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ABSTRACT

Abstract visual reasoning (AVR) encompasses a suite of tasks whose solving re-
quires the ability to discover common concepts underlying the set of pictures
through an analogy-making process, similarly to solving the human IQ test prob-
lems. Bongard Problems (BPs), proposed in 1968, constitute one of the funda-
mental challenges in this domain. Despite multiple advances in artificial intelli-
gence, the BP tasks remain unsolved, mainly due to their requirement to combine
visual reasoning and verbal description. In this work, we pose a question whether
multimodal large language models (MLLMs) inherently designed to combine vi-
sion and language are capable of tackling BPs. To this end, we propose a set
of diverse MLLM-suited strategies to tackle BPs and test 4 popular proprietary
MLLMs: GPT-4o, GPT-4 Turbo, Gemini 1.5 Pro, and Claude 3.5 Sonnet, and 4
publicly available open models: InternVL2-8B, LLaVA-1.6 Mistral-7B, Phi-3.5-
Vision, and Pixtral 12B. The above MLLMs are compared on 3 BP datasets from
the AVR literature: a set of original BP instances relying on synthetic, geometry-
based images and two recent datasets based on real-world images, i.e., Bongard-
HOI and Bongard-OpenWorld. Our experiments reveal significant limitations of
the current MLLMs in solving BPs. In particular, the models struggle to solve the
classical set of synthetic BPs representing abstract concepts, despite their visual
simplicity. Though their performance improves for real-world concepts expressed
in Bongard-HOI and Bongard-OpenWorld datasets, the models still have difficulty
in utilizing new information to improve their predictions, as well as utilizing the
dialog context window effectively. To better capture the reasons of this perfor-
mance discrepancy between synthetic and real-world AVR domains, we propose
Bongard-RWR, a new BP dataset composed of specifically-designed real-world
images that translate concepts from hand-crafted synthetic matrices to the real
world, and perform focused experiments with this new dataset. The results sug-
gest that weak models’ performance on classical BPs is not due to the domain
specificity, but rather comes from their general AVR limitations.

1 INTRODUCTION

Analogy-making is a critical aspect of human cognition, tightly linked with fluid intelligence, the
capacity to apply learned skills in novel settings (Lake et al., 2017). Several approaches have been
proposed to build systems capable of making analogies. Notably, the structure-mapping theory
explores methods for discovering structural correspondences between pre-existing object represen-
tations (Winston, 1982; Gentner, 1983; Carbonell, 1983; Falkenhainer et al., 1989; Holyoak & Tha-
gard, 1989). However, these approaches often overlook the perceptual aspect, assuming object rep-
resentations are already given. Chalmers et al. (1992) highlight that forming useful representations
is an intricate challenge. In particular, perception is not merely a passive reception of sensory data,
but rather an active interpretation influenced by prior knowledge. This process involves the detec-
tion of patterns, recognition of analogies, and abstraction of concepts. The resultant representations
may vary significantly depending on the context, which underscores the importance of modeling
perception and cognition jointly (Hofstadter, 1995).
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(a) Bongard Problem #31 (Bongard, 1970) (b) Bongard-RWR (This work)

(c) Bongard HOI (Jiang et al., 2022) (d) Bongard-OpenWorld (Wu et al., 2024)

Figure 1: Bongard Problems. In this work, we consider BPs with both synthetic and real-world
images. (a) A manually designed BP #31. Left: One line. Right: Two lines. (b) A real-world
representation of BP #31 from the proposed Bongard-RWR dataset introduced in Section 4. Left:
One line. Right: Two lines. (c) Bongard HOI: Left: A person jumping on a surfboard. Right: Not a
person jumping on a surfboard. (d) Bongard-OpenWorld: Left: An abstract painting. Right: Not an
abstract painting. Descriptions of the Left / Right sides come from the respective datasets.

Multiple problems that necessitate combined perception and reasoning have been identified (Hofs-
tadter, 1999). Among these tasks are Bongard Problems (BPs), introduced by Bongard (1968; 1970).
Initial BPs were designed manually, leading to the formulation of a few hundred task instances by
individual contributors (Foundalis, 2006b). A typical BP consists of two sides, left and right, each
comprising six image panels arranged in a grid. All images on one side illustrate a shared concept
absent in the images on the opposite side. The task is to identify the underlying rule that differen-
tiates the sides and articulate it in natural language. Initial BPs (Bongard, 1968), akin to human
IQ tests, featured abstract 2D geometric shapes, putting the focus on abstract reasoning. How-
ever, recent works have expanded the set of BPs to include real-world images, which broadens the
scope of presented objects, attributes and relations. Specifically, the matrices in Bongard HOI (Jiang
et al., 2022) depict human-object interactions, while Bongard-OpenWorld (Wu et al., 2024) employs
open-world free-form concepts, increasing the diversity of featured scenes. Figs. 1a, 1c, 1d illustrate
examples of problems from the three above-mentioned datasets.

A central theme in BPs is recognition of concepts in a context-dependent manner, as object represen-
tations need to be formed specifically for the presented matrix, rather than described a priori (Lin-
hares, 2000). For example, consider the matrix in Fig. 1a – an analysis restricted to its left side may
yield multiple concepts, such as the presence of curves or an object centered in the image. Only
through a comprehensive understanding of both matrix sides one can recognize that the left side
depicts a single line, while the right side presents two lines. Such concept-based tasks were argued
to promote a more accurate evaluation of a system’s generalization ability and its capacity for ab-
straction (Mitchell, 2021; Odouard & Mitchell, 2022). Moreover, the concepts in BPs are illustrated
with several image examples, which positions the task within a few-shot learning setting (Fei-Fei
et al., 2006; Wang et al., 2020). In contrast to other abstract reasoning problems, such as Raven’s
Progressive Matrices (RPMs) (Raven, 1936; Raven & Court, 1998; Małkiński & Mańdziuk, 2022)
that have recently witnessed the development of large-scale benchmarks (Barrett et al., 2018; Zhang
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et al., 2019), BPs allow to assess system’s ability to derive concepts from a limited set of examples
(typically six images per matrix side). The above aspects make BPs a valuable testbed for assessing
abstract reasoning abilities of AI models.

Motivation. The quest to build systems capable of forming abstract concepts dates back to the
1950s (McCarthy et al., 2006). The advent of Deep Learning (DL) opened new possibilities to
tackle BPs (Kharagorgiev, 2018; Nie et al., 2020). However, despite significant advancements,
methods for consistently solving BPs (and other problems that involve abstract reasoning) are still
lacking (Mitchell, 2021; van der Maas et al., 2021; Stabinger et al., 2021). Typically, DL approaches
omit the generation of natural language answers by casting BP into a binary classification task, in
which a test image had to be assigned to the matching side of the matrix. Conversely, a paral-
lel stream of research on large language models (LLMs) demonstrated promising results in open-
ended language generation (Brown et al., 2020). In particular, LLMs were applied to selected AVR
tasks (Webb et al., 2023), though, lately Xu et al. (2024) pointed certain LLM limitations in solving
AVR problems represented as text despite using information lossless translation through direct-grid
encoding. Recent works have combined the vision and language modalities into multimodal large
language models (MLLMs) (Achiam et al., 2023; Reid et al., 2024; Anthropic, 2024), inviting their
application to diverse tasks (Yin et al., 2023; Wu et al., 2023). Motivated by these recent develop-
ments we examine the reasoning capabilities of MLLMs in solving BPs.

Contributions. The main contribution of this paper is four-fold.

(1) For the first time in the literature, we consider BPs in the context of MLLMs and propose a
diverse set of strategies to solve BP instances in two setups: open-ended language generation and
binary classification.

(2) We evaluate 4 state-of-the-art proprietary MLLMs and 4 open MLLMs on both synthetic and
real-world BPs, and identify their severe abstract reasoning limitations.

(3) To further examine the main difficulties faced by MLLMs in solving both types of BPs (synthetic
and real world ones) we introduce a focused dataset of BPs (Bongard-RWR) comprising real-world
images that represent concepts from synthetic BPs using real world images. Thanks to relying on
the same abstract concepts as synthetic BPs, Bongard-RWR facilitates direct comparisons of the
MLLMs performance in both domains.

(4) We perform a detailed comparative analysis of 8 MLLMs on Bongard-RWR vs. synthetic BPs,
shedding light on the reasons of their generally poor performance.

2 RELATED WORK

AVR tasks. The AVR field encompasses a broad set of problems aimed at studying various aspects
of visual cognition (Gardner & Richards, 2006; Małkiński & Mańdziuk, 2023). Recent DL research
in this domain gravitated towards utilizing certain well-established datasets, e.g. with visual analo-
gies (Hill et al., 2019; Webb et al., 2020) or RPMs (Zhang et al., 2019; Barrett et al., 2018), to
measure the progress of DL models. However, such benchmarks evaluate system performance in
learning a particular task, rather than assessing its general ability to acquire new AVR skills. To ad-
dress this limitation, certain tasks have adopted few-shot learning setups, requiring models to learn
from a few demonstrations, as exemplified by SVRT (Fleuret et al., 2011) or Bongard-LOGO (Nie
et al., 2020). Nonetheless, these benchmarks follow a discriminative setting where a set of possible
answers is provided. Conversely, other datasets such as ARC (Chollet, 2019) or PQA (Qi et al.,
2021) pose a generative challenge, which may be considered more difficult due to its open-ended
nature. In addition to synthetic tasks featuring 2D geometric shapes, certain datasets present analo-
gous reasoning tasks using real-world images (Teney et al., 2020; Ichien et al., 2021; Bitton et al.,
2023). This approach extends the range of concepts that can be expressed and, above all, allows
employing models pre-trained on large image datasets. In this work, we concentrate on several BP
datasets that present a few-shot learning challenge, cover both synthetic and real-world images, and
consider settings involving both binary classification and answer generation in natural language.

Approaches to solve BPs. Initial approaches to tackle BPs involved cognitive architec-
tures (Foundalis, 2006a), program synthesis coupled with inductive logic programming (Saito &

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

MLLM ŷ
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(b) Descriptive(-direct)

...

MLLM

MLLM
...

