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ABSTRACT

Conventional flow matching and diffusion-based policies sample through iterative
denoising from standard noise distributions (e.g., Gaussian), and require condition-
ing mechanisms to incorporate visual information during the generative process,
incurring substantial time and memory overhead. To reduce the complexity, we
develop VITA (VIsion-To-Action policy), a noise-free and conditioning-free policy
learning framework that directly maps visual representations to latent actions using
flow matching. VITA treats latent visual representations as the source of the flow,
thus eliminating the need of conditioning. As expected, bridging vision and action
is challenging, because actions are lower-dimensional, less structured, and sparser
than visual representations; moreover, flow matching requires the source and target
to have the same dimensionality. To overcome this, we introduce an action au-
toencoder that maps raw actions into a structured latent space aligned with visual
latents, trained jointly with flow matching. To further prevent latent space collapse,
we propose flow latent decoding, which anchors the latent generation process by
backpropagating the action reconstruction loss through the flow matching ODE (or-
dinary differential equations) solving steps. We evaluate VITA on 8 simulation and
2 real-world tasks from ALOHA and Robomimic. VITA outperforms or matches
state-of-the-art generative policies, while achieving 1.5x-2.3x faster inference
compared to conventional methods with conditioning.

1 INTRODUCTION

Conventional Flow Matching Policy VITA Policy: Noise-Free Flow Matching
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Figure 1: A comparison between VITA and conventional flow matching and diffusion policies. Unlike
conventional methods that sample noise from standard distributions and inject source input modalities
via conditioning during generation, VITA poses no constraints on the source distributions, and flow
directly from latent visual representations to latent actions, eliminating the need for conditioning.

Flow matching and diffusion models have demonstrated remarkable success across a wide range
of cross-modal generation tasks, from text-to-image generation Rombach et al.[(2022); Peebles &
Xie| (2023); Ma et al.|(2024); |Liu et al.| (2024a)); He et al.| (2025)); Zhang et al.| (2023)), text-to-video
generation Ho et al.| (2022)); [Li et al.| (2023); Jin et al.| (2024), to visuomotor (vision-to-action)
policy Chi et al.|(2023); Ren et al.|(2024a)); |Gao et al.| (2025); |Su et al.| (2025)); Zhang et al.| (2025));
Rouxel et al. (2024)); |Braun et al.[|(2024); Black et al.. Conventional flow matching and diffusion
methods |[Lipman et al.| (2023));Sohl-Dickstein et al.| (2015)) generate samples by starting with noise
sampled from a basic source distribution (often Gaussian) and progressively “denoising” them into
the target modality, requiring additional conditioning mechanisms |[Rombach et al.|(2022);|Zhang
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et al.| (2023); |Chi et al.| (2023)); Dasari et al.| (2024)) to inject visual modality at denoising steps, which
incurs increased time and space complexity |Liu et al.| (2024a); He et al.| (2025)).

Clearly, minimizing complexity is critical for effective real-time robot control. To overcome the inef-
ficiencies inherent to conditioning mechanisms in conventional methods, we develop VITA (VIsion-
To-Action flow matching), a noise-free policy learning framework that directly maps visual repre-
sentations to latent actions. As depicted in Figure[T] unlike conventional methods that flow from a
Gaussian prior and inject visual contexts via conditioning mechanisms during generation, VITA poses
no constraints on the source distribution, and directly flows from latent visual representations, obviat-
ing the need for injecting visual inputs via conditioning modules. Consequently, VITA significantly
reduces inference latency and memory overhead, simplifying the network architecture.

Learning vision-to-action flow matching, however, presents several new challenges. In general,
bridging two distinct modalities is inherently difficult|Liu et al.|(20244); He et al.|(2025)), particularly
in robot learning where action data is relatively limited, unstructured and sparse, whereas the visual
representations exhibit rich structures and semantics and have far higher dimensions. Additionally,
flow matching requires that the source and target have equal dimensionalities, which prevents directly
pairing raw actions with visual representations.

To address these challenges, we propose two key designs for VITA. 1) Learned target latent actions
for flow matching. We introduce a structured latent action space, learned via an action autoencoder,
that ‘lifts’ action representations to match the higher dimensionality of visual representations and
serves as a structured target distribution for flow matching. The action encoder up-samples raw
actions into target latent actions, and a decoder reconstructs raw actions from these latents. 2)
Flow latent decoding. In conventional flow matching methods such as latent diffusion for image
generation (Rombach et al.,|2022), the target latent space can be pre-trained with abundant image data
and then frozen as reliable flow matching targets; in contrast, we show that a pre-trained and frozen
latent action space for learning vision-to-action flows yields poor performance, since action data can
be too sparse and limited to learn reliable target latents and frozen latent spaces cannot be corrected.
It is therefore plausible to jointly train the flow model with the action autoencoder. To prevent model
collapse of targe latent action space (which happens by naively reducing the flow matching and
autoencoder loss), we introduce flow latent decoding which backpropagates the reconstruction loss of
latent actions generated by solving flow matching ordinary differential equations (ODE), anchoring
the latent generation process using ground-truth actions.

We evaluate VITA on both real-world and simulated tasks using ALOHA |Chuang et al.|(2024); Fu et al.
(2024b)); Zhao et al.| (2024) and Robomimic |Mandlekar et al.|(2021). Our experiments demonstrate
that VITA outperforms or matches state-of-the-art generative policies. We implement VITA with only
MLP layers. Compared to state-of-the-art flow matching and diffusion policies that predominantly
leverage complex architecture such as transformers Ma et al.| (2024) or U-Net [Ronneberger et al.
(2015), and introduce conditioning modules Zhao et al.|(2023)); Zhang et al.| (2025), the MLP-only
and noise-free VITA policy achieves, 1.5x—2.3x faster inference compared to conventional flow
matching. To our knowledge, VITA is the first MLP-only flow matching policy to succeed on tasks
as challenging as ALOHA bi-manual manipulation.

Our main contributions are summarized as follows:

Noise-Free Flow Matching for Visuomotor Learning. We propose VITA, a noise-free policy that
directly evolves latent visual representations into latent actions via flow matching. To bridge the
modality gap, VITA incorporates an action autoencoder that maps raw actions into structured latent
spaces aligned with visual representations. To prevent latent space collapse, we propose flow latent
decoding, which anchors latent generation using ground-truth actions by backpropagating the action
reconstruction loss through the flow matching ODE (ordinary differential equations) solving steps.

