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ABSTRACT

In computational chemistry, crystal structure prediction (CSP) is an optimization
problem that involves discovering the lowest energy stable crystal structure for a
given chemical formula. This problem is challenging as it requires discovering
globally optimal designs with the lowest energies on complex manifolds. One
approach to tackle this problem involves building simulators based on density
functional theory (DFT) followed by running search in simulation, but these sim-
ulators are painfully slow. In this paper, we study present and study an alternate,
data-driven approach to crystal structure prediction: instead of directly searching
for the most stable structures in simulation, we train a surrogate model of the crystal
formation energy from a database of existing crystal structures, and then optimize
this model with respect to the parameters of the crystal structure. This surrogate
model is trained to be conservative so as to prevent exploitation of its errors by the
optimizer. To handle optimization in the non-Euclidean space of crystal structures,
we first utilize a state-of-the-art graph diffusion auto-encoder (CD-VAE) to convert
a crystal structure into a vector-based search space and then optimize a conservative
surrogate model of the crystal energy, trained on top of this vector representation.
We show that our approach, dubbed LCOMs (latent conservative objective models),
performs comparably to the best current approaches in terms of success rate of
structure prediction, while also drastically reducing computational cost.

1 INTRODUCTION

Data-driven optimization problems arise in many areas of science and engineering. In these settings,
we have an unknown function that we would like to optimize with respect to its inputs, provided only
with a dataset of input-output pairs. Examples include drug design, where inputs might be molecules
and outputs are the efficacy of a drug, protein design, where inputs correspond to protein sequences
and outputs are some metric such as fluorescence (Sarkisyan et al., 2016) or, as in our experiments,
prediction of crystal structures, where inputs consist of crystal structures and outputs correspond to
their formation energy. Such data driven optimization problems present several challenges. First,
naively training a predictive model to predict the output from the input and then optimizing against
such a model may lead to exploitation: a sufficiently strong optimizer can typically discover inputs
that lead any learned model to extrapolate erroneously, and then exploit these errors to find inputs
that “fool” the model into making the desired predictions. Second, even if a model can be suitably
robustified, many of the most important design and optimization problems in science and engineering,
including crystal structure prediction, require optimizing over complex sets and non-Euclidean
manifolds, such that naively applying gradient-based methods in the input space is unlikely to result
in a meaningful improvement.

In this paper, we study these challenges in the context of crystal structure prediction (CSP) Wood-
ley and Catlow (2008). Crystals are a class of solid-state materials characterized by the periodic
placement of atoms. These structures form the basis of a wide variety of applications such as
designing super-conductors, batteries Yamashita et al. (2016), and solar cells Walsh et al. (2012).
Computationally identifying stable crystal geometries given a particular chemical formula typically
involves minimizing (an estimate of) the crystal’s formation energy to find the minimal energy
structure. Conventional approaches to this problem rely on slow and compute-intensive DFT sim-
ulators Chermette (1998), but more recent machine learning approaches dispense with DFT-based
simulators and use databases of structures and their corresponding energies to train models that
estimate crystal formation energy directly Gasteiger et al. (2021); Klicpera et al. (2020). However,



the CSP problem suffers from both issues outlined above: crystal structures typically exhibit highly
complex geometries characterized by periodicity of the lattice that forms the crystal and discrete (e.g.,
number and types of atoms in the chemical compound) and continuous features (e.g., positions of
atoms in 3D space), which make it hard to produce reliable estimates of energies across the entire
manifold of possible structures. Optimizing the structure using such inaccurate models then bears
the risk of the optimization procedure “exploiting” these inaccuracies, resulting in structures that
erroneously appear promising in this learned model but are not stable.

In this paper, we aim to develop a data-driven optimization approach to overcome these challenges.
First, to avoid the complexities associated with optimization over the complex manifold of crystal
structures that consists of both discrete and continuous objects, our optimization procedure utilizes a
crystal diffusion variational auto-encoder (CD-VAE) (Xie et al., 2021) to convert crystal structures
into latent representations, which are much more amenable to simple gradient-based optimization.
Second, to prevent the optimizer from getting “fooled” by the errors in the learned surrogate model,
we extend conservative objective models (Trabucco et al., 2021b), a robustification procedure, to
our surrogate energy prediction model. This procedure explicitly pushes down over-estimated out-
of-distribution designs in the latent space. Using a combination of these techniques, we develop
a method for finding stable crystal structures that alleviates the time and compute costs associated
with using DFT simulators, while also addressing the inaccuracies in a purely offline approach for
designing crystal structures.

