

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

VITA: VISION-TO-ACTION FLOW MATCHING POLICY

Anonymous authors
Paper under double-blind review

ABSTRACT

Conventional flow matching and diffusion-based policies sample through iterative denoising from standard noise distributions (e.g., Gaussian), and require conditioning modules to repeatedly incorporate visual information during the generative process, incurring substantial time and memory overhead. To reduce the complexity, we develop VITA (VIision-To-Action policy), a *noise-free* and *conditioning-free* flow matching policy learning framework that directly flows from visual representations to latent actions. Since the source of the flow is visually grounded, VITA eliminates the need of visual conditioning during generation. As expected, bridging vision and action is challenging, because actions are lower-dimensional, less structured, and sparser than visual representations; moreover, flow matching requires the source and target to have the same dimensionality. To overcome this, we introduce an action autoencoder that maps raw actions into a structured latent space aligned with visual latents, trained jointly with flow matching. To further prevent latent space collapse, we propose flow latent decoding, which anchors the latent generation process by backpropagating the action reconstruction loss through the flow matching ODE (ordinary differential equation) solving steps. We evaluate VITA on 9 simulation and 5 real-world tasks from ALOHA and Robomimic. VITA achieves 1.5 \times -2 \times faster inference compared to conventional methods with conditioning modules, while outperforming or matching state-of-the-art policies.

1 INTRODUCTION

Figure 1: A comparison between VITA and conventional flow matching and diffusion policies. Unlike conventional methods that sample noise from standard distributions and inject input modalities via conditioning, VITA poses no constraints on the source distribution, and flows directly from latent visual representations to latent actions, eliminating the need for conditioning modules.

Flow matching and diffusion models have demonstrated remarkable success across a wide range of cross-modal generation tasks, from text-to-image generation (Rombach et al., 2022; Peebles & Xie, 2023; Ma et al., 2024; Liu et al., 2024a; He et al., 2025; Zhang et al., 2023), text-to-video generation (Ho et al., 2022; Li et al., 2023; Jin et al., 2024), to visuomotor (vision-to-action) policies (Chi et al., 2023; Ren et al., 2024a; Gao et al., 2025; Su et al., 2025; Zhang et al., 2025; Rouxel et al., 2024; Braun et al., 2024; Black et al.). Conventional flow matching and diffusion methods (Lipman et al., 2023; Sohl-Dickstein et al., 2015) generate samples by starting with noise sampled from a basic source distribution (often Gaussian) and progressively “denoising” them into the target modality. This process requires repeatedly injecting visual information at each denoising step through additional conditioning modules (Rombach et al., 2022; Zhang et al., 2023; Chi et al., 2023;

054 Dasari et al., 2024), resulting in substantial time and space overheads (Liu et al., 2024a; He et al.,
 055 2025). In particular, cross-attention, AdaLN (Peebles & Xie, 2023), or FiLM (Perez et al., 2018) are
 056 often used for visual conditioning. Cross-attention incurs quadratic time and space complexity, while
 057 AdaLN and FiLM avoid quadratic complexity but require extra modulation networks to generate
 058 feature-wise parameters at every denoising step.

059 Minimizing complexity is essential for real-time robot control, e.g., Pi-0.5 (Intelligence et al.) operates
 060 at 50 Hz and Helix (Figure AI, 2025) at up to 200 Hz, imposing stringent requirements on inference
 061 latency. The primary objective of this paper is to overcome the inefficiencies inherent to conditioning
 062 mechanisms in conventional flow matching methods. To this end, we develop VITA (VIision-To-
 063 Action policy), a noise-free flow matching policy learning framework that directly maps visual
 064 representations to latent actions. As depicted in Figure 1, unlike conventional methods that flow
 065 from a Gaussian prior, VITA imposes no constraints on the source distribution and flows directly
 066 from visual latents, obviating the need for repeated visual conditioning during the flow. Consequently,
 067 VITA significantly reduces time and space overheads, and simplifies network architectures.

068 **Learning vision-to-action flow matching, however, presents several new challenges.** Bridging two
 069 distinct modalities is inherently difficult (Liu et al., 2024a), particularly in robotics where action
 070 data is limited, unstructured, and sparse, whereas visual representations exhibit rich structures and
 071 semantics, and far higher dimensions. Additionally, flow matching requires that the source and target
 072 have equal dimensionalities, which prevents directly pairing raw actions with visual representations.

073 To address these challenges, we propose two key designs for VITA. 1) **Learned target latent actions**
 074 **for flow matching.** We introduce a structured latent action space, learned via an action autoencoder,
 075 that ‘lifts’ action representations to match the higher dimensionality of visual representations and
 076 serves as a structured target distribution for flow matching. The action encoder up-samples raw
 077 actions into target latent actions, and a decoder reconstructs raw actions from these latents. 2)
 078 **Flow latent decoding.** In conventional flow matching methods such as latent diffusion for image
 079 generation (Rombach et al., 2022), the target latent space can be pre-trained with abundant image
 080 data and then frozen as reliable flow matching targets; in contrast, we show that **a pre-trained and**
 081 **frozen latent action space for learning vision-to-action flows yields poor performance (discussed in**
 082 **Appendix B.2)**, since action data is too sparse and limited to learn reliable targets and frozen targets
 083 cannot be corrected. It is therefore plausible to jointly train the flow model with the action autoencoder.
 084 To prevent model collapse of the target latent action space (which happens by naively reducing flow
 085 matching and autoencoder losses), we introduce flow latent decoding which backpropagates the
 086 reconstruction loss of latent actions generated by solving flow matching ordinary differential equations
 087 (ODEs), anchoring latent generation using ground-truth actions. This approach also bridges the
 088 *training-inference gap of latent actions*: during training, the flow matching model learns to match the
 089 targets given by the action encoder, and the decoder is trained to reconstruct these targets, whereas at
 090 test time, the decoder must reconstruct ODE-generated latent actions.

090 We evaluate VITA on both real-world and simulated tasks using ALOHA (Chuang et al., 2024; Fu
 091 et al., 2024b; Zhao et al., 2024) and Robomimic (Mandlekar et al., 2021). **VITA achieves $1.5 \times - 2 \times$**
 092 **faster inference and 18.6%-28.7% lower memory usage compared to conventional flow matching**
 093 **with similar model sizes, while outperforming or matching state-of-the-art policies in success rates.**
 094 **Additionally, compared to state-of-the-art methods that necessitate complex architectures (e.g.,**
 095 **transformers (Ma et al., 2024)), VITA naturally simplifies architecture designs.** For instance, with
 096 **vector-based visual representations, VITA reduces the flow-matching network to a conditioning-free**
 097 **vector-to-vector mapping, allowing for the use of simple MLPs; with higher-dimensional grid-based**
 098 **visual representations, VITA scales to more complex architectures such as transformers while**
 099 **eliminating costly conditioning modules like cross-attention.**

100 Our main contributions are summarized as follows:

101 **Noise-Free Flow Matching for Visuomotor Learning.** We propose VITA, a noise-free policy that
 102 directly evolves latent visual representations into latent actions via flow matching. VITA learns a
 103 structured latent action space aligned with visual representations to bridge the modality gap. To
 104 prevent latent collapse during end-to-end training, we propose flow latent decoding, which refines
 105 latent actions by backpropagating through the flow matching ODE solving steps.

106 **Efficient Policy Architectures.** By visually grounding the source of the flow, VITA obviates costly
 107 conditioning required by flow matching policies to repeatedly inject visual inputs. VITA enables

108 lightweight implementations. To our knowledge, VITA is the first MLP-only flow matching policy to
 109 succeed on tasks as challenging as ALOHA bimanual manipulation.
 110

111 **State-of-the-Art Efficiency and Performance.** We validate VITA’s efficiency and performance on
 112 **9 simulation and 5 real-world tasks spanning both bimanual and single-arm manipulation.** VITA
 113 **delivers $1.5 \times$ - $2 \times$ faster inference and 18.6%-28.7% lower memory usage compared to conventional**
 114 **flow matching, while surpassing or matching state-of-the-art policies in success rates.**

115 2 RELATED WORK

116 **Imitation Learning for Visuomotor Policy.** Imitation learning enables robots to learn complex
 117 behaviors by mimicking expert demonstrations. Behavior cloning is a prominent imitation learning
 118 paradigm that learns a policy that maps observations to actions (Zhao et al., 2023; Lee et al., 2024) via
 119 supervised learning. Recent advancements in behavioral cloning have widely adopted autoregressive
 120 modeling (Fu et al., 2024a; Gong et al., 2024; Su et al., 2025) and generative modeling (Chi
 121 et al., 2023). Generative modeling learns a conditional distribution of actions given an observation,
 122 leveraging conditional variational autoencoders (CVAEs) (Zhao et al., 2023; Lee et al., 2024),
 123 diffusion (Dasari et al., 2024; Chi et al., 2023), or flow matching (Zhang & Gienger, 2024; Zhang et al.,
 124 2025). Generative models ubiquitously require conditioning modules (e.g., cross-attention (Dasari
 125 et al., 2024), AdaLN (Dasari et al., 2024), FILM (Perez et al., 2018; Chi et al., 2023)) to inject
 126 observations at each step of the generation process. VITA removes the visual conditioning module by
 127 developing a noise-free vision-to-action flow.
 128

129 **Diffusion and Flow Matching for Generative Modeling.** Unlike diffusion which samples from
 130 a Gaussian distributions, flow matching theoretically places no constraints on the choice of source
 131 distribution (Tong et al., 2024). A few works have explored this property to learn the direct transport
 132 within the same modality (Albergo & Vanden-Eijnden, 2022; Tong et al., 2023b). Recently, Liu et al.
 133 (2024a) and He et al. (2025) extended this to more challenging cross-modal generation between text
 134 and image. VITA learns to bridge vision and action for visuomotor control, where the action modality
 135 presents unique challenges because of limited data and its unstructured nature. Different from flow
 136 matching for image generation, which typically pre-trains and freezes the latent image space when
 137 learning the flow (Rombach et al., 2022; Liu et al., 2024a), VITA resorts to a fully end-to-end pipeline
 138 training to effectively learn the latent action space from limited and sparse action data along with flow
 139 matching. We propose flow latent decoding to backpropagate action reconstruction losses through
 140 the latent action generation process (ODE solving steps) during training.
 141

142 3 PRELIMINARIES

143 Flow matching models learn to transport samples from a source distribution p_0 to a target distribution
 144 p_1 by learning a velocity vector field v_θ (Lipman et al., 2023; Liu et al., 2022c). The generative
 145 process is defined by an ODE $\frac{d\mathbf{z}_t}{dt} = v_\theta(\mathbf{z}_t, t)$, where $t \in [0, 1]$ is continuous time, and \mathbf{z}_t denotes a
 146 sample at time t . The goal is for the learned flow to transport $\mathbf{z}_0 \sim p_0$ to $\mathbf{z}_1 \sim p_1$.
 147

148 **Training.** For a linear interpolation between two samples, the interpolation path is $\mathbf{z}_t = (1-t)\mathbf{z}_0 + t\mathbf{z}_1$.
 149 The ground-truth velocity along this path is $\frac{d\mathbf{z}_t}{dt} = \mathbf{z}_1 - \mathbf{z}_0$. The flow matching loss trains v_θ to match
 150 this supervised vector field:
 151

$$\mathcal{L}_{\text{FM}} = \mathbb{E}_{t, \mathbf{z}_0, \mathbf{z}_1} \left[\|v_\theta(\mathbf{z}_t, t) - (\mathbf{z}_1 - \mathbf{z}_0)\|^2 \right]. \quad (1)$$

154 **Inference.** Given a source sample \mathbf{z}_0 , a target sample is obtained by solving the ODE from $t = 0$ to
 155 $t = 1$: $\hat{\mathbf{z}}_1 = \mathbf{z}_0 + \int_0^1 v_\theta(\mathbf{z}_t, t) dt$. In practice, we apply an Euler solver with K discretization steps,
 156 yielding updates of the form $\mathbf{z}_{t_{k+1}} = \mathbf{z}_{t_k} + \Delta t v_\theta(\mathbf{z}_{t_k}, t_k)$, where $\Delta t = 1/K$.
 157

158 4 VITA: VISION-TO-ACTION FLOW MATCHING

159 The key challenge in VITA is the large dimensionality gap between vision and action, compounded
 160 by the sparsity and unstructured nature of action data. In this section, we present the core designs of
 161

VITA developed to address these issues. We first introduce the mathematical formulation of VITA (Section 4.1) and its overall architecture (Section 4.2). We then show why constructing a latent action space is essential for resolving dimensionality mismatch (Section 4.3), and propose flow latent decoding to address model collapse. Finally, we describe the objectives that enable effective end-to-end VITA learning from scratch (Section 4.4).