An Efficient Policy Architecture. By treating vision as the source distribution, VITA obviates costly
conditioning mechanisms required by conventional diffusion and flow matching policies. VITA also
enables a lightweight MLP-only implementation that achieves superior performance on challenging
bi-manual manipulation tasks with high-dimensional visual inputs.

State-of-the-Art Performance in Real and Simulated Environments. We validate VITA’s effec-
tiveness on 8 simulation and 2 real-world tasks. VITA surpasses or matches state-of-the-art generative
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policies in success rates while delivering 1.5x—2.3x faster inference compared to conventional flow
matching approaches.

2 RELATED WORK

Imitation Learning for Visuomotor Policy. Imitation learning enables robots to learn complex
behaviors by mimicking expert demonstrations. Behavior cloning is a prominent imitation learning
paradigm that learns a policy that maps observations to actions (Zhao et al.l 2023} |Lee et al.,2024) via
supervised learning. Recent advancements in behavioral cloning have widely adopted autoregressive
modeling (Fu et al., |2024a; |Gong et al.l [2024; |Su et al., 2025) and generative modeling (Chi
et al.| 2023). Generative modeling learns a conditional distribution of actions given an observation,
leveraging conditional variational autoencoders (CVAEs) (Zhao et al. [2023} [Lee et al., [2024]),
diffusion (Dasari et al., 2024;|Chi et al.,|2023)), or flow matching (Zhang & Gienger, [2024;/Zhang et al.,
2025). Generative models ubiquitously require conditioning modules (e.g., cross-attention (Dasar1
et al.l 2024), AdaLN (Dasari et al. [2024)), FILM (Perez et al., |2018} |Chi et al., [2023)) to inject
observations at each step of the generation process. VITA removes the visual conditioning module by
developing a noise-free and conditioning-free vision-to-action flow.

Diffusion and Flow matching for Generative Modeling. Diffusion and flow matching models have
shown strong performance across diverse generative tasks, such as image and video generation (Rom+
bach et al.| [2022; [Ho et al.,|2022)), and visuomotor policies (Chi et al.|[2023)). Unlike diffusion which
samples from a Gaussian distributions, flow matching theoretically places no constraints on the choice
of source distribution (Tong et al.,2024)). A few works have explored this property to learn the direct
transport within the same modality (Albergo & Vanden-Eijnden, 2022} Tong et al., 2023b)). Recently,
Liu et al.| (2024a) and He et al.| (2025)) extended this to more challenging cross-modal generation
between text and image. VITA focuses on learning to bridge vision and action for visuomotor control,
where the action modality presents unique challenges because of limited data and its unstructured
nature. Different from flow matching for image generation, which typically pre-trains and freezes
the latent image space when learning the flow (Rombach et al.| [2022; |He et al., 2025} [Liu et al.,
2024a), VITA resorts to a fully end-to-end pipeline training to effectively learn the latent action space
from limited and sparse action data along with flow matching. We propose flow latent decoding to
backpropagate action reconstruction losses through the the latent action generation process (ODE
solving steps) during training.

3 PRELIMINARIES

Flow matching models learn to transport samples from a source probability distribution py to a target
distribution p; by learning a velocity vector field vy (Lipman et al.,[2023; [Liu et al.| |2022c). This
generative process is defined by an ordinary differential equation (ODE), % = vg(z¢,t), where
t € [0,1] is a continuous time variable, z; represents a sample at time ¢, and the model vy is a neural
network. The goal of training is for vy to generate a path that transforms a sample zg ~ pg into a

corresponding sample z; ~ p;.

For a simple, straight probability path between two samples, the interpolated state at time ¢ is
defined as z; = (1 — t)zo + tz; The corresponding ground-truth velocity of this path given by
dzy __

up = £t = 21 — 2. The network vy is trained by minimizing the Mean Squared Error (MSE)

between its predicted velocity and the ground-truth velocity:
Lim = B,z |[00(21,1) = (21 = 20)| (1)

During inference, starting from a source sample 2, the model generates a target sample 2; by solving
the ODE initial value problem from ¢t = 0 to ¢t = 1:

1
21 = 2o —|—/ vo(z¢, 1) dt 2)
0

Notably, conventional flow matching or diffusion policies for visuomotor control generate actions
by evolving a sample from a simple prior distribution, such as Gaussian noise (2o ~ N(0, I)), and
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require conditioning on visual inputs to guide the generation process (Zhang & Gienger, 2024} |Chi
et al., 2023} Dasari et al.||2024). However, flow matching does not assume the source distribution must
be simple noise; it can theoretically connect two arbitrary distributions. We exploit this flexibility to
re-formulate generative visuomotor policy learning: we directly use the latent distribution of visual
observations as the source distribution py, yielding a noise-free flow matching process that eliminates
the need for costly conditioning modules and therefore boosts time and space efficiency.

4 VITA: VISION-TO-ACTION FLOW MATCHING

The key challenge in VITA is the large dimensionality gap between vision and action, compounded
by the sparsity and unstructured nature of action data. In this section, we present the core designs of
VITA developed to address these issues. We first introduce the mathematical formulation of VITA
(Section [4.T)) and its overall architecture (Section [4.2). We then show why constructing a latent
action space is essential for resolving dimensionality mismatch (Section 4.3)), and propose flow
latent decoding to address model collapse. Finally, we describe the objectives that enable effective
end-to-end VITA learning from scratch (Section [4.4).

4.1 FLOWING FROM VISION TO ACTION

VITA learns a policy 7(A|O) that directly maps observations O to a corresponding sequence of future
actions A. The observations O encompasses raw visual inputs I € R *W>* and, optionally, the
robot’s proprioceptive state vector S. Actions are represented as temporal sequences over a prediction
horizon, formally defined as A € RTbred X Daciion yhere Threq 1s the prediction horizon and Dion is the
dimensionality of the action space. We employ action chunking with Tj,q > 1 to enhance temporal
consistency (Zhao et al.,[2023).

Unlike conventional flow matching policies that generate actions through conditional denoising of
random noise given visual inputs, VITA formulates the visuomotor policy as an unconditional flow
between the source distribution of latent visual representations pg and the target distribution of latent
actions p;. The flow matching framework learns to evolve a latent visual representation 2, into an
latent action representation z; by learning a velocity field vg(z;, t), where t € [0, 1] represents the
continuous time parameter interpolating between the source state at ¢ = 0 and the target state at
t = 1. Critically, flow matching requires 2y and z; to share identical dimensionality, necessitating
the construction of a latent action space that matches the dimensionality of visual representations

(Section[d-3).

