
Published in Transactions on Machine Learning Research (06/2024)

Recent Link Classification on Temporal Graphs Using Graph
Profiler

Muberra Ozmen ∗ muberra@squareup.com
CashApp
Montreal, QC, Canada

Thomas Markovich † tmarkovich@squareup.com
CashApp
Cambridge, MA, USA

Reviewed on OpenReview: https: // openreview. net/ forum? id= BTgHh0gSSc& referrerD

Abstract

The performance of Temporal Graph Learning (TGL) methods are typically evaluated on
the future link prediction task, i.e., whether two nodes will get connected and dynamic
node classification task, i.e., whether a node’s class will change. Comparatively, recent
link classification, i.e., to what class an emerging edge belongs to, is investigated much
less even though it exists in many industrial settings. In this work, we first formalize
recent link classification on temporal graphs as a benchmark downstream task and introduce
corresponding benchmark datasets. Secondly, we evaluate the performance of state-of-the-
art methods with a statistically meaningful metric Matthews Correlation Coefficient, which is
more robust to imbalanced datasets, in addition to the commonly used average precision and
area under the curve. We propose several design principles for tailoring models to specific
requirements of the task and the dataset including modifications on message aggregation
schema, readout layer and time encoding strategy which obtain significant improvement
on benchmark datasets. Finally, we propose an architecture that we call Graph Profiler,
which is capable of encoding previous events’ class information on source and destination
nodes. The experiments show that our proposed model achieves an improved Matthews
Correlation Coefficient on most cases under interest. We believe the introduction of recent
link classification as a benchmark task for temporal graph learning will be useful for the
evaluation of prospective methods within the field.

1 Introduction

Graphs provide convenient structures to represent interactions or relationships between entities by modeling
them as edges between vertices. Using this representation allows one to build models that capture the
interconnected nature of complex systems such as social networks (El-Kishky et al., 2022; Wu et al., 2022;
Gao et al., 2021) or transaction graphs (Liu et al., 2020; Zhang et al., 2022). Graph Representation Learning
(GRL) rose in popularity due to the desire to apply deep learning to graph structured problems (Zhou et al.,
2020; Wu et al., 2020; Hamilton, 2020). Indeed, GRL has provided significant advances in fraud detection (Liu
et al., 2020; Zhang et al., 2022), recommendation systems (Wu et al., 2022; Gao et al., 2021), chemistry and
materials science (Pezzicoli et al., 2022; Reiser et al., 2022; Bongini et al., 2021; Han et al., 2021; Xiong
et al., 2021), traffic modeling (Rusek et al., 2019; Chen et al., 2022), and weather simulation (Keisler, 2022;
Ma et al., 2022), among other possible applications. Many of these graph machine learning tasks can be
understood as either link prediction (Chen et al., 2020; Cai et al., 2019; Zeb et al., 2022; Chamberlain et al.,

∗Also attending McGill University during this research,
†Corresponding author

1

https://openreview.net/forum?id=BTgHh0gSSc&referrerD

Published in Transactions on Machine Learning Research (06/2024)

FLP DNC RLC
Which nodes will be connected next? What will be the node colour in the future? What will be the colour of a new edge?

Figure 1: Differences between TGL tasks. Future Link Prediction (FLP): Given a temporal graph and
a pair of nodes observed at a timestamp, a function is learned which predicts the probability of these two
nodes linking at a later timestamp. Dynamic Node Classification (DNC): Let blue and purple colours
represent the node classes which change over time. Given the current node classes along with the set of edges
at a time point, the aim is predicting the node classes at a later timestamp. Recent Link Classification
(RLC): Let the colours blue and purple represent the edge classes, which are observed some time after the
emergence of a link. That is, at the time when a link is first detected, the link class is unknown. Black edge
have been recently observed but the class is not yet observed. In this setting, the aim is to predict recent
link classes given a history of previous interactions.

2022) or node classification tasks (Kipf & Welling, 2016; Zhang et al., 2019). Much of the early work focused
on the scenario where the graph is static. Acknowledging that many tasks in industrial settings involve
graphs that evolve in time, researchers defined a sub-problem of GRL called Temporal Graph Learning
(TGL), with time dependent versions of the original static tasks, yielding Future Link Prediction (FLP) and
Dynamic Node Classification (DNC) respectively (Kumar et al., 2019; Arnoux et al., 2017). The former
task, FLP, seeks to predict whether two vertices will be connected at some specified future time; while the
latter, DNC, seeks to predict the class of a vertex at a future time (See Figure 1). Both of these tasks
have a variety of applications in real world, e.g., predicting the probability of two people forming a tie or
of a person deactivating their account on social media platforms, corresponding to FLP and DNC tasks
respectively (Min et al., 2021; Song et al., 2021; Frasca et al., 2020; Zhang et al., 2021a).

This begs the question – “In analogy to the dynamic node classification task, is there a temporal link
classification task we can define?” And indeed, there is a third common task that is based on static link
classification (Wang et al., 2023), which we term recent link classification (RLC). RLC is present in industrial
settings but has yet to be formalized in a research setting. The task of RLC requires that one classify a link
that has been observed to exist but does not as yet have a known label. This task is important for settings
where we wish to classify the interaction but labels may be delayed. In social media settings, this could involve
classifying interactions as abusive, and in a transaction network it could involve classifying a transaction as
potentially fraudulent. More formally, we define RLC as a task in which the predictive algorithm is given
the source and destination entities of a recent interaction and its features, e.g., textual content of the post;
and it must predict the target class value. The task of classifying recent interactions has typically been
treated as a tabular data task, arising in applications such as fraud detection (Sarkar, 2022). This approach
represents each interaction between two entities as a sample with associated features. The sample can thus be
represented as a row of a table, where each column is a feature. There is usually an (implicit) assumption that
the samples are independent. This neglects the fact that entities may participate in multiple interactions and
thus induce dependencies between the samples. In practice, one option to address this deficiency is feature
engineering. For tabular tasks, it has been previously observed that features representing counts, such as how
many times one user has previously liked another user’s posts, provide significant metric uplift (Wu et al.,
2019; Shan et al., 2016). While the incorporation of such features is not explicitly graph machine learning,
we take the view that these features are the result of manual feature engineering inspired by graph-based
intuition (Zhang et al., 2021b; Martínez et al., 2016; Chamberlain et al., 2022). Therefore, we believe that
explicitly formulating RLC as a graph learning task and highlighting suitable datasets for the temporal graph
machine learning community will encourage progress towards better solutions for an industrially relevant
problem.

2

Published in Transactions on Machine Learning Research (06/2024)

With this motivation in hand, we formalize two research questions that we wish to answer in this work: “Q1:
How does recent link classification differ from future link prediction?” and “Q2: What are the
most critical design principles of recent link classification?”. We answer the first question through a
comparative study of baseline methods on both tasks. We answer the second question by exploring a variety
of model building blocks, some published previously, and some novel. In answering these research questions,
we contribute a new TGL task, a new figure of merit, a measure of edge-homophily, and a non-exhaustive
set of design principles that comprise a design space for this new machine learning task.

2 Related Work

There exist two main models for dynamic graphs: discrete-time dynamic graphs and continuous-time dynamic
graphs (Zhou et al., 2022). Discrete-time dynamic graphs manifest as sequences of static graph snapshots
captured at distinct time intervals. Continuous-time dynamic graphs, on the other hand, offer greater
generality and can be expressed as timed sequences of events. These events may involve the addition or
deletion of edges, addition or removal of nodes, and transformations of node or edge features. Traditional
static graph representations fall short in capturing the inherent temporal dynamics. TGL seeks to address
this limitation by extending the principles of graph-based models to time-varying structures, enabling a
comprehensive understanding of how relationships unfold and transform over different time intervals. Gao &
Ribeiro (2022) develop a framework to analyze TGL architectures, and categorize methods in the literature
into two groups: ‘time-and-graph’ and ‘time-then-graph’. Time-and-graph based architectures learn the
evolution of node representations by building a representation for each graph snapshot. DySAT (Sankar et al.,
2020) and Evolve GCN (Pareja et al., 2020) fall under this category. Time-then-graph based architectures,
on the other hand, construct a multi-graph using the memory of all past observations and build a static graph
to learn the node representations. Most well-known methods which fall under this category are TGN (Rossi
et al., 2020) and TGAT (da Xu et al., 2020). Our research aligns with the ‘time-then-graph’ approach. To
that end, we provide a brief review of the methods that we have found influential.

TGN is a message passing based encoder which learns graph node embeddings on a continuous-time dynamic
multi-graph represented as a sequence of time-stamped events. It involves three main building blocks: (1)
message function, (2) memory function and (3) embeddings module. At each event, a message function in
the form of event-adopted MLPs, calculates aggregated messages to pass on parties involved (i.e., nodes).
A memory function, such as an LSTM or GRU, updates the memory state of each node by the aggregated
messages. An embedding module calculates the new state of node embeddings as a function of memory
states and events. TGAT incorporates the self-attention mechanism as a foundational element and introduce
a time encoding approach which allows the network to treat node embeddings as temporal functions, thereby
enabling it to predictively generate embeddings for both newly introduced and previously existing nodes as
the graph undergoes changes over time. In their work, Wang et al. (2021) present CAWN, a method for
the inductive representation of temporal networks which utilize temporal random walks. Temporal random
walks enable to encapsulate network dynamics by implicitly extracting temporal network motifs, thereby
circumventing the intensive process of motif identification and enumeration. The methodology incorporates
a distinctive anonymization technique wherein node identities are obscured by their visitation frequencies
within a series of sampled walks which preserve the inductive nature of the model. Yu et al. (2023) introduce
a transformer-based framework designed for dynamic graph learning. The proposed architecture focuses
on learning from the historical first-hop interactions between nodes. The learning process is facilitated by
two key strategies: a neighbor co-occurrence encoding scheme that uncovers the relationships between the
source and destination nodes through their historical interactions; and a patching method that segments
each interaction sequence into smaller patches. The Graph Mixer (Cong et al., 2023) takes a simpler view
by constructing a model that has a fixed time encoding, alongside a node encoder and a link encoder; the
encodings are used as inputs for a link classifier that is trained to predict the existence of a link. All state-
of-the-art methods experiment on benchmark FLP and DNC datasets. Despite its simple infrastructure,
Graph Mixer is able to achieve state-of-the-art performance on both FLP and DNC tasks.