Our main contribution is a data-driven optimization approach, that we call latent conservative objective
models (LCOM), for the problem of crystal structure prediction for solid materials. Our method
leverages both advances in generative modeling over periodic solid-state materials for latent space
learning (Xie et al., 2021) and recent advances in model-based optimization for robustifying the
learned model to make it amenable to direct optimization of formation energies (Trabucco et al.,
2021b). We summarize the approach in Figure 1. We instantiate our approach, latent conservative
objective models (LCOMs), using crystal diffusion variational auto-encoders (CD-VAE) Xie et al.
(2021) for learning the latent space and conservative objective models (COMs) Trabucco et al. (2021b)
for optimization. Empirically, we demonstrate that LCOMs are able to match the performance of
the best prior method from Cheng et al. (2022) while significantly reducing the total wall-clock time
needed for optimization by 40 times. In particular, a single optimization cycle in our framework takes
an average of 2 seconds. This allows our model to provide predictions for more than 100 compounds
in 4 minutes, much faster than prior works.
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Figure 1: Overview of LCOMs. We train a graph-based CD-VAE to construct a latent space the represents
crystal structure, conditioned on the molecular structure of the compound. Different points in this latent space
correspond to different crystal structures, and we then optimize over the structure with simple gradient-based
optimization methods operating on this latent space. To do so, we train a surrogate energy prediction model on
the learned latent space via conservative training (Trabucco et al., 2021b) to make it robust on out-of-distribution
inputs, thus preventing the optimizer from discovering latent space points far from the training data for which the
energy predictions yield erroneously low energies. The optimized latent vector is then decoded into a structure.
Since the entire optimization is performed in the latent space, the comparatively complex encoder and decoder
only need to be used once during optimization (to encode the initial structure and decode the final one).

2 BACKGROUND ON CRYSTAL STRUCTURES AND MATERIALS

In this section, we present the background definitions associated with crystals and solid-state materials.
A crystal is a solid-state material characterized by a periodic placement of its constituents, which
are chemical elements. The stoichiometry or the composition of a crystal, like NaCl, consists of the
elements that make up the solid-state material (i.e., Na and Cl in this case) and in what ratio. In
real-world applications of solid-state materials it is not enough to develop a material with a suitable



chemical composition, but we must also account for the crystalline periodic structure of the solid and
the atoms’ positions with respect to it to assess the stability of a given compound.

Mathematically, we can describe the periodic structure of a chemical by defining its lattice L in 3D
space, which repeats periodically. To characterize a lattice, we define its base vectors v, w, z. Every
point in the lattice is a linear combination of these vectors using only integer coefficients.
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Given a lattice L, the unit cell is the volume of 3D space contained between the base vectors, defined
formally as follows:
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We can obtain the entire lattice of a crystal by periodically repeating this unit cell in 3D space. Given
a lattice in 3D space, a crystal is additionally characterized by how many atoms 7 are in the unit
cell. We observe that the number n is always a multiple of the number of elements in the chemical
composition of the material. For example, for a formula MgO;, which consists of 4 atoms, we can
have 4, 8, 12, or generally 4k elements in a unit cell (one element corresponding to one atom), but
not 3 or 6 elements, which are not a multiple of 4.

Finally, we can describe atoms’ types and positions with two matrices A € R"*128 | X ¢ R"*3,
The matrix A identifies different atoms in the unit cell using a one-hot representation. Specifically,
A; is a vector with a 1 at position Z corresponding to the atomic number of the i-th element, and 0
everywhere else. The matrix X provides fractional coordinates for the atoms. These are coordinates
between 0 and 1 with respect to the basis defined by the lattice base vectors. More specifically, the
vector X;; tells us that the i-th element is at X;}'v + X?w + Xz in the unit cell.

To summarize, a crystal is defined by three quantities: (1) A 3 x 3 matrix L representing the
lattice, the rows of which corresponding to the base vectors of the lattice; (2) number (n) and types
(A € R™*128) in the chemical; and (3) atoms positions X € R™*3, which is specified in terms of
fractional coordinates between 0 and 1. In the following sections, we will denote a crystal with the
variable x and we will use subscripts to refer to lattice parameters xr,, atoms’ types x 4, and fractional
coordinates x x. We finally remark that the majority of crystal and lattice configurations for a given
chemical compound are “unstable” and would collapse to a different configuration when synthesized.