During inference, the current observation O, is first encoded into its latent visual representation
20 = Ey(Ocyrr)- This latent vector is subsequently evolved into a predicted action latent representation,
21, by numerically solving the ODE from ¢ = 0 to ¢t = 1 using the learned velocity field vp:

Z1 =20+ f01 vg(z¢,t) dt. In other words, 2; is obtained by numerically solving the flow matching
ODE, and serves as an approximation to the target latent z;. The resulting latent action vector 27 is

then decoded through the action decoder to yield the final action sequence A=D, (21).

4.2 VITA ARCHITECTURE DESIGN

As depicted in Figure[2] VITA is composed of the three primary components: 1) The Vision Encoder
(£,) maps raw camera images into a vector representation of visual latents /. The observation O to
the policy consists of both image vector representations I and, optionally, the robot’s proprioceptive
states S. In short, O is mapped into a latent vector zg = £,(0), where zo € RPuen js the source
of flow matching. 2) The Action Autoencoder (AE) consists of the Action Encoder and the Action
Decoder, and learns a compact representation for action chunks. The Action Encoder (£,) maps the
ground-truth action chunk A to latent actions 21 = £,(A), where z; € RPuen serves as the target
for flow matching; the Action Decoder (D,,) reconstructs an action chunk A= D, (%) from latent
actions 2. 3) The Flow Matching Network (vy) is learned to predict the velocity field at arbitrary .
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Figure 2: An overview of the VITA architecture: The vision encoder maps observations into a source
latent representation 2z, for the flow; the action encoder provides a target latent representation z; for
flow matching training. The action decoder learns to decode 2, (latent actions generated by solving
ODEs) to actions via flow latent decoding losses, and decode z; to actions (latent actions from action
encoder) via AE losses. The flow matching network is designed to learn the velocity field over a
continuous flow matching path from 2, to 2;.

4.3 BRIDGING THE MODALITY GAP BETWEEN VISION AND ACTION

A key constraint of flow matching is that the source and target distributions must share the same
dimensionality. This poses a critical challenge for vision-to-action policies, since action spaces are
typically much lower-dimensional than visual representations. For example, action dimensionalities
range from 2 on PushT to 21 on ThreadNeedle, whereas visual representations can be 512-
dimensional (Zhao et al.,2024) or even higher when using grid-based tokenizers (Chi et al., 2023)).

To bridge the gap, one naive option is to down-sample latent visual representations to action chunk
dimensionalities which, however, causes severe information loss and degrades performance. Alterna-
tively, one can up-sample actions with zero-padding, yielding sparse, unstructured targets that hinder
flow matching learning (see Appendix [B.I). A third alternative is a pre-trained, frozen action AE,
akin to common practice in latent diffusion for image generation (Rombach et al.| 2022), but this
proves ineffective for learning vision-to-action flow: with sparse, limited action data the induced
latent space is unreliable as a flow target and cannot be corrected once frozen. As another alternative,
jointly training the action AE with flow matching may still fail, and our empirical studies identify the
root cause as latent space collapse induced by a training—inference gap in the latent actions used for
decoding as detailed below.

Training-Inference Gap between Encoder-Based and ODE-Generated Latent Actions. During
training, the decoder reconstructs actions from encoder-based latent actions z1, whereas at inference
it decodes 27 generated by solving the flow matching ODE. Since 2 is an approximation, and does
not always align with z;, the decoder can fail to map them into meaningful actions. To address this
gap, we propose flow latent decoding, which enforces the model to decode from ODE-generated
latent actions 27 during training, anchoring the latent generation process with ground-truth actions.

4.4 VITA LEARNING OBJECTIVES

Building upon our analysis of the training-inference gap, we now formulate a comprehensive learning
framework for VITA that prevents latent collapse while ensuring effective end-to-end optimization.
Our framework includes three essential objectives: flow latent decoding (FLD), flow matching (FM),
and action autoencoder (AE) losses, each addressing distinct aspects of the learning challenge.

Flow Latent Decoding (FLD). Flow latent decoding addresses the training—inference gap by
anchoring ODE-generated actions using ground-truth actions during training. Formally, FLD is
defined as the reconstruction loss using ODE-generated latent actions, Lppp = HDa(zH) - A
where 2 is obtained by solving the flow ODE with an Euler solver during training. By decoding 2;
into actions and measuring reconstruction error directly in action space, FLD propagates gradients
through the decoder and the ODE solver into both vy and &,, effectively updating the vision-to-flow-
to-action pipeline.

)




Under review as a conference paper at ICLR 2026

Flow Latent Consistency (FLC). To gain deeper insight into the mechanics of FLD, we introduce
flow latent consistency (FLC), a minimalist alternative that directly aligns ODE-generated and
encoder-based latents. FLC directly aligns ODE-generated latents with encoder-based targets without
decoding, i.e., Lrrc = H21 — 2z ﬁ, . Under mild local regularity assumptions on D, (stated below),
FLC and FLD provide locally equivalent training signals for the same 2;. Empirically, FLC also
prevents collapse, though convergence is slightly slower than with FLD (Section[5.3). While FLC
operates purely in latent space without explicit action reconstruction, we establish that under mild
regularity conditions, FLD and FLC provide locally equivalent optimization signals. This theoretical
connection not only validates our approach but also offers computational flexibility in implementation.
A sketch of the analysis is given below, with full proofs and corollaries deferred to Appendix [A]

Assumption 1 (Decoder locally well-behaved). D, is C' in a neighborhood of zi, with Jacobian
singular values bounded as m < o i < Omax < L on that neighborhood. Let e pg = ||Dy(21) — Al
denote the local AE reconstruction error.

Theorem 1 (Local equivalence of FLD and FLC). Under Assumption[l} for any 21 in the neighbor-
hood,
m|z1 — zif| —eap < [Da(21) — Al < L|[21 — 21| +eap.

Ifear = 0, the minimizers of Lr1p and Ly coincide and equal {z1 }; if ear > 0, any minimizer
of LyLp lies within radius € x5 /m of z1.

This theoretical result confirms that FLD and FLC target the same underlying optimization objective.