In general, TGL models are developed to address FLP and DNC tasks. However, the performance is highly
sensitive to non-architectural hyperparameters such as batch size and the negative sampling strategy. These
hyperparameters are difficult to tune and often represent a trade-off between computational efficiency and

3

Published in Transactions on Machine Learning Research (06/2024)

accuracy, so optimizing them can provide a distorted view of expected performance in industrial settings.
Additionally, to the best of our knowledge, there is no method that is capable of generating embeddings for the
relatively common setting that event labels are obtained with delay. We address these issues by formulating
RLC as a new benchmark task for TGL and developing Graph Profiler which enables the construction of
dynamic node profiles by taking the feature and label information associated with previous interactions into
account. Graph Profiler is capable of maintaining a long-term view of an entity’s profile that can capture
long-term preferences.

3 Problem Statement

A graph, G, is composed of a set of vertices, V, and edges E , where each edge, i → j, indicates an interaction
between a pair of vertices i and j. In most cases, the graph is constructed with entities as the vertices and
interactions between those entities as edges. In the case of social networks vertices might be users and their
posts, and edges might involve interactions either between users, such as follows or blocks, or interactions
between users and posts such as likes or comments. For a general RLC task we are given a set of source entities
and destination entities, Vsrc and Vdst, and a set of interactions between them E = {(si, di, ti, xi, yi)}M

i=1;
such that the interaction from source entity si ∈ Vsrc to destination entity di ∈ Vdst is realized at time ti and
associated with a raw feature vector of xi ∈ Rdmsg where dmsg denotes the number of features. We consider
that interactions are effectively instantaneous, or that the timestamp marks the completion of the interaction.
We consider settings where there are m classes (or types) of interaction. Each interaction is thus associated
with a ground-truth target class, represented as a binary vector yi = (yi,1, . . . , yi,m) such that yi,j = 1 if
interaction i belongs to the jth class and yi,j = 0 otherwise. The aim is to learn a classifier that maps features,
timing, source and destination entities of an interaction to a class, given access to a history of preceding
interactions. Given a new interaction from source s ∈ Vsrc to destination d ∈ Vdst with features x ∈ Rd0

which is realized at time t, let E<t = {(si, di, ti, xi, yi) ∈ E : ti < t} denote the preceding observations, and
let ŷ = (ŷ1, . . . , ŷm) denote the predicted target class likelihoods by the classifier, i.e., f(x, (s, d, t), E<t) = ŷ.
Traditionally, the quality of estimation is evaluated by the cross entropy loss Lce(y, ŷ) = −

∑m
j=1 yj log(ŷj)

during training. In case that G is not bipartite, i.e., Vsrc ∩ Vdst ̸= ∅, this formulation requires us to learn
different representations for a vertex as the sender and the receiver of a message. In the basic problem
formulation, we assume that vertices are not attributed, i.e., raw features are not observed for them. At the
time of the event occurrence, we observe the identities of the source and destination, as well as the raw edge
features. None of these changes over time. The observation of the edge label is delayed.

We identify three other subfields of GRL that are potentially relevant to the problem setting formulated by
RLC:

Dynamic Graph Anomaly Detection: Anomaly detection within dynamic graphs focuses on identi-
fying trends that starkly contrast with the norm over time (Yu et al., 2018; Zheng et al., 2019; Behrouz &
Seltzer, 2022). Specifically, in scenarios where there are only two types of edge labels and a pronounced
class imbalance exists, this approach to anomaly detection proves pertinent to RLC task. However, its
applicability does not extend universally across all other instances.
Link Sign Prediction: Among static graph learning approaches, the research most pertinent to RLC
predominantly focus on link sign prediction. Link sign prediction aims to determine the positive or
negative nature of relationships in networks (Song & Meyer, 2015; Aggarwal et al., 2016; Dang & Ignat,
2018; Chen et al., 2023). Methods in this domain often leverage structural balance theories and employ
various machine learning techniques to predict the sign of unlabeled edges based on known relationships.
Dynamic Link Property Prediction: Huang et al. (2023) extends the definition of FLP to dynamic
link property prediction by enabling it to predict aspects of a link beyond mere existence. However, their
work lacks an experimental framework that explores edge properties other than existence.

4 Graph Profiler

In this section, we introduce Graph Profiler, a simple architecture that is designed to learn entity profiles,
or time-aggregated representations, by processing previously observed interactions. Subsequently it uses the

4

Published in Transactions on Machine Learning Research (06/2024)

Overall Flow Profile Encoder

M
in

i-b
at

ch
Containers

msgmsgmsg

srcsrcsrc

dstdstdst

ttt

Profile
Encoder

Destination
Embeddings

Message
Encoder

Time
Encoder

tty

Readout

ttŷ

Loss

or

!

src

Edges Events
Edges

zsrc

zdst

zmsg

zt

Neighbour
Loader

History
Summary ℰ

Message
Passing

Z = [zi]i∈!

$ = (!, ℰ, Z)

zsrc

Events

Update

Figure 2: Overview of Graph Builder. Left: Overall flow. Given a mini-batch of interactions, where each
interaction is from a source node src to a destination node dst, observed at time t, associated with features
msg and belongs to class y, Graph Profiler follows these steps: (1) The profile encoder calculates source node
embeddings based on the history of src (i.e., previous edges and events that are associated with src). (2)
The identity of dst is used to retrieve the embedding of the destination node from the table of destination
embeddings. (3) The message encoder performs a linear transformation on the edge features. (4) The time
encoder projects timestamp t into a time embedding. (5) The readout layer combines source zsrc, destination
zdst, message zmsg and time zt embeddings to predict the class of the interaction. Afterwards, the containers
are updated with the information in the mini-batch. Right: Profile builder. Given the current set of edges,
the neighbourhood of src is loaded. The past events are used to summarize the history of all nodes that
belong to the neighbourhood of src. The node embeddings on the ego graph of src are updated using
message passing to obtain the final source node embedding zsrc.

constructed entity profiles, together with observed interaction features, to make classification decisions about
recent interactions. Graph Profiler is composed of five main learnable modules; profile encoder fprofile (·),
message encoder fmsg (·), destination encoder fdst (·), time encoder ftime (·), and readout frlc (·),
and two containers at time t; previous events Ht and meta-path edges Mt. For a given set of interactions
(edges), E = {(si, di, ti, xi, yi)}M

i=1, the event and meta-path containers at time t are defined as follows:

Ht = {i ∈ {1, . . . , M} : ti < t} , (1)
Mt = {(u, v) : ∃i, j ∈ Ht; (si = u) ∧ (sj = v) ∧ (di = dj)} . (2)

The event container simply stores the indices of the interactions observed up to time t. The meta-path
container stores the pairs of source nodes that have interacted with the same destination node at least once
prior to time t (See Figure 3). Graph Profiler proceeds in the following way to perform training. We denote
by Ebatch ⊂ E the mini-batch of interactions that is being processed. Let tcurrent = minj∈Ebatch tj denote the
first interaction time in the batch, and dmodel denote the dimensionality of the embeddings constructed by
the model. Given an interaction (si, di, ti, xi) ∈ Ebatch, the computation proceeds through each module as
follows:

5

Published in Transactions on Machine Learning Research (06/2024)

1. The profile encoder calculates the source node profile zsrc
i ∈ Rdmodel based on observations until tcurrent,

i.e., fprofile (si, Htcurrent) = zsrc
i .

2. The message encoder encodes the interaction: zmsg
i ∈ Rdmodel , i.e., fmsg (xi) = zmsg

i .

3. The destination encoder generates destination embeddings: zdst
i ∈ Rdmodel , i.e., fdst (di) = zdst

i .

4. The time encoder converts the interaction timestamp into a time embedding vector zt
i ∈ Rdmodel , i.e.

ftime (ti) = zt
i.

5. The readout layer predicts the interaction class ŷi, i.e., frlc
(
zsrc

i , zmsg
i , zdst

i , zt
i,

)
= ŷi.

Once the predictions are made on mini-batch Ebatch, the containers are updated so that they include the
interactions in the mini-batch. The meta-paths are recalculated according to Equation 2. We note that in
the procedure outlined above, it is only the construction of the source node profile that uses information
from the historical interactions in the calculations. The destination node embedding is computed using
only the identity of the node, and the message encoding is derived via a network operating on the message
features. The destination embeddings are learnable, as are the weights of the message encoder network,
so the historical interactions influence these embeddings via the training procedure. The overall flow is
illustrated in Figure 2. Next we explain how individual modules are trained and describe the procedure used
to update containers.

Meta-path graphBipartite graph

1

2

3

4

5

1
2

3

4

5

source destination

Figure 3: Meta-path construction: On the
left, a bipartite graph is provided that con-
sists of edges from a set of source entities
to a set of destination entities. On the
right, the final meta-path graph composed
of meta-path edges is shown.