MLLM ŷL
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Figure 2: Generation strategies. Direct (a) feeds the image of the whole matrix to the model.
Descriptive (b), Contrastive (d), and their iterative variants, (c) and (e), present individual image
panels to the model in a fixed order. Their direct variants, (b) and (d), additionally include the image
of the whole matrix. Grey background marks a sequence of requests run in a single context window.

Nakano, 1996; Sonwane et al., 2021), and the application of Bayesian inference within a visual
language framework (Depeweg et al., 2018; 2024). Kharagorgiev (2018) trained a convolutional
network on a generated synthetic dataset with geometric shapes and applied a one-level decision
tree to solve BPs framed as a binary classification task. Nie et al. (2020) introduced Bongard-
LOGO with synthetically generated BPs and used it to evaluate CNN-based models focused on
meta-learning (Snell et al., 2017; Mishra et al., 2018; Lee et al., 2019; Raghu et al., 2020; Chen
et al., 2021) and relational reasoning (Barrett et al., 2018). Jiang et al. (2022) applied the Relation
Network (Santoro et al., 2017) to objects detected with Faster R-CNN (Ren et al., 2015) and em-
ployed the model to solve matrices from the real world Bongard HOI dataset. Despite high diversity
of approaches, none of them has fully addressed the abstract and open-ended nature of BPs. Most
related to our work, Wu et al. (2024) considered hybrid approaches that caption each image panel
with an image-to-text model and applied LLMs for processing these text descriptions. Differently,
in this work we focus on MLLMs that are inherently capable of jointly processing images and text.

Abstract reasoning of MLLMs. MLLMs haven’t been yet applied to tackle BPs, though they
were applied to several related tasks. Initial works focused on LLMs and evaluating their abstract
reasoning performance in simplified analogy tasks. Webb et al. (2023) showed that GPT-3 and
GPT-4 (text-only variants) performed on the human level, or even outcompeted humans, in certain
RPM-like tasks in a zero-shot manner without additional fine-tuning. However, they represented the
image objects as text using a fixed small vocabulary, thus omitting the need for identifying concepts
from open-ended shapes, a key challenge of BPs. Recent research concerning the evaluation of ab-
stract reasoning skills of LLMs concentrates around the Abstraction and Reasoning Corpus (ARC)
task (Chollet, 2019). It was demonstrated that LLMs can solve certain ARC problems transformed
to the text domain (Moskvichev et al., 2023; Mirchandani et al., 2023; Camposampiero et al., 2023;
Xu et al., 2024). Despite these important stepping stones, the text-based representation taken in these
works simplifies the perception task by presenting the model with pre-existing higher level repre-
sentations. Only recently, thanks to the appearance of MLLMs, vision and text started to be treated
jointly in a unified manner. Cao et al. (2024) proposed a suite of AVR tasks to compare MLLM
and human performance. Jiang et al. (2024) assessed AVR skills of MLLMs on an introduced mul-
tidimensional benchmark combining AVR and perceptual questions. Our work complements this
stream of research by exploring BPs, a fundamental task in the field, and providing insights into
MLLM analogy-making performance in synthetic and real-world domains.
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3 SOLVING BPS WITH MLLMS

In this paper, we propose a set of novel strategies for solving BPs using MLLMs. Definition of
each strategy includes the input on which the model operates and the sequence of reasoning steps
performed by the model. A high-level overview of these methods is provided in Fig. 2. In the main
tested setting, we follow the initial BP formulation that requires providing an answer in natural
language, and propose a model-based approach to automatically evaluate such model predictions.
In addition, we consider simpler formulations of the problem, casting it into a binary classification
framework that enables detailed evaluation of AVR abilities of the tested MLLMs. An illustration
of these evaluation settings is presented in Fig. 3. In what follows, let BPX = {LX ,RX , yX}
denote a BP instance (X ∈ N is an index), composed of LX = {LX

1 , . . . , LX
6 } left and RX =

{RX
1 , . . . , RX

6 } right panels, resp., and its concept yX expressed in natural language.

3.1 PROMPTING STRATEGIES FOR NATURAL LANGUAGE ANSWER GENERATION

We start by defining the strategies for generating answers in natural language. In each strategy,
the model receives a general description of Bongard Problem with two BP examples with correct
answers. Additionally, besides this generic introductory information, a given task BPX to be solved
is presented in a strategy-specific way. Appendix I.4 presents the exact prompt formulations.

Direct (Fig. 2a). The model receives an image presenting BPX and is asked to directly formulate
an answer (i.e., describe the difference between LX andRX panels in natural language).

Descriptive (Fig. 2b). Defines a more granular approach in which the model is first requested to
generate a textual description of each image panel of the matrix. Each description is generated in a
separate context, such that the model doesn’t have access to the prior panels nor to their descriptions.
Next, the model is requested to provide an answer to the problem based only on the generated textual
descriptions of all image panels.

Descriptive-iterative (Fig. 2c). Evaluates the role of the reasoning context and utilizes a context
window comprising the dialog history concerning all images in the given side of the problem. After
generating the description of the first image, the model iteratively refines its output based on subse-
quent images from the same side. Based on the textual descriptions of both sides of the problem, the
model is requested to provide the final answer.

Descriptive-direct (Fig. 2b with a dashed element). In both above Descriptive strategies, the model
is never presented with the image of the whole matrix BPX . Descriptive-direct strategy extends
Descriptive by providing the image of BPX along with the textual panel descriptions.

Contrastive (Fig. 2d). A critical aspect of BPs is the focus on forming concepts within the specific
context of the matrix BPX . It’s often the case that correct identification of the concept governing
one side requires analysis of the other side to identify their key differences. In Descriptive strategies,
the model provides image descriptions concerning a single problem side LX or RX without taking
into account the images from the other side. Conversely, in the Contrastive strategy, the model is
tasked with describing the difference between a pair of corresponding images from both sides of the
problem (LX

1 , RX
1 ), . . . , (LX

6 , RX
6 ). After describing the differences between all six image pairs in

separate contexts, the model generates its final answer based on these textual descriptions.

Contrastive-iterative (Fig. 2e). Extends Contrastive by performing all reasoning steps in a single
context window, enabling the model to gradually improve its understanding of the rule separating
both sides.

Contrastive-direct (Fig. 2d with a dashed element). Extends Contrastive by including the image of
the whole matrix together with textual descriptions of differences within each panel pair.

3.2 EVALUATION OF SOLUTIONS EXPRESSED IN NATURAL LANGUAGE

The correct answer to a BP may be formulated in natural language in many different ways. To ac-
count for this inherent variability, we utilize a model-based approach to assess whether the generated
answer ŷ matches the ground-truth y. In the proposed setting, an MLLM ensemble receives both
ŷ and y and is requested to output a binary yes/no answer whether both descriptions refer to the
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MLLM

y ŷ

0/1

(a) Evaluate gene-
rated description

MLLM

y

0/1

(b) Assess solution correctness

MLLM

L/R L/R

(c) Assign images to sides

Figure 3: Evaluation settings. We consider the three settings to solve BPs: (a) the ground-truth
answer y is paired with a description ŷ generated by the MLLM and the model needs to verify if
they describe the same concepts; (b) given a possible solution y the model needs to assess whether
it’s correct; (c) two test images corresponding to the left (L) and right (R) sides, resp., are randomly
shuffled, and the model needs to assign each image from the pair to the proper side of the problem.

same concept (see Fig. 3a). Specifically, we assess the correctness of ŷ using all four considered
proprietary MLLMs and count it as correct if at least two models agree with this class (see details in
Appendix E). In contrast to solving the BP task, which requires abstract reasoning abilities, the task
of determining whether two answers refer to the same concept boils down to assessing the semantic
similarity between two texts, and MLLMs are known to excel in such setup (Lu et al., 2024).

3.3 BINARY CLASSIFICATION FORMULATIONS

To dive deeper into the AVR capabilities of the studied models, we cast the BP task into three binary
classification settings, reducing the task’s difficulty. Firstly, we provide the model with the image
of the whole matrix BPX along with a possible solution, and the model is prompted to generate a
binary score assessing the correctness of the provided answer (Fig. 3b). Two settings are considered,
in which the solution is formed by either the actual ground-truth answer (the expected answer is yes),
or by an incorrect answer taken from a different BP matrix (the expected answer is no). Secondly,
we follow a setting exemplified in the Bongard-LOGO dataset (Nie et al., 2020) in which two test
images have to be classified to different sides of the problem (Fig. 3c). To this end, we take two
test images corresponding to the respective sides of the matrix, randomly shuffle the images, and
request the model to determine the side to which each image belongs. In synthetic BPs we create the
test set by removing the 6th image from each side of the matrix, while in BPs from Bongard HOI,
Bongard-OpenWorld and Bongard-RWR we use the additional test images. We refer to these three
formulations as Ground-truth, Incorrect Label, and Images to Sides (see prompts in Appendix I.3).

4 BONGARD-RWR: SYNTHETIC BPS EXPRESSED IN REAL-WORLD IMAGES

One of the interesting research avenues is to compare the MLLMs performance on synthetic BPs vs.
real-world ones. Note, however, that a direct performance comparison on synthetic Bongard dataset
vs. real-world Bongard HOI and Bongard-OpenWorld datasets is not meaningful, as these datasets
depict different concepts. To enable a meaningful comparison and additionally determine whether
the MLLMs performance score is domain-related, we introduce Bongard Real-World Representa-
tions, a focused dataset that expresses concepts present in synthetic BPs using real-world images,
thus creating their real-life equivalents, as illustrated in Fig. 1b. Appendix F contains additional
examples. The dataset is available at: https://github.com/iclr6466/bongard-rwr.

4.1 BONGARD-RWR DATASET GENERATION

For a given instance BPX , we first use GPT-4o to describe its underlying concept yX in N = 10
different ways using the prompt listed in Prompt 1. We obtain N real-world textual descriptions
DX

i = {DXL
i , DXR

i }, i = 0, . . . , N − 1, of each side S ∈ {L,R}. Then, we use image search
engine Pexels API (Pexels, 2024) to download M = 15 images per each described side DXS

i . We
employ GPT-4o (see Prompt 5 in Appendix I.1) to select only those images that properly illustrate
the concept of the respective side and are indeed distinguishable from the alternative concept. We
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stop the selection procedure after having a set of T = 3 descriptions {DX
i1
, DX

i2
, DX

i3
}, each with 2

appropriate images: IXS
k (1), IXS

k (2), k = i1, i2, i3 per each side S (6 left and 6 right ones).