We provide further discussion in Section showing that including the flow latent decoding loss
with a non-zero Ap_p and backpropagating through the ODE solving steps is critical for training
successful VITA policies. We also ablate the effects of A\p;p and A\ag in Figure@

Flow Matching and Autoencoder Losses. The flow matching loss supervises the flow network
vy by minimizing the MSE between the predicted velocity and the ground-truth velocity as shown
in Equation . The action autoencoder loss trains (&,, D, ) to reconstruct action chunks using an
L1 loss, Lag = ||A — Do(Ea(A))|l1, where z3 = E,(A) serves as a structured target latent with
small reconstruction bias and good local conditioning. This structured latent space strengthens the
theoretical link between FLD and FLC and further stabilizes training.

The training objective can be written as a weighted sum of all three losses: Lyita = AemLem +
AFLDLFLD + AAELAE.

5 EXPERIMENTS

We evaluate VITA on ALOHA (Chuang et al., [2024; |[Fu et al., 2024b) across 5 simulation tasks
(Figure [3) and 2 real-world tasks (Figure[4). The simulation environments and datasets are from AV-
ALOHA (Chuang et al., [2024)), which extend ALOHA with an additional 7-DoF arm equipped with
an active-vision camera that dynamically adjusts its viewpoint. This setup increases task difficulty
due to the larger action space and non-stationary observation dynamics. In addition, we evaluate on 2
single-arm Robomimic simulation tasks.

For simulation tasks, each environment provides 100-200 demonstrations. Demonstrations were
collected from human experts in simulation using VR headsets, with the left-eye image used as input.
VITA was trained at 25/3 FPS on AV-ALOHA and 20 FPS on Robomimic. For real-world tasks on
AV-ALOHA, (Figure ). Each task is trained with 50 demonstrations, using the left image from the
stereo active-vision camera as input. VITA was trained at 11 FPS, and linearly interpolated to 33 FPS
for deployment on the physical robot.

5.1 IMPLEMENTATION

Flow Matcher. We adopt OT-CFM (Tong et al.,[2023a)), a conditional flow matching method based
on optimal transport, and solve the Euler ODE with 6 steps using linearly interpolated ¢ for both
VITA and FM baselines.

Networks. We use the widely adopted ResNet-18 (He et al., 2016; |Su et al.,|2025; (Chi et al., [2023)) as
the vision encoder for all the experiments. We use the 512-dimensional feature vector after the average
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Figure 3: An illustration of 5 AV-ALOHA tasks (CubeTransfer, SlotInsertion,
HookPackage, PourTestTube, ThreadNeedle), and 2 Robomimic tasks (Square, Can).
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Figure 4: An illustration of two challenging real-world AV-ALOHA tasks, HiddenPick, and
TransferFromBox. The pictures are taken from autonomous rollouts by the VITA policy.

pooling layer as the visual representations for VITA. Therefore, the source z; and target latents z;
are both 512-dimensional vectors (Dy,ene = 512). The vector representations and conditioning-free
design is amenable to simple and efficient implementation. For example, we use 4-layer MLP-only
networks for both flow matching and decoding.

Training & Evaluation. We train VITA on each task for 50,000 steps with a batch size of 128. The
policy predicts action chunks of length 16, of which the first 8 actions are executed. In simulation,
we evaluate the policy every 500 steps, with each evaluation consisting of 50 episodes. We report the
best success rates (SRs), averaged over 3 random seeds, for both VITA and baselines (Table |I|) For
real-world tasks, we evaluate 3 checkpoints over 20 episodes each and report the best SRs (Table [2).

Baselines. We compare VITA against state-of-the-art generative policies, including flow matching
(FM) policy (Zhang & Gienger, [2024), diffusion policy (DP)(Chi et al.,2023), and action chunking
transformer (ACT)(Zhao et al, [2023). We follow the ACT and DP implementation in LeRobot
Cadene et al.|(2024). We found DP requires significantly more training steps than FM; ACT yields
sub-optimal performance on most tasks; therefore, we increase training steps to 200,000 for both DP
and ACT, and then report the best success rates. For DP, each inference takes 10 DDPM (Denoising
Diffusion Probabilistic Model) steps [2023). We evaluate both the task performance and
inference efficiency of VITA relative to these baselines in Section[5.2]

5.2 PERFORMANCE

Success Rates. We evaluate VITA against state-of-the-art conditional generative policies on 8
simulated tasks: 5 bimanual AV-ALOHA tasks with active vision (Chuang et al.} [2024), 2 single-arm
Robomimic tasks (Mandlekar et al| 202T), and 1 PushT task. Results are reported in Table [T} Across
all simulation tasks, VITA consistently outperforms or matches state-of-the-art baselines. ACT shows
limited performance even after convergence, while DP requires significantly more training steps
and remains sub-optimal despite extended training. We further assess VITA in real-world settings
on two challenging AV-ALOHA tasks, with performance summarized in Table[2]and examples of
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autonomous rollouts in Figure [d] highlighting the precision of vision-to-action flow in manipulation
tasks with high-dimensional visual inputs and large action spaces.

Table 1: Task success rates (SR) across simulation tasks including ALOHA, Robomimic, and PushT.
We report the best SR during validation, and compute the mean across 3 random seeds.

Task VITA FM DP ACT

ThreadNeedle 0.92 0.88 0.00 0.52
SlotInsertion 0.76 0.83 0.20 0.50
PourTestTube 0.79 0.84 006 0.14

HookPackage 086 083 0.12 022
CubeTransfer 1.00 1.00 0.76 0.98
PushT 0.88 084 0.80 0.30
Square 1.00 1.00 1.00 046
Can 1.00 1.00 1.00 0.78

Table 2: Success rates of VITA on two real-world AV-ALOHA tasks. Each task has 3 subtasks.