4.1 FLOWING FROM VISION TO ACTION

VITA learns a policy $\pi(A|O)$ that directly maps observations O to a corresponding sequence of future actions A . The observations O encompasses raw visual inputs $I \in \mathbb{R}^{H \times W \times C}$ and, optionally, the robot’s proprioceptive states S . Actions are represented as temporal sequences over a prediction horizon, formally defined as $A \in \mathbb{R}^{T_{\text{pred}} \times D_{\text{action}}}$, where T_{pred} is the prediction horizon and D_{action} is the dimensionality of the action space. We employ action chunking with $T_{\text{pred}} > 1$ to enhance temporal consistency (Zhao et al., 2023).

Conventional vs. VITA Flow Matching. Conventional flow matching policies generate actions by evolving samples from a noise prior, typically $\mathbf{z}_0 \sim \mathcal{N}(0, I)$. To incorporate visual information, these models learn a conditional velocity field $v_\theta(\mathbf{z}_t, t | O)$, requiring conditioning modules (e.g., cross-attention) to inject observations O at every denoising step. In contrast, VITA directly treats the visual latent as the source of the flow \mathbf{z}_0 . Because the flow is visually grounded at the source, VITA learns a conditioning-free velocity field for flow matching, $v_\theta(\mathbf{z}_t, t)$, eliminating the need for repetitive conditioning and yielding a noise-free framework with enhanced efficiency.

Critically, flow matching requires \mathbf{z}_0 and \mathbf{z}_1 to share identical dimensionality, necessitating the construction of a latent action space that matches the dimensionality of visual representations (Section 4.3). During inference, the current observation O_{curr} is first encoded into its latent visual representation $\mathbf{z}_0 = \mathcal{E}_v(O_{\text{curr}})$, which is subsequently evolved into a predicted latent action representation, $\hat{\mathbf{z}}_1$, by numerically solving the ODE from $t = 0$ to $t = 1$ using the learned velocity field v_θ . In other words, $\hat{\mathbf{z}}_1$ is an approximation to the target latent \mathbf{z}_1 . The resulting latent action $\hat{\mathbf{z}}_1$ is then decoded through the action decoder to yield the final action sequence $\hat{A} = \mathcal{D}_a(\hat{\mathbf{z}}_1)$.

4.2 VITA ARCHITECTURE DESIGN

Figure 2: An overview of the VITA architecture: The vision encoder maps observations into a source latent representation \mathbf{z}_0 for the flow; the action encoder provides a target latent representation \mathbf{z}_1 for flow matching training. The action decoder learns to decode $\hat{\mathbf{z}}_1$ (latent actions generated by solving ODEs) to actions via flow latent decoding losses, and decode \mathbf{z}_1 to actions (latent actions from action encoder) via autoencoder losses. The flow matching network learns the velocity field over a continuous flow matching path from \mathbf{z}_0 to \mathbf{z}_1 .

As depicted in Figure 2, VITA is composed of three primary components: 1) The **Vision Encoder** first (\mathcal{E}_v) maps raw camera images into the image representation I . The observation O to the policy consists of I and, optionally, the robot’s proprioceptive states S . Then, O is mapped into a latent $\mathbf{z}_0 = \mathcal{E}_v(O)$, where $\mathbf{z}_0 \in \mathbb{R}^{D_{\text{latent}}}$ is the source of flow matching. 2) The **Action Autoencoder (AE)** consists of the Action Encoder and the Action Decoder, and learns a compact representation for action chunks. The Action Encoder (\mathcal{E}_a) maps the ground-truth action chunk A to latent actions $\mathbf{z}_1 = \mathcal{E}_a(A)$, where $\mathbf{z}_1 \in \mathbb{R}^{D_{\text{latent}}}$ serves as the target for flow matching; the Action Decoder (\mathcal{D}_a)

216 reconstructs an action chunk $\hat{A} = \mathcal{D}_a(\hat{z}_1)$ from latent actions \hat{z}_1 . 3) The **Flow Matching Network**
 217 (v_θ) is learned to predict the velocity field at arbitrary t .
 218

219 **4.3 BRIDGING THE MODALITY GAP BETWEEN VISION AND ACTION**
 220

221 A key constraint of flow matching is that the source and target distributions must share the same
 222 dimensionality. This poses a critical challenge for vision-to-action policies, since action spaces are
 223 typically much lower-dimensional than visual representations. For example, action dimensionalities
 224 range from 2 on PushT to 21 on ThreadNeedle, whereas visual representations can be 512-
 225 dimensional (Zhao et al., 2024) or even higher when using grid-based features.

226 To bridge the gap, one naive option is to down-sample latent visual representations to action chunk
 227 dimensionalities which, however, causes severe information loss and degrades performance. Alterna-
 228 tively, one can up-sample actions with zero-padding, yielding sparse, unstructured targets that hinder
 229 flow matching learning (see Appendix B.1). A third alternative is a pre-trained, frozen action AE,
 230 akin to common practice in latent diffusion for image generation (Rombach et al., 2022), but this
 231 proves ineffective for learning vision-to-action flow: with sparse, limited action data the induced
 232 latent space is unreliable as a flow target and cannot be corrected once frozen (see Appendix B.2). As
 233 another alternative, jointly training the action AE with flow matching may still fail, and our empirical
 234 studies identify the root cause as latent space collapse induced by a training-inference gap in the
 235 latent actions used for decoding as detailed below.

236 **Training-Inference Gap between Encoder-Based and ODE-Generated Latent Actions.** During
 237 training, the decoder reconstructs actions from encoder-based latent actions z_1 , whereas at inference
 238 it decodes \hat{z}_1 generated by solving the flow matching ODE. Since \hat{z}_1 is an approximation and does
 239 not always align with z_1 , the decoder can fail to map them into meaningful actions. To address this
 240 gap, we propose flow latent decoding, which enforces the model to decode from ODE-generated
 241 latent actions \hat{z}_1 during training, anchoring the latent generation process with ground-truth actions.
 242

243 **4.4 VITA LEARNING OBJECTIVES**
 244

245 Building upon our analysis of the training-inference gap, we now formulate a comprehensive learning
 246 framework for VITA that prevents latent collapse while ensuring effective end-to-end optimization.
 247 Our framework includes three essential objectives: flow latent decoding (FLD), flow matching (FM),
 248 and action autoencoder (AE) losses, each addressing distinct aspects of the learning challenge.
 249

250 **Flow Latent Decoding (FLD).** FLD addresses the training-inference gap by anchoring ODE-
 251 generated actions using ground-truth actions during training. Formally, FLD is defined as the
 252 reconstruction loss using ODE-generated latent actions, $\mathcal{L}_{\text{FLD}} = \|\mathcal{D}_a(\hat{z}_1) - A\|$, where \hat{z}_1 is
 253 obtained by solving the flow ODE with an Euler solver during training. FLD propagates gradients
 254 through the decoder and the ODE solver into both v_θ and \mathcal{E}_v . By decoding \hat{z}_1 into actions and
 255 measuring reconstruction error directly in action space, FLD effectively minimizes the discrepancies
 256 between encoder-based and ODE-generated latents.
 257

258 **Flow Latent Consistency (FLC).** To gain deeper insight into the mechanics of FLD, we introduce
 259 flow latent consistency (FLC), a minimalist surrogate that directly aligns ODE-generated and encoder-
 260 based latents without decoding. Formally, FLC is defined as $\mathcal{L}_{\text{FLC}} = \|\hat{z}_1 - z_1\|$. Under mild local
 261 regularity assumptions on \mathcal{D}_a (stated below), FLC and FLD provide locally equivalent training signals
 262 for the same \hat{z}_1 . Empirically, FLC also prevents collapse without explicit action reconstruction,
 263 though convergence is slightly slower than with FLD (Section 5.3). This theoretical connection not
 264 only validates our approach but also offers computational flexibility in implementation. A sketch of
 265 the analysis is given below, with full proofs and corollaries deferred to Appendix A.

266 **Assumption 1** (Decoder locally well-behaved). \mathcal{D}_a is C^1 in a neighborhood of z_1 , with Jacobian
 267 singular values bounded as $m \leq \sigma_{\min} \leq \sigma_{\max} \leq L$ on that neighborhood. Let $\varepsilon_{\text{AE}} := \|\mathcal{D}_a(z_1) - A\|$
 268 denote the local AE reconstruction error.

269 **Theorem 1** (Local equivalence of FLD and FLC). *Under Assumption 1, for any \hat{z}_1 in the neighbor-
 270 hood, we have $m \|\hat{z}_1 - z_1\| - \varepsilon_{\text{AE}} \leq \|\mathcal{D}_a(\hat{z}_1) - A\| \leq L \|\hat{z}_1 - z_1\| + \varepsilon_{\text{AE}}$.*

270 If $\varepsilon_{AE} = 0$, the minimizers of \mathcal{L}_{FLD} and \mathcal{L}_{FLC} coincide and equal $\{z_1\}$; if $\varepsilon_{AE} > 0$, any minimizer
 271 of \mathcal{L}_{FLD} lies within radius ε_{AE}/m of z_1 .
 272

273 This theoretical result confirms that FLD and FLC target the same underlying optimization objective.
 274

275 We further discuss this in Section 5.3, showing that including the flow latent decoding loss with a
 276 non-zero λ_{FLD} is critical for avoiding latent space collapse and training successful VITA policies. We
 277 will also ablate the effects of λ_{FLD} , λ_{FLC} , and λ_{AE} in Figure 6.
 278

279 **Flow Matching and Autoencoder Losses.** The flow matching loss supervises the flow network
 280 v_θ by minimizing the MSE between the predicted velocity and the ground-truth velocity as shown
 281 in Equation (1). The action autoencoder loss trains $(\mathcal{E}_a, \mathcal{D}_a)$ to reconstruct action chunks using an
 282 L1 loss, $\mathcal{L}_{AE} = \|A - \mathcal{D}_a(\mathcal{E}_a(A))\|_1$, where $z_1 = \mathcal{E}_a(A)$ serves as a structured target latent with
 283 small reconstruction bias and good local conditioning. This structured latent space strengthens the
 284 theoretical link between FLD and FLC and further stabilizes training.
 285

286 The training objective is a weighted sum of all three losses: $\mathcal{L}_{VITA} = \lambda_{FM}\mathcal{L}_{FM} + \lambda_{FLD}\mathcal{L}_{FLD} + \lambda_{AE}\mathcal{L}_{AE}$.
 287