The corresponding real-world problem instance RWRX = {LX ,RX} is constructed as follows
(see Algorithm 1 in Appendix F): SX = {IXS

i1 (1), IXS
i2 (1), IXS

i3 (1), IXS
i1 (2), IXS

i2 (2), IXS
i3 (2)},

S ∈ {L,R} so as to decrease the possibility of generating a problem with a trivial answer, which is
highly probable if the images from a singular textual description DX

i are taken.

Prompt 1: Initial concept-describing prompt used in construction of Bongard-RWR.

Your goal is to translate a comparison concept from the geometric
domain to the real-world domain. Your translations should be
expressible as images.

↪→
↪→

Example:
Geometric domain: triangles vs squares
{

"left": {
"concept": "pyramids"

},
"right": {

"concept": "rectangular buildings"
}

}

Give <number> unique translations for the following concept as a raw
JSON array of objects (same as in the example above).↪→

<concept>

We run Algorithm 1 for the first 100 synthetic BPs. After applying the exclusion criteria, this lead
to the generation of 50 instances RWRX . However, as we noticed through a manual inspection,
some of them were not well depicting the respective problem concept. Hence, we modified the
dataset in the following way: 14 problems were entirely removed and, out of the remaining 36, 24
were adjusted through a manual selection of the images that well represent the considered concept.
Furthermore, we extended the dataset by adding 17 problems with manually translated concepts
(i.e., with no use of GPT-4o), for which images were also selected manually, and 7 constructed by
hand, i.e., by means of making photos of manually-built scenes reflecting the respective concepts.

All in all, we obtained a real-world Bongard-RWR dataset containing 60 problems, out of which
12 were generated fully automatically, 24 were generated automatically and adjusted manually
afterward (manual selection of the images), 17 were composed manually (manual translation of
the concept and manual selection of the images), 7 were constructed entirely manually (photos of
manually-built scenes). The details are provided in Appendix F.

5 EXPERIMENTS

To evaluate the AVR capabilities of MLLMs, we conduct experiments in two main settings, involv-
ing 3 binary classification setups and 7 proposed generation methods. Our evaluation spans a range
of MLLMs, including 4 proprietary models accessible via API: GPT-4o, GPT-4 Turbo (Achiam
et al., 2023), Gemini 1.5 Pro (Reid et al., 2024), and Claude 3.5 Sonnet (Anthropic, 2024), along-
side 4 open-access models run locally on an NVIDIA DGX A100 node: InternVL2-8B (Chen et al.,
2024b;a), LLaVA-1.6 Mistral-7B (Liu et al., 2024b;a; Jiang et al., 2023), Phi-3.5-Vision (Abdin
et al., 2024), and Pixtral 12B (MistralAI, 2024). We consider four BP datasets covering both syn-
thetic and real-world images. Specifically, we use the first 100 manually constructed (synthetic) BPs
from (Bongard, 1970), 100 problem samples from each of Bongard HOI and Bongard-OpenWorld,
and all 60 instances from Bongard-RWR. Extended results are presented in Appendix C.

Binary classification. Fig. 4 presents the results of binary classification tasks. In the Ground-truth
setting, most proprietary and some open-access models outperform a random classifier baseline. In
the Incorrect Label setting, since rejecting incorrect concepts is a generally easier task, most models
perform better than in the Ground-truth setup. However, the consistently shifted performance of
open-access models suggests a potential bias toward agreeing or disagreeing with provided concepts.
In the Images to Sides task, proprietary models demonstrate strong performance, while Pixtral stands
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Figure 4: Binary classification. Results of a random baseline are marked with a dashed line.

Table 1: Language generation. The number of correct answers to 100 synthetic BPs, 100 selected
BPs from each of Bongard HOI and Bongard-OpenWorld, and all 60 BPs from Bongard-RWR.
Three main strategies: Direct, Descriptive, and Contrastive, denoted as Di, De, and Co, resp. are
considered. The best result for a given strategy is marked in bold and the second best is underlined.

SYNTHETIC HOI OPENWORLD RWR

DI DE CO DI DE CO DI DE CO DI DE CO

GPT-4O 17 17 10 35 42 18 40 46 19 5 8 2
GPT-4 TURBO 6 15 8 22 45 5 21 57 12 1 5 0
GEMINI 1.5 PRO 7 21 17 23 40 15 13 32 11 3 7 1
CLAUDE 3.5 SONNET 13 19 15 5 44 13 10 53 21 1 13 2
INTERNVL2-8B 0 0 0 12 2 2 11 18 7 0 0 0
LLAVA-1.6 MISTRAL-7B 0 1 0 5 4 1 12 16 1 0 0 0
PHI-3.5-VISION 0 2 0 1 4 2 7 12 5 0 0 0
PIXTRAL 12B 1 4 1 28 27 7 33 34 14 1 1 0

out among open-access models. Nevertheless, binary classification tasks do not fully reveal whether
the solver truly grasped the presented concept or simply relied on surface-level similarities, raising
the need for more challenging and in-depth evaluation setups in the generative problem formulation.

Generative capabilities in the Direct setting. As presented in Table 1, model performance using
the Direct generation strategy is generally weak on synthetic BPs, with the best model, GPT-4o,
solving only 17 out of 100 problems. This indicates that the models struggle to identify abstract,
synthetic concepts and express them in natural language. The challenge is even more apparent on
Bongard-RWR, where the best model, GPT-4o, solves only 5 out of 60 problems. Nevertheless,
performance improves on Bongard HOI and Bongard-OpenWorld, with best results of 35/100 and
40/100, resp. Notably, while GPT-4o achieves the highest scores on these two datasets, Pixtral
12B ranks second (28/100 and 33/100, resp.), showing that smaller open-access models can still be
competitive in this setting. While the better performance on Bongard HOI and Bongard-OpenWorld
may be attributed to a higher ratio of real-world images in the training data, the weak results on
Bongard-RWR suggest that the discrepancy is more related to the specific underlying concepts
than the visual domain as such (see Figure 13 in Appendix F for the details).

Independent image description. In the next experiment we analyse whether an iterative reasoning
approach, in which the model first generates separate captions for each image and then combines
them into a final answer, can improve performance. As shown in Table 1, compared to the Direct
strategy, the Descriptive one improves the best results across all datasets: from 17 to 21 on synthetic
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Figure 5: The impact of -direct and -iterative variants. Bars in each group correspond to models
in the following order: GPT-4o, GPT-4 Turbo, Gemini 1.5 Pro, Claude 3.5 Sonnet, InternVL2-8B,
LLaVA-1.6 Mistral-7B, Phi-3.5-Vision, and Pixtral 12B.

BPs, from 35 to 45 on Bongard HOI, from 40 to 57 on Bongard-OpenWorld, and from 5 to 13
on Bongard-RWR. A clear improvement can be observed individually for each proprietary model.
The gain is less pronounced (if at all) for individual open-access models. We hypothesize that
this improvement is due to the Descriptive setting being more aligned with the model’s training,
where it primarily learns to caption individual images. However, this strategy doesn’t leverage the
additional information present in the joint BP image, and certain context-dependent visual features
may be missed in captioning. We believe that with further advancements in reasoning over multi-
part compositional images, models in the Direct setting should eventually outperform the Descriptive
strategy.

Contrastive reasoning. Correct identification of concepts in BPs requires a joint processing of
the images from both sides of the problem. The Contrastive strategy evaluates the model ability to
extract underlying differentiating concepts within such image pairs. Across all datasets, the mod-
els evaluated under the Contrastive strategy perform worse than with the Descriptive strategy (cf.
Table 1). This points to the fundamental difference between human and machine approaches to
solving AVR tasks. Humans often rely on direct comparisons between image panels from different
categories to highlight differences (Nüssli et al., 2009), whereas the tested methods perform better
when making comparisons on text-based image descriptions, potentially disregarding critical visual
details missed during image captioning. This discrepancy indicates the need for further modeling
improvements to fully leverage the Contrastive strategy.

Iterative reasoning. Next, we tested whether preserving responses from past turns in the dialog
context could improve concept identification in both Descriptive and Contrastive settings. As shown
in Fig. 5, the Descriptive-iterative strategy visibly worsens the results compared to its non-iterative
counterpart across all datasets and models, except for negligible improvement of InternVL2-8B on
synthetic BPs and several cases of a complete failure (accuracy of 0) for both strategies. In con-
trast, Contrastive-iterative brings no improvement over Contrastive in only 5 cases, 2 for synthetic
BPs, and 3 regarding Bongard-OpenWorld. Despite these improvements, Contrastive-iterative gen-
erally performs worse than Descriptive (see Table 2, Appendix C). This indicates that contemporary
models have difficulties to effectively use additional information from the context window.

Multimodal answer generation. In the final experiment, we assessed whether incorporating an
image of the entire matrix at the answer generation step would improve the performance of the
Descriptive and Contrastive strategies. As shown in Fig. 5, Descriptive-direct shows performance
improvements over Descriptive in 12 out of 32 (dataset, model) cases. Contrastive-direct improves
upon Contrastive in all (dataset, proprietary model) configurations, and additionally improves in
certain (dataset, open-access model) settings. However, despite these gains, Contrastive-direct over-
all performs worse than Descriptive, except for GPT-4o and InternVL2-8B on synthetic BPs, and
InternVL2-8B on Bongard HOI (see Table 2, Appendix C). This suggests that contemporary models
are to some extent capable of utilizing additional visual inputs to improve reasoning performance, in
particular the newest GPT-4o, which displays improvement from incorporating the -direct extension
in 7 out of 8 cases. Nevertheless, further work is needed to improve consistency across all models.