Profile Encoder Inspired by our previous experiences work-
ing on webscale recommendation systems, we derive graphs
that allow us to capture source-source correlations that might
be obscured through traditional message passing schemes due
to an over-smoothing effect. Similar to previous work, we de-
fine a meta-path as an edge that is constructed from a path
through the graph (Chen & Lei, 2022; Huai et al., 2023; Huang
et al., 2022). In our specific instance, we consider second-order
meta-paths that connect a vertex which acts as a source to
another which acts as a source through a shared destination
vertex. The set of meta-paths is time dependent because the
edges are parameterized by time. Given the set of meta-path
edges Mtcurrent observed up until the current time the profile
encoder first builds the ego graph Gtcurrent(si) over the set of ver-
tices Vtcurrent(si) = si∪{u : (u, si) ∈ Mtcurrent} with set of edges
Mtcurrent(si) = {(u, v) : (u, v) ∈ Mtcurrent ; ∀u, v ∈ Vtcurrent(si)}.
Thus, the ego graph Gtcurrent(si) = (Vtcurrent(si), Mtcurrent(si))
has a vertex set that consists of si and all vertices that are con-
nected via a meta-path to si, and an edge set consisting of all meta-paths connecting these vertices. For each
node u ∈ Vtcurrent(si), we define the set of relevant event indices as Htcurrent(u) = {j : sj = u, ∀j ∈ Htcurrent}.

The node embeddings are initialized by aggregating the embeddings of previous events associated with the
corresponding node, i.e., h(0)(u) = faggregate(Htcurrent(u)). For example, using a mean aggregation schema
with single layer of linear transformation, the node embeddings h(0)(u) ∈ Rdmodel are initialized as follows:

h(0)(u) =
∑

i∈Htcurrent (u)
[
zmsg

i ||zdst
i ||zt

i||yi

]
WT

event

|Htcurrent(u)| , (3)

where [·||·] denotes the concatenation operator, and Wevent ∈ Rdmodel×d1 are learnable weights for d1 =
3×dmodel +m. Recall that zmsg

i , zdst
i , zt

i ∈ Rdmodel and yi ∈ Rm. Then, using the GCN (Kipf & Welling, 2016)
framework, at the kth layer the node embeddings are updated by passing messages between neighbour nodes,
i.e., h(k)(u) = fgcn(h(k−1)(u), Mtcurrent(si)). Introducing normalization coefficients cu,v = 1√

deg(u)·
√

deg(v)
,

with deg(·) denoting node degree on Gtcurrent , we can write the node embedding update at layer k for a

6

Published in Transactions on Machine Learning Research (06/2024)

normalized sum aggregation schema as:

h(k)(u) =
∑

(u,v)∈Mtcurrent (si)

cu,v

(
h(k−1)(v)WT

k

)
, (4)

where Wk ∈ Rdmodel×dmodel are learnable weights, and h(k)(u) ∈ Rdmodel . The profile embedding of source
node si is set to the final layer node embedding, i.e., zsrc

i = h(K)(si) where K denotes the total number of
message passing layers.

Time Encoder For the time encoder, we employ either the fixed time encoding function proposed by
Cong et al. (2023) or the learnable time projection introduced by Kumar et al. (2019). Given a weight vector
ω ∈ Rdmodel , in general the time encoding function follows:

ftime(t) = cos(ωt) = zt, (5)

where zt ∈ Rdmodel denotes the vector representation of timestamp t. The two variants of time encoding we
investigate in this work differ in the calculation of the weight vector. In the learnable version, ω ∈ Rdmodel is
simply learned during training, so the time encoding layer is a linear projection, without any bias, followed
by cosine scaling. In the case of fixed time encoding as proposed by Cong et al. (2023), each dimension of the
weight vector is set to ωi = α − (i−1)

β , where α and β are scalars, so that ωt is a vector with monotonically
exponentially decreasing values. The hyperparameters α and β are selected according to the scale of the
minimum and maximum timestamps in the data. In practice α = β =

√
dmodel is found to perform well, and

we follow this setting in our experiments.

Other Modules The message encoder uses a single linear layer to compute fmsg (xi) = xiWT
msg + bmsg,

where Wmsg ∈ Rdmodel×dmsg are learnable weights and bmsg ∈ Rdmodel is a learnable bias. For destination
encoding, we use an embedding look-up table of size equal to the number of destination nodes. This is
initialized randomly, fdst (di) = 1diWT

dst, where 1di ∈ R||Vdst|| denotes a one-hot vector representation of
node d, and Wdst ∈ Rdmodel×||Vdst|| are learnable weights. The predictions at the readout layer are computed
as ŷi =

[
zsrc

i + zdst
i + zmsg

i + zt
i

]
WT

rlc where Wrlc ∈ Rdmodel×dmodel are learnable weights.

Unlike static graph learning methods, Graph Profiler is capable of encoding temporal properties of network.
Graph Profiler has two main advantages over existing TGL methods: (1) it enables the construction of
dynamic entity profiles that take into account feature and label information of previous interaction in the
neighbourhood; and (2) it is capable of maintaining a long-term view of an entity’s profile that can capture
long-term preferences. In addition, the modular structure of Graph Profiler is flexible, so the model can
easily be adapted to suit the contextual properties of individual datasets.

5 Experiments

In order to understand RLC as a novel task within TGL, we begin by evaluating a two layer Multi-layer
Perceptron (MLP), TGN (Rossi et al., 2020), TGAT (da Xu et al., 2020), CAWN (Wang et al., 2021) and
Graph Mixer (Cong et al., 2023) on RLC by making the appropriate modifications to the algorithms. We
have chosen these methods because they are state-of-the-art TGL baselines developed for the FLP task.
Based on our observations concerning the performance of the methods, we outline a set of design principles
that comprise the design space for RLC. With these design principles in mind, we present Graph Profiler and
benchmark it on six different datasets. For each dataset, we locate the optimal portion of our design space
and discuss the correspondence between that and the underlying dynamics of the dataset under investigation.

Datasets We evaluated our methods on four benchmark datasets that have previously been used by the
TGL community – YelpCHI (Dou et al., 2020), Wikipedia, Mooc, and Reddit (Kumar et al., 2019).
These datasets are usually employed as benchmarks for future link prediction; we adopt suitable measures
to convert them to the RLC setting. In YelpCHI, the source entities are platform users and the destination
entities include hotels and restaurants. An interaction happens when a user reviews one of the hotels or
restaurants. The reviews are labeled either as filtered (spam) or recommended (legitimate). For Wikipedia,

7

Published in Transactions on Machine Learning Research (06/2024)

Table 1: Dataset statistics. |Vsrc| and |Vdst| denote the number of source entities and destination entities,
respectively; dmsg denotes the number of interaction features; |E| denotes the number of interactions; ρ
denotes the fraction of edge labels that are positive; H̄e denotes the average edge homophily; H̄+

e and H̄−
e

denote the edge homophily for positive and negative classes, respectively, and H̃b
e denotes the balanced edge

homophily. Edge homophily metrics are calculated over all interactions (edges) in the dataset.

|Vsrc| |Vdst| |E| dmsg ρ H̄e H+
e H−

e H̃e

Epic Games 542 614 17584 400 0.6601 0.8330 0.9038 0.6955 0.7663
YelpCHI 38,063 201 67,395 25 0.1323 0.7781 0.1589 0.8725 0.2533
Wikipedia 8,227 1,000 157,474 172 0.0014 0.9975 0.0130 0.9988 0.0144
Mooc 7,047 97 411,749 4 0.0099 0.9809 0.0212 0.9904 0.0308
Reddit 10,000 984 672,447 172 0.0005 0.9989 0.0025 0.9995 0.0030
Open Sea 57,230 1,000 282,743 35 0.4601 0.5865 0.5505 0.6171 0.5812

the set of entities is composed of users and pages, and an interaction happens when a user edits a page.
For Reddit, entities are users and subreddits, and an interaction represents a post written by a user on
a subreddit. Some page edits on Wikipedia and posts on Reddit may be controversial causing the user to
be banned. Thus, on both datasets we base the target class of interaction on whether it is controversial
or not, i.e., whether the user was banned as a result of posting it. The interaction features for these three
datasets are extracted based on the textual content of edit/post/review. The Mooc dataset consists of
actions performed by students on a MOOC online course. The source entities are the students and the
destination entities are the course contents that the students interact with, e.g., recordings or lecture notes.
The interaction features are the types of activities the student performed during an interaction, e.g., viewing
the video or submitting an answer on the forum. Sometimes, the students drop out of the course after an
activity. We use this as a label to identify the target class of an interaction. Thus, all four datasets are
binary recent link classification datasets for which the class imbalance is salient.

In addition to adapting benchmark TGL datasets to RLC task, we process two tabular datasets that are
not conventionally investigated in TGL setting; Epic Games 1 and Open Sea (La Cava et al., 2023a;b;
Costa et al., 2023) 2. The Epic Games Store is a digital video game storefront, operated by Epic Games.
The dataset includes the critiques written by different authors about the games released on the platform.
The source and destination nodes represent authors and games, respectively, and the critiques form the set
of interactions. We construct the interaction features by vectorizing the textual content of critiques using
TF-IDF. We include the overall rating the author provided as an additional interaction feature. The label
of the interaction is determined based on whether it was selected as top critique or not. Once a critique is
released all the information regarding the author, game and features of the critique is available. Its selection
as a top-critique is a delayed observation, so the data naturally forms an RLC task. Open Sea is one of
the leading trading platforms in the Web3 ecosystem. The dataset is a collection of Non-Fungible Token
(NFT) transactions. Sourced from Open Sea, it is provided as a natural language processing dataset and
is mainly used for multimodal learning classification tasks. To the best of our knowledge the dataset has
not been previously investigated in a TGL framework. In order to make it amenable to graph learning, we
identify disjoint sets of sellers and buyers of unique NFTs (these are identified by collection memberships and
token IDs) to serve as source and destination nodes. The transaction features are a binary representation
of categorical variable fields associated with the transaction, the cryptocurrency exchange rates at the time
of the interaction and the associated monetary values. The label of a transaction is determined based on a
future transaction of the unique NFT. It is tagged as ‘profitable’ if the revenue obtained through the final
sale is higher than the price paid at the purchase. The labels are thus delayed, because whether it will be a
profitable investment is not known at the time of purchase. The data thus aligns with the RLC setting. In
Appendix B, further details on pre-processing of Open Sea dataset is shared. The datasets statistics are
provided in Table 1. In our experiments, data is divided into training (70%), validation (10%) and testing
(20%) sets chronologically.