5 EXPERIMENTS

289 We evaluate VITA on 9 simulation and 5 real-world tasks, both spanning bimanual and single-arm
 290 manipulation. The bimanual tasks include 5 simulation (Figure 3) and 2 real-world tasks (Figure 4)
 291 on AV-ALOHA (Chuang et al., 2024), which augments ALOHA (Zhao et al., 2024) with an active-
 292 vision camera mounted on an additional 7-DoF arm. This challenging suite features high precision
 293 requirements, non-stationary observations using active vision, and 21-DoF high-dimensional actions.
 294 The single-arm tasks include 3 real-world tasks using one ALOHA arm (Figure 4), featuring high
 295 randomization in object positions or colors, and 4 simulated tasks, including 2 Robomimic tasks (7D
 296 actions), Pusht (2D actions), and CloseBox (9D actions) from RLBench (James et al., 2020).
 297

298 For simulation tasks, each environment provides 100-200 demonstrations. AV-ALOHA demonstra-
 299 tions were collected via expert teleoperation in VR, using the left-eye image as input; single-arm
 300 ALOHA demonstrations were collected using a leader arm. For the remaining tasks, we use publicly
 301 available datasets. In real-world AV-ALOHA experiments, each task is trained from 50 demon-
 302 strations using the left stereo image, and the single-arm ALOHA tasks are trained from 50-100
 303 demonstrations using the wrist camera and an overhead camera. See Appendix D for details.
 304

313 Figure 3: Autonomous rollouts of VITA across 5 AV-ALOHA tasks (CubeTransfer,
 314 SlotInsertion, HookPackage, PourTestTube, ThreadNeedle), and 2 Robomimic
 315 tasks (Square, Can). Notably, the AV-ALOHA tasks demand high-precision control, such as
 316 accurately pouring a small ball into a narrow tube opening, or threading a needle through a tiny hole.
 317

5.1 EXPERIMENT SETTINGS

318 **Flow Matcher.** We adopt OT-CFM (Tong et al., 2023a), which is based on optimal transport, and
 319 solve the ODE with an Euler solver using 6 linearly interpolated time steps t for both VITA and FM.
 320

321 **Vision Encoding.** We use ResNet-18 (He et al., 2016) as the vision encoder. A common practice in
 322 visuomotor policy learning is to use the vector-based visual features after global average pooling (Su
 323 et al., 2025; Chi et al., 2023), in which case VITA operates entirely on vector representations for both
 324

Figure 4: Autonomous rollouts of VITA on five challenging real-world tasks, including two bimanual AV-ALOHA tasks, HiddenPick, and TransferFromBox using active vision, and three single-arm ALOHA tasks, PickBall, ToothBrush and StoreDrawer

vision and action. We additionally evaluate a variant of VITA using the 9×512 ResNet grid-based features to preserve more spatial information and assess VITA’s scalability.

Baselines. Our baselines include state-of-the-art policies, including flow matching (FM) policy (Zhang & Gienger, 2024), diffusion policy (DP) (Chi et al., 2023), and action chunking transformer (ACT) (Zhao et al., 2023). We evaluate both efficiency and performance in Section 5.2.

Training. We train VITA and baselines to predict action chunks of length 16, of which the first 8 actions are executed. We train VITA and FM on each task for 25K-50K steps. We follow the ACT and DP implementations in LeRobot (Cadene et al., 2024). Since VITA and FM converge much faster than DP or ACT (a known advantage of FM methods (Lipman et al., 2023)), we extend DP training to 100K steps, and ACT to 100K-200K steps. The training batch size is 128. See Appendix G for more detailed training settings.

Evaluation. We use 6 ODE steps for VITA and FM, and 10 DDPM (Denoising Diffusion Probabilistic Model) steps for DP (Ho et al., 2020). In simulation, we evaluate the policy every 500 training steps using 50 episodes per evaluation, and report the best success rate (SR) averaged over 3 seeds (Table 2). For real-world tasks, we evaluate over 20 episodes per checkpoint on three single-arm tasks (Table 3) and two bimanual manipulation tasks (Appendix D.2.1). Efficiency gains of VITA are analyzed in Section 5.2.1, with all latency and memory measurements obtained on a single NVIDIA RTX 4090.

5.2 PERFORMANCE

The main objective of this paper is to improve the time and space efficiency of visuomotor policies. This section demonstrates that VITA is a fast and precise visuomotor control policy, delivering efficiency gains (Section 5.2.1) while matching or surpassing state-of-the-art policies (Section 5.2.2).

5.2.1 EFFICIENCY

FM and DP are typically parameterized using U-Nets (Ronneberger et al., 2015) or diffusion transformers (DiTs) (Peebles & Xie, 2023), which are trained to predict velocity fields or noise at each denoising step. U-Nets and DiTs are often large and computationally costly, which limits their real-time deployment that requires highly efficient inference. These architectures rely on explicit visual conditioning modules, e.g., cross-attention, FiLM, or AdaLN, which must be executed at every denoising step and inevitably increase both inference time and memory footprint.

A key determinant of efficiency in both conventional FM and VITA is the choice of visual latent representation. In conventional methods, vector-based and grid-based latents require different conditioning modules and thus incur different computational costs. In VITA, the visual and action latents must share the same dimensionality, so the latent choice directly determines the FM network architecture. We therefore analyze efficiency in these two settings separately. As shown below, VITA supports highly efficient architectures in both cases. We describe the implementations of VITA and conventional FM under each setting and explain why VITA yields efficiency advantages in both.

378 **Vector-Based Visual Latents.** With vector-based visual features, conventional methods typically
 379 employ FiLM (Perez et al., 2018) or AdaLN (Peebles & Xie, 2023) to condition the FM network.
 380 These methods compute modulation parameters via a separate conditioning network at every denoising
 381 step. FiLM modulates network outputs at each feature channel; AdaLN modulates normalization
 382 statistics at each network layer. The FM network is often implemented using transformers or U-Nets to
 383 effectively process noisy action chunks of shape $T_{\text{pred}} \times D_{\text{action}}$, and fuse in visual latents. In contrast,
 384 since VITA uses vector-based latents for both the vision source and action targets, the FM network
 385 v_{θ} reduces to a vector-to-vector mapping, with no need to fuse visual information. This enables a
 386 highly lightweight MLP-only architecture choice. **We show that MLP-based VITA achieves better**
 387 **efficiency (both latency and memory) than the most efficient FM baseline (MLP-based), while**
 388 **matching the task performance of the strongest FM baseline (transformer-based).**

389 **Grid-Based Visual Latents.** With grid-based features (e.g., 9×512), cross-attention is often used in
 390 transformers to fuse visual tokens and action chunks for conditioning (Dasari et al., 2024), which
 391 introduces quadratic time and space complexity. In contrast, VITA eliminates cross-attention in
 392 transformer-based implementations. As shown in Appendix B.6.2, VITA attains strong performance
 393 while being more efficient (Table 1 grid-based settings).

394 To provide a comprehensive efficiency comparison, we implement two FM parameterizations
 395 (DiTs (Peebles & Xie, 2023) and U-Nets (Ronneberger et al., 2015)) and three conditioning mecha-
 396 nisms: AdaLN (Peebles & Xie, 2023) and FiLM (Perez et al., 2018) for vector-based features, and
 397 cross-attention (Gong et al., 2024) for grid-based features.

398 We compare the inference latency, and inference memory usage of VITA and other FM based methods
 399 in Table 1 for both vector-based and grid-based representations. VITA achieves an inference wall-
 400 clock time of 0.22 ms (vector-based) and 0.25 ms (grid-based) per action chunk, which is 1.5 \times and
 401 2 \times faster than the best-performing FM baseline (transformer-based FM with similar model sizes) that
 402 incurs higher latency (\sim 0.33 ms and \sim 0.51 ms). VITA effectively reduces memory usage: the peak
 403 memory is 18.6% less than FM in the vector-based setting, and 28.7% less in the grid-based setting.
 404 Additionally, we discuss the training time and space efficiency in Appendix B.7. We further compare
 405 against FM accelerated with simple MLP architectures of similar model size to isolate the effect of
 406 architecture design in the vector-based setting. VITA remains 1.3 \times faster at inference and uses 19.3%
 407 less memory, while FM with MLPs fails to achieve competitive success rates (Appendix B.6.1).

408 Table 1: Comparison of the time and space efficiency of VITA and flow-matching baselines, grouped
 409 by the type of visual latents used (“Vector” or “Grid” based). Metrics include: model size, inference
 410 latency (ms/chunk, batch size 1), and inference memory (MiB), (see Appendix B.7.2 for inference
 411 memory measurement details).

413 Visual	414 Model	415 Architecture	416 Conditioning	417 Params	418 Latency	419 Memory
415 Vector	VITA	MLP	<i>N/A</i>	31.09M	0.2215	333.86
	FM	Transformer	AdaLN	31.16M	0.3307	410.38
	FM	U-Net	FiLM	84.05M	0.3650	818.79
	FM	MLP	AdaLN	32.20M	0.2831	413.95
	DDPM	U-Net	FiLM	81.82M	2.5985	801.47
420 Grid	VITA	Transformer	<i>N/A</i>	31.80M	0.2502	377.55
	FM	Transformer	Cross-Attn	29.06M	0.5102	529.16

422 5.2.2 SUCCESS RATES

424 We evaluate VITA against state-of-the-art policies on 9 simulated tasks and 5 real-world tasks.
 425 We report SRs for FM using the transformer-based FM with AdaLN, as it achieves the strongest
 426 performance among the FM variants evaluated in Section 5.2.1; other variants such as MLP-based FM
 427 perform poorly (Appendix B.6.1), while FM using cross-attention or U-Net reaches similar SRs but is
 428 substantially slower to train. Across the 9 simulation tasks (Table 2) and the 3 real-world single-arm
 429 ALOHA tasks (Table 3), VITA consistently outperforms or matches state-of-the-art methods. We
 430 further evaluate VITA on 2 challenging real-world bimanual AV-ALOHA tasks (Appendix D.2.1)
 431 featuring 21-DoF high-dimensional actions and active vision. We discuss the under-performance of
 432 DP in Appendix B.8.2, which is largely due to the stringent success criteria of multi-stage ALOHA

432 tasks. Appendix E.1 demonstrates VITA’s robustness to online perturbations, and Appendix E.2
 433 evaluates its generalization to unseen objects.
 434

435 Table 2: SRs on simulation tasks on AV-ALOHA, Robomimic, PushT, and CloseBox. We report
 436 the mean and the standard deviation of the best SRs during validation across 3 random seeds.
 437

Task	VITA	FM	DP	ACT
ThreadNeedle	91.33\pm1.15	90 \pm 2	59.33 \pm 1.89	44.67 \pm 14.47
SlotInsertion	78 \pm 2	82\pm2	50.67 \pm 5.03	47.33 \pm 2.31
PourTestTube	78.67 \pm 2.31	86\pm2.31	46 \pm 0	42 \pm 7.21
HookPackage	86\pm2	82 \pm 2	37.33 \pm 6.11	32 \pm 2
CubeTransfer	100\pm0	100\pm0	94.67 \pm 3.06	99.33 \pm 1.16
PushT	88 \pm 2	83.33 \pm 1.16	74.67 \pm 6.11	28 \pm 5.29
Square	95.33\pm4.16	87.33 \pm 3.06	84 \pm 2	72 \pm 2
Can	100\pm0	100\pm0	95.33 \pm 1.16	88.67 \pm 2.31
CloseBox	95.33\pm1.16	85.33 \pm 2.31	85.33 \pm 1.16	72 \pm 5.29

448 Table 3: Comparison of SRs on three real-world single-arm ALOHA manipulation tasks. Each task
 449 is decomposed into subtasks, and SRs are reported per subtask.
 450