3 PROBLEM STATEMENT, DATASET, AND EVALUATION

Crystal structure prediction (CSP) is the problem of finding a crystal of a given chemical composition
(e.g. NaCl, or MgOs) that attains the global minimum of the crystal formation energy. Such a crystal
is sythesizable and can be utilized for various downstream applications.

Problem 3.1 (Crystal structure prediction). Given a chemical composition c, find the crystal
x* = (L*, A*, X*) with lattice matrix L*, atom types A*, and atom coordinates X* such that x*
minimizes the formation energy function F for the chemical composition.

x* = argmin, F (x,c¢).

Why is solving CSPs hard? Only very few crystal structures are actually stable and only one of
these stable structures is at a global minimum, which makes crystal structure prediction equivalent to
searching for a “needle in a haystack”. The difficulty of solving a CSP is further compounded by
the fact that the search space over all possible crystal structures for a given chemical composition is
quite complex and non-Euclidean. This is because there is no one-to-one correspondence between
the matrices (A, X) and lattices L. Given a lattice matrix L, every other matrix that is rotationally
equivalent or permutation equivalent represents the same lattice. Moreover, reducing the design space
from all possible structures to only stable ones changes the manifold of designs considerably.

In principle, we could always attempt to find the globally optimal crystal structure by evaluating
many possible candidate structures against a simulator, but simulators for CSP are typically based on
density functional theory (DFT), and generally these are extremely slow in terms of the wall-clock
time. Therefore, we intend to solve this problem using only existing static datasets (OQMD (Saal
et al., 2013) and MatBench Dunn et al. (2020)). that contain several (sub-optimal) crystal structures
for a variety of chemical compounds along with their corresponding formation energies. With no
access to the simulator, our goal is to find a globally optimal crystal structure given a new chemical
compound. We describe our procedure for constructing the dataset and our evaluation protocol next.



Datasets for training. To robustly evaluate our method, we consider two training scenarios with
different datasets: the OQMD dataset (Saal et al., 2013) and the MatBench dataset Dunn et al.
(2020), both of which consist of the crystal structures and formation energies for obtained via DFT
simulations. Every sample in the dataset represents a stable crystal structure x (i.e., a crystal at a local
minimum of energy) computed via numerical relaxation (Hafner, 2008), together with its chemical
composition ¢ and formation energy F (x, ¢). We chose these datasets because of their large size
(OQMD has more than 1 million examples), and the availability of more than one stable structure per
chemical, all of which are not at their global optimum.

Held-Out evaluation datasets. We evaluate our offline optimization approach in terms of its efficacy
in discovering the globally optimal structure for a given chemical compound. To this end, following
the protocol of Cheng et al. (2022), we construct a held-out test set consisting of some compounds
and the associated globally optimal crystal structures (Table 1) and utilize this set for evaluations.

Evaluation protocol. Following the evaluation protocol in prior works Xie et al. (2021); Cheng et al.
(2022), we test our method in terms of its efficacy in recovering the globally optimal structure on 26
of the 29 compounds in (Cheng et al., 2022), where the 3 remaining compounds are omitted because
they cannot be simulated with GPAW to compute their ground truth energy values. These compounds
are listed in Table 1. For each of these compounds, we run our optimization process to convergence
and check the final energy of the optimized design. We compare the optimized energy against the
known global minimum energy. We consider it a success if the final energy of the optimized structure
produced by our approach recovers the value of the known global minimum, up to a predefined noise
threshold of 20% of the ground truth minimum energy.

To stress-test our gradient-based approach, we seed the optimizer with a random stable initial crystal
structure. We compute this initial stable structure by running simulations in the GPAW (Enkovaara
et al., 2011) simulator, an open-source DFT simulator fully integrated into python packages for
chemistry like ase and pymatgen. Concretely, we utilized the following protocol for obtaining this
initial crystal structure: (i) for every compound, we first select the number of atoms corresponding
to the optimal compound design as listed in the materials project database, (ii) we then randomly
initialize the lattice matrix and the atom coordinates, and (iii) we then run the process of structure
relaxation in the simulator to obtain the closest local minimum (i.e., a closeby structure that is stable).

4 LCOMS: LATENT CONSERVATIVE OBJECTIVE MODELS

To design crystal structures with the lowest possible energy entirely from an existing dataset of
only sub-optimal structures, we utilize techniques from offline model-based optimization. Directly
applying these techniques (Trabucco et al., 2021b; Yu et al., 2021; Qi et al., 2022) for optimizing
crystals is non-trivial as these methods typically employ optimization procedures that iteratively
make local changes to the design (e.g., gradient-based updates or random mutations) to optimize a
“surrogate” estimate of the objective function. Such iterative procedures fall short when optimizing
over non-smooth geometries and non-Euclidean manifolds like that of crystals. To alleviate this issue,
we propose an approach for offline optimization that first learns a latent vector representation for a
crystal structure, then performs data-driven optimization in this vector space, and finally maps back
the resulting outcome to a valid crystal structure. We outline each part of this procedure below.