1https://www.kaggle.com/datasets/mexwell/epic-games-store-dataset.
2https://huggingface.co/datasets/MLNTeam-Unical/NFT-70M_transactions.

8

https://www.kaggle.com/datasets/mexwell/epic-games-store-dataset
https://huggingface.co/datasets/MLNTeam-Unical/NFT-70M_transactions

Published in Transactions on Machine Learning Research (06/2024)

Edge Homophily We introduce a measure of edge homophily to understand the importance of graph
information to our edge classification task. Denote by N e(α) an edge-wise neighbourhood operator that
constructs a set of all edges that are connected to a given edge, α = (i, j), where i and is the source and j
the destination. This operator forms the union of two sets, i.e., N e(α) = I(i) ∪ O(j), where I(i) is the set of
incoming edges connected to the source i and O(j) is the set of outgoing edges connected to the destination.
Our edge homophily measure is then defined as:

H̄e(G) = 1
|E|

∑
α∈E

∑
β∈N (e)

α

1l(α)=l(β)

|N (e)
α |

, (6)

where N e is the edge-wise neighbourhood operator and l is the operator that returns the label of the edge.
The edge-wise neighbourhood operator constructs a set of all edges that are connected to a given edge,
α = (i, j), where i and j are the source and destination respectively, by constructing the union of two sets
N e(α) = I(i) ∪ O(j), where I(·) and O(·) construct the set of incoming and outgoing edges respectively.
For the simplicity of notation, we have neglected the time dimension but this definition is easy to gener-
alize to temporal graphs through the neighbourhood operators. Edge-homophily measures the fraction of
neighbouring edges that have the same class, in analogy to the way node-homophily measures the fraction
of neighbouring nodes with the same class. Node-homophily is an important dataset property that can
be highly indicative of the value that can be derived by encoding graph structure in node classification
tasks (Pei et al., 2020), particularly for embedding procedures that rely on smoothing over a neighbour-
hood. The edge homophily definition in Equation 6 treats different classes equally, which can be misleading
for imbalanced datasets. Therefore, using ρ to denote the fraction of positive edge labels, we also define
a balanced edge homophily metric for binary classification as H̃b

e(G) = (1 − ρ)H+
e (G) + ρH−

e (G), where
H̄+

e (G) = 1
|E+|

∑
α∈E+

∑
β∈N (e)

α

1l(α)=l(β)

|N (e)
α |

and H̄−
e (G) = 1

|E−|
∑

α∈E−
∑

β∈N (e)
α

1l(α)=l(β)

|N (e)
α |

. Table 1 presents the
edge homophily values for the datasets we study. In Appendix C, we illustrate the dynamics of edge ho-
mophily over time. In the case of Wikipedia, Mooc, and Reddit, the overall edge homophily reaches as
high as 99%, whereas the homophily among positive class edges falls below 5%, a phenomenon attributed to
significant class imbalance. Across these three platforms, there is a noticeable trend of decreasing positive
edge homophily over time, a pattern that emerges as banned users or students who withdraw from courses
exit the network. Conversely, on YelpCHI, there’s an observable increase in positive class homophily and
a decrease in negative class homophily. This trend could stem from spam attacks on businesses, typically
carried out by similar groups of reviewers whose numbers grow over time. A similar pattern is detected on
Open Sea, suggesting an increasing ratio of sellers who profit over time. Nonetheless, those who profited in
the system’s early stages remain active participants.

Performance Evaluation Two of the most common metrics used for performance evaluation for both
FLP and DNC are area under the receiver operating characteristic curve (AUC) and average precision score
(APS). These metrics exhibit some undesirable behaviour. AUC is known to saturate, such that it become
impossible to differentiate between candidate algorithms. Both metrics can provide skewed measures of
quality when applied to imbalanced datasets (Chicco & Jurman, 2020; 2023). As a result, we turn to the
Matthews Correlation Coefficient (MCC) (Yule, 1912; Gorodkin, 2004), which is defined as:

MCC = cs − t⃗ · p⃗√
s2 − p⃗ · p⃗

√
s2 − t⃗ · t⃗

, (7)

where t⃗ is a vector, with each element being the number of times a class occurred, p⃗ is a vector of the number
of times each class is predicted, c is the number of samples correctly predicted, and s is the total number
of samples. This correlation coefficient has a maximum value of 1, and the minimum value ranges between
-1 and 0, depending on the distribution of the underlying data. A score of 0 indicates that the predictor is
perfectly random; a score of 1 indicates that the predictor is perfectly accurate; and a score of -1 indicates
that the predictor is perfectly inaccurate. As an illustrative example, we present use case A1 from Table 4
in Chicco & Jurman (2020). In this example, we have 100 total data points with 91 in the positive class and
9 in the negative. For a hypothetical classifier that that predicts all but one data point as a member of the
positive class; we find TP = 90, FN = 1, TN = 0, FP = 9. This yields a respectable APS of 0.90 but a near

9

Published in Transactions on Machine Learning Research (06/2024)

Table 2: Performance of TGN variants. The performance of TGN variants is presented as the average of 10
random seed runs for each configuration. The best time encoding and aggregator versions are highlighted in
bold and the cells representing readout configurations are shaded based on their values, with darker shading
indicating higher performance.

YelpCHI Wikipedia Mooc Reddit
MCC APS AUC MCC APS AUC MCC APS AUC MCC APS AUC

Time Encoding fix 0.2624 0.3148 0.7590 0.2943 0.1237 0.9086 0.1004 0.0486 0.7634 0.0042 0.0049 0.6608
learn 0.2866 0.3278 0.7723 0.1933 0.0989 0.8728 0.0973 0.0571 0.7730 0.0444 0.0093 0.6508

Aggregator exp 0.2803 0.3262 0.7700 0.1018 0.0712 0.8653 0.0630 0.0415 0.7494 0.0158 0.0036 0.6608
last 0.2866 0.3278 0.7723 0.2943 0.1237 0.9086 0.0477 0.0325 0.7045 0.0444 0.0055 0.6599
mean 0.2744 0.3217 0.7666 0.2034 0.0896 0.8955 0.1004 0.0571 0.7730 0.0142 0.0093 0.6235

Readout src 0.2286 0.2391 0.7096 0.1237 0.0828 0.8368 0.0530 0.0416 0.7199 0.0105 0.0045 0.6435
dst 0.2288 0.2311 0.7015 0.0972 0.0464 0.7298 0.0432 0.0377 0.7195 0.0099 0.0049 0.6188
src-dst 0.2319 0.2411 0.7094 0.1018 0.0355 0.8908 0.0924 0.0462 0.7485 0.0142 0.0031 0.6608
src-t 0.2311 0.2426 0.7147 0.1308 0.0844 0.8401 0.0507 0.0386 0.7191 0.0104 0.0021 0.6472
dst-t 0.2277 0.2381 0.7063 0.1057 0.0469 0.7379 0.0338 0.0411 0.7205 0.0159 0.0124 0.6211
src-dst-t 0.2290 0.2542 0.7151 0.1442 0.0346 0.9086 0.0903 0.0506 0.7729 0.0444 0.0092 0.6508
src-msg 0.2732 0.3166 0.7627 0.1530 0.0835 0.8808 0.0996 0.0603 0.7763 0.0074 0.0024 0.6046
dst-msg 0.2744 0.3209 0.7641 0.1184 0.0564 0.8332 0.0475 0.0289 0.7112 0.0171 0.0144 0.5987
src-dst-msg 0.2644 0.3147 0.7629 0.2040 0.0714 0.8537 0.0894 0.0497 0.7708 0.0158 0.0033 0.6599
src-msg-t 0.2866 0.3278 0.7723 0.1764 0.0858 0.8994 0.1004 0.0571 0.7727 0.0040 0.0014 0.6005
dst-msg-t 0.2803 0.3230 0.7669 0.1300 0.0617 0.7489 0.0462 0.0325 0.7045 0.0113 0.0093 0.5971
src-dst-msg-t 0.2734 0.3217 0.7666 0.2943 0.1237 0.9020 0.0973 0.0536 0.7730 0.0077 0.0049 0.6089

random MCC of -0.03. While simple, this is just one example where metrics like APS can mask underlying
poor performance for imbalanced datasets. Chicco & Jurman (2023) further presents similar failure modes
for AUC. Because of this, we choose MCC as our figure of merit for the RLC tasks that we present.

5.1 Key factors to tailor model to specific needs of data

With the introduction of RLC as a benchmark task to evaluate TGL methods, we explore the performance
of a well-known state-of-the art model, TGN (Rossi et al., 2020), together with variants. We create these
variants by constructing different message aggregation schema, readout layers, and time encoding strategies
to better discover the potential of the overall architecture. More specifically, we experiment with (1) fixed
and learnable time encoding as proposed by (Cong et al., 2023) and by (Kumar et al., 2019), respectively;
(2) mean, last, and exponential decay message aggregators; and (3) six different configurations of the input
to the readout layer based on different combinations of source, destination, time and message embeddings
calculated for the most recent event. As described by (Rossi et al., 2020), the mean aggregator calculates the
state of a node by averaging the interactions held in the memory, whereas the last aggregator uses only the
most recent interaction. The exponential decay variant calculates a weighted average over the interactions
in the memory by setting weights such that they decrease exponentially with respect to the time that has
elapsed. Table 2, summarizes the results. We present violin plots for each variant in Appendix E.

