and SRs are reported per subtask.

HiddenPick TransferFromBox

Reveal Pick Place Pick Transfer Place

VITA 1.00 0.65 0.65 1.00 0.95 0.90

D.2.2 SINGLE-ARM MANIPULATION TASKS

Each single-arm ALOHA task consists of multiple stages, and includes substantial environment
randomization as detailed below.

PickBall: Pick up a ball, then place it into the box (50 episodes). Both the ball and the target box
appear in varying positions.

ToothBrush: Pick up the toothbrush from the side slot of the toothbrush cup, lift it up, and place
it into the toothbrush cup (50 episodes). The cup location and the orientation of the side slot are
randomized.

StoreDrawer: Pick up the object, put it in the drawer, and close the drawer (100 episodes). We
randomize the shapes and colors of the objects as well as the positions and partial openings of the
drawers. We also evaluate the out-of-distribution success rates for unseen combinations of object
colors and shapes (see Appendix E.2).

D.3 ROBOMIMIC TASKS

Robomimic is a benchmark of single-arm imitation learning tasks Mandlekar et al. (2021). We adapt
the environment for compatibility with the LeRobot (Cadene et al., 2024) codebase. The robot state
includes arm joint positions (encoded with sin and cos), joint velocities, end-effector pose, gripper
finger positions, and gripper finger velocities. The action space consists of six values for delta position
control of the end-effector pose and one value for the absolute position of the gripper.

Square: Pick up a square nut and insert it onto a matching square peg (175 episodes).

Can: Pick up a red can and place it into a box (192 episodes).

D.4 OTHER TASKS

PushT: Push a 2D T-shaped object into a matching T-shaped target region on the plane; achieving a
coverage score > 0.95 is deemed a success (200 episodes).

CloseBox: Close the lid of a paper box by manipulating the flap (200 episodes).
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E ADDITIONAL EXPERIMENT RESULTS

E.1 ROBUSTNESS TO ONLINE PERTURBATIONS

As depicted in Figure 19, VITA demonstrates strong robustness to online perturbations during
real-time control.

Figure 19: Robustness to online perturbations during inference on PickBall. We manually move
the ball multiple times before the pick, and move the box multiple times after the pick. In both cases,
the arm continues to adjust in real time and successfully reaches the correct ball and box positions.

E.2 GENERALIZATION TO UNSEEN OBJECTS

As shown in Figure 20, we train the StoreDrawer task using 7 objects. Table 3 shows that VITA
achieves the highest success rate on these in-distribution objects. To further evaluate generalization,
we introduce four unseen test objects with novel geometries, such as a triangular prism and a star-
shaped block. On this out-of-distribution (OOD) set, VITA succeeds in picking all objects and storing
them in the drawer.

Table 8: OOD SRs on four unseen objects for the StoreDrawer task.

VITA DP FM ACT

4/4 4/4 3/4 2/4

F TRAINING

In each plot of Figure 21, we tune a single hyperparameter while holding all other hyperparameters at
the default (see Table 9), and visualize the success rates over training steps. With these experimental
results, a robust configuration on ThreadNeedle includes moderate weights for both AE and FLD
(typically in [0.5, 1.0]), moderate FLC, minimal contrastive penalties, and no KL regularization on
action and visual latents.

G IMPLEMENTATIONS

G.1 VITA

VITA encodes observations into a latent vector z0 using a ResNet-18 backbone. The flow network,
which learns the mapping from z0 to ẑ1, is implemented as an MLP. We use a 6-step Euler ODE
solver. The latent action ẑ1 is translated to action chunks by a lightweight MLP-based action decoder.
A summary of all hyperparameters and loss weights is provided in Table 9.
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(a) Objects used during Training (b) Objects used during OOD Evaluation

Figure 20: OOD evaluation on StoreDrawer. Training uses 8 in-distribution object–color combi-
nations (left). Evaluation uses four unseen objects with novel shapes (right), including a triangular
prism and a star-shaped block.

Figure 21: Hyperparameter ablations on ThreadNeedle. Each sub-plot varies a single coefficient
while holding all others at their default values in Table 9. Top: action encoder reconstruction weight,
flow latent decoding weight, action encoder contrastive weight. Bottom: latent flow contrastive
weight, latent flow consistency weight, action KL weight.

