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Abstract
Autoregressive language models are the currently
dominant paradigm for text generation, but they
have some fundamental limitations that cannot
be remedied by scale—for example inherently
sequential and unidirectional generation. While
alternate classes of models have been explored,
we have limited mathematical understanding of
their fundamental power and limitations. In this
paper we focus on Generative Masked Language
Models (GMLMs), a non-autoregressive paradigm
in which we train a model to fit conditional proba-
bilities of the data distribution via masking, which
are subsequently used as inputs to a Markov Chain
to draw samples from the model. These models
empirically strike a promising speed-quality trade-
off as each step can be typically parallelized by
decoding the entire sequence in parallel. We de-
velop a mathematical framework for analyzing
and improving such models which sheds light
on questions of sample complexity and inference
speed and quality. Empirically, we adapt the T5
model for iteratively-refined parallel decoding,
achieving 2-3x speedup in machine translation
with minimal sacrifice in quality compared with
autoregressive models. We run careful ablation
experiments to give recommendations on key de-
sign choices, and make fine-grained observations
on the common error modes in connection with
our theory. Our mathematical analyses and empir-
ical observations characterize both potentials and
limitations of this approach, and can be applied
to future works on improving understanding and
performance of GMLMs.
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1. Introduction
The current dominant approach to language modeling is
autoregressive (AR): to generate a sequence of tokens, the
language model starts by predicting the leftmost token, and
then proceeds from left to right, each step predicting the
next token based on everything on its left (Raffel et al., 2020;
Brown et al., 2020; Touvron et al., 2023). AR models are
not without limitations:

1. Lack of parallelism: To generate a sequence of N
tokens, AR language models need N sequential decod-
ing steps. Each step consists of a forward pass of the
decoder component. When N is large, N sequential
decoding steps incur high latency.

2. Quality: When predicting each token, the model cannot
access its right hand side context, and has no natural
way to revise earlier predictions on the left. This in-
tuitive limitation was more formally explored in prior
theoretical works (Li & Risteski, 2021; Lin et al., 2021;
Bachmann & Nagarajan, 2024).

One promising alternative is based on Generative Masked
Language Models (GMLMs). They are trained to fit condi-
tional probabilities for parts of the sequence (by applying a
mask), conditioned on the rest. To produce samples, these
conditionals are used as oracles for running Markov Chain,
e.g. a Gibbs sampler (Wang & Cho, 2019; Goyal et al.,
2022). Alternatively, we can think of these steps as an itera-
tive refinement process, typically starting with pure noise
(i.e. all tokens are masked or randomized). One can even
fit conditional probabilities for noised versions of the input
distribution, and use them as inputs to a denoiser to get cer-
tain types of discrete diffusion models (Austin et al., 2021).
In GMLMs, typically one step of the Markov Chain is oper-
ationalized by a Transformer that generates the sequence in
parallel (i.e. parallel decoding (Ghazvininejad et al., 2019;
Gu & Kong, 2021; Savinov et al., 2022) ). Hence, if the
total number of steps is small, the latency is low. 1

1Our codes are released at https://github.com/
google-research/google-research/tree/
master/padir
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However, none of these approaches robustly surpass autore-
gressive models in both speed and quality for a wider range
of language generation tasks beyond machine translation.
Thus, the following questions naturally arise:

(Q1) GMLMs are trained to learn conditional probabilities.
When does it also imply learning the joint probability?

(Q2) What properties of the data distribution and train-
ing/inference algorithm govern the quality of the
learned model and its generated samples?

(Q3) What are the best practices for training GMLMs, and
can we use theory to elucidate the design space of
losses, training and inference procedures?

Our contributions. Towards answering the questions
above, we introduce a theoretical framework to characterize
the potentials and limitations of GMLMs, for both training
and inference. Precisely,

• The asymptotic sample complexity for estimating
the parameters of a distribution via a broad class of
masked-prediction losses can be related to the mixing
time of a corresponding Markov Chain that can be
used to sample from the distribution (Section 2.2). In
particular, we prove that training with larger masks
always improves statistical efficiency (Theorem 1).

• We show finite-sample bounds that relate how well
the conditional distributions of the data distribution are
learned, to how well the joint distribution is learned
(Section 2.3) if we have some capacity control over the
distribution class being learned (e.g. covering number
bounds).

• Transformers are only able to represent decoding
steps that factorize over the coordinates—preventing
them from efficiently sampling even simple distribu-
tions with strong correlations between the coordinates
(Section 2.4).