HiddenPick TransferFromBox
Subtask Reveal Pick Place | Pick Transfer Place
SR 1.00 0.65 0.65 \ 1.00 0.95 0.90

Efficiency. The VITA policy is highly efficient due to its architectural simplicity. The core compo-
nents used during inference, the flow matching network and the action decoder, are both lightweight
MLP-only networks. We use vector representations for both vision and action, further reducing time
and space overhead. VITA contains 31M parameters, including the ResNet-18. We benchmark the
inference latency and policy throughput of VITA and compare it against conventional flow matching
policy baselines. We implement two different flow matching parameterizations, including diffu-
sion transformer (Peebles & Xiel 2023), and U-Net (Ronneberger et al.,2015), and three different
conditioning mechanisms, including AdaLN (Peebles & Xie| 2023} Dasari et al. [2024)), cross-
attention (Vaswani et al., 2017} |Dasari et al., 2024; Gong et al., 2024), and FILM (Perez et al., 2018}
Chi et al.}[2023)), as the baselines. FM and DP are typically parameterized using U-Nets (Ronneberger
et alL[2015)) or diffusion transformers (DiTs) (Peebles & Xie,|2023), and are trained to predict velocity
fields or noise at each denoising step. While U-Nets and DiTs are highly expressive, they can be large
or computationally expensive, posing a drawback for real-world robotic deployments that require
low-latency inference. Most importantly, these methods inevitably incorporate visual conditioning
mechanisms, such as cross, further increasing both inference time and memory footprint.

With a control frequency of 25/3 ~ 8.33 Hz, our MLP-only VITA policy achieves an inference
wall-clock time of 0.22 ms on an NVIDIA 4090 GPU. In contrast, a comparable transformer-based
flow matching policy incurs higher latency (0.33-0.51 ms) and requires more parameters. A detailed
breakdown of efficiency metrics is given in Table[3]

Table 3: Model sizes and inference latency of different policy implementations.

Model Conditioning Architecture Num of Params Latency (ms/chunk)

VITA N/A MLP 31.09M 0.2215
FM AdaLN DiT 31.16M 0.3307
FM Cross-Attn DiT 29.06M 0.5102
FM FiLM U-Net 84.05M 0.3650
DDPM FiLM U-Net 81.82M 2.5985

5.3 ABLATION OF FLOW LATENT DECODING
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practice a combination of both can achieve optimal results. Step (¥ 10"4)

Figure 6: Comparison of success rates
using different objectives. Curves are

smoothed using exponential moving av-
In this work, we developed VITA, an efficient and high- erage for clarity.

performing visuomotor policy. VITA generates actions in

a noise-free manner and directly evolves latent visual representations into latent actions. By leveraging
latent image representations as the flow’s source distribution, VITA eliminates the need for complex
conditioning mechanisms such as cross-attention, significantly simplifying model architecture and
enhancing efficiency. VITA employs vector representations for both latent images and actions,
thereby enabling a simple MLP-only architecture for vision-to-action flow. Two key designs are
critical to VITA’s success — structuring the latent action space using an action autoencoder and
enabling backpropagation of flow latent decoding losses across ODE solving steps — allowing
VITA to effectively learn latent action spaces with flow matching in a fully end-to-end manner.
Extensive experiments demonstrate that VITA achieves state-of-the-art performance on ALOHA and
Robomimic in both real and simulation tasks. VITA achieves 1.5x-2.3x faster inference compared
to conventional flow matching using different conditioning mechanisms.

6 CONCLUSION

7 ETHICS STATEMENT

All experiments were conducted in simulation environments or on standard robotic platforms without
involving human subjects, sensitive user data, or any form of personal information. Thus, there
are no privacy, security, or human participant concerns. The datasets we use are publicly available
benchmark datasets, and no proprietary or restricted data were employed. No conflicts of interest or
external sponsorships influence the reported findings.

8 REPRODUCIBILITY STATEMENT

We take multiple steps to ensure reproducibility of our results. A detailed description of our model
architecture, training objectives, and algorithmic choices is provided in the main text. Hyper-
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parameters, training configurations, and ablations are reported in the Appendix. For theoretical
derivations (e.g., flow matching formulation), complete proofs and assumptions are included in the
supplementary materials. To facilitate replication, we include anonymous source code with training
scripts, evaluation pipelines, and configuration files as part of the supplementary material during
review. All datasets used are publicly available (Robomimic, ALOHA).
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A PROOF OF FLD AND FLC EQUIVALENCE

Preliminaries. All norms below are vector norms with induced operator norms. We use the ball
B(z1,7) = {x: [|& — 21| < r}. Assumption []in the main text holds throughout.

Lemma 1 (Local bi-Lipschitzness from Jacobian bounds). For any 21 € B(z1,7r),

m 21—z < [[Da(21) = Pa(z1)|| < L[21 = 21]].

Proof of Lemmall} Let v(s) = z1 + s(2, — z1) for s € [0, 1]. The mean-value integral formula gives

1
Da(i) = Dulr) = | I, (2(6)) (2 = 1) .

Taking norms and using, for any matrix J and vector v # 0, opin (J)||v]| < [[JV|| < omax(S)]|V]]
together with m < omin(Jp, (7(8))) and omax(Jp, (7(s))) < L for all s, yields the bounds.

Proof of Theorem Add and subtract D, (z1) and apply triangle/reverse—triangle inequalities:
1Da(21) = All < [[Da(21) — Pa(z1)]| + [ Palz1) — All,
1Da(21) = All = [[Da(21) — Pa(z1)]| = [Palz1) — All.

Invoke Lemmal(l]and set o = || Do (21) — A| to obtain the two-sided inequality stated in Theorem[l]
The minimizer claims follow immediately: if eag = 0, both losses are minimized at 2; = z;;
otherwise any minimizer of FLD must satisfy |21 — z1|| < eag/m.

Corollary A.1 (squared-loss version). Assume eéxg = 0. Then
m? |21 — z1]|* < |[Da(21) — AlI* < L? |21 — 21|

With es = 0, Lemmall|gives m||2; — z1|| < || Da(21) — Da(21)|| < L||21 — 21||. Since both sides
are nonnegative, squaring preserves the inequalities. Thus the squared FLD objective is sandwiched
between m? and L? times the squared FLC objective. Consequently, the map 21 — || Da(21) — A3
is locally L?-smooth and m?-strongly convex along latent directions (intuitively, its curvature is
controlled by J, Jp, whose eigenvalues lie in [m?, L?]).

Corollary A.2 (gradient scaling for squared losses). LetJ := Jp_(2;) and assume g = 0.
For the squared losses,

Ve L2 =20T(Da(21) — A), Vs, £Po =2(21 — 21).
Then
m? |VLiel| < IVLiEnll < L2 [[VLiiel.
Use ||J Ty|| € [m]|yll, L||y||] (by singular-value bounds) with y = D, (£1) — A = Dy (£1) — Da(21),
and Lemmato getm ||ly|| < ||J Tyl < Lyl and m |21 — 21| < |Jyl| < L||21 — 21]|. Multiplying
the bounds yields m?||2; — z1|| < ||JTy|| < L2[|Z1 — z1]. Since [|[VLZ || = 2[|21 — 21| this

gives the stated inequality (up to the common factor 2). It follows that step-size sensitivity is governed
by the squared condition number (L/m)?.