4.1 TRANSFORMING CRYSTAL STRUCTURES TO A LATENT REPRESENTATION

Which sort of a latent representation space is especially desirable for CSP? Since one of the central
challenges in our problem is the abundance of invalid or infeasible structures in the space of all
possible crystals, it is very desirable to learn latent representations that only encode valid and feasible
structures. Once we learn such a space, we can directly perform offline optimization in this latent
space. If we can ensure that every possible latent vector corresponds to some feasible crystal structure,
then we are guaranteed to at least prune out the possibility of finding infeasible structures during the
optimization process. To this end, we train a crystal diffusion variational auto-encoder (CD-VAE) on
our training dataset for various chemical compositions, and then run offline optimization in the latent
space of this auto-encoder. Since our training dataset only consists of stable structures, the decoder
of a well-trained CD-VAE should map latent vectors to the manifold of stable crystal structures
only, which would greatly benefit optimization by enabling the optimizer to move in a much smaller
manifold. Below we describe the architecture and the training objective for the CD-VAE.

CD-VAE. A CD-VAE (Xie et al., 2021) is composed of three parts: a graph neural network (GNN)
encoder PGNNgy that takes a crystal x as input and outputs a latent vector representation, an NN pre-
dictor MLP ¢ that outputs lattice parameters x 7, from its encoded representation PGNNEgyc (%, ¢),



and a GNN diffusion denoiser PGNNpg that takes a random noisy crystal X and a latent encoding
PGNNEgxc (%, ¢) as inputs, and outputs forces to apply on the atoms coordinates X x to build the
original crystal x via a diffusion process. Following Xie et al. (2021), the encoder PGNNEgy( uses a
DimeNet++ Klicpera et al. (2020) architecture. Likewise, the decoder PGNNpgc uses a GemNet-dQ
Gasteiger et al. (2021) architecture. During decoding, CD-VAE initializes a structure with random
lattice and coordinates and utilizes Langevin dynamics Song and Ermon (2019) to gradually recover
the stable structure represented by the latent vector.

To make the notation compact, we will refer to the PGNNgyc as ¢, and thus the latent representation
of a crystal x with chemical composition ¢ will be denoted by ¢(x,c). We will use the notation
PGNNpgc (2) to denote the structure obtained after applying the denoising process with latent vector
z. Akin to a variational auto-encoder (Kingma and Welling, 2013), CD-VAE (Xie et al., 2021) is also
trained to maximize the likelihood of crystral structures seen in the dataset, agnostic of the energy
objective that we wish to optimize.

Training objective for the latent representation. We follow the training objective utilized by the
CD-VAE (Xie et al., 2021). The first term in this objective is the reconstruction error over lattice
parameters, formally defined as:

Lacs (MLPace (9(x,¢)) . xz) = |xz — ¢(x, o). 3

Akin to a VAE (Kingma and Welling, 2013), we also include a loss term minimizes the KL-divergence
between a normal distribution over the latent representation induced by the encoder (with mean
¢(x, ¢) and a learned standard deviation) and a standard multi-dimensional normal distribution.

The decoder of the CD-VAE is a denoising diffusion model (Ho et al., 2020) that attempts to transform
an input latent vector into the corresponding crystal structure, starting from a random structure X,
which is iteratively refined via the diffusion process. Succinctly, the objective for training this term is
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where {o; }le are noise schedule scalars for the diffusion process and are in a geometric sequence
with common ratio greater than 1. Finally, we remark that we do not utilize terms for reconstructing
types or the number of atoms (i.e., x4 or x,) because our optimization procedure only aims to
optimize over other parameters of the crystal lattice so the number and types of atoms are fixed.

4.2 CONSERVATIVE OPTIMIZATION IN LATENT SPACE

Once the encoder of the CD-VAE is trained, we can then train a surrogate model, Fy(¢(x, ¢), ¢) to
estimate the formation energy E of a crystal structure x for a given chemical composition, ¢ via
standard supervised regression. Then, we can simply optimize the crystal structure to maximize the
outputs of this surrogate model. However, as prior works (Kumar et al., 2020; Trabucco et al., 2021b)
note, this simple strategy often fails at finding optimized designs due to the exploitation of errors
in the learned surrogate model by the optimizer. To address this issue, we extend the conservative
objective models (COMs) technique for optimizing crystals in the learned latent space.