Comparison of prompting strategies. Across all models, the Descriptive strategy achieves
the highest scores on Bongard-RWR and Bongard-OpenWorld. In Bongard HOI, it ties with
Descriptive-direct, while in synthetic BPs, it ranks just behind its -direct extension. As shown in
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Appendix G, altogether Descriptive strategies solve the same number of synthetic BPs as Con-
trastive strategies (44; Fig. 15), but lead in Bongard HOI (82 vs. 63; Fig. 17), Bongard-OpenWorld
(90 vs. 76; Fig. 19), and Bongard-RWR (20 vs. 11; Fig. 21). This overall advantage of Descriptive
over Contrastive strategies indicates that current MLLMs perform better with prompting strategies
focused on processing single images. This also highlights the need to improve multi-image reason-
ing capabilities of MLLMs for tasks that require reasoning across multiple images. Figs. 15 – 22
in Appendix G further show that altogether the considered approaches solved 54, 89, 93, and 23
problems from synthetic BPs, Bongard HOI, Bongard-OpenWorld, and Bongard-RWR, resp. This
raises the question of whether an ensemble combining all proposed strategies could further enhance
model reasoning performance. We leave the exploration of this emerging direction for future work.

Proprietary vs. open-access models. Proprietary models generally outperform open-access ones,
leading in 35 out of 40 (dataset, strategy) pairs (see Table 2). The black-box nature of proprietary
models makes it challenging to attribute their advantage to specific aspects, whether it be the number
of parameters, the size and composition of training data, or the pre- and post-processing methods.
However, the recently released Pixtral 12B model performs competitively in multiple settings, oc-
casionally surpassing proprietary models. This highlights the viability of developing competitive
MLLMs without sacrificing accessibility. At the same time, a clear performance drop of Pixtral 12B
on synthetic BPs and Bongard-RWR suggests its intrinsic weakness in reasoning about abstract
concepts, whether reflected in synthetic or real-world manner, similarly to other open models.

Comparison with state-of-the-art. A direct comparison with the results from (Wu et al., 2024) is
challenging due to the different ranges of test problems used in each study. With this caveat, we
concentrate on key high-level observations from both works. Wu et al. (2024) primarily focus on a
binary classification setting corresponding to the Images to Sides setup in our work. On Bongard-
OpenWorld, our best performing models, Gemini 1.5 Pro and Claude 3.5 Sonnet, achieved 96%
accuracy, while their top method, SNAIL—a meta-learning approach leveraging pre-trained Open-
CLIP image representations—achieved 64%. This suggests that MLLMs, which uniformly process
images and text, outperform decoupled two-stage approaches, which handle image captioning and
text-based reasoning with different models. They also briefly consider a natural language genera-
tion task, where models describe concepts presented in the BP instance (Wu et al., 2024, Appendix
E). They again use a two-step approach comprising fine-tuned BLIP-2 for image captioning and
ChatGPT for concept generation. In contrast, we employ a single MLLM for both tasks. For evalu-
ating free-form concept generation, they use automated text-based metrics, which provide a general
measure of text similarity. We, however, employ a voting MLLM ensemble, offering a more direct
assessment of solution correctness.

Human results. We conducted a study with 30 participants, as detailed in Appendix B. Humans
solved from 23 to 59 problems, with average of 39.2, achieving 65% accuracy. Notably, the lowest
number of problems solved by a human participant (23) exceeded the number of problems solved
by all models in total (22, see Fig. 22), highlighting the need for further advances in this area.

6 CONCLUSIONS

This paper investigates the reasoning capabilities of proprietary and open-access MLLMs using
BPs as a case study. Despite rapid progress, MLLMs still exhibit significant reasoning limitations.
Across all proposed answer generation strategies, the best-performing model solved only 22 out of
100 synthetic BPs. On the other hand, model performance improved moderately with real-world
concepts, as shown by the results on Bongard HOI and Bongard-OpenWorld. To delve deeper into
the performance discrepancies between synthetic and real-world domains, we introduced Bongard-
RWR, a new BP dataset designed to represent concepts from synthetic BPs via real-world images.
Focused experiments with this dataset suggest that the models’ weak performance on synthetic BPs
is not domain-specific but rather indicative of broader limitations in their reasoning abilities. Specif-
ically, MLLMs struggle with recognizing abstract concepts, fail to benefit from a human-like multi-
image reasoning approach, demonstrate limitations in utilizing context window effectively, and re-
quire further work to consistently integrate text and vision modalities at the answer generation step.
On a positive note, experiments conducted in three binary classification settings show that some
models achieve encouraging results, suggesting that current limitations may be overcome with fu-
ture advancements.
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A LIMITATIONS AND FUTURE WORK

Going beyond Bongard Problems. BPs fundamentally require solvers to articulate answers
in natural language, making them a valuable testbed for assessing the reasoning capabilities of
MLLMs. However, to comprehensively explore the challenges posed by the AVR domain, it is
crucial to consider a broader range of problems.

For instance, VCog-Bench (Cao et al., 2024) is a benchmark designed to evaluate the reasoning
capabilities of MLLMs across 3 datasets: 560 problem instances from RAVEN (Zhang et al., 2019),
309 from CVR (Zerroug et al., 2022), and 480 from MaRs-VQA. These datasets present multi-
class classification tasks, offering between 4 to 8 options per problem. While the classification
setting in VCog-Bench differs from our focus on natural language generation, both studies echo
a shared conclusion – MLLMs struggle in complex, multi-image reasoning tasks. We argue that
generative problem formulations, such as those used in our study, pose a more substantial challenge
than discriminative tasks, in which the solution may be induced from correlations or by making
educated guesses. Further advances in abstract reasoning may require the development of new AVR
benchmarks with generative evaluation settings.

A compelling example of a generative problem formulation is the Abstraction and Reasoning Corpus
(ARC) (Chollet, 2019), in which each instance involves transforming a source grid into a target grid
based on an induced transformation rule. Each instance is accompanied by a few demonstrations
to guide the solver. Mitchell et al. (2023) explored multi-modal reasoning of GPT-4V on Con-
ceptARC (Odouard & Mitchell, 2022), a variant of ARC categorizing tasks into distinct types. The
study employed 3 prompting strategies: presenting all demonstrations in a single image, using sep-
arate images for each source and target grid pair, and separating each grid pair into distinct images.
These settings are related to the Direct, Contrastive, and Descriptive strategies from our study, resp.
The model performed best with the last approach, which aligns with the leading performance of the
Descriptive strategy in our paper. Their study revealed that ARC tasks pose a significant challenge
for MLLMs, aligning with our results. Similar to our findings, GPT-4V evaluation on ConceptARC
demonstrated that generative problem formulations pose a significant challenge for contemporary
MLLMs.

Fine-grained analysis of MLLM perception. Related studies emphasize the importance of eval-
uating fine-grained aspects of model performance in visual reasoning tasks. Notably, Biscione et al.
(2024) propose the MindSet: Vision toolbox, which categorizes tasks into three main domains: low-
and mid-level vision, visual illusions, and shape and object recognition. This benchmark is specif-
ically designed to test models on 30 psychological findings inspired by human visual perception,
providing a framework for understanding similarities and differences in human and machine vision.
Preliminary evaluations using ResNet-152 and GPT-4 on selected tasks revealed notable differences
in perception between humans and machines. Applying MLLMs and the reasoning strategies pro-
posed in our work to the MindSet: Vision toolbox opens a promising direction for future research,
which could offer deeper insights into the perceptual capabilities of MLLMs.

Incorporating proposed strategies to enhance abstract reasoning abilities. Galatzer-Levy et al.
(2024) compared the cognitive abilities of MLLMs to humans using the Wechsler Adult Intelligence
Scale (WAIS-IV) (Wechsler, 2008). Their findings reveal that while MLLMs excel in tasks related
to verbal comprehension and working memory, they significantly underperform in perceptual rea-
soning tasks. The evaluation setting used in this study involved presenting models with an image
of an abstract reasoning matrix alongside a text prompt describing the task, closely aligning with
the Direct strategy employed in our work. However, as discussed in Section 5, the Direct strategy
poses notable challenges for MLLMs. Our experiments show that models consistently achieve bet-
ter performance with alternative approaches, such as the Descriptive strategy. This highlights the
importance of selecting appropriate strategies when evaluating MLLMs on abstract reasoning tasks.
We believe that the diverse suite of strategies proposed in our work can be extended to other studies
in abstract reasoning to fully capitalize on MLLM reasoning capabilities.

Cross-domain analysis of MLLM perception. A possible hypothesis for the subpar performance
of MLLMs on AVR tasks involving synthetic datasets, such as VCog-Bench or ARC, is the limited
representation of synthetic images in their training data. This assumption is supported by the ob-
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served performance gap between synthetic BPs and real-world image BPs, such as those in Bongard
HOI and Bongard-OpenWorld, which might suggest that MLLMs perform better at abstract reason-
ing with real-world images. However, our experiments with Bongard-RWR challenge this notion.
Despite using real-world images, Bongard-RWR demonstrates that MLLMs still struggle with ab-
stract reasoning, indicating that the performance gap cannot be solely attributed to differences in
data domains. Instead, this suggests more fundamental challenges in visual reasoning. Future work
could extend this research line by leveraging datasets that include both synthetic and real-world
images, such as Raven’s Progressive Matrices (Zhang et al., 2019; Teney et al., 2020) or Visual
Analogy Problems (Hill et al., 2019; Bitton et al., 2023). Contrasting MLLM performance on such
dataset pairs may provide valuable insights into whether their limitations are rooted in data domain
or in broader domain-free reasoning challenges.

B HUMAN PERFORMANCE ON BONGARD-RWR

Foundation of the study. Our tests on MLLMs using the Bongard-RWR dataset revealed their
poor performance in solving synthetic concepts depicted in real-world images. However, the diffi-
culty and reliability of this new dataset remains an open question. To address this issue, we decided
to assess human capabilities in solving these problems.

Methodology. We compiled all Bongard-RWR problems into a single document, including a brief
introduction that explains what BPs are (see Prompt 2), along with a few detailed examples. The
examples included one problem from the original BPs (#133), one from Bongard-OpenWorld, and
an additional BP (#336) manually translated to the real-world domain. Bongard-RWR problem
instances were positioned randomly in the document and were posed in an open-ended manner,
allowing participants to provide any response they deemed appropriate.