The readout variations appeared to play a significant role in the model’s performance, as can be seen in
Figure 4. These results on the Wikipedia dataset are demonstrated for different model dimensions, i.e.
d ∈ {100, 200} and a varying number of neighbours. We observe that incorporating the edge features as a
residual at the final layer of the update helps to improve the performance in terms of MCC, which makes
intuitive sense given that the message features for this dataset correspond to the edit’s content. Interestingly,
while we observe this trend when looking at the MCC curves, which exhibit a dramatic stratification in
performance, the AUC curves show the opposite trend. We attribute this to AUC being an unsatisfactory
metric for the evaluation of RLC tasks, particularly if there is class imbalance. The APS and Loss curves
exhibit trends that are similar to those of MCC (See Appendix F). We conclude that for abuse-related
datasets the most recent interaction matters most, and therefore aggregation based on the last event is more
useful. In the case of predicting course completion, averaging over multiple previous actions is valuable,
which is captured by the outperformance of the mean aggregator. In general, we observe that involving
recent interaction features in the readout layer is very useful. The configurations with msg included perform
significantly better.

10

Published in Transactions on Machine Learning Research (06/2024)

Table 3: Model comparison results. The performance of models is presented as the average of 10 random
seed runs. The best and second best results are highlighted in red and blue, respectively.

Epic Games YelpCHI Wikipedia Mooc Reddit Open Sea
MLP 0.1554 0.2763 0.2354 0.0673 0.0021 0.1106
TGN 0.8373 0.2372 0.1442 0.0991 0.0174 0.1071
TGAT 0.5546 0.1890 0.0000 0.0000 0.0000 0.2245
CAWN 0.4925 0.2300 0.0000 0.0103 0.0000 0.3223
Graph Mixer 0.2316 0.2830 0.1442 0.1174 0.0000 0.2647
Modified TGN 0.8713 0.2866 0.2943 0.1004 0.0444 0.2647

MCC

Graph Profiler 0.9355 0.3274 0.2498 0.1739 0.0115 0.2959
MLP 0.6976 0.3254 0.0759 0.0169 0.0012 0.7790
TGN 0.9850 0.2461 0.0320 0.0526 0.0018 0.7912
TGAT 0.8844 0.1789 0.0157 0.0190 0.0014 0.6582
CAWN 0.8441 0.2168 0.0269 0.0367 0.0014 0.7247
Graph Mixer 0.7522 0.3252 0.0550 0.0711 0.0021 0.8304
Modified TGN 0.9892 0.3249 0.1148 0.0430 0.0055 0.8225

APS

Graph Profiler 0.9988 0.4059 0.0955 0.0896 0.0092 0.8459
MLP 0.6117 0.7694 0.7731 0.6447 0.5486 0.5776
TGN 0.9734 0.7135 0.7135 0.7672 0.5671 0.5908
TGAT 0.8470 0.6314 0.8908 0.6383 0.5336 0.6871
CAWN 0.7931 0.6850 0.8880 0.7107 0.6100 0.6994
Graph Mixer 0.7132 0.7650 0.7500 0.7515 0.6413 0.6789
Modified TGN 0.9807 0.7723 0.7723 0.7439 0.6508 0.6544

AUC

Graph Profiler 0.9974 0.8058 0.7821 0.7886 0.6280 0.6740

5.2 Model Comparison

Using the results from the TGN modifications, we have identified multiple core design principles associated
with improved performance on the RLC task, and we have incorporated these principles into Graph Profiler.
Specifically, we observed that a learnable time-encoding provided improved results for three of four data
sets. The src-dst-msg-t readout variant provided strong results across all four data sets. Because of these
results, we designed Graph Profiler with a learnable time encoder and a src-dst-msg-t readout function.
To validate these results, we perform benchmark experiments of baselines and Graph Profiler on RLC. For

1 2 3 5 10 15 20 25
Number of Neighbors

0.70

0.75

0.80

0.85

0.90

AU
C

Model Dimension = 100

1 2 3 5 10 15 20 25
Number of Neighbors

Model Dimension = 200

1 2 3 5 10 15 20 25
Number of Neighbors

0.00

0.05

0.10

0.15

0.20

M
C

C

Model Dimension = 100

1 2 3 5 10 15 20 25
Number of Neighbors

Model Dimension = 200

src-dst src dst src-dst-msg src-msg dst-msg

Figure 4: Readout variations on Wikipedia. The blue glyphs correspond to combinations of the vertex
features, while the red glyphs correspond to combinations of the vertex and message features. The star,
circle, and triangle glyphs correspond to the src-dst, src, and dst embeddings respectively.

11

Published in Transactions on Machine Learning Research (06/2024)

1.0 2.0 3.0 4.0 5.0
10.0

25.0
50.0

100.0

Negative Sampling Ratio

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
M

C
C

FLP

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
C

C

FLP

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

-0.05

0.00

0.05

0.10

0.15

0.20

M
C

C

RLC

Figure 5: TGN performance on FLP vs RLC on Wikipedia with varying levels of negative sampling ratio
and batch size.

the existing benchmark datasets, Graph Profiler obtains the best results for YelpCHI and Mooc, but our
modified version of the TGN architecture outperforms for Wikipedia and Reddit. The most probable
reason is that the ratio of the number of source nodes to the number of destination nodes is much higher for
YelpCHI and Mooc compared to Wikipedia and Reddit. Graph Profiler constructs embeddings for the
source nodes via calculations over neighbouring interactions, but uses learnable embeddings in a lookup table
for the destination nodes. In the majority of bipartite graphs examined, there is a significantly larger number
of source nodes compared to destination nodes. This discrepancy allows for the practicality of learning a
unique embedding vector for each destination node.

Another observation we draw from these model comparison results is the usefulness of MCC in highlighting
the relative capabilities of different models. For example, on Mooc Graph Profiler improves MCC by 73%
compared to the Modified TGN, while the observed change for the AUC is only 3% (See Table 3). On the
Epic Games, which is less imbalanced, Graph Profiler outperforms other baselines based on MCC and APS,
but the performance of the techniques cannot be reliably distinguished using AUC. On Open Sea the Graph
Profiler and CAWN per par in terms of MCC and APS. Revisiting the dataset statistics provided in Table 1,
we conclude that encoding node profiles based on their shared history, i.e., employing the Graph Profiler
architecture, is more effective on datasets with higher balanced edge homophily and less class imbalance.
For such datasets, tracking a graph-wide memory, i.e., employing the TGN framework, is less effective.

5.3 On the importance of hyperparameter sensitivity differences between FLP and RLC

In our reproduction study we explored the effect of negative sampling ratio, batch size, and the number
of sampled neighbors on the performance of our TGN baseline for the FLP task. We term these as non-
architectural parameters because they influence the training but do not influence the architecture of the
model itself. We explore these parameters because they impact the trade-off between model accuracy versus
computational performance and utilization. In the example of batch size, this is typically tuned to be as
large as possible to maximize GPU utilization, but we see in Figure 5, a steady decline in MCC as the batch
size is increased (See Appendix D for other metrics). Indeed, we observe variation in model performance due
to changes in batch size that are larger than the variations across different model architectures. Intuitively,
the decay makes sense, because the gradient updates become less frequent, but this points to a relatively
significant but under-discussed trade-off that has major ramifications for production use-cases. In the case
of the negative sampling ratio, we observe a slight decline in MCC and a decrease in the consistency between
individual training runs as the number of negative samples increases. Thus, it can be concluded that RLC
does not have the same dependence on batch-size and does not require the generation of negative samples.
These observations lead us to the conclusion that (1) the assumptions made during the development of
models for FLP may not hold for RLC, and direct translation of existing TGL methods, which are generally
benchmarked on FLP tasks, to perform RLC in industrial settings is not advisable, and (2) RLC is an
interesting general purpose benchmark task for the TGL community, and should be treated differently from
the current common tasks.

12

Published in Transactions on Machine Learning Research (06/2024)

5.4 Ablation on Learnable Destination Embeddings

Table 4: Impact of learnable destination embeddings

MCC APS AUC
with without with without with without

Epic Games 0.9355 0.7695 0.9988 0.9575 0.9974 0.9054
YelpCHI 0.3274 0.3071 0.4059 0.3892 0.8058 0.8000
Wikipedia 0.2498 0.1324 0.0955 0.0366 0.7821 0.6946
Mooc 0.1739 0.0000 0.0896 0.0011 0.7886 0.5906
Reddit 0.0115 0.0701 0.0092 0.0203 0.6280 0.6833

In order to investigate the impact of learnable des-
tination embeddings, we experiment with and with-
out learning a set of embeddings for the destination
nodes. The results are presented in Table 4. For
most of the datasets (with the exception of Red-
dit), incorporating learnable destination node rep-
resentations improves the predictive performance of
Graph Profiler. The destination node embeddings
are then used for building the source node profiles. It can be inferred that destination encoding enriches the
source profile embeddings by temporally smoothing the interactions to build a sense of history. By contrast,
using the destination in the readout itself means that the history of destination nodes is ignored. We believe
that the difference for the Reddit dataset may arise from the fact that the labels (whether a sub-reddit is
controversial) is less dependent on the main post, compared to other Wikipedia. Said another way, there are
many Wikipedia pages that are prone to abuse for political reasons, and thus, the page profile (destination
node) matters. By contrast, abuse on Reddit is less dependent on the sub-reddit (destination node) than
the author (source node).

5.5 Ablation Study on Graph Profiler Components

To assess the significance of different components of Graph Profiler, we conducted an ablation study. This
involved systematically removing specific module from the model and comparing the outcomes with those of
the intact version. For a more in-depth comparative analysis, we utilized datasets from Yelpchi and Epic
Games. These were chosen for their comprehensive content and manageable sizes, facilitating the intensive
computations required for a thorough statistical evaluation. The findings are presented in Table 5, indicating
that while each component plays a critical role, their significance varies across contexts. For instance, the
profile encoder proves to be exceptionally valuable for the Epic Games dataset, whereas encoding features
of recent interactions has a more pronounced effect on the Yelpchi dataset. This suggests that, in the
context of the Epic Games platform, the profile information of reviewers holds greater predictive power for
identifying top critiques than the content of their reviews. Conversely, for Yelpchi, the content of reviews
is more crucial in detecting spam.