Training latent space conservative models. To prevent the optimization procedure from exploiting
inaccuracies in this learned surrogate model, we apply an additional regularizer from Trabucco et al.
(2021b); Kumar et al. (2021) to robustify the surrogate model. This regularizer mines for adversarial
vectors in the latent space 2™ that appear to have very low energies Ey(z™, ¢) under the learned

surrogate model, and then explicitly pushes up the predicted energy Ey(z™, ¢) on such adversarial
2. Pollowing the COMs approach (Trabucco et al., 2021b), we interleave the training of the learned
surrogate model Fy with an optimization procedure Opt(Fy, c) that seeks to find the aforementioned
adversarial vectors 2™ that optimize the current snapshot for the surrogate model, for a given chemical
composition c. After these adversarial vectors are found, the training procedure explicitly pushes up
the energy output of the surrogate model on such points. To compensate for the effect of increasing
the learned energy values in an unbounded manner on all latent vectors, we additionally balance the
push up term by pushing down the energy values on the latent representations induced by crystal

structures in the data. This idea can be formalized into the following loss for training Fjy:

ming E.x.p {(Eg(qﬁ(x, c),c) — B(x, c))2:| -« (Ec,xND [Ez+~opt(1§0,0) [E9(2+, o) — E9(¢(X, c), C)D .



We will discuss the formulation for Opt below. Crucially, unlike COMs (Trabucco et al., 2021b),
which directly runs gradient descent in the input space, our approach operates in the latent space.

Optimizing in the latent space. Once a conservative surrogate model Ey(z, ¢) is obtained using the
above training procedure, we must now optimize this model to obtain the best possible structures.
The optimization procedure Opt that was used to obtain adversarial latent vectors in the training
objective above can then be repurposed to obtain optimized latent vectors once the latent conservative
model is trained. Since the latent space z is a continuous Euclidean vector space, for any given
chemical composition ¢, our choice of Opt is to run 7" rounds of gradient descent on the surrogate
energy Fy(z, c) with respect to the latent vector z, starting from the latent vector zg corresponding to
a random initial crystal structure. For a given c, this procedure can be formalized as follows:

Zk41 — 2k — avzﬁg(z,c), 5)
where zg ~ ¢(xg,c), xo ~ D.

Once this optimization procedure is run for 7" steps, we pass the final latent vector zp to the decoder
of the pre-trained CD-VAE to obtain the optimized crystal structure: X* = PGNNpgc(z7).

4.3 IMPLEMENTATION DETAILS

For obtaining the latent space, we train a CD-VAE identically to Xie et al. (2021) on our datasets,
following their implementation details for the encoder and the decoder. After training the CD-VAE,
we encode molecule structures from the dataset into vectors, and these vectors are then used as inputs
for training the optimization model. For training LCOMs, we represent the conservative objective

model Ej (¢(x,¢), ) as a neural network with two hidden layers of size 2048 each and leaky ReLU
activations. For computing 2T, we perform one gradient descent step on the vector z from input latent
space. We perform 50 gradient steps and get an optimized vector in the latent space. We then decode
these latent vectors into an optimized crystal structure. For reporting statistically robust results, we
repeat the optimization procedure for three seeds and average over the resulting energy value.

5 RELATED WORK

One widely studied optimization-based approach to CSP utilizes evolutionary algorithms Lonie and
Zurek (2011); Oganov et al. (2011). For instance, USPEX Glass et al. (20006) is an algorithm that
uses a variety of heuristic strategies for iteratively evolving structures directly in the space of the
crystal parameters. Each of these intermediate structures need to be evaluated against the simulator,
which repeatedly involves running relaxation to the nearest stable structure. This extensive use of
simulation makes such an approach computationally impractical, necessitating offline learning-based
approaches like our method that do not require any simulation.

Due to the availability of large public datasets such as the materials project database and the open
catalyst project (Chanussot et al., 2021), recent works develop learning-based approaches for solving
CSPs. Another subset includes methods that use different types of evolutionary optimizers to optimize
a GNN-based surrogate energy model instead of the ground-truth energy function. This includes
methods based on random search (Cheng et al., 2022), particle swarm optimization (Clerc, 2010), and
Bayesian optimization (Pelikan et al., 1999). In contrast, our method prescribes the use a conservative
surrogate model of the energy function, that takes as input a latent representation of the crystal. As
we show in our experimental results, both of these aspects are crucial for CSP.