Participants in our human evaluation predominantly belonged to the academic community, including
Master students and (ocassionally) faculty members and PhD students, primarily due to accessibility.
This demographic was selected based on the ease of reaching and engaging with individuals who
are readily available in academic settings.

All answers were collected using an online form, ensuring a streamlined and efficient process for
submission. Each participant was allowed to make only a single submission, to maintain the integrity
and reliability of the data. In addition, the form contained a few more questions to gather basic
statistics on our new dataset and the quality of submissions:

1. How would you assess the readability of the images included in the problems? (Scale 1-10)

2. How would you assess the difficulty of the tasks you received? (Scale 1-10)

3. What is your level of education? (Primary, Secondary, Higher, I prefer not to say)

4. How much time did you spend solving the tasks? (Less than 30 minutes, From 30 minutes
to an hour, From one to two hours, More than two hours)

Answers evaluation. In contrast to the evaluation of MLLM solutions, human responses were
evaluated entirely manually. Initially, two humans reviewed the complete set of answers indepen-
dently, achieving a 94.5% agreement on the correctness of the responses. The discrepancies were
then discussed and a consensus was reached leading to a single, unified evaluation.

Prompt 2: Text used as a brief introduction in human testing.

The presented problems represent a type of logic puzzle. Each problem
consists of two sides separated by a vertical line. Each side
contains six images. The task is to find a characteristic that
applies to all the images on the left side but does not apply to
those on the right side.

↪→
↪→
↪→
↪→

Some problems may be less obvious and require a broader perspective or
focus on details. Simply comparing the general content of the
images might not be enough. Answers may repeat.

↪→
↪→
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Figure 6: The respondent’s answers to the questions attached in the form. Even though the
majority of respondents had higher education, they, on average, spent more than one hour on solving
the problems. Moreover, only one person rated the problems as relatively easy (giving them a
difficulty score of 4 out of 10).

Respondent Overview. Overall, we successfully collected 30 responses, with 26.7% of partic-
ipants having secondary education and 73.3% having higher education. Although the sample of
respondents was small, we observed no significant discrepancies between the results of individu-
als with higher education and those with secondary education, both in the responses to additional
questions (Figure 6 and in the problem-solving results (Figure 8).

Findings from Respondent Responses. In Figure 8, we present the distribution of responses to
the Bongard-RWR dataset. Every problem was solved by at least one respondent, confirming the
solvability of the dataset. The results are consistent across respondents (see Figure 7), with the num-
ber of solved problems ranging from 23 to 59. Moreover, the findings demonstrate the superiority
of humans over MLLMs in tackling this type of task. Notably, the lowest human score exceeded
the combined score of all the models. Half of the respondents solved more than 40 problems, with
mean and median equal to 39.2 and 40.5, resp., resulting in 65% average accuracy.

The difficulty of each problem can be estimated based on the number of respondents who success-
fully solved it. As shown in Figure 8, the problems exhibit varying levels of difficulty: 22 of them
were solved by at least 25 respondents, while 10 were solved by fewer than 10 respondents. In
addition, three problems—10, 88 and 100—were solved by all respondents. Overall, the dataset was
rated as quite difficult, with an average difficulty score of 7.6 across all respondents.

Overall, the results demonstrate the robustness and applicability of Bongard-RWR as a novel dataset
for investigating the performance differences between human and model-based visual reasoning.

C EXTENDED RESULTS

Table 2 presents results across all models, strategies and datasets discussed in Section 5. In the
following paragraphs we extend the discussion concerning binary classification settings.
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Figure 7: The number of problems solved by humans. The histogram illustrates the consistency
across multiple respondents solving the Bongard-RWR problems. Notably, half of the respondents
solved more than 40 problems, with none of them solving fewer than 23 ones. In the histogram, the
lower bounds of the bins are inclusive, and the upper bounds are exclusive, except for the last bin,
which is [55, 59].

Figure 8: Human performance on Bongard-RWR. As shown in the plot, the models struggled
with many problems that humans found relatively easy to solve. On the other hand, the models
were able to solve problem #87 that appeared to be relatively demanding for human solvers. In the
histogram, the lower bounds of the bins are inclusive, and the upper bounds are exclusive.
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Table 2: Evaluation results. The number of correct answers to the first 100 synthetic BPs, 100
selected BPs from Bongard HOI and Bongard-OpenWorld, and all 60 BPs from Bongard-RWR.
The best result for a given strategy is marked in bold, and the second best is underlined.

SYNTHETIC BPS
GPT-4 GPT-4 GEMINI CLAUDE INTERNVL2 LLAVA-1.6 PHI PIXTRAL

O TURBO 1.5 PRO 3.5 SONNET 8B MISTRAL 7B 3.5V 12B

GROUND-TRUTH 87 48 78 84 30 70 22 92
INCORRECT LABEL 79 89 70 74 78 24 79 27
IMAGES TO SIDES 72 56 69 75 32 33 4 57
DIRECT 17 6 7 13 0 0 0 1
DESCRIPTIVE 17 15 21 19 0 1 2 4
DESCRIPTIVE-ITER. 9 7 4 8 1 0 1 2
DESCRIPTIVE-DIRECT 22 13 20 22 1 0 1 5
CONTRASTIVE 10 8 17 15 0 0 0 1
CONTRASTIVE-ITER. 20 9 12 11 1 0 0 4
CONTRASTIVE-DIRECT 19 9 20 18 1 0 1 1

BONGARD HOI GPT-4 GPT-4 GEMINI CLAUDE INTERNVL2 LLAVA-1.6 PHI PIXTRAL
O TURBO 1.5 PRO 3.5 SONNET 8B MISTRAL 7B 3.5V 12B

GROUND-TRUTH 73 74 60 32 41 70 49 100
INCORRECT LABEL 100 100 96 100 90 32 67 33
IMAGES TO SIDES 99 92 95 99 13 0 7 86
DIRECT 35 22 23 5 12 5 1 28
DESCRIPTIVE 42 45 40 44 2 4 4 27
DESCRIPTIVE-ITER. 32 23 6 6 0 1 2 11
DESCRIPTIVE-DIRECT 45 40 30 29 7 3 7 25
CONTRASTIVE 18 5 15 13 2 1 2 7
CONTRASTIVE-ITER. 22 20 15 21 2 1 3 14
CONTRASTIVE-DIRECT 25 12 27 15 7 0 1 7

BONGARD-OPENWORLD
GPT-4 GPT-4 GEMINI CLAUDE INTERNVL2 LLAVA-1.6 PHI PIXTRAL

O TURBO 1.5 PRO 3.5 SONNET 8B MISTRAL 7B 3.5V 12B

GROUND-TRUTH 80 52 59 37 49 72 31 99
INCORRECT LABEL 100 100 98 99 86 44 83 29
IMAGES TO SIDES 94 86 96 96 19 2 9 87
DIRECT 40 21 13 10 11 12 7 33
DESCRIPTIVE 46 57 32 53 18 16 12 34
DESCRIPTIVE-ITER. 31 24 6 13 4 2 2 11
DESCRIPTIVE-DIRECT 52 52 25 46 24 8 9 38
CONTRASTIVE 19 12 11 21 7 1 5 14
CONTRASTIVE-ITER. 25 21 8 34 5 1 3 18
CONTRASTIVE-DIRECT 35 25 17 22 12 4 4 27

BONGARD-RWR GPT-4 GPT-4 GEMINI CLAUDE INTERNVL2 LLAVA-1.6 PHI PIXTRAL
O TURBO 1.5 PRO 3.5 SONNET 8B MISTRAL 7B 3.5V 12B

GROUND-TRUTH 22 5 26 10 13 38 21 58
INCORRECT LABEL 59 60 52 60 53 21 47 9
IMAGES TO SIDES 15 17 19 24 16 0 1 26
DIRECT 5 1 3 1 0 0 0 1
DESCRIPTIVE 8 5 7 13 0 0 0 1
DESCRIPTIVE-ITER. 4 1 0 3 0 0 0 0
DESCRIPTIVE-DIRECT 5 7 5 6 0 0 0 2
CONTRASTIVE 2 0 1 2 0 0 0 0
CONTRASTIVE-ITER. 5 3 3 4 0 0 0 1
CONTRASTIVE-DIRECT 4 1 5 4 0 0 0 0

Binary classification (Ground-truth). We assessed whether MLLMs can determine if a given con-
cept matches a problem instance. On synthetic BPs, 3 proprietary (GPT-4o, Gemini 1.5 Pro, Claude
3.5 Sonnet) and 2 open-access (LLaVA-1.6 Mistral-7B, Pixtral 12B) models outperform a random
classifier by a notable margin. On Bongard HOI, 3 proprietary (GPT-4o, GPT-4 Turbo, Gemini 1.5
Pro) and the same 2 open-access models also surpass random guessing. Notably, Pixtral 12B at-
tained a perfect score on this dataset. On Bongard-OpenWorld GPT-4o, Gemini 1.5 Pro, LLaVA-1.6
Mistral-7B, and Pixtral 12B achieve reasonable results. Again, the leading model is Pixtral 12B with
the outstanding 99% outcome. Model accuracy drops significantly on Bongard-RWR, where only
LLaVa-1.6 Mistral-7B and Pixtral 12B outperform a random classifier. This suggests that correctly
identifying concepts expressed in Bongard-RWR likely requires more advanced reasoning abilities,
even in the relatively simpler binary classification setting.

Binary classification (Incorrect Label). Rejecting a possible solution is intuitively simpler than
confirming its correctness, as it boils down to finding at least one image that doesn’t match the pro-
vided concept. Accordingly, 6 models perform better in the Incorrect Label setting than in Ground-
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truth, with 7 perfect scores, 2 of them on Bongard-RWR. The exceptions are LLaVA-1.6 Mistral-7B,
and Pixtral 12B which are below a random guessing threshold for all four datasets, despite being
above this threshold in Ground-truth. This suggests that their strong performance in the Ground-
truth setting may be due to a potential bias toward agreeing with the provided concept.