Table 5: Impact of individual components. Each row reports the results with the configuration without the
indicated module. Results are averaged over 10 different random seeds.

Epic Games YelpCHI Epic Games YelpCHI Epic Games YelpCHI
MCC APS AUC

Graph Profiler 0.9355 0.3274 0.9988 0.4059 0.9974 0.8058
w.o. Profile Encoder 0.0000 0.2849 0.6097 0.3316 0.5000 0.7725
w.o. Learning Destination Embeddings 0.7695 0.3071 0.9575 0.3892 0.9054 0.8000
w.o. Recent Event Message Encoder 0.6311 0.1926 0.8940 0.2215 0.8593 0.6568
w.o. Recent Event Time Encoder 0.8082 0.3072 0.9766 0.3970 0.9590 0.7986

6 Conclusion

In this work, we introduce Recent Link Classification (RLC) on temporal graphs as a benchmark downstream
task and evaluate the most competitive state-of-the-art method’s performance using a statistically meaningful
metric, namely Matthews Correlation Coefficient (MCC), which is more robust to imbalanced datasets in
comparison to the commonly used metrics. We propose several design principles, which involve the choice
of message aggregation schema, readout layer and time encoding strategy, for tailoring models to specific
requirements of the task and the dataset. We show that appropriate selection can lead to a significant
improvement on benchmark datasets. We present, Graph Profiler, an RLC algorithm designed for bipartite
graphs which are commonly encountered in industrial settings. We believe the introduction of RLC as a

13

Published in Transactions on Machine Learning Research (06/2024)

benchmark task for temporal graph learning is useful for the evaluation of prospective methods within the
field.

14

Published in Transactions on Machine Learning Research (06/2024)

References
Charu Aggarwal, Gewen He, and Peixiang Zhao. Edge classification in networks. In Proc. IEEE Int. Conf.

Data Engineering (ICDE), 2016.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-
generation hyperparameter optimization framework. In Proc. ACM SIGKDD Int. Conf. Knowledge Dis-
covery and Data Mining, pp. 2623–2631, 2019.

Thibaud Arnoux, Lionel Tabourier, and Matthieu Latapy. Combining structural and dynamic information
to predict activity in link streams. In Proc. IEEE/ACM Int. Conf. Advances in Social Networks Analysis
and Mining, pp. 935–942, 2017.

Ali Behrouz and Margo Seltzer. Anomaly detection in multiplex dynamic networks: from blockchain security
to brain disease prediction. In Proc. Int. Conf. Neural Information Processing Systems (NeurIPS) Temporal
Graph Learning Workshop, 2022.

Pietro Bongini, Monica Bianchini, and Franco Scarselli. Molecular generative graph neural networks for drug
discovery. Neurocomputing, 450:242–252, 2021.

Ling Cai, Bo Yan, Gengchen Mai, Krzysztof Janowicz, and Rui Zhu. Transgcn: Coupling transformation
assumptions with graph convolutional networks for link prediction. In Proc. Int. Conf. on Knowledge
Capture, pp. 131–138, 2019.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas Markovich, Nils
Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural networks for link prediction with
subgraph sketching. arXiv preprint arXiv:2209.15486, 2022.

Bo Chen, Di Zhu, Yuwei Wang, and Peng Zhang. An approach to combine the power of deep reinforcement
learning with a graph neural network for routing optimization. Electronics, 11(3):368, 2022.

Hongxu Chen, Hongzhi Yin, Xiangguo Sun, Tong Chen, Bogdan Gabrys, and Katarzyna Musial. Multi-level
graph convolutional networks for cross-platform anchor link prediction. In Proc. ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, pp. 1503–1511, 2020.

Jushuo Chen, Feifei Dai, Xiaoyan Gu, Haihui Fan, Jiang Zhou, Bo Li, and Weiping Wang. Learning pair-
centric representation for link sign prediction with subgraph. In Proc. ACM Int. Conf. Information and
Knowledge Management, 2023.

Yali Chen and Xiujuan Lei. Metapath aggregated graph neural network and tripartite heterogeneous networks
for microbe-disease prediction. Frontiers in Microbiology, 13:919380, 2022.

Davide Chicco and Giuseppe Jurman. The advantages of the matthews correlation coefficient (mcc) over f1
score and accuracy in binary classification evaluation. BMC genomics, 21(1):1–13, 2020.

Davide Chicco and Giuseppe Jurman. The matthews correlation coefficient (mcc) should replace the roc auc
as the standard metric for assessing binary classification. BioData Mining, 16(1):1–23, 2023.

Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and Mehrdad
Mahdavi. Do we really need complicated model architectures for temporal networks? In Proc. Int. Conf.
Learning Representations (ICLR), 2023.

Davide Costa, Lucio La Cava, and Andrea Tagarelli. Show me your nft and i tell you how it will per-
form: Multimodal representation learning for nft selling price prediction. In Proc. ACM Web Conf., pp.
1875–1885, 2023.

da Xu, chuanwei ruan, evren korpeoglu, sushant kumar, and kannan achan. Inductive representation learning
on temporal graphs. In Proc. Int. Conf. Learning Representations (ICLR), 2020.

Quang-Vinh Dang and Claudia-Lavinia Ignat. Link-sign prediction in dynamic signed directed networks. In
Proc. IEEE Int. Conf. Collaboration and Internet Computing (CIC), 2018.

15

Published in Transactions on Machine Learning Research (06/2024)

Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph neural
network-based fraud detectors against camouflaged fraudsters. In Proc. ACM Int. Conf. Information and
Knowledge Management, 2020.

Ahmed El-Kishky, Thomas Markovich, Serim Park, Chetan Verma, Baekjin Kim, Ramy Eskander, Yury
Malkov, Frank Portman, Sofía Samaniego, Ying Xiao, et al. Twhin: Embedding the twitter heterogeneous
information network for personalized recommendation. In Proc. ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining, pp. 2842–2850, 2022.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico Monti.
Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198, 2020.

Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan Quan, Jianxin Chang,
Depeng Jin, Xiangnan He, et al. Graph neural networks for recommender systems: Challenges, methods,
and directions. arXiv preprint arXiv:2109.12843, 2021.

Jianfei Gao and Bruno Ribeiro. On the equivalence between temporal and static equivariant graph repre-
sentations. In Proc. Int. Conf. Machine Learning Research (PMLR), 2022.

Jan Gorodkin. Comparing two k-category assignments by a k-category correlation coefficient. Computational
biology and chemistry, 28(5-6):367–374, 2004.

William L. Hamilton. Graph Representation Learning, volume 14. Morgan and Claypool, 2020.

Kehang Han, Balaji Lakshminarayanan, and Jeremiah Liu. Reliable graph neural networks for drug discovery
under distributional shift. arXiv preprint arXiv:2111.12951, 2021.

Zepeng Huai, Yuji Yang, Mengdi Zhang, Zhongyi Zhang, Yichun Li, and Wei Wu. M2gnn: Metapath
and multi-interest aggregated graph neural network for tag-based cross-domain recommendation. arXiv
preprint arXiv:2304.07911, 2023.

Mingyuan Huang, Pengpeng Zhao, Xuefeng Xian, Jianfeng Qu, Guanfeng Liu, Yanchi Liu, and Victor S
Sheng. Help from meta-path: Node and meta-path contrastive learning for recommender systems. In
Proc. Int. Joint Conf. on Neural Networks (IJCNN), pp. 01–08. IEEE, 2022.

Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi, Jure
Leskovec, Michael M. Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal graph bench-
mark for machine learning on temporal graphs. In Proc. Int. Conf. Neural Information Processing Systems
(NeurIPS) Datasets and Benchmarks Track, 2023.

Ryan Keisler. Forecasting global weather with graph neural networks. arXiv preprint arXiv:2202.07575,
2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in temporal
interaction networks. In Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2019.

Lucio La Cava, Davide Costa, and Andrea Tagarelli. Sonar: Web-based tool for multimodal exploration of
non-fungible token inspiration networks. In Proc. ACM SIGIR, 2023a.

Lucio La Cava, Davide Costa, and Andrea Tagarelli. Visually wired nfts: Exploring the role of inspiration
in non-fungible tokens. CoRR abs/2303.17031, 2023b.

Zhiwei Liu, Yingtong Dou, Philip S Yu, Yutong Deng, and Hao Peng. Alleviating the inconsistency problem
of applying graph neural network to fraud detection. In Proc. Int. ACM SIGIR Conf. Research and
Development in Information Retrieval, pp. 1569–1572, 2020.

16

Published in Transactions on Machine Learning Research (06/2024)

Minbo Ma, Peng Xie, Fei Teng, Tianrui Li, Bin Wang, Shenggong Ji, and Junbo Zhang. Histgnn: Hierarchical
spatio-temporal graph neural networks for weather forecasting. arXiv preprint arXiv:2201.09101, 2022.

Víctor Martínez, Fernando Berzal, and Juan-Carlos Cubero. A survey of link prediction in complex networks.
ACM Computing Surveys (CSUR), 49(4):1–33, 2016.

Shengjie Min, Zhan Gao, Jing Peng, Liang Wang, Ke Qin, and Bo Fang. Stgsn—a spatial–temporal graph
neural network framework for time-evolving social networks. Knowledge-Based Systems, 214:106746, 2021.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim Kaler,
Tao B. Schardl, and Charles E. Leiserson. EvolveGCN: Evolving graph convolutional networks for dynamic
graphs. In Proc. AAAI Conf. Artificial Intelligence, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Proc. Int.
Conf. Neural Information Processing Systems (NeurIPS), pp. 8024–8035. Curran Associates, Inc., 2019.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. In Proc. Int. Conf. Learning Representations (ICLR), 2020.