	PickBall		StoreDrawer			ToothBrush	
	Pick	Place	Pick	Place	Close	Pick	Insert
	VITA	0.75	0.70	1.00	0.95	0.95	0.80
FM	0.75	0.65	0.90	0.90	0.90	0.90	0.50
DP	0.60	0.60	1.00	0.95	0.90	0.60	0.30
ACT	0.50	0.45	0.65	0.65	0.50	0.70	0.30

488 5.3 ABLATION OF FLOW LATENT DECODING

489 We investigate the importance of FLD (\mathcal{L}_{FLD}) for effectively training VITA policies. As demonstrated
 490 by Figure 5(a), the generated latent actions at inference may not decode into meaningful actions
 491 because of the training-inference gap between encoder-based latent actions z_1 and ODE-generated
 492 latent actions \hat{z}_1 discussed in Section 4.3. To bridge this gap, we propose two objectives that
 493 backpropagate through ODEs to explicitly minimize the discrepancy: 1) FLD, which enforces
 494 accurate reconstruction in the raw action space by comparing $\mathcal{D}_a(\hat{z}_1)$ against the ground-truth action;
 495 and 2) FLC, which directly aligns ODE-generated latents \hat{z}_1 with encoder-based latents z_1 .
 496

497 Figure 5: Comparison of reconstructed actions between (a) VITA, and (b) VITA without FLD. Reconstruction fails with-
 498 out FLD because of latent space collapse.
 499

500 Figure 6: Success rates using different objectives.
 501

502 Figure 6 shows that the model completely fails to learn without FLD (i.e., $\lambda_{\text{FLD}} = 0$) due to latent
 503 collapse, while applying FLD succeeds in learning the policy. FLC provides a weaker signal compared
 504 to FLD (because FLD directly anchors generation using the ground-truth actions), resulting in slightly
 505 slower convergence. However, we found that using a combination of both objectives in practice yields
 506 the best performance due to richer learning signals in both raw and latent action spaces.
 507

486 5.4 VITA DENOISING PROCESS
487488 Figure 7 compares the denoising processes of VITA and conventional FM. By jointly optimizing
489 the vision-to-action flow and the latent action space via FLD, VITA induces highly structured latent
490 spaces for both vision and actions. Consequently, even latent images express action semantics: latent
491 images can be directly decoded into coherent action trajectories using the action decoder and are then
492 progressively refined by the ODE.
493509 Figure 7: Conventional flow matching (a) evolves random Gaussian noise into action chunks by
510 solving ODEs, gradually denoising noisy actions; in contrast, VITA (b) flows directly from latent
511 images, and refines latent actions over ODE steps. Notably, by bridging vision and actions via VITA
512 learning, the latent visual representations begin to express action semantics and can be decoded into
513 action trajectories using the action decoder.515 6 CONCLUSION
516517 We developed VITA, an efficient and high-performing visuomotor policy, which generates actions in a
518 noise-free manner. VITA directly evolves visual latents into latent actions. VITA eliminates the need
519 for conditioning modules such as cross-attention, simplifying architectures and enhancing efficiency.
520 When employing vector representations for both latent images and actions, VITA reduces the flow
521 matching network to a conditioning-free vector-to-vector mapping, enabling a simple MLP-only
522 architecture for complex visuomotor tasks. Two designs are critical to VITA’s success: learning a
523 structured latent action space as the flow matching target, and backpropagating across ODE solving
524 steps, allowing VITA to effectively learn in a fully end-to-end manner. Extensive experiments
525 demonstrate that VITA achieves state-of-the-art performance on ALOHA and Robomimic in both
526 real and simulation tasks. VITA achieves $1.5 \times$ - $2 \times$ faster inference and $18.6\%-28.7\%$ less memory
527 usage compared to conventional flow matching.528 7 ETHICS STATEMENT
529531 All experiments were conducted in simulation environments or on standard robotic platforms without
532 involving human subjects, sensitive user data, or any form of personal information. Thus, there
533 are no privacy, security, or human participant concerns. The datasets we use are publicly available
534 benchmark datasets, and no proprietary or restricted data were employed. No conflicts of interest or
535 external sponsorships influence the reported findings.536 8 REPRODUCIBILITY STATEMENT
537539 We take multiple steps to ensure reproducibility of our results. A detailed description of our model
architecture, training objectives, and algorithmic choices is provided in the main text. Hyper-

parameters, training configurations, and ablations are reported in the Appendix. For theoretical derivations (e.g., flow matching formulation), complete proofs and assumptions are included in the supplementary materials. To facilitate replication, we include anonymous source code with training scripts, evaluation pipelines, and configuration files as part of the supplementary material during review. All datasets used are publicly available (Robomimic, ALOHA).

REFERENCES

- Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants. [arXiv preprint arXiv:2209.15571](https://arxiv.org/abs/2209.15571), 2022.
- Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π 0: A vision-language-action flow model for general robot control, 2024. [URL https://arxiv.org/abs/2410.24164](https://arxiv.org/abs/2410.24164).
- Max Braun, Noémie Jaquier, Leonel Rozo, and Tamim Asfour. Riemannian flow matching policy for robot motion learning. In [2024 IEEE/RSJ International Conference on Intelligent Robots and Systems \(IROS\)](#), pp. 5144–5151. IEEE, 2024.
- Remi Cadene, Simon Alibert, Alexander Soare, Quentin Gallouedec, Adil Zouitine, Steven Palma, Pepijn Kooijmans, Michel Aractingi, Mustafa Shukor, Dana Aubakirova, Martino Russi, Francesco Capuano, Caroline Pascal, Jade Choghari, Jess Moss, and Thomas Wolf. Lerobot: State-of-the-art machine learning for real-world robotics in pytorch. <https://github.com/huggingface/lerobot>, 2024.
- Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. [The International Journal of Robotics Research](#), pp. 02783649241273668, 2023.
- Ian Chuang, Andrew Lee, Dechen Gao, M Naddaf-Sh, Iman Soltani, et al. Active vision might be all you need: Exploring active vision in bimanual robotic manipulation. [arXiv preprint arXiv:2409.17435](https://arxiv.org/abs/2409.17435), 2024.
- Sudeep Dasari, Oier Mees, Sebastian Zhao, Mohan Kumar Srirama, and Sergey Levine. The ingredients for robotic diffusion transformers. [arXiv preprint arXiv:2410.10088](https://arxiv.org/abs/2410.10088), 2024.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis, 2024. [URL https://arxiv.org/abs/2403.03206](https://arxiv.org/abs/2403.03206), 2.
- Figure AI. Helix: A vision-language-action model for generalist humanoid control. <https://www.figure.ai/news/helix>, feb 2025. Accessed: 2025-11-17. Powers the Figure 03 humanoid robot (see <https://www.figure.ai/news/introducing-figure-03> for integration details).
- Johannes S Fischer, Ming Gui, Pingchuan Ma, Nick Stracke, Stefan A Baumann, and Björn Ommer. Boosting latent diffusion with flow matching. [arXiv preprint arXiv:2312.07360](https://arxiv.org/abs/2312.07360), 2023.
- Letian Fu, Huang Huang, Gaurav Datta, Lawrence Yunliang Chen, William Chung-Ho Panitch, Fangchen Liu, Hui Li, and Ken Goldberg. In-context imitation learning via next-token prediction. [arXiv preprint arXiv:2408.15980](https://arxiv.org/abs/2408.15980), 2024a.
- Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation using low-cost whole-body teleoperation. In [8th Annual Conference on Robot Learning](#), 2024b.
- Dechen Gao, Hang Wang, Hanchu Zhou, Nejib Ammar, Shatadal Mishra, Ahmadreza Moradipari, Iman Soltani, and Junshan Zhang. In-ril: Interleaved reinforcement and imitation learning for policy fine-tuning. [arXiv preprint arXiv:2505.10442](https://arxiv.org/abs/2505.10442), 2025.
- Zhefei Gong, Pengxiang Ding, Shangke Lyu, Siteng Huang, Mingyang Sun, Wei Zhao, Zhaoxin Fan, and Donglin Wang. Carp: Visuomotor policy learning via coarse-to-fine autoregressive prediction. [arXiv preprint arXiv:2412.06782](https://arxiv.org/abs/2412.06782), 2024.

- 594 Srishti Gupta and Yashasvee Taiwade. Efficiency vs. fidelity: A comparative analysis of diffusion
 595 probabilistic models and flow matching on low-resource hardware, 2025. URL <https://arxiv.org/abs/2511.19379>.
- 597
- 598 Ju He, Qihang Yu, Qihao Liu, and Liang-Chieh Chen. Flowtok: Flowing seamlessly across text and
 599 image tokens. [arXiv preprint arXiv:2503.10772](https://arxiv.org/abs/2503.10772), 2025.
- 600 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 601 recognition. In [Proceedings of the IEEE conference on computer vision and pattern recognition](https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_for_CVPR_2016_paper.html),
 602 pp. 770–778, 2016.
- 603
- 604 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. [Advances in
 605 neural information processing systems](https://openaccess.thecvf.com/content_cvpr_2020/html/Ho_Denoising_Diffusion_Probabilistic_CVPR_2020_paper.html), 33:6840–6851, 2020.
- 606 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 607 Fleet. Video diffusion models. [Advances in Neural Information Processing Systems](https://openaccess.thecvf.com/content_cvpr_2022/html/Ho_Video_Diffusion_Probabilistic_CVPR_2022_paper.html), 35:8633–
 608 8646, 2022.
- 609
- 610 Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess,
 611 Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai, et al. $\pi_0.5$: a vision-language-action
 612 model with open-world generalization, 2025. URL <https://arxiv.org/abs/2504.16054>, 1(2):3.
- 613 Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
 614 learning benchmark & learning environment. [IEEE Robotics and Automation Letters](https://openaccess.thecvf.com/content_cvpr_2020/html/James_Rlbench_CVPR_2020_paper.html), 5(2):3019–
 615 3026, 2020.
- 616
- 617 Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song,
 618 Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient video generative modeling.
 619 [arXiv preprint arXiv:2410.05954](https://arxiv.org/abs/2410.05954), 2024.
- 620 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.
- 621
- 622 Andrew Lee, Ian Chuang, Ling-Yuan Chen, and Iman Soltani. Interact: Inter-dependency aware
 623 action chunking with hierarchical attention transformers for bimanual manipulation. [arXiv preprint
 624 arXiv:2409.07914](https://arxiv.org/abs/2409.07914), 2024.
- 625 Xin Li, Wenqing Chu, Ye Wu, Weihang Yuan, Fanglong Liu, Qi Zhang, Fu Li, Haocheng Feng,
 626 Errui Ding, and Jingdong Wang. Videogen: A reference-guided latent diffusion approach for high
 627 definition text-to-video generation. [arXiv preprint arXiv:2309.00398](https://arxiv.org/abs/2309.00398), 2023.
- 628
- 629 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 630 for generative modeling, 2023. URL <https://arxiv.org/abs/2210.02747>.
- 631 Yaron Lipman, Marton Havasi, Peter Holderith, Neta Shaul, Matt Le, Brian Karrer, Ricky T. Q.
 632 Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code, 2024. URL
 633 <https://arxiv.org/abs/2412.06264>.
- 634
- 635 Qihao Liu, Xi Yin, Alan Yuille, Andrew Brown, and Mannat Singh. Flowing from words to pixels: A
 636 framework for cross-modality evolution. [arXiv preprint arXiv:2412.15213](https://arxiv.org/abs/2412.15213), 2024a.
- 637 Qihao Liu, Zhanpeng Zeng, Ju He, Qihang Yu, Xiaohui Shen, and Liang-Chieh Chen. Alleviating
 638 distortion in image generation via multi-resolution diffusion models and time-dependent layer
 639 normalization. [Advances in Neural Information Processing Systems](https://openaccess.thecvf.com/content_cvpr_2024/html/Liu_Alleviating_Distortion_in_2024_paper.html), 37:133879–133907, 2024b.
- 640
- 641 Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
 642 Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. [arXiv preprint
 643 arXiv:2410.07864](https://arxiv.org/abs/2410.07864), 2024c.
- 644 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 645 transfer data with rectified flow. [arXiv preprint arXiv:2209.03003](https://arxiv.org/abs/2209.03003), 2022a.
- 646
- 647 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 648 transfer data with rectified flow, 2022b. URL <https://arxiv.org/abs/2209.03003>.