B EXTENDED ABLATIONS

B.1 DIMENSIONALITY MATCHING FOR VISION-TO-ACTION FLOW

A constraint of flow matching is that the source and target must have identical shapes. In visuomotor
contexts, the visual latent representations (z() are typically much higher-dimensional than raw action
chunks (A). A naive solution would be to down-sample the visual representation to match the action
dimensionality, which, nevertheless, leads to significant information loss and poor performance,
particularly when the dimensional gap is large.

Therefore, we adopt the opposite strategy: we map the raw action chunks into a higher-dimensional
latent space that matches the dimensionality of the visual latent representations.
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A naive approach is to use fixed linear transformations. When the action dimension is smaller than
the latent dimension, we construct a lossless mapping by embedding the actions into the higher-
dimensional latent space through zero-padding. The inverse mapping simply discards the padding.
Our experiments show that action representations produced by such transformations are insufficient
for learning reasonable flow matching policies. We found that learning well-structured action latent
spaces via autoencoders as the target distributions for flow matching can be crucial for the success of
vision-to-action flow. We develop an action encoder (&,), which does not simply remap dimensions,
but also learns structured latent action spaces, making the complex flow from vision to action more
tractable.

Table 4: Task SR (%) on ThreadNeedle with different action up-sampling strategies.

Up-sampling Strategy SR (%)

Zero-Padding 0
Action AE (w/o FLD) 0
Action AE (w/ FLD) 92

Autoencoder Loss. We found L1 loss outperforms L2 because L2 tends to average points.

Sampling Stochasticity. We examined VITA variants with different sources of sampling stochastic-
ity. We found that introducing dropout or variance (o) in flow matching—where o injects Gaussian
noise into the interpolation path between source and target latents as in OT-CFM—degrades perfor-
mance. In contrast, adding covariance to the source distribution yields results comparable to the
deterministic baseline. Similarly, using a variational objective in the action autoencoder performs
on par with the standard design, whereas applying a variational formulation to the image encoder
significantly hurts performance.

C EXPERIMENT RESULTS

thread needle slot insertion pour test tube
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0.5 15 2 25 0 05 1 15 2 25 0 0.5 1 15 2 2.5

1

step (¥ 1074) step (¥ 1074) step (* 10°4)
hook package cube transfer pusht
100 — VITA — VITA
80

60

40

Success Rate

) — VITA

o

0.5 2 25 0 05 1 15 2 25 3 35 4 45 5 55 6 65

15 2 25 0 0.5 1 15
) step (* 1074) step (* 10°4)

sltep (* 1074
Figure 7: Training curves on six tasks (five AV-ALOHA + PushT). Each plot reports success rate

(%) versus training step (X 10%) for VITA. The solid line is the mean across three random seeds; the
shaded region is 1 standard deviation.

As shown in Fig.[7] VITA exhibits fast early learning and stable plateaus on AV-ALOHA and PushT;
Fig. 8| shows consistent improvements on RoboMimic Can/Square under the same protocol.

14



Under review as a conference paper at ICLR 2026

can square
1004 1 — VITA

80 A

60 1

404

Success Rate

204

04 — VITA

0 05 1 15 2 25 0 05 1 15
step (*107°4) step (* 107™4)

Figure 8: Training curves on two RoboMimic tasks. Success rate (%) versus training step (x 10%)
on Can and Square.

D EXTENDED RELATED WORKS

Imitation Learning for Visuomotor Policy. Imitation learning enables robots to learn complex
behaviors by mimicking expert demonstrations. Behavioral cloning, a prominent imitation learning
paradigm, frames this as a supervised learning problem, learning a policy that maps observations to
actions (Zhao et al.| 2023} [Lee et al., 2024). Recent advancements in behavioral cloning have widely
adopted two modeling methods: generative modeling and autoregressive modeling. Generative
methods learn a conditional distribution of actions given an observation. This category includes
policies based on conditional variational autoencoders (CVAEs) (Zhao et al.}, 2023}, [Lee et al., 2024),

as well as diffusion (Dasari et al, 2024} [Chi et al. [2023) and flow matching (Zhang & Gienger,
[2024}; [Zhang et al., . On the other hand, autoregressive methods tokenize actions and frame

policy learning as a sequence modeling task. These methods predict action tokens sequentially,

using next-token prediction (Fu et all, 2024a), next-scale prediction (Gong et al [2024)), or bi-

directional prediction (Su et al.,[2025). Generative models ubiquitously require extra conditioning
modules (e.g., cross-attention (Dasari et al., [2024), AdaLN (Dasari et al.| [2024), FiLM
2018} [Chi et al}[2023)) to inject observations at each step of the generation process. Furthermore,
generative and autoregressive methods commonly employ large, expressive networks such as U-
Nets or transformers to succeed on complex, high-dimensional robotics tasks. VITA reduces these
complexity by formulating the policy as a noise-free and conditioning-free vision-to-action flow;
by using vector representations for vision and action, VITA also enables simple and lightweight
MLP-only network for policy parameterization, even for challenging bi-manual manipulation tasks.

Diffusion and Flow matching for Generative Modeling. Diffusion 2020), grounded
in stochastic differential equations (SDEs), generates complex data distributions by sampling from
a simple source distribution (typically Gaussian) and iteratively denoising it to the target distribu-
tion (Sohl-Dickstein et al., [2015). Flow matching (Lipman et al., 2023} [Liu et al.,[2022b)) has been
proposed to enable faster training and sampling (Liu et al., [2022b; [Tong et al., 2024} [Esser et al.;
Lipman et al.}[2023) by modeling the map between source and target distributions with an ordinary dif-
ferential equation (ODE). Both diffusion and flow matching models have shown strong performance