Binary classification (Images to Sides). We also evaluate the models’ ability to correctly assign two
test images to the appropriate sides of the problem. A problem is considered solved if both images
are correctly assigned to the respective sides. Proprietary models perform well in this task across
synthetic BPs, Bongard HOI and Bongard-OpenWorld. Conversely, among open-access models,
only Pixtral 12B consistently achieves strong results. Notably, on Bongard-RWR Pixtral 12B solves
26/60 problems, outperforming all proprietary models, however, all models perform below the level
of random guessing. The remaining open-access models show poor results in this setting. Notably,
weak results of LLaVA-1.6 Mistral-7B on real-world datasets are primarily attributed to its incorrect
generation of JSON output required to format the result.

D THE IMPACT OF MODEL SCALING ON ABSTRACT REASONING ABILITIES

Performance of MLLMs on downstream tasks is often correlated with the number of model param-
eters and the size of training datasets (Kaplan et al., 2020; Hoffmann et al., 2022). To investigate
the relationship between model scaling and abstract reasoning performance, we conducted experi-
ments with a diverse set of model sizes across proprietary and open-access MLLMs. To this end,
we evaluated both smaller and larger variants of the selected models. Specifically, we considered
GPT-4o mini and Gemini 1.5 Flash as smaller counterparts to GPT-4o and Gemini 1.5 Pro, resp.
Also, we tested multiple configurations of InternVL2 and LLaVA-NeXT model families includ-
ing InternVL2-8B, InternVL2-26B, InternVL2-40B, InternVL2-Llama3-76B, LLaVA-v1.6 Vicuna-
13B, LLaVA-v1.6 34B, LLaVA-NeXT 72B, and LLaVA-NeXT 110B. We conducted experiments
on all 4 datasets using two solution strategies, including Direct, which is an intuitive baseline, and
Descriptive, the most effective strategy identified in the main experiments.

The results are presented in Fig. 9. In general, larger proprietary models outperformed their smaller
counterparts in 10 out of 16 cases. However, smaller variants sometimes performed better than
larger ones. For instance, on Bongard-HOI with the Direct strategy, GPT-4o mini and Gemini 1.5
Flash surpassed their larger alternatives. This suggests that smaller models can achieve competitive
performance in abstract reasoning.

For open-access models, performance consistently improved with model size. For example, the
results of InternVL2 on Bongard HOI increased from 12 to 25 and from 2 to 29 for Direct and De-
scriptive strategies, resp. Similarly, on Bongard HOI, the performance of LLaVA-NeXT improved
from 5 to 27 and from 4 to 27 for the two strategies. Analogous improvements were observed on
Bongard-OpenWorld, highlighting the potential benefits of model scaling.

Despite these significant improvements in open-access models, proprietary models consistently out-
performed them. In particular, GPT-4o mini achieved worse results than the best open-access model
in a single case only, i.e., Bongard HOI using the Descriptive strategy (26 vs. 29). Although model
scaling demonstrates its potential to enhance abstract reasoning, as shown by the open-access mod-
els, the relatively strong performance of GPT-4o mini shows that a large parameter count is not
necessarily critical for excelling in abstract reasoning tasks. Consequently, these results suggest
that simply scaling model size may be insufficient to achieve stronger abstract reasoning capabili-
ties and future efforts should explicitly address this aspect, e.g., by incorporating AVR datasets into
model training.

E EVALUATION OF MLLMS ANSWERS

Preliminary experiments revealed that proprietary MLLMs are generally much more effective in
solving Bongard Problems than open, publicly-available MLLMs. Therefore, all efforts devoted to
optimizing the final scores, in particular tuning the evaluation prompt were performed using these 4
commercial MLLMs.

Open-ended characteristics of BPs stemming from a textual form of an answer, and the number of
considered models (8), generation strategies (7), datasets (4), and BP instances per dataset (60 in
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Figure 9: The impact of model scaling on abstract reasoning abilities. We considered a diverse
set of model sizes across proprietary and open-access MLLMs. The experiments cover all 4 datasets
using the Direct and Descriptive solution strategies.

Bongard-RWR and 100 in the remaining cases) require the use of an automated NLP-based evalua-
tion of the model’s answers. For this task we employed MLLMs with a specially designed prompt.
The initial version of the evaluation prompt (see Prompt 3) was intentionally relatively simple –
a model received an answer to be evaluated as well as the ground-truth labels, and was requested
to output a binary yes/no answer. This prompt formulation turned out to be too simplistic. While
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the level of agreement between all models was relatively high (87% of responses were rated unani-
mously by all models), as illustrated in Fig. 10a, manual inspection of the selected answers revealed
that the assessment was generally too optimistic and relatively many evaluations wrongly pointed to
correct answers.

(a) Results with the initial evaluation prompt. (b) Results with the final evaluation prompt.

Figure 10: Models’ agreement on the evaluation of BPs. The assessed solutions were generated
by GPT-4o with the Descriptive strategy. The numbers refer to the BP tasks from (Bongard, 1968).
Green indicates tasks unanimously evaluated as correctly solved by all models, while white indi-
cates unanimous incorrect evaluations. Other colors highlight tasks marked as correctly solved by
individual models.

Prompt 3: Initial prompt used in MLLM answer evaluation. We focused on its clarity and
simplicity.

You are a logic module designed to provide accurate answers. In a
Bongard Problem the objective is to spot the difference between the
contents of images located on the two opposite sides of the
problem. You are given correct labels of these sides and must
decide whether the answer provided by the user is correct and
matches with those labels. Answer with 'OK' or 'WRONG'.

↪→
↪→
↪→
↪→
↪→

LEFT SIDE LABEL:
<left_label>

RIGHT SIDE LABEL:
<right_label>

USER ANSWER:
<model_answer>

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

E.1 EVALUATION PROMPT OPTIMIZATION

Due to the above evaluation disagreement, we made an attempt to optimize the prompt based on the
GPT-4o solutions for the additional 20 BPs (#101 – #120) that were not used in the main experi-
ments. First, following the few-shot prompting technique, we expanded the prompt to include two
examples showing a possible logical difference between correct and incorrect answers. Furthermore,
we added a sentence which requested a strict logical compliance with the provided labels. However,
this refinement appeared to be too strong, as 2 (out of 4) models didn’t evaluate any of the solutions
as correct.

To impose some flexibility, we changed the word strictly to logically, but this resulted in an increased
rate of false-positive evaluations. Finally, we combined these two prompts, obtaining the outcome
closest to the manual (our human) evaluation. The final version of our evaluation prompt is listed
in Prompt 4. Additionally, we attempted to attach the image of the evaluated BP instance to each
version of our prompt, but this actually confused the models rather than improving their results, so
we ultimately abandoned this option and stuck with the fully text-based prompt.

Although the consistency of results regarded as the number of unanonimous assessments stayed at
the same level (87%) (see Fig. 10b), the number of answers rated as correct significantly decreased,
which was in accordance with our random manual verification.

Despite lowering the results variation, there were still BPs for which the assessment varied. There-
fore, we eventually decided to use hard voting to ensemble all models’ evaluations. We marked a
solution as correct if at least 2 of the 4 models evaluated it as correct. This approach brought better
results than the majority voting.

Prompt 4: The final version of the evaluation prompt. It is enriched with the few-shot prompt-
ing technique and imposes a logical compliance with provided labels.

You are a logic module designed to provide accurate answers.
In a Bongard Problem the objective is to spot the difference between

the contents of images located on the two opposite sides of the
problem.

↪→
↪→
You are given correct labels of these sides and must decide whether the

answer provided by the user is correct and matches with those
labels. Answer with 'OK' or 'WRONG'.

↪→
↪→
The user's answer has to strictly logically match the labels, as shown

in examples.↪→

FIRST EXAMPLE:
LEFT SIDE LABEL: All shapes are small.
RIGHT SIDE LABEL: All shapes are big.
USER ANSWER: On the left side, one of the shapes is small. On the right

side, all of the shapes are big.↪→
EVALUATION: WRONG
END OF FIRST EXAMPLE.

SECOND EXAMPLE:
LEFT SIDE LABEL: All shapes are small.
RIGHT SIDE LABEL: All shapes are big.
USER ANSWER: On the left side, all of the shapes are small. On the

right side, all of the shapes are big.↪→
EVALUATION: OK
END OF SECOND EXAMPLE.

LEFT SIDE LABEL:
<left_label>

RIGHT SIDE LABEL:
<right_label>

USER ANSWER:
<model_answer>
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Figure 11: Synthetic BP #85. This is the only BP instance for which the voting-based evaluation of
MLLM solutions differed from our manual evaluation. Left: Three parts. Right: Five parts. GPT-4o
answer: Left: All images are composed of exactly three lines. Right: All images are composed of
more than three lines. Voting marked it as incorrect, whereas in manual evaluation it was marked as
correct. The first difference lies in the meaning of the words lines and parts, which, in this visual
context, seems identical. The second difference stems from the number of the parts on the right side
of the problem. The answer seems to be correct, as obviously, five is more than three. However, one
could argue that the answer is incomplete, as each of the squares on the right side clearly depicts
exactly five parts.

E.2 MANUAL VERIFICATION OF THE EVALUATION PERFORMANCE OF MLLMS

In order to finally assess the efficacy of Prompt 4 we manually checked the models’ evaluation
performance on the 100 BPs solved by GPT-4o using the Descriptive strategy. As shown in Table 2
in the main paper, all proprietary models achieved better scores on incorrect labels classification.
For this reason, we decided to manually verify only the problems evaluated as correct by at least one
MLLM, assuming that those incorrect are generally evaluated properly. The comparison between
the evaluation performance of the initial and final prompts and our manual evaluation is presented
in Table 3. All models denotes evaluations where a solution is marked as correct only if all models
evaluate it as correct. Similarly, any model refers to the cases where a solution is marked as correct
if at least one model evaluates it as correct. Voting refers to the hard-voting scheme described in
section E.1. It is important to observe that the chosen voting evaluation method differed from the
manual evaluation in only one specific problem, which is depicted in Fig. 11.

In addition, we checked the performance of our enhanced evaluation prompt on 20 new, not used
in other experiments, manually evaluated Bongard-OpenWorld problems solved by GPT-4o using
the Descriptive strategy. Again, the use of Prompt 4 visibly increased the consensus with manual
evaluation (see Table 4). The difference between our manual evaluation and the voting scheme
occurred only in 2 problem solutions whose correctness is disputable (see Fig. 12).