- 648 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 649 transfer data with rectified flow. [arXiv preprint arXiv:2209.03003](https://arxiv.org/abs/2209.03003), 2022c.
 650
- 651 Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and
 652 Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
 653 transformers. In [European Conference on Computer Vision](#), pp. 23–40. Springer, 2024.
- 654 Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
 655 Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning from offline
 656 human demonstrations for robot manipulation. In [Conference on Robot Learning \(CoRL\)](#), 2021.
 657
- 658 William Peebles and Saining Xie. Scalable diffusion models with transformers. In [Proceedings of](#)
 659 [the IEEE/CVF international conference on computer vision](#), pp. 4195–4205, 2023.
- 660 Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
 661 reasoning with a general conditioning layer. In [Proceedings of the AAAI conference on artificial](#)
 662 [intelligence](#), volume 32, 2018.
 663
- 664 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 665 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 666 models from natural language supervision. In [International conference on machine learning](#), pp.
 667 8748–8763. PMLR, 2021.
- 668 Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar,
 669 Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization.
 670 [arXiv preprint arXiv:2409.00588](https://arxiv.org/abs/2409.00588), 2024a.
 671
- 672 Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Flowar: Scale-
 673 wise autoregressive image generation meets flow matching. [arXiv preprint arXiv:2412.15205](https://arxiv.org/abs/2412.15205),
 674 2024b.
- 675 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 676 resolution image synthesis with latent diffusion models. In [Proceedings of the IEEE/CVF](#)
 677 [conference on computer vision and pattern recognition](#), pp. 10684–10695, 2022.
 678
- 679 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
 680 biomedical image segmentation. In [International Conference on Medical image computing and](#)
 681 [computer-assisted intervention](#), pp. 234–241. Springer, 2015.
- 682 Quentin Rouxel, Andrea Ferrari, Serena Ivaldi, and Jean-Baptiste Mouret. Flow matching imitation
 683 learning for multi-support manipulation. In [2024 IEEE-RAS 23rd International Conference on](#)
 684 [Humanoid Robots \(Humanoids\)](#), pp. 528–535. IEEE, 2024.
 685
- 686 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 687 learning using nonequilibrium thermodynamics. In [International conference on machine learning](#),
 688 pp. 2256–2265. pmlr, 2015.
- 689 Yue Su, Xinyu Zhan, Hongjie Fang, Han Xue, Hao-Shu Fang, Yong-Lu Li, Cewu Lu, and Lixin Yang.
 690 Dense policy: Bidirectional autoregressive learning of actions. [arXiv preprint arXiv:2503.13217](https://arxiv.org/abs/2503.13217),
 691 2025.
 692
- 693 Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
 694 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 695 with minibatch optimal transport. [arXiv preprint arXiv:2302.00482](https://arxiv.org/abs/2302.00482), 2023a.
- 696 Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet,
 697 Guy Wolf, and Yoshua Bengio. Simulation-free schrödinger bridges via score and flow matching.
 698 [arXiv preprint arXiv:2307.03672](https://arxiv.org/abs/2307.03672), 2023b.
 699
- 700 Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet,
 701 Guy Wolf, and Yoshua Bengio. Simulation-free schrödinger bridges via score and flow matching,
 2024. URL <https://arxiv.org/abs/2307.03672>.

- 702 Fan Zhang and Michael Gienger. Affordance-based robot manipulation with flow matching. [arXiv
703 preprint arXiv:2409.01083](https://arxiv.org/abs/2409.01083), 2024.
- 704
- 705 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
706 diffusion models. In [Proceedings of the IEEE/CVF international conference on computer vision](#),
707 pp. 3836–3847, 2023.
- 708
- 709 Qinglun Zhang, Zhen Liu, Haoqiang Fan, Guanghui Liu, Bing Zeng, and Shuaicheng Liu. Flowpolicy:
710 Enabling fast and robust 3d flow-based policy via consistency flow matching for robot manipulation.
711 In [Proceedings of the AAAI Conference on Artificial Intelligence](#), volume 39, pp. 14754–14762,
712 2025.
- 713
- 714 Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
715 manipulation with low-cost hardware. [arXiv preprint arXiv:2304.13705](https://arxiv.org/abs/2304.13705), 2023.
- 716
- 717 Tony Z Zhao, Jonathan Tompson, Danny Driess, Pete Florence, Kamyar Ghasemipour, Chelsea
718 Finn, and Ayzaan Wahid. Aloha unleashed: A simple recipe for robot dexterity. [arXiv preprint
719 arXiv:2410.13126](https://arxiv.org/abs/2410.13126), 2024.
- 720
- 721
- 722
- 723
- 724
- 725
- 726
- 727
- 728
- 729
- 730
- 731
- 732
- 733
- 734
- 735
- 736
- 737
- 738
- 739
- 740
- 741
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755

756 A PROOF OF FLD AND FLC EQUIVALENCE
757758 **A.0.0.1 Preliminaries.** All norms below are vector norms with induced operator norms. We use
759 the ball $B(\mathbf{z}_1, r) = \{\mathbf{x} : \|\mathbf{x} - \mathbf{z}_1\| < r\}$. Assumption 1 in the main text holds throughout.
760761 **Lemma 1** (Local bi-Lipschitzness from Jacobian bounds). *For any $\hat{\mathbf{z}}_1 \in B(\mathbf{z}_1, r)$,*
762

763
$$m \|\hat{\mathbf{z}}_1 - \mathbf{z}_1\| \leq \|\mathcal{D}_a(\hat{\mathbf{z}}_1) - \mathcal{D}_a(\mathbf{z}_1)\| \leq L \|\hat{\mathbf{z}}_1 - \mathbf{z}_1\|.$$

764

765 *Proof of Lemma 1.* Let $\gamma(s) = \mathbf{z}_1 + s(\hat{\mathbf{z}}_1 - \mathbf{z}_1)$ for $s \in [0, 1]$. The mean-value integral formula gives
766

767
$$\mathcal{D}_a(\hat{\mathbf{z}}_1) - \mathcal{D}_a(\mathbf{z}_1) = \int_0^1 J_{\mathcal{D}_a}(\gamma(s)) (\hat{\mathbf{z}}_1 - \mathbf{z}_1) ds.$$

768

769 Taking norms and using, for any matrix J and vector $v \neq 0$, $\sigma_{\min}(J)\|v\| \leq \|Jv\| \leq \sigma_{\max}(J)\|v\|$,
770 together with $m \leq \sigma_{\min}(J_{\mathcal{D}_a}(\gamma(s)))$ and $\sigma_{\max}(J_{\mathcal{D}_a}(\gamma(s))) \leq L$ for all s , yields the bounds.
771772 *Proof of Theorem 1.* Add and subtract $\mathcal{D}_a(\mathbf{z}_1)$ and apply triangle/reverse-triangle inequalities:
773

774
$$\begin{aligned} \|\mathcal{D}_a(\hat{\mathbf{z}}_1) - A\| &\leq \|\mathcal{D}_a(\hat{\mathbf{z}}_1) - \mathcal{D}_a(\mathbf{z}_1)\| + \|\mathcal{D}_a(\mathbf{z}_1) - A\|, \\ \|\mathcal{D}_a(\hat{\mathbf{z}}_1) - A\| &\geq \|\mathcal{D}_a(\hat{\mathbf{z}}_1) - \mathcal{D}_a(\mathbf{z}_1)\| - \|\mathcal{D}_a(\mathbf{z}_1) - A\|. \end{aligned}$$

775

776 Invoke Lemma 1 and set $\varepsilon_{\text{AE}} = \|\mathcal{D}_a(\mathbf{z}_1) - A\|$ to obtain the two-sided inequality stated in Theorem 1.
777 The minimizer claims follow immediately: if $\varepsilon_{\text{AE}} = 0$, both losses are minimized at $\hat{\mathbf{z}}_1 = \mathbf{z}_1$;
778 otherwise any minimizer of FLD must satisfy $\|\hat{\mathbf{z}}_1 - \mathbf{z}_1\| \leq \varepsilon_{\text{AE}}/m$.
779780 **A.0.0.2 Corollary A.1 (squared-loss version).** Assume $\varepsilon_{\text{AE}} = 0$. Then
781

782
$$m^2 \|\hat{\mathbf{z}}_1 - \mathbf{z}_1\|^2 \leq \|\mathcal{D}_a(\hat{\mathbf{z}}_1) - A\|^2 \leq L^2 \|\hat{\mathbf{z}}_1 - \mathbf{z}_1\|^2.$$

783

784 With $\varepsilon_{\text{AE}} = 0$, Lemma 1 gives $m \|\hat{\mathbf{z}}_1 - \mathbf{z}_1\| \leq \|\mathcal{D}_a(\hat{\mathbf{z}}_1) - \mathcal{D}_a(\mathbf{z}_1)\| \leq L \|\hat{\mathbf{z}}_1 - \mathbf{z}_1\|$. Since both sides
785 are nonnegative, squaring preserves the inequalities. Thus the squared FLD objective is sandwiched
786 between m^2 and L^2 times the squared FLC objective. Consequently, the map $\hat{\mathbf{z}}_1 \mapsto \|\mathcal{D}_a(\hat{\mathbf{z}}_1) - A\|_2^2$
787 is locally L^2 -smooth and m^2 -strongly convex along latent directions (intuitively, its curvature is
788 controlled by $J_{\mathcal{D}_a}^\top J_{\mathcal{D}_a}$ whose eigenvalues lie in $[m^2, L^2]$).
789790 **A.0.0.3 Corollary A.2 (gradient scaling for squared losses).** Let $J := J_{\mathcal{D}_a}(\hat{\mathbf{z}}_1)$ and assume
791 $\varepsilon_{\text{AE}} = 0$. For the squared losses,
792

793
$$\nabla_{\hat{\mathbf{z}}_1} \mathcal{L}_{\text{FLD}}^{(2)} = 2 J^\top (\mathcal{D}_a(\hat{\mathbf{z}}_1) - A), \quad \nabla_{\hat{\mathbf{z}}_1} \mathcal{L}_{\text{FLC}}^{(2)} = 2 (\hat{\mathbf{z}}_1 - \mathbf{z}_1).$$

794

795 Then
796

797
$$m^2 \|\nabla \mathcal{L}_{\text{FLC}}^{(2)}\| \leq \|\nabla \mathcal{L}_{\text{FLD}}^{(2)}\| \leq L^2 \|\nabla \mathcal{L}_{\text{FLC}}^{(2)}\|.$$