across diverse generative tasks, such as image generation (Rombach et al, 2022} [Peebles & Xie),
2023} 2024}, [Zhang et all,[2023} [Ciu et al.} 2024}, Ren et al, 2024b), video generation
etall [2023), and visuomotor policies (Chi et al.,[2023; Dasari et al., 2024} Black et al.;
Liu et al., [2024c). Unlike diffusion, flow matching theoretically places no constraints on the choice
of source distribution 2024), and a few works have explored leveraging this property to
learn the direct transport within the same modality (Albergo & Vanden-Eijnden| 2022 [Tong et al.
2023b), e.g., for image-to-image generation tasks (Fischer et al.,2023; [Liu et al., [2022a). Recently,
Liu et al.| (2024a) and He et al.| (2025)) extended this to more challenging cross-modal generation
between text and image. VITA focuses on learning to bridge vision and action for visuomotor control,
where the target modality, action, features sparser data, and lacks semantic structures, compared to
text or images, presenting unique challenges. Different from flow matching for image generation,
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which typically pre-trains and freezes the image encoder and decoder when learning flow matching
or diffusion models for image generation (Rombach et al.| 2022; He et al., 2025} [Liu et al.| 2024a),
VITA resorts to a fully end-to-end pipeline training to effectively learn the latent action space from
limited and sparse action data. Furthermore, to enable effective joint training of flow matching and
target latent spaces, we propose flow latent decoding to backpropagate action reconstruction losses
through the the latent action generation process (ODE solving steps) during training.

E VITA GENERATION PROCESS

We compare the denoising processes of conventional flow matching and VITA in Figure[9] Con-
ventional methods begin from Gaussian noise and iteratively denoise it into actions, whereas VITA
starts directly from latent visual representations. By jointly learning flow matching and the action
autoencoder, VITA constructs a structured latent space in which even the initial latent can be decoded
into a coherent trajectory, which is then progressively refined along the flow matching ODE.

Conventional Flow Matching

Source Step 1 Step 2 Step 5 Step 6
VITA 1 1 1 1
Source Step 1 Step 2 Step 5 Step 6

Figure 9: Comparison of action generation process: Conventional flow matching policies flow from
random noise, and gradually “denoise" into raw action chunks by solving ODE; in contrast, VITA
flows from latent images to latent actions across ODE steps; the latent actions are decoded to raw
action chunks.

F DISCUSSION OF TRAINING OBJECTIVES

F.1 ABLATION: ACTION VAE AND KL REGULARIZATION

Our main experiments use a deterministic action autoencoder as the target modality. To test whether
imposing a prior on the action latent helps, we also trained a variational action autoencoder in which
the encoder outputs ¢(z; | A) and we add a KL regularizer (weighted by Akr,)

Lk = Dxi(q(z1 | A) || p(z1)), p(z1) = N(0,1). (3)

Figure [I0(a) shows training curves for several Akp, values, and the sweep in Fig. (panel
action_k1_wt) reports the broader trend. Introducing a nonzero KL weight generally hurts
performance in our setting: convergence tends to slow and the final success rate typically drops
relative to A1, =0. Very small weights (e.g., 10~%) can track or even beat the zero-KL curve early
and underperform at plateau, while moderate/large weights (e.g., 10~2-5) yield noticeably lower
plateaus; across seeds, the zero-KL setting is consistently among the best.
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This behavior aligns with the training mechanics in §4.4: FLD anchors the ODE endpoint 2; via
action reconstruction, and the quality of this anchor depends on the decoder being structured and
locally well-behaved (small reconstruction bias o and decent local conditioning m; Theorem ).
An action KL prior pushes ¢(z; | A) toward N(0, ), which in our sparse/low-entropy datasets
reduces latent capacity and distorts local geometry—empirically increasing ear and weakening
m—so the link between latent and action errors becomes looser and the anchor noisier. We therefore
adopt a non-variational autoencoder (A, =0) by default.

(a) Action KL Regularization (b) Observation KL Regularization

80

@
=}

Success Rate
»
o

N
o

- action_kl =0 ——— observation_kl = 0
0 —— action_kl = le-4 ——— observation_kl = 1le-4

15 2 25 0 0.5 15 2 25

0 0.5 1 1
step (* 10™4) step (* 10°4)

Figure 10: KL regularization ablation on action and observation latents on ThreadNeedle.

F.2 VARIATIONAL IMAGE ENCODER

Recall the source latent is zp = &,(0O) € RPuer (Fig, . To assess whether imposing a prior on
visual latents helps, we replace the deterministic encoder with a variational image encoder that
obs

produces a posterior g(2zo | O) and add a KL penalty (weighted by A% ):

£33 = Dxu(q(zo0 | 0) || p(20)),  p(z0) = N(0,1). (4)

Architecturally, &£, shares the same backbone as in §4.2 with mean/log-variance heads and reparame-
terization; all other components (flow, action AE, FLD/FLC) are unchanged.

As shown in Fig. [T0|b), adding observation-KL degrades performance more strongly than action-KL:

very small weights can initially track A% =0 but plateau lower.

This is consistent with §4.4’s picture: in VITA, 2 carries all task information for the flow (no separate
conditioning). Pushing ¢(zo | O) toward an isotropic prior reduces I(zo; O) and blurs task-relevant
features, which weakens both the velocity supervision in FM (the straight-line target z; — zg becomes
less informative) and the endpoint anchoring via FLD/FLC (the flow starts from a less informative
20, making £, harder to align). We therefore use a deterministic image encoder by default (A% =0).

G TASK SETTINGS

Dataset State Dim Action Dim FPS Image Size Camera
AV-ALOHA (Sim) 21 21 8.33  240x320 zed_cam_left
AV-ALOHA (Real) 21 21 11 240%320 left_eye_cam
RoboMimic 43 7 20 256x256 agentview_image

Table 5: Comparison of dataset specifications.

G.1 AV-ALOHA SIMULATION TASKS.

CubeTransfer: Pick up ared cube with the right arm and transfer it to the left arm (200 episodes).

SlotInsertion: Use both arms to pick up a green stick and insert it into a pink slot (100
episodes).
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HookPackage: Use both arms to pick up a red box and hook it onto a blue wall-mounted hook
(100 episodes).

PourTestTube: Pick up two test tubes and pour a small red ball from one into the other (100
episodes).
ThreadNeedle: Pick up a green needle and thread it through the hole of a pink object (200
episodes).

G.2 AV-ALOHA REAL TASKS

HiddenPick: Lift and open a fabric cover from a box, then pick an object from inside (50 episodes).

TransferFromBox: Pick an object from a box with the right arm, transfer it to the left arm, and
place it in another box (50 episodes).