Francesco Saverio Pezzicoli, Guillaume Charpiat, and François P Landes. Se (3)-equivariant graph neural
networks for learning glassy liquids representations. arXiv preprint arXiv:2211.03226, 2022.

Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam Metni,
Clint van Hoesel, Henrik Schopmans, Timo Sommer, et al. Graph neural networks for materials science
and chemistry. Communications Materials, 3(1):93, 2022.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael Bronstein.
Temporal graph networks for deep learning on dynamic graphs. In Proc. Int. Conf. Learning Representa-
tions (ICLR) Graph Representation Learning Workshop, 2020.

Krzysztof Rusek, José Suárez-Varela, Albert Mestres, Pere Barlet-Ros, and Albert Cabellos-Aparicio. Un-
veiling the potential of graph neural networks for network modeling and optimization in sdn. In Proc.
ACM Symposium on SDN Research, pp. 140–151, 2019.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural representation
learning on dynamic graphs via self-attention networks. In Proc. Int. Conf. Web Search and Data Mining,
2020.

Tushar Sarkar. Xbnet: An extremely boosted neural network. Intelligent Systems with Applications, 15:
200097, 2022.

Ying Shan, T Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and JC Mao. Deep crossing: Web-scale
modeling without manually crafted combinatorial features. In Proc. ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining, pp. 255–262, 2016.

Chenguang Song, Kai Shu, and Bin Wu. Temporally evolving graph neural network for fake news detection.
Information Processing & Management, 58(6):102712, 2021.

Dongjin Song and David Meyer. Link sign prediction and ranking in signed directed social networks. Social
Network Analysis and Mining, 5, 2015.

Hewen Wang, Renchi Yang, Keke Huang, and Xiaokui Xiao. Efficient and effective edge-wise graph represen-
tation learning. In Proc. ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, pp. 2326–2336,
2023.

17

Published in Transactions on Machine Learning Research (06/2024)

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation learning
in temporal networks via causal anonymous walks. In Proc. Int. Conf. Learning Representations (ICLR),
2021.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender systems:
a survey. ACM Computing Surveys (CSUR), 55(5):1–37, 2022.

Xuyang Wu, Xinyang Gao, Weinan Zhang, Rui Luo, and Jun Wang. Learning over categorical data using
counting features: With an application on click-through rate estimation. In Proc. Int. Workshop on Deep
Learning Practice for High-Dimensional Sparse Data, pp. 1–9, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive
survey on graph neural networks. IEEE Trans. Neural Networks and Learning Systems, 32(1):4–24, 2020.

Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Graph neural networks
for automated de novo drug design. Drug Discovery Today, 26(6):1382–1393, 2021.

Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New architecture
and unified library. In Proc. Int. Conf. Neural Information Processing Systems (NeurIPS), 2023.

Wenchao Yu, Wei Cheng, Charu C. Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang. Netwalk: A flexible
deep embedding approach for anomaly detection in dynamic networks. In Proc. ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, 2018.

G Udny Yule. On the methods of measuring association between two attributes. J. Royal Statistical Society,
75(6):579–652, 1912.

Adnan Zeb, Summaya Saif, Junde Chen, Anwar Ul Haq, Zhiguo Gong, and Defu Zhang. Complex graph
convolutional network for link prediction in knowledge graphs. Expert Systems with Applications, 200:
116796, 2022.

Ge Zhang, Zhao Li, Jiaming Huang, Jia Wu, Chuan Zhou, Jian Yang, and Jianliang Gao. efraudcom: An
e-commerce fraud detection system via competitive graph neural networks. ACM Trans. Information
Systems (TOIS), 40(3):1–29, 2022.

Liang Zhang, Jingqun Li, Bin Zhou, and Yan Jia. Rumor detection based on sagnn: Simplified aggregation
graph neural networks. Machine Learning and Knowledge Extraction, 3(1):84–94, 2021a.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using graph neural
networks for multi-node representation learning. Advances in Neural Information Processing Systems, 34:
9061–9073, 2021b.

Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolutional networks: a comprehensive
review. Computational Social Networks, 6(1):1–23, 2019.

Li Zheng, Zhenpeng Li, Jian Li, Zhao Li, and Jun Gao. Addgraph: Anomaly detection in dynamic graph
using attention-based temporal gcn. In Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI), 2019.

Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and George Karypis. TGL: A general
framework for temporal gnn training on billion-scale graphs. Proc. VLDB Endow., 15(8), 2022.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications. AI open, 1:57–81,
2020.

18

Published in Transactions on Machine Learning Research (06/2024)

Appendices

A Implementation Details

In an effort to present fair comparisons, we performed 100 steps of hyperparameters optimization to op-
timize the hyperparameters of all models using the software package Optuna (Akiba et al., 2019). Each
experiment was run over the same 10 seeds. All tuning was performed on the validation set where we max-
imize the average accuracy across all 10 seeds, and we report the test-seed averaged results on the test set
that are associated with those hyperparameter settings that maximize the validation accuracy. All models
were implemented using PyTorch Geometric 2.3.1 (Fey & Lenssen, 2019) and PyTorch 1.13 (Paszke
et al., 2019). We implemented TGN using the layers that are publicly available in PyTorch Geometric,
GraphMixer 3 and TGAT 4 were implemented using the authors opensource implementation provided on
their github repository. All computations were run on an Nvidia DGX A100 machine with 128 AMD Rome
7742 cores and 8 Nvidia A100 GPUs.

B Details of Pre-processing on Open Sea Dataset

The Open Sea dataset is a collection of Non-Fungible Token (NFT) transactions conducted between 2021
and 2023, provided by La Cava et al. (2023a); Costa et al. (2023); La Cava et al. (2023b). Originally, the data
involves 70 million transactions chronologically divided into ten splits. In order to scale our experiments, we
use the first split which is composed of 7,097,215 transactions spanned between 2022-12-17 and 2023-02-18.
In Table 6 the fields of the raw data is provided. The pre-processing steps are as follows:

1. The unique NFT ids are set grouping the transaction by token_id and collection_name.

2. The transactions are filtered for each unique NFT, and assigned an order based on their position
in the sequence and the last ones are flagged. A new field of next_revenue is created such that for
kth transaction in the sequence is assigned with the usd_gain of (k + 1)th one, except the flagged
ones.

3. For each transaction without the flag, a new field of benefit is calculated by next_revenue -
usd_price and the flagged transactions are filtered.

4. The number of transactions reduces to 2,979,950 which is still high for the scale of dataset size we
experiment with. Thus, we select 1000 different buyers by winner_account who conduced most
transactions and filter transactions that involve them, which reduces the number of transactions to
282,743.

5. The source node identities are set by seller_account, destination node identities by
winner_account, the transaction time is set by tx_timestamp.

6. Feature vectors of transactions are calculated by concatenating normalized quantitative feature fields
[fees_seller, fees_opensea, fees_seller_usd, fees_opensea_usd, price, gain, usd_price,
usd_gain, to_eth, to_usd, created_date] and binary representations of categorical feature fields
[token, chain, token_type, asset_contract_type, asset_type].

7. The response variable is set by binarizing benefit such that it is set to 1 if benefit > 0, and 0
otherwise.

3https://github.com/CongWeilin/GraphMixer
4https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs

19

https://github.com/CongWeilin/GraphMixer
https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs

Published in Transactions on Machine Learning Research (06/2024)

Table 6: Raw data fields of Open Sea dataset

Variable Type Description Processing

token_id String The id of the NFT — this value is unique within the
same collection

Anonymized

num_sales Integer A progressive integer indicating the number of suc-
cessful transactions involving the NFT up to the cur-
rent timestamp (cf. *tx_timestamp*)

Original

nft_name Vector ID The name of the NFT Anonymized
nft_description Vector ID The description of the NFT as provided by the cre-

ator
Anonymized

nft_image Vector ID The ID for accessing the NFT image vector Anonymized
collection_name Vector ID The ID for accessing the Collection name vector Anonymized
collection_description Vector ID The ID for accessing the Collection description vec-

tor
Anonymized

collection_image Vector ID The ID for accessing the Collection image vector Anonymized
fees_seller Float The absolute amount of fees the seller has gained

from this transaction expressed in *token*
Original

fees_opensea Float The absolute amount of fees OpenSea has gained
from this transaction expressed in *token*

Original

fees_seller_usd Float The absolute amount of fees the seller has gained
from this transaction expressed in US dollars (USD)

Original

fees_opensea_usd Float The absolute amount of fees OpenSea has gained
from this transaction expressed in US dollars (USD)

Original

payout_collection_address String The wallet address where seller fees are deposited Anonymized
tx_timestamp String Timestamp of the transaction expressed in yyyy-

mm-ddTHH:MM:SS
Original

price Float The price of the transaction expressed in token Original
gain Float The gain after fees (i.e., gain = price - fees_opensea

* price - fees_seller * price)
Original

usd_price Float The price of the transaction expressed in US dollars
(USD)

Original

usd_gain Float The difference between the price and the fees ex-
pressed in US dollars (USD)

Original

token Categorical The token type used to pay the transaction Original
to_eth Float The conversion rate to convert tokens into Ethereum

at the current timestamp, such that eth = price *
to_eth

Original

to_usd Float The conversion rate to convert tokens into US dollars
(USD) at the current timestamp, such that usd =
price * to_usd

Original

from_account String The address that sends the payment (i.e., win-
ner/buyer)

Anonymized

to_account String The address that receives the payment (it often cor-
responds to the contract linked to the asset)

Anonymized

seller_account String The address of the NFT seller Anonymized
winner_account String The address of the NFT buyer Anonymized
contract_address String The contract address on the blockchain Anonymized
created_date Timestamp The date of creation of the contract Original
chain Categorical The blockchain where the transaction occurs Original
token_type Categorical The schema of the token, i.e., ERC721 or ERC1155 Original
asset_contract_type Categorical The asset typology, i.e., non-fungible or semi-

fungible
Original

asset_type Categorical Whether the asset was involved in a simple or bundle
transaction