Obviously, the choice of examples shown in the prompt may additionally impact the evaluation
performance. Nevertheless, the finally proposed evaluation prompt seems to well suit both domains:
synthetic and real-world, and should potentially be effective in other similar datasets and solving
strategies.

INITIAL PROMPT FINAL PROMPT

ALL MODELS ANY MODEL VOTING ALL MODELS ANY MODEL VOTING

0.93 0.9 0.94 0.9 0.96 0.99

Table 3: Consensus with manual evaluation on synthetic BPs. The percentage of the solutions
evaluated the same as in our manual evaluation in BP instances #1 −#100 (Bongard, 1970). The
assessed solutions were obtained by GPT-4o using the Descriptive prompting strategy.
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INITIAL PROMPT FINAL PROMPT

ALL MODELS ANY MODEL VOTING ALL MODELS ANY MODEL VOTING

0.75 0.7 0.7 0.65 0.85 0.9

Table 4: Consensus with manual evaluation on Bongard-OpenWorld. The percentage of the
solutions evaluated the same as in our manual evaluation in the additional 20 Bongard-OpenWorld
instances #101 − #120 (Wu et al., 2024), not used in the main experiment. The solutions were
obtained by GPT-4o using the Descriptive prompting strategy.

(a) Left: Underground tunnels beneath the city.
Right: NOT Underground tunnels beneath the city.
GPT-4o solution: Left: All images depict scenes that
are primarily indoors or underground. Right: All im-
ages depict scenes that are primarily outdoors. We
evaluated it as correct, while the voting marked it
as incorrect. The difference arises from how the left
concept is perceived. Although the images on the left
depict an underground setting, they do not appear to
represent an indoor scene. Nevertheless, one of the
statements is still true.

(b) Left: A woman wearing a white wedding dress.
Right: NOT A woman wearing a white wedding
dress. GPT-4o solution: Left: All images feature
women in white wedding dresses or wedding-related
scenes. Right: All images feature women in non-
wedding attire, wearing dresses or suits of various
colors other than white. We evaluated it as incorrect,
while the voting marked it as correct. The difference
stems from a small detail in the right concept. One
of the images on the right depicts a woman in a white
suit, which conflicts with the model’s answer.

Figure 12: The only two Bongard-OpenWorld problems (out of the selected 20) for which the
voting evaluation differed from our manual evaluation. The correctness of GPT-4o’s solutions
to these problems is disputable.

F BONGARD-RWR DATASET

Bongard-RWR dataset developed in this work is attached in the technical appendix and will also
be released for the reserach community under the MIT license. The dataset generation algorithm is
presented in Algorithm 1 using notation introduced in Section 4.1.

Furthermore, Fig. 14 provides additional examples of the proposed Bongard-RWR dataset. Each
subfigure presents a comparison between the synthetic Bongard problem and its respective real-
world translation in Bongard-RWR. Examples 14a and 14b were translated automatically, whereas
14c and 14d were constructed fully manually, including building an appropriate scene and taking a
picture. Additionally, Fig. 13 shows a particular approach taken when translating a given synthetic
BP to its Bongard-RWR counterpart (problems not translated and those rejected after translation are
combined into one category).

G COVERAGE OF BONGARD-RWR INSTANCES

Even though the final results of individual models and strategies solving Bongard-RWR are some-
what unsatisfactory, especially in the case of open language response generation, it is worth to
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Algorithm 1 The Bongard-RWR dataset generation.

Input: A set of synthetic concepts Y
Output: A set of generated instancesRWR

1: M ← 15, N ← 10, T ← 3
2:
3: for yX ∈ Y do
4: DX ← GenerateTranslations(yX , N )
5: IX ← ∅, P ← ∅
6:
7: for DX

i ∈ DX do
8: for m← 1 to M do
9: for S ∈ {L,R} do

10: I ← DownloadImage(DXS
i , m)

11: if I is accepted by model then
12: IXS

i ← IXS
i ∪ {I}

13: end if
14: end for
15:
16: if |IXL

i | ≥ 2 and |IXR
i | ≥ 2 then

17: P ← P ∪ {i}
18: break
19: end if
20: end for
21:
22: if |P | ≥ T then
23: Break
24: end if
25: end for
26:
27: LX ← ∅, RX ← ∅
28: if |P | ≥ T then
29: for k ← 1 to 6 do
30: p← P [k mod T ]
31: j ← k ÷ T
32: for S ∈ {L,R} do
33: SX ← SX ∪ {IXS

p (j)}
34: end for
35: end for
36:
37: RWRX ← {LX ,RX}
38: RWR← RWR∪ {RWRX}
39: end if
40: end for

examine the degree of overlap of correct answers across the tested models. On the one hand, the
results of ground-truth classification and model’s disagreement on the solution evaluation clearly
confirm inability of any single model to solving all problems from the Bongard-RWR datatset. On
the other hand, it is likely that the overlap is not complete, and it is posible to expand the solution
coverage by appropriate mixture-of-experts approach. This is indeed the case in our experiments, as
illustrated in Figures 15 - 22. While single proprietary MLLMs solved between 9 and 14 instances,
the number of instances solved by any MLLM equaled 23. We leave exploration of this path for
future research.
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Figure 13: The structure of the Bongard-RWR dataset. Each color denotes the genesis of the
translation of the respective problem. Problems not translated and those rejected after translation
are combined into one category. Red color outlines denote problems which were solved by any
model using any strategy. There is no visible correlation between the set of solved problem and the
methods used for their generation.

H COMPARISON OF SYNTHETIC BONGARD VS. BONGARD-RWR RESULTS

Our research shows that all of the tested models have difficulty solving synthetic concepts when
applied to real-world images. Comparing the results for both datasets (see Figures 16 and 22) we
identified some discrepancies. Four problems that remained unsolved in the synthetic BPs were
successfully solved in the real-world domain of the Bongard-RWR dataset: #56, #87, #88, and #98.
However, three of these problems differ slightly from their synthetic counterparts. The images in
#56 from Bongard-RWR feature a variety of colors instead of the usual black-and-white figures.
Furthermore, in real-world version of problem #87 more images feature disjoint elements instead of
multi-part objects, which may have nudged the model toward the correct answer. Additionally, in
problem #98, the figures are shown against a hatched texture, which was not accounted for in the
real-world translation.

Conversely, 22 problems that were solved in the synthetic BPs were not solved in the Bongard-
RWR dataset. In most cases, the models focused on general associations that did not apply to all
the images. For example, the concept presented in problem #3 is: ”LEFT: Outline figures, RIGHT:
Solid figures.” Claude 3.5 Sonnet, using the Descriptive strategy, responded: ”LEFT: focuses on
practical, everyday objects or scenes, RIGHT: emphasizes aesthetic, artistic, or decorative elements
that serve more for visual appeal than utility”. Nevertheless, both sides feature a red coffee cup
with a saucer, which matches both generated descriptions. The key difference lies in the color of the
saucer’s rim, which determines whether it should be considered as an outline or a solid figure.
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I MLLM PROMPTS

I.1 PROMPTS FOR BONGARD-RWR GENERATION

Prompt 5 was used to select those images that correctly represent given concept translation. In
addition to the left and right concepts, we also provided prompts briefly explaining the context that
the image should match. These prompts were generated during the translation stage of our algorithm
(see the fourth line in Algorithm 1).

Prompt 5: Prompt used for the selection of proper images for a translated concept.

You translated a concept comparison from geometric domain to the
real-world domain as follows:↪→

Geometric domain: <left_geometric_concept> vs <right_geometric_concept>
Real world domain:
{

"left": {
"concept": <left_concept>,
"prompt": <left_concept_description>

},
"right": {

"concept": <right_concept>,
"prompt": <right_concept_description>

}
}

Now, you need to check if the queried image matches your translation
and provides enough information to distinguish it from the other
concept. Don't focus too much on the prompt. It's just a hint for
you to understand the concept better.

↪→
↪→
↪→
Provided image represents <side_concept>

Give your answer in the following format:
EVALUATION: OK
EXPLANATION: <here you can provide additional information>
or
EVALUATION: REJECTED
EXPLANATION: <here you can provide additional information>

I.2 PROMPT DESCRIBING THE BONGARD PROBLEM

Prompt 6 describing the BP task has been placed at the beginning of each solving strategy introduced
in Section 3.1.

Prompt 6: Prompt explaining Bongard problems to an MLLM.

A Bongard Problem is composed of left and right sides separated by a
line. Each side contains six images. All images belonging to one
side present a common concept, which is lacking in all images from
the other side. The goal is to describe the rule that fits all
images on the left side, but none on the right, and, conversely,
the rule that fits all images on the right side, but none on the
left. The description of the rule should be simple and concise.

↪→
↪→
↪→
↪→
↪→
↪→
Example 1: All shapes on left are small. All shapes on right are big.
Example 2: The left side contains circles. The right side contains

triangles.↪→

I.3 PROMPTS FOR CLASSIFICATION STRATEGIES

Prompt 8 was used to assess solution correctness (see Section 3.2). Prompt 7 was used to assign
images to sides (see Section 3.3).

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Prompt 7: Prompt used for images to side classification (see Figure 3c). Two examples were
provided to not bias the results of the model.

You are a vision understanding module designed to provide short, clear
and accurate answers. Your goal is to classify two test images to
the corresponding side of the Bongard Problem, LEFT or RIGHT. Each
image belongs to exactly one class. The test images belong to
different classes.