Another line of prior work learns generative models for graph data including, but not limited to crystal
structures. This includes methods that leverage variational auto-encoders (Simonovsky and Ko-
modakis, 2018) normalizing flows (Satorras et al., 2021), generative adversarial networks (Kim et al.,
2020), recurrent neural networks Grisoni et al. (2020), reinforcement learning techniques (Pereira
et al., 2020) or a combination of auto-encoders and diffusion models, for example, the CD-VAE (Xie
et al., 2021), that we build upon. While these approaches aim to model the manifold the graph-
structured data and our approach utilizes the latent space learned by one such approach, CD-VAE (Xie
et al., 2021), our goal of optimizing the structure is distinct from the goal of modelling the data.

Model-based optimization (MBO) refers to the problem of optimizing an unknown function by
constructing a surrogate model. Bayesian optimization represents one of the most widely known
classes of MBO methods (Snoek et al., 2015; 2012; Ghavamzadeh et al., 2015), but classically MBO
requires iteratively sampling new function values, which can be very expensive when evaluating a
crystal structure’s energy requires an expensive simulation process. More recently, offline MBO
methods, sometimes referred to as data-driven optimization, have been proposed to optimize designs
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Table 1: Evaluation of LCOMs and other prior crystal structure prediction methods in terms of the
accuracy of discovering the globally optimal structure for 26 compounds. Check marks indicate successful
discovery as per our criterion. Note crucially that while we utilize a threshold on optimization energy to determine
success, baseline methods marked with * in this table follow prior works and utilize a manual inspection protocol
as discussed in the footnote in Section 6.

based entirely on previously collected static datasets (Brookes et al., 2019; Trabucco et al., 2021a;
Kumar and Levine, 2019; Trabucco et al., 2021b; Qi et al., 2022). Our work builds on these methods,
and is most closely related to the COMs algorithm proposed by Trabucco et al. (2021b). However,
while prior offline MBO methods focus on robustifying the surrogate model in the design space
directly, we integrate these approaches with latent space optimization that makes it possible to
optimize over the manifold of only stable structures, while still using a simple gradient optimizer.

6 EXPERIMENTAL EVALUATION

The goal of our experimental evaluation is to evaluate the efficacy of LCOMs for crystal structure
prediction by answering the following questions: (1) Can LCOM:s successfully optimize in the latent
representation space? (2) Do LCOMs manage to effectively recover the optimal energy structure up
to a pre-defined threshold of accuracy? and (3) Does LCOM drastically reduce simulation wall-clock
time compared to prior methods? To answer these questions, we evaluate LCOMs against prior
methods following the protocol from Section 3 and then perform some diagnostic experimental
studies that we will discuss in this section.

Comparing LCOMs with baselines and prior methods. We compare LCOMs to two methods from
prior work (Cheng et al., 2022): particle-swarm optimization (PSO), and Bayesian optimization (BO).
We also study two baseline methods: a method that does not run any optimization in the latent space
and simply constructs a stable structure for a given chemical compound via the decoder (“CD-VAE”),
and a method where the crystal is optimized with a naive supervised learning model in the latent
space of the CD-VAE via gradient descent ("Supervised learning; SL”). Note that the latter is similar
to LCOMs, but the surrogate energy prediction model is not trained with any conservatism, but rather
with only standard supervised regression. We evaluate these methods on the 26 chemical compounds
in our evaluation dataset, and present the results in Table 1. During evaluation, we mark a crystal
structure successful if the energy of the optimized structure is close to the energy of the best known
globally optimal structure up to a certain threshold. This threshold is defined as an upper bound of 0.2
on the quantity (E(x, c¢*) — E(x,¢)) /|E(x, c*)| to account for imprecision in the simulator, where
c* is the ground truth optimal crystal and ¢ is the optimized crystal discovered by the optimizer.



The results in Table 1 show that when trained on OQMD, our method improves significantly over
naively optimizing in the CD-VAE latent space without conservative training (supervised learning;
SL), and also that it is competitive with the prior state-of-the-art methods RAS, PSO, and BO,
exceeding the performance of the PSO baseline and matching BO and RAS, without needing any
simulations (we will quantify the benefits on wall-clock time soon). A similar trend also holds for
the MatBench dataset in Table 1, indicating that LCOMs is performant for different choices of the
training data. On MatBench, LCOMs outperforms both PSO and BO methods by a large margin.
We also note that BO and RAS perform comparably to LCOMs when trained on the OQMD dataset,
when results for these prior comparisons are reported using the evaluation metric in (Cheng et al.,
2022)". Due to the difference in evaluation criteria, these comparisons to LCOMs are not as exact
like in MatBench, where both BO and PSO are evaluated using the same criteria as LCOMs.