798

799 Use $\|J^\top y\| \in [m\|y\|, L\|y\|]$ (by singular-value bounds) with $y = \mathcal{D}_a(\hat{\mathbf{z}}_1) - A = \mathcal{D}_a(\hat{\mathbf{z}}_1) - \mathcal{D}_a(\mathbf{z}_1)$,
800 and Lemma 1 to get $m\|y\| \leq \|J^\top y\| \leq L\|y\|$ and $m\|\hat{\mathbf{z}}_1 - \mathbf{z}_1\| \leq \|y\| \leq L\|\hat{\mathbf{z}}_1 - \mathbf{z}_1\|$. Multiplying
801 the bounds yields $m^2 \|\hat{\mathbf{z}}_1 - \mathbf{z}_1\| \leq \|J^\top y\| \leq L^2 \|\hat{\mathbf{z}}_1 - \mathbf{z}_1\|$. Since $\|\nabla \mathcal{L}_{\text{FLC}}^{(2)}\| = 2\|\hat{\mathbf{z}}_1 - \mathbf{z}_1\|$, this
802 gives the stated inequality (up to the common factor 2). It follows that step-size sensitivity is governed
803 by the squared condition number $(L/m)^2$.
804805 B DISCUSSIONS
806807 B.1 DIMENSIONALITY MATCHING FOR VISION-TO-ACTION FLOW
808809 A constraint of flow matching is that the source and target must have identical shapes. In visuomotor
810 contexts, the visual latent representations (\mathbf{z}_0) are typically much higher-dimensional than raw action
811 chunks (A). A naive solution would be to down-sample the visual representation to match the action
812 dimensionality, which, nevertheless, leads to significant information loss and poor performance,
813 particularly when the dimensional gap is large.
814815 Therefore, we adopt the opposite strategy: we map the raw action chunks into a higher-dimensional
816 latent space that matches the dimensionality of the visual latent representations.
817

810 A naive approach is to use fixed linear transformations. When the action dimension is smaller than
 811 the latent dimension, we construct a lossless mapping by embedding the actions into the higher-
 812 dimensional latent space through zero-padding. The inverse mapping simply discards the padding.
 813 Our experiments show that action representations produced by such transformations are insufficient
 814 for learning reasonable flow matching policies. We found that learning well-structured action latent
 815 spaces via autoencoders as the target distributions for flow matching can be crucial for the success of
 816 vision-to-action flow. We develop an action encoder (\mathcal{E}_a), which does not simply remap dimensions,
 817 but also learns structured latent action spaces, making the complex flow from vision to action more
 818 tractable.

819 Table 4: Task SR (%) on ThreadNeedle with different action up-sampling strategies.
 820

Up-sampling Strategy	SR (%)
Zero-Padding	0
Action AE (w/o FLD)	0
Action AE (w/ FLD)	92

828 B.2 ABLATION OF FROZEN TARGET FOR FLOW MATCHING

830 Learning a flow when the target distribution lies in a learned latent space is inherently challenging.
 831 Jointly optimizing the flow and the latent encoder creates a moving target, as the latent space
 832 continually shifts during training; it also introduces a training-inference gap: flow matching does not
 833 guarantee that ODE-generated latents are decodable during inference, since the decoder is trained to
 834 reconstruct encoder-based latents.

848 Figure 8: Success rates (left) and log-scaled action MSEs (right) comparing end-to-end VITA training
 849 with VITA using a frozen action AE on ThreadNeedle. EMA = 0.9.
 850

851 A natural solution is to follow the strategy in latent diffusion models Rombach et al. (2022): pre-train
 852 the latent space on large-scale data and freeze it when training the flow. We evaluate this approach by
 853 pre-training the action autoencoder for 100k steps using a reconstruction loss, \mathcal{L}_{AE} , then freezing
 854 it while training the VITA policy for 25k steps (same as VITA trained from scratch). As shown in
 855 Figure 8, this frozen-latent setup yields poor online success rates and high offline MSEs that plateau
 856 early. In contrast, end-to-end VITA training enabled by FLD performs substantially better. The
 857 underlying issue is that, unlike image generation, robotics action data is sparse and limited; pure
 858 latent pre-training produces a weak representation that cannot be improved once the latent space is
 859 frozen.

861 B.3 CONTRASTIVE LATENT ALIGNMENT

862 Section 4.4 introduced two key objectives, FLD and its surrogate FLC, which are both designed to
 863 prevent latent space collapse and enable effective VITA learning. Empirically, we find that FLD

864 alone outperforms FLC alone, as it provides a more direct training signal by anchoring the generation
 865 process to the ground-truth actions. However, the most robust performance is achieved by combining
 866 them, which enforces consistency in both latent space and action space.

867 Additionally, motivated by the ability of contrastive learning to improve representations and pre-
 868 vent latent collapse Liu et al. (2024a), we introduced a contrastive loss between vision and action
 869 latents (Radford et al., 2021). We show that this objective can further boost performance be-
 870 yond FLD and FLC on some tasks by encouraging the model to learn representations where the
 871 similarity between corresponding vision-action pairs is maximized, while the similarity between
 872 non-corresponding pairs is minimized.

873 We employ InfoNCE (Noise-Contrastive Estimation) for contrastive learning between vision and
 874 action. For a given batch of size N , the vision latent $\mathbf{z}_{0,i}$ and action latent $\mathbf{z}_{1,i}$ from the same data
 875 sample are treated as a positive pair. All other non-corresponding combinations $(\mathbf{z}_{0,i}, \mathbf{z}_{1,j})$ where
 876 $i \neq j$ are considered negative pairs. The loss aims to maximize the similarity of positive pairs while
 877 minimizing the similarity of negative pairs. The symmetric InfoNCE loss is defined as:

$$879 \mathcal{L}_{\text{contrastive}} = -\frac{1}{2N} \sum_{i=1}^N \left[\log \frac{\exp(\text{sim}(\mathbf{z}_{0,i}, \mathbf{z}_{1,i})/\tau)}{\sum_{j=1}^N \exp(\text{sim}(\mathbf{z}_{0,i}, \mathbf{z}_{1,j})/\tau)} + \log \frac{\exp(\text{sim}(\mathbf{z}_{1,i}, \mathbf{z}_{0,i})/\tau)}{\sum_{j=1}^N \exp(\text{sim}(\mathbf{z}_{1,i}, \mathbf{z}_{0,j})/\tau)} \right]$$

882 where $\text{sim}(\cdot, \cdot)$ denotes the cosine similarity between L2-normalized feature vectors and τ is a
 883 temperature hyperparameter.

884 As shown in Figure 9, the contrastive objective, when used alone, is insufficient for effective VITA
 885 learning and underperforms VITA with only the FLD loss (see Figure 6). However, it provides
 886 additional performance gains when combined with the FLD and FLC losses, as it helps create a more
 887 robust and well-structured latent space.

905
 906 Figure 9: Success rates using different VITA learning objectives with or without contrastive losses.

907 908 B.4 ABLATION OF THE VARIATIONAL ACTION AUTOENCODER 909

910 In our experiments, a deterministic autoencoder (AE) learns the target latent space for actions. To
 911 investigate the effect of imposing a prior on this latent space, we conducted an ablation study replacing
 912 the AE with a variational autoencoder (VAE) (Kingma et al., 2013). This change introduces a KL
 913 divergence regularization term, weighted by λ_{KL} , which encourages the encoder's posterior output,
 914 $q(\mathbf{z}_1 | A)$, to match a standard normal prior:

$$915 \mathcal{L}_{\text{KL}} = D_{\text{KL}}(q(\mathbf{z}_1 | A) \| p(\mathbf{z}_1)), \quad p(\mathbf{z}_1) = \mathcal{N}(0, I).$$

916 As shown by the training curves in Figure 10(a) and Figure 21, incorporating this variational objective
 917 with various weights (λ_{KL}) can degrade model performance.

Figure 10: Ablation of VAE for action (a) and vision (b) on ThreadNeedle.

B.5 ABLATION OF THE VARIATIONAL VISION ENCODER

As described in our main architecture (Figure 2), the source latent variable $z_0 = \mathcal{E}_v(O) \in \mathbb{R}^{D_{\text{latent}}}$ is produced by a deterministic vision encoder. We performed a similar ablation to assess the impact of making the vision encoding stochastic. Specifically, we replaced the deterministic encoder with a variational one that models the posterior $q(z_0 | O)$ and introduces a corresponding KL divergence loss (weighted by $\lambda_{\text{KL}}^{\text{obs}}$):

$$\mathcal{L}_{\text{KL}}^{\text{obs}} = D_{\text{KL}}(q(z_0 | O) \parallel p(z_0)), \quad p(z_0) = \mathcal{N}(0, I).$$

As shown in Figure 10(b), using a VAE for the vision encoder drastically degrades performance.

Although using a VAE to model the source distribution introduces stochasticity that is often desirable for generative tasks emphasizing diversity Liu et al. (2024a), we found that making the visual latent encoding stochastic degrades VITA performance. In robotics tasks that demand extremely high precision, such as ThreadNeedle, where millimeter-level errors cause complete failure, variational objectives tend to blur latent representations, discarding critical visual details. As a result, deterministic vision encodings yield substantially better precision and performance.

B.6 ABLATION OF NETWORK ARCHITECTURE

VITA, when using vector representations for both vision and actions, reduces the flow matching network to a conditioning-free vector-to-vector mapping. We find that even an MLP-only architecture can successfully learn challenging, high-precision visuomotor tasks, including bimanual manipulation with active vision on AV-ALOHA. To the best of our knowledge, VITA is the first visuomotor policy to master such complex tasks using MLPs.

B.6.1 FM USING MLP

We evaluate FM using the same 4-layer MLP architecture as VITA (with a similar parameter count of $\sim 30\text{M}$). Concretely, we remove self-attention from the DiT-based FM network and retain only AdaLN (which is also MLP-based) for visual conditioning. However, the MLP-only FM fails to learn effective policies: on PushT, the reward remains around 0.4 and success rate remains 0% even after 100K training steps, as the task requires high-precision control (successful only when reward exceeds 0.95). In contrast, VITA and transformer-based FM achieve 88% and 83% success, respectively. This failure arises because an MLP is insufficient for processing noisy action chunks and integrating visual conditioning at each denoising step, leading to poor control precision, as shown in Figure 11(b), where action MSEs of MLP-based FM plateau while VITA yields significantly lower MSEs. Since success rates are sparse on PushT, we also report online reward curves (see Figure 11(a)) to more clearly compare MLP-based FM and VITA.

B.6.2 VITA USING TRANSFORMERS

Figure 11: Reward curves and the action MSEs (log-scaled) of MLP-only VITA and MLP-only FM on PushT. FM learning is ineffective because lack of precision, and performs poorly online, necessitating effective architectures to process action chunks and fuse in conditions.

Additionally, we show that VITA is not limited to vector-based features or MLP. We evaluate VITA using grid-based features (in particular, 9×512 spatial features obtained via ResNet-18), and use transformer for the flow matching network. The flow matching network does not require any conditioning for spatial tokens such as costly cross-attention compared to FM using transformers.

We evaluate VITA on multiple challenging tasks, demonstrating that VITA yield high success rates (see Figure 12) while retaining the efficiency gains (see Table 1 and Appendix B.7).

Figure 12: Comparing success rates of VITA using MLP and vector-based features and VITA using transformers and grid-based features.

B.7 EXTENDED EFFICIENCY METRICS

B.7.1 TRAINING TIME & SPACE OVERHEADS OF FLOW LATENT DECODING

Recall that we introduce FLD during training to enable effective end-to-end learning, which requires solving 6-step ODEs. Although this inevitably adds some training-time overhead, we trade a modest increase in training cost for significantly more efficient inference, which is critical for real-time robotic deployment. For MLP-based VITA, the training time increases from 0.677 ms/chunk (without FLD) to 0.740 ms/chunk (with FLD), corresponding to only a 9.3% overhead. For transformer-based VITA, the cost rises from 0.766 ms/chunk to 0.951 ms/chunk, a 24.1% overhead. A similar trend appears for GPU memory usage: for MLP-based VITA, peak training memory increases from 2716.62 MiB (without FLD) to 2835.86 MiB (with FLD), a relatively small 4.4% increase. Despite these modest training-time and memory overheads, FLD enables stable end-to-end optimization and yields markedly improved inference-time efficiency, a critical requirement for real-time robotic deployment. Additionally, VITA maintains the lowest training-time memory usage compared to all baselines even with FLD enabled, while achieving comparable training latency.