Original

20

Published in Transactions on Machine Learning Research (06/2024)

C Edge Homophily Trends in Datasets

(a) Epic Games

0.800

0.900

 Average

0.900

0.950

E
dg

e
H

om
op

hi
ly

Positive Class

0 2 4 6 8
time

0.400

0.600

Negative Class

(b) YelpCHI

0.800

0.850

 Average

0.125

0.150

E
dg

e
H

om
op

hi
ly

Positive Class

0 2 4 6 8
time

0.875

0.900 Negative Class

(c) Wikipedia

0.997

0.997

Average

0.025

0.050

E
dg

e
H

om
op

hi
ly

Positive Class

0 2 4 6 8
time

0.999

0.999

Negative Class

(d) Mooc

0.978

0.980
Average

0.022

0.023

E
dg

e
H

om
op

hi
ly

Positive Class

0 2 4 6 8
time

0.989

0.990 Negative Class

(e) Reddit

0.999

0.999 Average

0.003
0.004
0.005

E
dg

e
H

om
op

hi
ly

Positive Class

0 2 4 6 8
time

0.999

1.000 Negative Class

(f) Open Sea

0.580

0.590

Average

0.500

0.550

E
dg

e
H

om
op

hi
ly

Positive Class

0 2 4 6 8
time

0.620

0.640

Negative Class

Figure 6: Edge homophily (measured using the metric Equation 6) trends as a function of time (with time
measured in batches). In the case of Wikipedia, Mooc, and Reddit, the overall edge homophily reaches
as high as 99%, whereas the homophily among positive class edges falls below 5%, a phenomenon attributed
to significant class imbalance. Across these three platforms, there is a noticeable trend of decreasing positive
edge homophily over time, a pattern that emerges as banned users or students who withdraw from courses
exit the network. Conversely, on YelpCHI, there’s an observable increase in positive class homophily and
a decrease in negative class homophily. This trend could stem from spam attacks on businesses, typically
carried out by similar groups of reviewers whose numbers grow over time. A similar pattern is detected on
Open Sea, suggesting an increasing ratio of sellers who profit over time. Nonetheless, those who profited in
the system’s early stages remain active participants.

21

Published in Transactions on Machine Learning Research (06/2024)

D Parameter Sensitivity Analysis

1.0 2.0 3.0 4.0 5.0
10.0

25.0
50.0

100.0

Negative Sampling Ratio

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
C

C

FLP

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

M
C

C

FLP

1 2 3 5 10 15 20 25

Number of Neighbors

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

M
C

C

FLP

1.0 2.0 3.0 4.0 5.0
10.0

25.0
50.0

100.0

Negative Sampling Ratio

0.60

0.70

0.80

0.90

1.00

AP
S

FLP

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

AP
S

FLP

1 2 3 5 10 15 20 25

Number of Neighbors

0.96

0.97

0.97

0.98

0.98

AP
S

FLP

1.0 2.0 3.0 4.0 5.0
10.0

25.0
50.0

100.0

Negative Sampling Ratio

0.96

0.96

0.96

0.97

0.97

0.97

0.97

0.98

AU
C

FLP

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

0.83

0.85

0.88

0.90

0.93

0.95

0.98

AU
C

FLP

1 2 3 5 10 15 20 25

Number of Neighbors

0.96

0.97

0.97

0.98

AU
C

FLP

Figure 7: Parameter Sensitivity of FLP - Wikipedia

22

Published in Transactions on Machine Learning Research (06/2024)

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

-0.05

0.00

0.05

0.10

0.15

0.20

M
C

C
RLC

1 2 3 5 10 15 20 25

Number of Neighbors

0.00

0.05

0.10

0.15

0.20

M
C

C

RLC

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

0.00

0.02

0.04

0.06

0.08

0.10

AP
S

RLC

1 2 3 5 10 15 20 25

Number of Neighbors

0.01

0.02

0.03

0.04

0.05

AP
S

RLC

100
1000

2000
3000

4000
5000

7000
10000

Batch Size

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

AU
C

RLC

1 2 3 5 10 15 20 25

Number of Neighbors

0.82

0.84

0.86

0.88

0.90

0.92

AU
C

RLC

Figure 8: Parameter Sensitivity of RLC - Wikipedia

23

Published in Transactions on Machine Learning Research (06/2024)

E TGN Modifications on RLC

(a) YelpCHI

mean last

exp. d
ecay

0.26

0.26

0.27

0.27

0.28

0.28

M
C

C

mean last

exp. d
ecay

0.30

0.30

0.31

0.31

0.31

0.32

0.32

0.32

0.32

AP
S

mean last

exp. d
ecay

0.76

0.76

0.76

0.76

0.76

0.76

0.77

0.77

0.77

AU
C

(b) Wikipedia

mean last

exp. d
ecay

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
C

C

mean last

exp. d
ecay

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

AP
S

mean last

exp. d
ecay

0.78

0.80

0.82

0.84

0.86

0.88

0.90

AU
C

(c) Mooc

mean last

exp. d
ecay

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

M
C

C

mean last

exp. d
ecay

0.04

0.04

0.04

0.04

0.04

0.05

0.05

0.05

AP
S

mean last

exp. d
ecay

0.70

0.71

0.72

0.73

0.74

0.75

0.76

AU
C

(d) Reddit

mean last

exp. d
ecay

-0.05

-0.03

0.00

0.02

0.05

0.08

0.10

0.12

0.15

M
C

C

mean last

exp. d
ecay

-0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.01

AP
S

mean last

exp. d
ecay

0.60

0.62

0.64

0.66

0.68

AU
C

Figure 9: Aggragator Versions

24

Published in Transactions on Machine Learning Research (06/2024)

(a) YelpCHI

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t

0.23

0.24

0.25

0.26

0.27

0.28

M
C

C

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
0.22

0.24

0.26

0.28

0.30

0.32

AP
S

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

AU
C

(b) Wikipedia

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t

0.00

0.10

0.20

0.30

M
C

C

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

AP
S

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t

0.70

0.75

0.80

0.85

0.90

AU
C

(c) Mooc

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
-0.02

0.00

0.02

0.04

0.06

0.08

M
C

C

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
0.02

0.03

0.03

0.04

0.04

0.04

AP
S

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

AU
C

(d) Reddit

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

M
C

C

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t

-0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.01

AP
S

src
-dst

src
-dst-t

src
-dst-m

sg

src
-m

sg-t

dst-m
sg-t

src
-dst-m

sg-t
0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

AU
C

Figure 10: Readout Versions

25

Published in Transactions on Machine Learning Research (06/2024)

(a) YelpCHI

learned
fixe

d

0.26

0.26

0.27

0.27

0.28

0.28

M
C

C

learned
fixe

d

0.30

0.31

0.32

0.32

0.33

AP
S

learned
fixe

d
0.76

0.76

0.76

0.76

0.77

0.77

AU
C

(b) Wikipedia

learned
fixe

d

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
C

C

learned
fixe

d
0.00

0.03

0.05

0.08

0.10

0.13

0.15

0.18

AP
S

learned
fixe

d
0.78

0.80

0.82

0.84

0.86

0.88

AU
C

(c) Mooc

learned
fixe

d
-0.02

0.00

0.02

0.04

0.06

0.08

0.10

M
C

C

learned
fixe

d

0.04

0.04

0.04

0.04

0.04

AP
S

learned
fixe

d
0.70

0.71

0.71

0.72

0.72

0.73

0.73

0.74

0.74

AU
C

(d) Reddit

learned
fixe

d

-0.02

0.00

0.02

0.04

0.06

M
C

C

learned
fixe

d
-0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.01

AP
S

learned
fixe

d
0.56

0.58

0.60

0.62

0.64

AU
C

Figure 11: Time Encoding Versions

26

Published in Transactions on Machine Learning Research (06/2024)

F Readout Variations on RLC

(a) Wikipedia

1 2 3 5 10 15 20 25
Number of Neighbors

0.00

0.00

0.00

0.01

0.01

Lo
ss

Model Dimension = 100

1 2 3 5 10 15 20 25
Number of Neighbors

Model Dimension = 200

1 2 3 5 10 15 20 25
Number of Neighbors

0.70

0.75

0.80

0.85

0.90

AU
C

Model Dimension = 100

1 2 3 5 10 15 20 25
Number of Neighbors

Model Dimension = 200

1 2 3 5 10 15 20 25
Number of Neighbors

0.00

0.02

0.04

0.06

0.08

AP
S

Model Dimension = 100

1 2 3 5 10 15 20 25
Number of Neighbors

Model Dimension = 200

1 2 3 5 10 15 20 25
Number of Neighbors

0.00

0.05

0.10

0.15

0.20

M
C

C

Model Dimension = 100

1 2 3 5 10 15 20 25
Number of Neighbors

Model Dimension = 200

(b) Reddit

1 2 5
Number of Neighbors

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Lo
ss

Model Dimension = 100

1 2 5
Number of Neighbors

Model Dimension = 200

1 2 5
Number of Neighbors

0.58

0.60

0.62

0.64

0.66

AU
C

Model Dimension = 100

1 2 5
Number of Neighbors

Model Dimension = 200

1 2 5
Number of Neighbors

0.00

0.00

0.01

0.01

0.01

AP
S

Model Dimension = 100

1 2 5
Number of Neighbors

Model Dimension = 200

1 2 5
Number of Neighbors

0.02

0.04

0.06

0.08

M
C

C

Model Dimension = 100

1 2 5
Number of Neighbors

Model Dimension = 200

src-dst src dst src-dst-msg src-msg dst-msg

Figure 12: The performance on RLC using different variations of readout layer

27