Does LCOM improve over prior methods in terms of wall-clock time? Our method optimizes
the crystal structure in the latent space of the CD-VAE, using gradient-based optimization. One
advantage of this approach is computational efficiency, since the complex graph-based component of
the pipeline is only used during the encoding and decoding stages at the beginning and end of the
optimization, rather than at each optimization step. Hence, we measure the wall-clock time needed
to run optimization with LCOMs comparatively against other prior methods in Table 2. Observe
that while utilizing a graph neural network (GNN-BO) reduces the wall-clock time needed by about
875x compared to DFT-PSO that queries the simulator for every design, LCOMs further reduces
the wall-clock time 40 by running optimization in the latent space of a CD-VAE, which does not
require running expensive message passing loops of a graph neural network encoder but rather runs
relatively faster forward passes through small MLPs. This indicates that LCOMSs not only discovers
are more optimal crystal structure, but it does so 40x faster than the best prior method.

| DFT-PSO | GN-BO | LCOMs

Optimization time per structure (seconds) | 70000 | 80 | 2

Table 2: Comparing wall-clock time for different methods. Observe that not using a simulator reduces the
wall-clock time from 70000 seconds to 80 seconds per structure, and further utilizing a latent space surrogate
model in LCOMs instead of a graph neural network model cuts down the total time further by 40x to 2 seconds.

Zn0 Srs

How does conservative training influence op- — —
timization? In the next set of experiments, we et | et
aim to understand how conservative training of
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the latent space for which the model erroneously

predicts arbitrarily low energies. Empirically,
we evaluate the performance of optimized crys-
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Figure 2: Comparing the energy of intermediate
structures observed over the course of optimization

. . . with LCOMs (blue) and non-conservative models (or-
tals obtained by running 50 gradient steps of ange). Note that while the non-conservative model gets

Optlmlzatlon on t.hf.: .learned surrogate models exploited as more steps of gradient-based optimization
starting from an initial structure. Specifically, are performed, structures discovered by conservative
we compute the relative improvement in energy LCOMs attain lower energies after gradient descent,
values after optimization, formally calculated and the final structures are close to the global optimum
as (E(x,¢c9) — E(x,¢)) /|E(x,¢o)|, where ¢y (marked as red in the plot above).

denotes the initialization and ¢ denotes the optimized structure in Figure 3.

'Our evaluation protocol for determining the optimality of a structure uses an energy threshold. This is
a contrast to Cheng et al. (2022), which adopts a manual inspection approach to check for equality between
optimized and optimal structures as their evaluation criterion. As such, comparisons between our work and that
of Cheng et al. (2022) marked with an asterisk (*) should be made with an understanding of this fundamental
difference in evaluation methodology.



Energy improvement after optimization process
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Figure 3: Comparison of energy improvements produced by LCOMs and the non-conservative super-
vised learning (SL) baseline. Top: Energy improvement for 25 compositions, when training on the OQMD
dataset; Bottom: energy improvement over a set of 83 chemical compositions, when training on the MatBench
dataset. Note that structures found by LCOMs achieve better formation energy after optimization, while the
non-conservative supervised learning model actually leads to structures with worse energy values (negative
improvement). The quantity on the y-axis represents the percentage of improvement (reduction) in the energy
value. These results indicate that conservative training is essential for successfully instantiating a method with
gradient-based latent space optimization for crystal structure prediction.

Observe that while LCOMs generally produces positive improvement, the non-conservative model
leads to negative improvement: the optimized structures are generally worse than the random structure
at initialization. This indicates that conservative training is critical for latent space optimization to
work. We also perform a more fine-grained analysis, where we plot the trajectory of evolution of the
energy values over each round of optimization in Figure 2. Observe that for the non-conservative
model (orange), the energy increases over the course of optimization indicating that the optimizer is
exploiting errors in the learned model. This exploitation is absent for LCOMs (in blue), indicating
that conservatism is crucial for attaining good performance.