↪→
↪→
↪→
↪→

The images are always provided correctly. Respond only to the specific
request. Respond in json using the following format.↪→

FIRST EXAMPLE:
Left images: <small shapes>
Right images: <big shapes>

First test image: <small shape>
Second test image: <big shape>

Response:
{

"first": {
"explanation": "The test image shows a small shape, similarly

as all images on the left side. Conversely, the images on
the right side feature big shapes.",

↪→
↪→
"concept": "small vs big",
"answer": "LEFT"

},
"second": {

"explanation": "The test image shows a big shape, similarly as
all images on right. The images on left, on the other hand,
feature small shapes.",

↪→
↪→
"concept": "small vs big",
"answer": "RIGHT"

}
}
END OF FIRST EXAMPLE

SECOND EXAMPLE:
Left images: <circles>
Right images: <triangles>

First test image: <triangle>
Second test image: <circle>

Response:
{

"first": {
"explanation": "The test image shows a triangle, which matches

all images on right. In contrast, the left side images
feature circles.",

↪→
↪→
"concept": "circles vs triangles",
"answer": "RIGHT"

},
"second": {

"explanation": "The test image shows a circle, which matches
all images on left. Conversely, the right side images
feature triangles.",

↪→
↪→
"concept": "circles vs triangles",
"answer": "LEFT"

}
}
END OF SECOND EXAMPLE
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Prompt 8: Prompt used for the solution correctness assessment (see Figure 3b).

You are a vision understanding module designed to provide short, clear
and accurate answers. Your goal is to evaluate the correctness of
the provided answer to the given Bongard Problem. All images are
provided correctly. Do not explain the answer, just evaluate it.
Respond 'OK' if the answer is correct, otherwise respond 'WRONG'.

↪→
↪→
↪→
↪→

User answer: <user_answer>

I.4 PROMPTS FOR NATURAL LANGUAGE ANSWER GENERATION STRATEGIES

Prompts 9–16 were used for natural language answer generation (see Section 3.1).

Prompt 9: Prompt used for the Direct strategy. (see Figure 2a).

You are a vision understanding module designed to provide short, clear
and accurate answers. Your goal is to solve the provided Bongard
Problem. What is the difference between the two sides of the
problem?

↪→
↪→
↪→

Prompt 10: Prompt used to obtain the image descriptions in the Descriptive strategy (see Fig-
ure 2b).

The provided image is a part of an abstract visual reasoning problem.
Describe all crucial properties of the image. Your description
should be as concise as possible. Focus on the most important
details. The image is provided correctly. Respond only with
descriptions.

↪→
↪→
↪→
↪→

Prompt 11: Prompt used for the Descriptive and Descriptive-direct strategies (see Figure 2b).

You are a vision understanding module designed to provide short, clear
and accurate answers. Your goal is to solve the provided Bongard
Problem using descriptions of its images.

↪→
↪→

LEFT IMAGES:
<left_descriptions>

RIGHT IMAGES:
<right_descriptions>

What is the difference between the two sides of the problem?

Prompt 12: Prompt used to obtain the image descriptions in the Descriptive-iterative strategy
(see Figure 2c). After the last image, we used the prompt: “That was the last image. Now
provide your final answer.”

You'll receive a sequence of images that are a part of a single side of
a Bongard Problem. The images will be provided one by one. Your
goal is to find a common concept presented in all images. Your
description should be as concise as possible. Focus on the most
important details. Try to enhance the description of the concept
after each image.

↪→
↪→
↪→
↪→
↪→

The image is always provided correctly. Respond only to the specific
request. The first image will be provided in the next message.↪→
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Prompt 13: Prompt used for the Descriptive-iterative strategy (see Figure 2c).

You are a vision understanding module designed to provide short, clear
and accurate answers. Your goal is to solve the provided Bongard
Problem using descriptions of two sides of the problem.

↪→
↪→

LEFT SIDE DESCRIPTION:
<left_description>

RIGHT SIDE DESCRIPTION:
<right_description>

What is the difference between the two sides of the problem?

Prompt 14: Prompt used to obtain the comparison between the left and right image in the Con-
trastive strategy (see Figure 2d). After the last image, we used the prompt: “That was the last
image. Now provide your final answer.”

You are given two images extracted from the left and right side of a
Bongard Problem, respectively. Your goal is to compare the images.
Your comparison should be as concise as possible.

↪→
↪→

Prompt 15: Prompt used for the Contrastive and Contrastive-direct strategies (see Figure 2d).

You are a vision understanding module designed to provide short, clear
and accurate answers. Your goal is to solve the provided Bongard
Problem using comparisons between pairs of images. Each pair
contains one image from the left and one from the right side of the
problem.

↪→
↪→
↪→
↪→

COMPARISONS:
<comparisons>

What is the difference between the two sides of the problem?

Prompt 16: Prompt used for the Contrastive-iterative strategy (see Figure 2e). After the last pair
of images, we used the prompt: “It was the last pair of images. What is the difference between
the two sides of the problem?”

You are a vision understanding module designed to provide short, clear
and accurate answers. Your goal is to solve the provided Bongard
Problem. You'll receive a sequence of image pairs. Each pair
contains one image from the left and one from the right side of the
problem. In each step compare the two images and refine the
definitions of concepts that describe left and right sides of the
problem. Your description should be as concise as possible. Focus
on the most important details. The first pair will be provided in
the next message.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
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(a) Synthetic BP #8 with its automatically translated Bongard-RWR version. Left: Ends of the curve are far
apart. Right: Ends of the curve are close together.

(b) Synthetic BP #10 with its automatically translated Bongard-RWR version. Left: Triangles. Right: Quad-
rangles.

(c) Synthetic BP #41 with it manually constructed Bongard-RWR version. Left: Outline circles on one straight
line. Right: Outline circles not on one straight line.

(d) Synthetic BP #47 with its manually constructed Bongard-RWR version. Left: Triangle on top of the circle.
Right: Circle on top of the triangle.

Figure 14: Additional examples of Bongard-RWR instances.
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Figure 15: Overall result of each strategy on synthethic BPs. Colormaps depict all problems
solved by any tested model using the respective prompting strategy. The right figure aggregates
strategies into corresponding groups for better coverage exposure.

Figure 16: Final summary of all experiments on the synthetic Bongard Problems dataset. The
colormap aggregates all problems solved by any tested model using any generation prompting strat-
egy. Overall, the models collectively managed to solve 53 problems.
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Figure 17: Overall result of each strategy on Bongard HOI. Colormaps depict all problems solved
by any tested model using the respective prompting strategy. The right figure aggregates strategies
into corresponding groups for better coverage exposure.

Figure 18: Final summary of all experiments on the Bongard HOI dataset. The colormap ag-
gregates all problems solved by any tested model using any generation prompting strategy. Overall,
the models collectively managed to solve 88 problems.
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Figure 19: Overall result of each strategy on Bongard-OpenWorld. Colormaps depict all prob-
lems solved by any tested model using the respective prompting strategy. The right figure aggregates
strategies into corresponding groups for better coverage exposure.

Figure 20: Final summary of all experiments on the Bongard-OpenWorld dataset. The col-
ormap aggregates all problems solved by any tested model using any generation prompting strategy.
Overall, the models collectively managed to solve 93 problems.
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Figure 21: Overall result of each strategy on Bongard-RWR. Colormaps depict all problems
solved by any tested model using the respective prompting strategy. The right figure aggregates
strategies into corresponding groups for better coverage exposure.

Figure 22: Final summary of all experiments on the Bongard-RWR dataset. The colormap ag-
gregates all problems solved by any tested model using any generation prompting strategy. Overall,
the models collectively managed to solve 22 problems.
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(a) Model’s answer: ”Left: All shapes are
filled. Right: At least one shape is unfilled”.
Evaluated as incorrect.

(b) Model’s answer: ”Left: Images are monochromatic (contain-
ing only shades of a single color). Right: All images contain at
least one hollow (unfilled) shape”. Evaluated as correct.

Figure 23: Synthetic BP #56 with its automatically translated Bongard-RWR version. Correct an-
swer: ”Left: All figures of the same color. Right: Figures of different colors”. Provided answers
belong to Gemini 1.5 Pro using the Contrastive-iterative strategy, as it was the only combination that
solved this Bongard-RWR instance correctly.

(a) Model’s answer: ”Left: All shapes are
composed of straight lines that form only
acute or right angles. Right: All shapes con-
tain at least one instance of obtuse angles
or curves (e.g., pentagon, ”H” shape, radial
pattern)”. Evaluated as incorrect.

(b) Model’s answer: ”Left: All images contain exactly four of
something: four orange slices, Four cake slices, four lobes of
the four-leaf clover, four pineapples, four fingers with painted
nails (thumb not visible), four visible elements (key, keychain,
watch/compass, leather strap). Right: Images do not contain ex-
actly four of any element: single four-leaf clover, multiple keys
on a ring, single street lamp with multiple lights, single lady-
bug, multiple oranges (more than four), stack of five cookies”.
Evaluated as correct.

Figure 24: Synthetic BP #87 with its manually translated Bongard-RWR version. Correct answer:
”Left: Four parts. Right: Five parts”. Provided answers belong to Claude 3.5 Sonnet using the De-
scriptive strategy, as it was the only combination that solved this Bongard-RWR instance correctly.
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(a) Model’s answer: ”Left: Each image contains an
even number of shapes. Right: Each image contains
an odd number of shapes”. Evaluated as incorrect.

(b) Model’s answer: ”Left: Contains groups of three
items. Right: Contains groups of five items”. Evalu-
ated as correct.

Figure 25: Synthetic BP #88 with its manually translated Bongard-RWR version. Correct answer:
”Left: Three parts. Right: Five parts”. Provided answers belong to GPT-4o using the Direct strategy.
Overall this problem was solved by three models and four strategies.

(a) Model’s answer: ”Left: All images contain ge-
ometric shapes or patterns that are oriented or have
components that predominantly point to the right.
Right: All images contain geometric shapes or pat-
terns that are either static (not pointing in any specific
direction) or have components that do not predomi-
nantly point to the right”. Evaluated as incorrect.

(b) Model’s answer: ”Left: All images on the left side
feature objects that are primarily triangular in shape.
This includes the slices of cake and pizza, which are
cut into triangular pieces, and the sailboats, which
have triangular sails. Right: All images on the right
side feature objects or scenes that are primarily rect-
angular or square in shape. This includes the modern
buildings, the sandwich, the grid-like urban area, the
arrangement of kites, and the plate of toasted bread,
all of which emphasize rectangular or square forms”.
Evaluated as correct.

Figure 26: Synthetic BP #98 with its manually corrected Bongard-RWR version. Correct an-
swer: ”Left: Three parts. Right: Five parts”. Provided answers belong to GPT-4 Turbo using the
Descriptive-direct strategy. Overall this problem was solved by two models using two different
strategies.
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