G.2 FLOW MATCHING POLICY

The FM policy learns a velocity field using a transformer backbone, with AdaLN for conditioning. A
6-step Euler solver is used for solving ODEs. The hyperparameters and loss weights are summarized
in Table 10.

G.3 DIFFUSION POLICY

We follow the DP (Chi et al., 2023) implementation in LeRobot Cadene et al. (2024). The core of the
policy is a U-Net noise predictor, which uses FiLM (Perez et al., 2018) for conditioning. The model
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Table 9: VITA hyperparameters.

Horizons & Observation

Observation horizon 1
Prediction horizon 16
Action horizon 8
Observer backbone resnet18
Observer tokenize false

VITA core (latent & losses)

Latent dimension (Dlatent) 512
Decode flow latents true
Consistency weight 1.0
Encoder contrastive weight 1e-4
Flow contrastive weight 0.0
Latent noise std 0.0

Flow matcher / ODE

Flow Matcher OT-CFM
σ 0.0
# sampling steps (Euler) 6

Action AE

AE recon loss type l1
Encoder recon weight 0.5
Flow recon (FLD) weight 0.5
Use variational (VAE) false
KL weight (if variational) 1e-6
Freeze encoder / decoder false / false
Pretrained path None

AE network (encoder/decoder)

Encoder type / hidden dim cnn / 512
Decoder type / hidden dim simple / 512
Latent dim (AE) 512
Num heads / MLP ratio 8 / 4
Dropout 0.0
Num layers 4

is trained for 100 timesteps using a cosine beta schedule. During inference, trajectories are generated
using a 10-step DDPM sampler. All hyperparameters and loss weights are listed in Table 11.

G.4 ACTION CHUNKING TRANSFORMER

We follow the ACT Zhao et al. (2023) implementation in LeRobot Cadene et al. (2024). ACT is a
conditional variational autoencoder (cVAE) that generates action chunks conditioned on vision. Its
architecture consists of a vision encoder for processing observations and a transformer-based decoder
that models the distribution of future actions conditioned on the visual input. A complete list of
hyperparameters and loss weights is provided in Table 12.
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Table 10: Flow Matching (FM) Policy hyperparameters.

Horizons & Observation

Observation horizon 1
Prediction horizon 16
Action horizon 8
Observer backbone resnet18
Observer tokenize false

Flow matcher / ODE

Flow Matcher Target
σ 0.0
# sampling steps 6

Flow network architecture

Backbone flow_transformer
Conditioning adaln (options: adaln, cross, cross_adaln)
Hidden dim 512
Num layers 4
Num heads 8
MLP ratio 4
Dropout 0.1

Table 11: Diffusion policy hyperparameters.

Horizons & Observation

Observation horizon 1
Prediction horizon 16
Action horizon 8
Observer backbone resnet18
Observer tokenize false
Mask loss for padding false

Diffusion scheduler

Type DDPM
Training timesteps 100
Beta schedule squaredcos_cap_v2
Beta start / end 1e-4 / 2e-2
Prediction type epsilon
Clip sample / range true / 1.0

U-Net architecture

Down dims [512, 1024, 2048] or [256,512,1024]
Kernel size 5
Group norm groups 8
Diffusion step embed dim 128
FiLM scale modulation true

Optimization

Adam LR / backbone scale 1e-4 / 0.1
Adam betas / eps (0.95, 0.999) / 1e-8
Weight decay 1e-6
Scheduler cosine, warmup 500 steps

Training & inference

Total training steps 200000
Inference steps DDPM 10
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Table 12: Action Chunking Transformer (ACT): hyperparameters.

Sequence horizons
Action horizon 8
Prediction horizon 16
Observation horizon 1

Observer / backbone
Image encoder ResNet-18
Tokenize false

Transformer (policy head)
Pre-norm false
Model dimension dmodel 512
Attention heads 8
Feedforward dim 3200
FFN activation ReLU
Encoder layers 4
Decoder layers 1
Dropout 0.1

Latent / VAE block
Use VAE true
Latent dim 32
VAE encoder layers 4
ACT KL weight 10.0

Optimization
Optimizer Adam
Learning rate 1× 10−5

Betas (0.9, 0.999)
ϵ 1× 10−8

Weight decay 1× 10−4

Backbone LR scale 0.1

LR scheduler & validation
Scheduler Cosine
Warmup steps 2000
Online validation frequency 2000 steps
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