7 DISCUSSION AND FUTURE DIRECTIONS

We presented a method for offline optimization that uses the latent space of a CD-VAE to perform
smooth gradient-based optimization of complex structures, with application to crystal structure pre-
diction. Our method combines concepts from conservative objective models that robustify predictive
models to make them amenable to gradient-based optimization, with a latent-space generative models
of graphs, enabling us to use simple gradient-based optimization methods. Our experiments show
that our method can successfully optimize the formation energy and recover the optimal structure of
a chemical compound with a good level of accuracy, comparing favorably with existing approaches,
while tremendously reducing computation time. An interesting avenue for future work is to study
the efficacy of LCOMs in more problems in computational chemistry. Another direction for future
work is to use the best performing models to predict the optimized structure for novel chemicals and
validate the predictions experimentally.
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Appendices

A ADDITIONAL ABLATION STUDY

Different optimization curves with varying overestimation limit
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Figure 4: Ablation study. The overestimation threshold, 7, is the factor controlling the level of conservatism

imposed by LCOMs. The above plot shows the performance of the crystal structures found by LCOMs by
varying this threshold for two sample compounds: SrS and MgO.

Since our method builds on existing conservative optimization algorithms, one of the main hyper
parameters of our method is the coefficient o controlling the strength of the conservatism regularizer.
In the practical instantiation of COMs (Trabucco et al., 2021b), this hyperparameter is replaced by its
Lagrangian dual Equation 6 in Trabucco et al. (2021b)), and the corresponding hyperparameter in the
practical algorithm is 7, the threshold of allowed over-estimation on adversarial examples (in our
case, adversarial latent vectors). A smaller 7 enforces a stricter upper bound on the allowed amount
of distribution shift, whereas a larger 7 does not penalize distributional shift. As a result, energies of
produced designs would be close to the energy in the dataset when the coefficient 7 is small, but also
get exploited when 7 is too large. An intermediate value of 7 is expected to likely lead to the most
favorable results.

As shown in Figure 4, an intermediate value of 7 (e.g., 1.0 in this case) leads to the best results as
more gradient steps are performed to optimize the crystal structure. As expected, while a very small
7 = 0.5 plateaus in the case of MgO, a very large value 7 = 5.0 starts to get exploited for both the
sample compounds, MgO and SrS. These results align with our hypothesis.

B DETAILS OF OUR SIMULATOR

DFT simulators, underpinned by Density Functional Theory (DFT) Parr (1989), serve as crucial
computational tools for approximating the solution of the Schrédinger equation for a given system of
particles. Particularly, in our study, these particles constitute the chemical structure of a crystal. By
providing an approximate solution of the underlying differential equation, DFT simulators enable the
calculation of system dynamics, including critical properties such as total energy, and facilitate the
simulation of system relaxation to a stable, energy-minimal configuration.

DFT represents a class of computational algorithms rather than a single operation method, which
justifies the availability of multiple DFT simulators. Examples of these simulators include licensed
platforms like VASP, and open-source ones like GPAW Mortensen et al. (2005); Enkovaara et al.
(2010). We leveraged the operational flexibility inherent to DFT in this work by using GPAW to
create random stable structures as initial points for the optimization process. Its accessibility as an
open-source tool, and ease of integration with Python, made it the preferred choice.

However, GPAW does have limitations, most notably the absence of pseudo-potentials for all chemical
elements, essential for approximating the potential experienced by valence electrons in atoms. This
limitation hindered the simulation of some structures used for evaluation, as highlighted by Cheng
et al. (2022). Consequently, our evaluation was limited to 25 out of the original 29 compounds
discussed in this prior work that informed our evaluation procedure.
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C EXPERIMENT DETAILS

In this section, we detail the hyperparameters and configurations employed in our experiments to
facilitate reproducibility of the results. Please note that for competing models, we rely on results
reported in the original work instead of replicating the experiments. For comprehensive information
regarding these models, we refer the reader to the work of Cheng et al. (2022).

Encoding and Decoding Following the method in Xie et al. (2021), we firstly train an variational
encoder to transform crystal structure to CD-VAE latent space, with the same training protocol in Xie
et al. (2021). We use a batch size of 256 here when training the encoder.

Hyperparameters In LCOMs, we follow most of the hyper-parameters in the implementation of
COM s method Trabucco et al. (2021b). The number of epochs to train the model Ep(¢(x, ¢), c)
is 50 and the number of gradient descent steps used in Equation ?? is 50. The number of steps
used to generate optimized results in latent space is 10 for model trained with OQMD dataset and
40 for model trained with MatBench dataset. Please note that this number is picked by evaluating
the distance between optimized groups and training dataset. The training batch size is 128 and the
learning rate for model training is 0.00003. The model structure is followed by the one in Trabucco
et al. (2021b). The overestimation limit 7 in Equation 6 of Trabucco et al. (2021b) is picked as 1.0.
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