1026
1027

B.7.2 TRAINING MEMORY USAGE

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038

We have reported the absolute peak memory usage of each policy architecture in Table 1, measured via `torch.cuda.max_memory_allocated` for fair comparison. Importantly, we exclude the shared visual encoder, which transforms raw RGB images into visual latents and is used identically across all methods. This observer accounts for approximately 1732.5 MiB of peak GPU memory across all methods, and does not help differentiating memory usage across policies. For instance, after removing observer cost, VITA (MLP) peaks at 333.86 MiB, FM (MLP, AdaLN) peaks at 413.95 MiB, and FM (Transformer, Cross-Attn) reaches 529.16 MiB. These numbers reflect the true architectural and conditioning differences in the policy modules themselves. Consequently, VITA (MLP) reduces peak memory usage by 19.4% relative to FM (MLP, AdaLN), 18.6% relative to FM (Transformer, AdaLN), and 36.9% relative to FM (Transformer, Cross-Attn), highlighting its inference-time efficiency gains from a conditioning-free formulation.

1039
1040
1041
1042
1043

In Table 5, we report the absolute peak memory usage during training for each policy. As with inference, we ablate the memory consumed by the shared visual encoder, and record peak memory after vision encoding. For VITA, we also include the peak usage observed during the `flow_latent_decoding` phase, which accounts for the highest memory load. This choice ensures that the reported number reflects the true upper bound of VITA training footprint with FLD.

1044
1045
1046
1047
1048

Table 5: Comparison of the conditioning parameter overhead, training-time cost, and training-time memory usage of VITA and baselines, grouped by the type of visual latents used (“Vector” or “Grid” based). Metrics include (i) parameters introduced solely by conditioning modules, (ii) training time per chunk (ms), and (iii) peak GPU memory during training (MiB).

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

Visual	Model	Architecture	Conditioning	Cond. Params (M)	Time	Memory
Vector	VITA	MLP	N/A	0.00	0.740	2835.86
	FM	MLP	AdaLN	11.82	0.664	2926.60
	FM	Transformer	AdaLN	6.58	0.697	3071.88
	FM	U-Net	FiLM	11.33	0.782	3676.38
	DDPM	U-Net	FiLM	9.49	0.779	3643.04
Grid	VITA	Transformer	N/A	0.00	0.951	2977.10
	FM	Transformer	Cross-Attn	4.47	0.812	3585.06

1059
1060

B.8 CONTROL PRECISION AND SAMPLING STOCHASTICITY

1061
1062

B.8.1 VITA WITH SAMPLING STOCHASTICITY

1063
1064
1065
1066
1067
1068
1069
1070
1071

Since stochastic image encodings degraded performance (as discussed in Section B.5), and we hypothesized this was due to precision loss from blurred latent representations, we further investigated the trade-off between stochasticity and control performance. We examined VITA variants with different sources of sampling stochasticity. Introducing dropout in the network, or variance (σ) in flow matching, where σ injects Gaussian noise along the interpolation path, consistently reduced performance. In contrast, adding covariance to the source distribution produced results comparable to deterministic encoding. Likewise, using a variational objective in the action autoencoder performed similarly to the deterministic action autoencoder, whereas applying a variational objective to the image encoder significantly harmed performance (see Figure 10).

1072
1073
1074
1075
1076
1077
1078
1079

These findings resonate with our observation that DP underperforms FM or VITA on ALOHA tasks that require high precision. DP is based on an SDE (stochastic differential equation) while FM uses a deterministic ODE formulation. FM introduces stochasticity only through sampling the Gaussian prior, VITA goes even further by removing the Gaussian prior sampling, instead using a visually grounded and deterministic initial state for the flow. Together, these results can suggest a broader trend: for fast and precise real-time control, reducing stochasticity can be beneficial in, e.g., speeding up convergence, producing more precise and faster policies.

B.8.2 ANALYZING UNDER-PERFORMANCE OF DP AND ACT ON ALOHA TASKS

1080
 1081 We followed DP and ACT implementation from LeRobot (Cadene et al., 2024). However, DP and
 1082 ACT perform poorly (40% SRs compared to 80%-90% of VITA and FM) on ALOHA tasks such as
 1083 `ThreadNeedle` and `PourTestTube`, which demand high precision.
 1084

1085 This section examines the stringent success criteria of these tasks and explains why even small
 1086 action errors lead to failures. We further show that VITA and FM achieve substantially better action
 1087 precision with far fewer training steps, which contributes to their superior performance on these
 1088 precision-demanding tasks.
 1089

1090 **Success Criteria.** We observed that DP and ACT learn reasonable trajectories, but small millimeter-
 1091 level errors lead to binary failures. For example, because success requires completing all five subtasks
 1092 on `ThreadNeedle`, failing at the third stage still counts as a full failure, yielding low SRs when the
 1093 average reward exceeds 3. In contrast, as depicted in Figure 13, both VITA and FM learn sufficiently
 1094 precise control to complete the final subtask with fewer training steps, achieving high success rates
 1095 on these tasks.
 1096

1107 Figure 13: Success rate and reward curves of VITA and DP on `ThreadNeedle`.
 1108

1109 As shown in Figure 14, DP can complete multiple subtasks yet fail the episode due to millimeter-level
 1110 precision errors, such as threading a needle through a very small opening. In contrast, we find that
 1111 VITA and FM exhibit higher control precision on these tasks.
 1112

1129 Figure 14: A failure and a success case on `ThreadNeedle`. DP may complete most subtasks but
 1130 still fail the final insertion due to millimeter-level errors.
 1131

1132 **Action Precision.** We now examine why VITA and FM overall achieve higher action precision. As
 1133 shown in Table 3, VITA outperforms all baselines on most tasks, and FM achieves SRs comparable to
 1134 VITA. To better understand this, we analyze the offline action MSE during training for VITA, FM, DP,

1134 and ACT in Figure 15. We observe that VITA and FM consistently converge to lower MSEs, whereas
 1135 ACT plateaus at substantially higher errors, and DP uses much more training steps to converge. This
 1136 trend aligns with prior findings (e.g., on image generation) showing that flow matching methods
 1137 enjoy faster convergence (Lipman et al., 2024) and can achieve higher generation fidelity (Gupta &
 1138 Taiwade, 2025).

1151 **Figure 15: Comparison of action MSE on three real-world single-arm ALOHA tasks.**

1153 B.9 AUTOENCODER LOSS SELECTION.

1155 We utilize the L1 loss for the autoencoder loss, \mathcal{L}_{AE} . We found it outperforms the L2 loss, which is
 1156 prone to mode-averaging and can result in blurry action reconstruction.

1158 B.10 SUCCESS RATE CURVES DURING VITA LEARNING

1160 VITA exhibits efficient and stable learning on AV-ALOHA and PushT (Figure 16) and Robomimic
 1161 tasks (Figure 17).

1181 **Figure 16: Success rate curves of VITA training on six tasks (five AV-ALOHA + PushT). The curves**
 1182 **are mean across three random seeds; the shaded region is ± 1 standard deviation.**

Figure 17: Success rate curves of VITA training on two Robomimic tasks.

C EXTENDED RELATED WORKS

Imitation Learning for Visuomotor Policy. Imitation learning enables robots to learn complex behaviors by mimicking expert demonstrations. Behavioral cloning, a prominent imitation learning paradigm, frames this as a supervised learning problem, learning a policy that maps observations to actions (Zhao et al., 2023; Lee et al., 2024). Recent advancements in behavioral cloning have widely adopted two modeling methods: generative modeling and autoregressive modeling. Generative methods learn a conditional distribution of actions given an observation. This category includes policies based on conditional variational autoencoders (CVAEs) (Zhao et al., 2023; Lee et al., 2024), as well as diffusion (Dasari et al., 2024; Chi et al., 2023) and flow matching (Zhang & Gienger, 2024; Zhang et al., 2025). On the other hand, autoregressive methods tokenize actions and frame policy learning as a sequence modeling task. These methods predict action tokens sequentially, using next-token prediction (Fu et al., 2024a), next-scale prediction (Gong et al., 2024), or bi-directional prediction (Su et al., 2025). Generative models ubiquitously require extra conditioning modules (e.g., cross-attention (Dasari et al., 2024), AdaLN (Dasari et al., 2024), FiLM (Perez et al., 2018; Chi et al., 2023)) to inject observations at each step of the generation process. Furthermore, generative and autoregressive methods commonly employ large, expressive networks such as U-Nets or transformers to succeed on complex, high-dimensional robotics tasks. VITA reduces these complexity by formulating the policy as a noise-free and conditioning-free vision-to-action flow.

Diffusion and Flow matching for Generative Modeling. Diffusion (Ho et al., 2020), grounded in stochastic differential equations (SDEs), generates complex data distributions by sampling from a simple source distribution (typically Gaussian) and iteratively denoising it to the target distribution (Sohl-Dickstein et al., 2015). Flow matching (Lipman et al., 2023; Liu et al., 2022b) has been proposed to enable faster training and sampling (Liu et al., 2022b; Tong et al., 2024; Esser et al.; Lipman et al., 2023) by modeling the map between source and target distributions with an ordinary differential equation (ODE). Both diffusion and flow matching models have shown strong performance across diverse generative tasks, such as image generation (Rombach et al., 2022; Peebles & Xie, 2023; Ma et al., 2024; Zhang et al., 2023; Liu et al., 2024b; Ren et al., 2024b), video generation (Ho et al., 2022; Li et al., 2023), and visuomotor policies (Chi et al., 2023; Dasari et al., 2024; Black et al.; Liu et al., 2024c). Unlike diffusion, flow matching theoretically places no constraints on the choice of source distribution (Tong et al., 2024), and a few works have explored leveraging this property to learn the direct transport within the same modality (Albergo & Vanden-Eijnden, 2022; Tong et al., 2023b), e.g., for image-to-image generation tasks (Fischer et al., 2023; Liu et al., 2022a). Recently, Liu et al. (2024a) and He et al. (2025) extended this to more challenging cross-modal generation between text and image. VITA focuses on learning to bridge vision and action for visuomotor control, where the target modality, action, has sparser data and lacks semantic structures, compared to text or images, presenting unique challenges. Different from flow matching for image generation, which typically pre-trains and freezes the image encoder and decoder when learning flow matching or diffusion models for image generation (Rombach et al., 2022; He et al., 2025; Liu et al., 2024a), VITA resorts to a fully end-to-end pipeline training to effectively learn the latent action space from

1242 limited and sparse action data. Furthermore, to enable effective joint training of flow matching and
 1243 target latent spaces, we propose flow latent decoding to backpropagate action reconstruction losses
 1244 through the the latent action generation process (ODE solving steps) during training.
 1245

1246 D SIMULATED AND REAL-WORLD TASKS

1249 To comprehensively evaluate the effectiveness of VITA across varying levels of difficulty and action
 1250 dimensionality, we conduct extensive experiments on both single-arm and bimanual manipulation
 1251 tasks. The action dimensionality spans from 2 to 21, and the tasks include both short- and long-horizon
 1252 settings. Overall, AV-ALOHA tasks are particularly challenging due to their 21D action spaces,
 1253 non-stationary observations introduced by the active-vision camera, and long-horizon, precision-
 1254 demanding task structure (see Figure 18 for real-world examples). Single-arm ALOHA tasks are also
 1255 challenging due to randomness, such as varying object types and object poses.
 1256

1257 The specifications for each dataset are shown in Table 6. Following the practice of AV-
 1258 ALOHA (Chuang et al., 2024), we train all policies at 8.33 FPS (25/3) for simulated AV-ALOHA
 1259 tasks and at 11 FPS for real AV-ALOHA tasks, and interpolate to 25 FPS and 33 FPS, respectively,
 for inference.