G.3 RoOBOMIMIC TASKS

Robomimic is a benchmark of single-arm imitation learning tasks [Mandlekar et al.|(2021). We adapt
the environment for compatibility with the|Cadene et al.|(2024)) codebase. The robot state includes
arm joint positions (encoded with sin and cos), joint velocities, end-effector pose, gripper finger
positions, and gripper finger velocities. The action space consists of six values for delta position
control of the end-effector pose and one value for the absolute position of the gripper.

Square: Pick up a square nut and insert it onto a matching square peg (175 episodes).

Can: Pick up a red can and place it into a box (192 episodes).
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Figure 11: Hyperparameter ablations on ThreadNeedle. Each panel varies a single coefficient
while holding all others at their default values; y-axis shows success rate (%), x-axis shows training
steps (x 10%). Top: action encoder reconstruction weight, flow latent decoding weight, action encoder
contrastive weight. Bottom: latent flow contrastive weight, latent flow consistency weight, action KL
weight.

H TRAINING

We run a one—factor-at-a-time ablation on ThreadNeedle: in each plot of Fig.[TT] we sweep a
single weight while holding all other hyperparameters at the default used in our main experiments.
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Curves report success rate throughout training (mean +1 std across seeds); evaluations occur at fixed
intervals. This isolates the marginal effect of each hyper-parameter choice.

With these experimental results, a robust configuration on ThreadNeedle is: moderate autoencoder
reconstruction and FLD weights (typically in [0.5, 1.0]), small or morderate FLC, minimal or no
contrastive penalties, and no KL regularization on the action latent. This setting consistently yields
faster convergence and higher plateaus on ThreadNeedle.

I IMPLEMENTATIONS

I.1 VITA

VITA uses vector latents throughout: a ResNet-18 encodes observations into 2z, a lightweight action
autoencoder maps actions to z1, and a flow network transports zy — 2; with a 6-step Euler ODE.
Training combines FM with endpoint supervision via FLD (and optionally FLC); the action AE is
deterministic by default (no KL). Core hyperparameters and loss weights are summarized in Table [§]

1.2 FLOW MATCHING POLICY

The FM baseline keeps the same horizons and ResNet-18 observer as VITA, but removes endpoint
supervision and decoding: it learns a velocity field with a transformer backbone (AdaLN blocks, 4
layers, 8 heads) and integrates it for 6 steps. The matcher is the standard conditional FM variant used
in our experiments. Core hyperparameters and loss weights are summarized in Table

1.3 DIFFUSION PoOLICY

Our diffusion baseline follows DDPM training with a cosine 3 schedule (100 timesteps) and a FiLM-
modulated U-Net (down dims [512, 1024, 2048]). Observations use the same ResNet-18 encoder;
actions are generated by iterative denoising at inference. Optimization and scheduler choices mirror
the other models. Core hyperparameters and loss weights are summarized in Table[§]

1.4 ACTION CHUNKING TRANSFORMER

ACT is a sequence-to-sequence transformer that predicts a 16-step action chunk from a 1-step
observation context. It uses a 4-layer encoder (512 hidden, 8 heads, FFN 3200, dropout 0.1) and a
small VAE head (latent 32) with a non-zero KL weight for regularization. This serves as a strong
non-generative baseline. Core hyperparameters and loss weights are summarized in Table 9]

19



Under review as a conference paper at ICLR 2026

Table 6: VITA hyperparameters.

Horizons & Observation

Observation horizon 1
Prediction horizon 16

Action horizon 8

Observer backbone resnetl8
Observer tokenize false

VITA core (latent & losses)
Latent dimension (Diagent) 512

Decode flow latents true

Consistency weight 1.0

Encoder contrastive weight 1e-4

Flow contrastive weight 0.0

Latent noise std 0.0

Flow matcher / ODE

Matcher name exact

o 0.0

# sampling steps (Euler) 6
Action autoencoder (AAE)

AE recon loss type 11

Encoder recon weight 0.5

Flow recon (FLD) weight 0.5

Use variational (VAE) false

KL weight (if variational) le-6

Freeze encoder / decoder false / false
Pretrained path None

AE network (encoder/decoder)

Encoder type / hiddendim  c¢cnn / 512
Decoder type / hidden dim  simple / 512

Latent dim (AE) $S{policy.vita.latent_dim} (=512)
Num heads / MLP ratio 8 / 4

Dropout 0.0

Num layers 4

Table 7: Flow Matching (FM) Policy hyperparameters.

Horizons & Observation

Observation horizon 1

Prediction horizon 16
Action horizon 8
Observer backbone resnetl18
Observer tokenize false
Flow matcher / ODE

Matcher name target
o 0.0
# sampling steps 6

Flow network architecture
Backbone flow_transformer
Block type adaln (options: adaln, cross, cross_adaln)
Hidden dim 512
Num layers 4
Num heads 8
MLP ratio 4
Dropout 0.1
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Table 8: Diffusion policy hyperparameters.

Horizons & Observation

Observation horizon 1
Prediction horizon 16
Action horizon 8
Observer backbone resnetl8
Observer tokenize false
Mask loss for padding false

Diffusion scheduler
Type DDPM
Training timesteps 100
Beta schedule squaredcos_cap_v?2
Beta start / end le-4/2e-2
Prediction type epsilon
Clip sample / range true/1.0

U-Net architecture
Down dims [512, 1024, 2048]
Kernel size 5
Group norm groups 8
Diffusion step embed dim 128
FiLLM scale modulation true

Optimization

Adam LR / backbone scale 1e-4/0.1
Adam betas / eps (0.95, 0.999)/1e-8
Weight decay le-6
Scheduler cosine, warmup 500 steps

Training & inference

Total training steps
Inference steps

200000
null (defaults to training timesteps)
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Table 9: Action Chunking Transformer (ACT): hyperparameters.

Sequence horizons

Action horizon 8

Prediction horizon 16

Observation horizon 1
Observer / backbone

Image encoder ResNet-18

Tokenize false

Transformer (policy head)

Pre-norm false
Model dimension dmodel 512
Attention heads 8
Feedforward dim 3200
FEN activation RelLU
Encoder layers 4
Decoder layers 1
Dropout 0.1
Latent / VAE block
Use VAE true
Latent dim 32
VAE encoder layers 4
ACT KL weight 10.0
Optimization
Optimizer Adam
Learning rate 1x107°
Betas (0.9, 0.999)
€ 1x10°8
Weight decay 1x 1074
Backbone LR scale 0.1
LR scheduler & validation
Scheduler Cosine
Warmup steps 2000

Online validation frequency 2000 steps
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