1260 Dataset	1261 State Dim	1262 Action Dim	1263 FPS	1264 Image Size	1265 Camera
1266 AV-ALOHA (Sim)	21	21	25	240×320	zed_cam_left
1267 AV-ALOHA (Real)	21	21	33	240×320	left_eye_cam
1268 ALOHA (Real)	7	7	33	240×320	overhead_cam, right_wrist_cam
1269 Robomimic	43	7	20	256×256	agentview_image
1270 PushT	2	2	20	96×96	image
1271 CloseBox	9	9	20	256×256	head_cam

1268 Table 6: Comparison of dataset specifications.
 1269
 1270

1271 D.1 AV-ALOHA SIMULATION TASKS.

1273 **CubeTransfer**: Pick up a red cube with the right arm and transfer it to the left arm (200 episodes).
 1274

1275 **SlotInsertion**: Use both arms to pick up a green stick and insert it into a pink slot (100
 1276 episodes).
 1277

1278 **HookPackage**: Use both arms to pick up a red box and hook it onto a blue wall-mounted hook
 1279 (100 episodes).
 1280

1281 **PourTestTube**: Pick up two test tubes and pour a small red ball from one into the other (100
 1282 episodes).
 1283

1284 **ThreadNeedle**: Pick up a green needle and thread it through the hole of a pink object (200
 1285 episodes).
 1286

1287 D.2 ALOHA REAL TASKS

1288 D.2.1 BIMANUAL MANIPULATION WITH ACTIVE VISION

1289 To evaluate the effectiveness of VITA in real-world settings, we deploy the policy on two challenging
 1290 bimanual manipulation tasks using AV-ALOHA (Chuang et al., 2024). Both tasks are long-horizon
 1291 and contain multiple stages to succeed. Examples of autonomous rollouts are shown in Figure 18.
 1292 Both tasks require precise and coordinated control of three arms, including one arm carrying an active
 1293 vision camera, and two arms for bimanual manipulation.
 1294

1295 **HiddenPick**: Lift and open a fabric cover from a box, then pick an object from inside (50 episodes).
 1296

1297 **TransferFromBox**: Pick an object from a box with the right arm, transfer it to the left arm, and
 1298 place it in another box (50 episodes).
 1299

Figure 18: Autonomous rollouts of VITA on two challenging real-world AV-ALOHA tasks, HiddenPick, and TransferFromBox.

Table 7: SRs of VITA on two real-world bimanual manipulation tasks with active vision on AV-ALOHA. Each task is decomposed into three subtasks, and SRs are reported per subtask.

	HiddenPick			TransferFromBox		
	Reveal	Pick	Place	Pick	Transfer	Place
VITA	1.00	0.65	0.65	1.00	0.95	0.90

D.2.2 SINGLE-ARM MANIPULATION TASKS

Each single-arm ALOHA task consists of multiple stages, and includes substantial environment randomization as detailed below.

PickBall: Pick up a ball, then place it into the box (50 episodes). Both the ball and the target box appear in varying positions.

ToothBrush: Pick up the toothbrush from the side slot of the toothbrush cup, lift it up, and place it into the toothbrush cup (50 episodes). The cup location and the orientation of the side slot are randomized.

StoreDrawer: Pick up the object, put it in the drawer, and close the drawer (100 episodes). We randomize the shapes and colors of the objects as well as the positions and partial openings of the drawers. We also evaluate the out-of-distribution success rates for unseen combinations of object colors and shapes (see Appendix E.2).

D.3 ROBOMIMIC TASKS

Robomimic is a benchmark of single-arm imitation learning tasks Mandlekar et al. (2021). We adapt the environment for compatibility with the LeRobot (Cadene et al., 2024) codebase. The robot state includes arm joint positions (encoded with sin and cos), joint velocities, end-effector pose, gripper finger positions, and gripper finger velocities. The action space consists of six values for delta position control of the end-effector pose and one value for the absolute position of the gripper.

Square: Pick up a square nut and insert it onto a matching square peg (175 episodes).

Can: Pick up a red can and place it into a box (192 episodes).

D.4 OTHER TASKS

PushT: Push a 2D T-shaped object into a matching T-shaped target region on the plane; achieving a coverage score > 0.95 is deemed a success (200 episodes).

CloseBox: Close the lid of a paper box by manipulating the flap (200 episodes).

1350 **E ADDITIONAL EXPERIMENT RESULTS**1351 **E.1 ROBUSTNESS TO ONLINE PERTURBATIONS**1352 As depicted in Figure 19, VITA demonstrates strong robustness to online perturbations during
1353 real-time control.1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
Figure 19: **Robustness to online perturbations during inference on PickBall.** We manually move the ball multiple times before the pick, and move the box multiple times after the pick. In both cases, the arm continues to adjust in real time and successfully reaches the correct ball and box positions.1374 **E.2 GENERALIZATION TO UNSEEN OBJECTS**1375 As shown in Figure 20, we train the *StoreDrawer* task using 7 objects. Table 3 shows that VITA
1376 achieves the highest success rate on these in-distribution objects. To further evaluate generalization,
1377 we introduce four unseen test objects with novel geometries, such as a triangular prism and a star-
1378 shaped block. On this out-of-distribution (OOD) set, VITA succeeds in picking all objects and storing
1379 them in the drawer.1380 Table 8: OOD SRs on four unseen objects for the *StoreDrawer* task.

	VITA	DP	FM	ACT
	4/4	4/4	3/4	2/4

1387 **F TRAINING**1388
1389 In each plot of Figure 21, we tune a single hyperparameter while holding all other hyperparameters at
1390 the default (see Table 9), and visualize the success rates over training steps. With these experimental
1391 results, a robust configuration on *ThreadNeedle* includes moderate weights for both AE and FLD
1392 (typically in $[0.5, 1.0]$), moderate FLC, minimal contrastive penalties, and no KL regularization on
1393 action and visual latents.1394 **G IMPLEMENTATIONS**1395 **G.1 VITA**1396 VITA encodes observations into a latent vector z_0 using a ResNet-18 backbone. The flow network,
1397 which learns the mapping from z_0 to \hat{z}_1 , is implemented as an MLP. We use a 6-step Euler ODE
1398 solver. The latent action \hat{z}_1 is translated to action chunks by a lightweight MLP-based action decoder.
1399 A summary of all hyperparameters and loss weights is provided in Table 9.

Figure 20: **OOD evaluation on StoreDrawer**. Training uses 8 in-distribution object–color combinations (left). Evaluation uses four unseen objects with novel shapes (right), including a triangular prism and a star-shaped block.

Figure 21: Hyperparameter ablations on ThreadNeedle. Each sub-plot varies a single coefficient while holding all others at their default values in Table 9. Top: action encoder reconstruction weight, flow latent decoding weight, action encoder contrastive weight. Bottom: latent flow contrastive weight, latent flow consistency weight, action KL weight.

G.2 FLOW MATCHING POLICY

The FM policy learns a velocity field using a transformer backbone, with AdaLN for conditioning. A 6-step Euler solver is used for solving ODEs. The hyperparameters and loss weights are summarized in Table 10.

G.3 DIFFUSION POLICY

We follow the DP (Chi et al., 2023) implementation in LeRobot Cadene et al. (2024). The core of the policy is a U-Net noise predictor, which uses FiLM (Perez et al., 2018) for conditioning. The model

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
Table 9: **VITA** hyperparameters.

Horizons & Observation	
Observation horizon	1
Prediction horizon	16
Action horizon	8
Observer backbone	resnet18
Observer tokenize	false
VITA core (latent & losses)	
Latent dimension (D_{latent})	512
Decode flow latents	true
Consistency weight	1.0
Encoder contrastive weight	1e-4
Flow contrastive weight	0.0
Latent noise std	0.0
Flow matcher / ODE	
Flow Matcher	OT-CFM
σ	0.0
# sampling steps (Euler)	6
Action AE	
AE recon loss type	11
Encoder recon weight	0.5
Flow recon (FLD) weight	0.5
Use variational (VAE)	false
KL weight (if variational)	1e-6
Freeze encoder / decoder	false / false
Pretrained path	None
AE network (encoder/decoder)	
Encoder type / hidden dim	cnn / 512
Decoder type / hidden dim	simple / 512
Latent dim (AE)	512
Num heads / MLP ratio	8 / 4
Dropout	0.0
Num layers	4

is trained for 100 timesteps using a cosine beta schedule. During inference, trajectories are generated using a 10-step DDPM sampler. All hyperparameters and loss weights are listed in Table 11.

G.4 ACTION CHUNKING TRANSFORMER

We follow the ACT Zhao et al. (2023) implementation in LeRobot Cadene et al. (2024). ACT is a conditional variational autoencoder (cVAE) that generates action chunks conditioned on vision. Its architecture consists of a vision encoder for processing observations and a transformer-based decoder that models the distribution of future actions conditioned on the visual input. A complete list of hyperparameters and loss weights is provided in Table 12.

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

Table 10: **Flow Matching (FM) Policy hyperparameters.**

Horizons & Observation	
Observation horizon	1
Prediction horizon	16
Action horizon	8
Observer backbone	resnet18
Observer tokenize	false

Flow matcher / ODE	
Flow Matcher	Target
σ	0.0
# sampling steps	6

Flow network architecture	
Backbone	flow_transformer
Conditioning	adaln (<i>options</i> : adaln, cross, cross_adaln)
Hidden dim	512
Num layers	4
Num heads	8
MLP ratio	4
Dropout	0.1

Table 11: **Diffusion policy hyperparameters.**

Horizons & Observation	
Observation horizon	1
Prediction horizon	16
Action horizon	8
Observer backbone	resnet18
Observer tokenize	false
Mask loss for padding	false

Diffusion scheduler	
Type	DDPM
Training timesteps	100
Beta schedule	squaredcos_cap_v2
Beta start / end	1e-4 / 2e-2
Prediction type	epsilon
Clip sample / range	true / 1.0

U-Net architecture	
Down dims	[512, 1024, 2048] or [256, 512, 1024]
Kernel size	5
Group norm groups	8
Diffusion step embed dim	128
FiLM scale modulation	true

Optimization	
Adam LR / backbone scale	1e-4 / 0.1
Adam betas / eps	(0.95, 0.999) / 1e-8
Weight decay	1e-6
Scheduler	cosine, warmup 500 steps

Training & inference	
Total training steps	200000
Inference steps	DDPM 10

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

Table 12: Action Chunking Transformer (ACT): hyperparameters.

1576

1577

Sequence horizons	
Action horizon	8
Prediction horizon	16
Observation horizon	1
Observer / backbone	
Image encoder	ResNet-18
Tokenize	false
Transformer (policy head)	
Pre-norm	false
Model dimension d_{model}	512
Attention heads	8
Feedforward dim	3200
FFN activation	ReLU
Encoder layers	4
Decoder layers	1
Dropout	0.1
Latent / VAE block	
Use VAE	true
Latent dim	32
VAE encoder layers	4
ACT KL weight	10.0
Optimization	
Optimizer	Adam
Learning rate	1×10^{-5}
Betas	(0.9, 0.999)
ϵ	1×10^{-8}
Weight decay	1×10^{-4}
Backbone LR scale	0.1
LR scheduler & validation	
Scheduler	Cosine
Warmup steps	2000
Online validation frequency	2000 steps

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619