We accompany these theoretical findings with an extensive
set of empirical investigations detailing important compo-
nents and common error modes. Precisely:

• Our experiments (Section 3) suggest the empirically
critical components include large masking ratio (c.f.
theory in Section 2.2), custom vocabulary, distillation
from AR models, and architecture improvements like
positional attention. 2

• GMLMs with parallel-decoding work well on machine
translation: in fact, even one single forward pass can

2The benefit of distillation was verified in Kim & Rush (2016); Gu
et al. (2018); Zhou et al. (2020); Gu & Kong (2021). Positional
attention was tested in Gu et al. (2018); Kreutzer et al. (2020).

often produce reasonable translations. This aligns with
our theoretical framework, as machine translation tasks
typically involve lower-entropy and less multi-modal
outputs, compared to other language generation tasks.

• Common error modes (“stuttering”) suggest limi-
tations for parallel-decoding GMLMs for modeling
strong dependencies (c.f. theory in Section 2.4), which
we empirically quantify (Section 3.4).

Jointly, our theoretical and empirical findings suggest syner-
gistically designing better Markov Chains that mix fast in
the presence of strong correlations in the target, and corre-
sponding losses that inherit good statistical behavior.

2. Theoretical framework
We develop a mathematical framework for reasoning about
the core ingredients for successfully training and using
GMLMs: the statistical complexity to learn the model, and
the speed of inference. We show that these two are sur-
prisingly closely related: namely, we understand both the
asymptotic and finite-sample statistical complexity through
functional inequalities (e.g. Poincaré, approximate ten-
sorization of entropy) corresponding to the Markov Chains
we would use at inference time—which in turn characterize
the mixing time of these chains. This picture closely mirrors
an emerging picture in the continuous case for score-based
(diffusion) models (Koehler et al., 2023; Qin & Risteski,
2023)—though with somewhat different proof techniques.

2.1. Setup and notation

The most classical way of fitting distributions from data
is maximum likelihood: that is, finding the choice of pa-
rameters that maximize the likelihood of the training data.
There are well-understood statistical reasons to do so: in the
asymptotic sense (as the number of sample grows), maxi-
mum likelihood is the most sample-efficient way to estimate
the distribution (Hájek, 1972). However, many families of
distributions are such that optimizing maximum likelihood
is computationally challenging. Thus, many alternate strate-
gies and losses to fit the parameters have been developed.

For continuous distributions, a common choice of loss is
the score matching loss, where instead of fitting the like-
lihood, we fit the gradient with respect to the input of the
log-pdf, namely ∇x log pθ(x). In certain cases, this can
provable computational benefits over maximum likelihood
(Pabbaraju et al., 2023). For discrete distributions, we can-
not take gradients with respect to the input: though a closely
related strategy is available — trying to match the condi-
tionals of subsets of variables. (This can be thought of as
“flipping” the coordinates in the subsets, while keeping the
remaining coordinates fixed.) Operationalizing this as a loss
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gives us the pseudolikelihood loss (Besag, 1975).

Variants of this strategy have been used in classical results
for learning Ising models (Ravikumar et al., 2010; Vuffray
et al., 2016). More recently, this strategy has been used in
conjuction with neural models to both learn useful features
in the guise of masked language modeling (MLM) (Devlin
et al., 2019), which can be also used to produce a generative
model (Wang & Cho, 2019; Goyal et al., 2022). The latter
is done by using the learned conditionals inside a Gibbs
sampler. However, when the conditionals are not consis-
tent, i.e. there is not a joint distribution that satisfies these
conditionals, Gibbs sampler may amplify errors. In general,
mathematical understanding about sampling from masked
language models is still lagging substantially behind.

Setup: Let Ω be a finite discrete set. Let pX denote
a distribution over a sequence of N variables X =
(X1, X2, · · · , XN ) ∈ ΩN =: X . 3 Furthermore, for
K ⊂ [N ], let XK denote the subsequence (Xi | i ∈ K),
and X−K denote the subsequence (Xi | i /∈ K).

We consider learning parameters θ parametrizing some dis-
tribution pθ over X , for θ ∈ Θ. The classical way of fitting
θ is to maximize the likelihood of the training data:
Definition 1 (MLE, (Van der Vaart, 2000)). Given i.i.d.
samples x1, . . . , xn ∼ pθ∗ , the maximum likelihood es-
timator is θ̂MLE = argmaxθ∈Θ Ê [log pθ(X)], where
Ê denotes the expectation over the samples. As n →
∞ and under suitable regularity conditions, we have
√
n
(
θ̂MLE − θ∗

)
→ N (0,ΓMLE), where ΓMLE := I−1

, I := CovX∼pθ∗ (∇θpθ(X))|θ=θ∗ is the Fisher informa-
tion matrix.

A classical result due to Hájek-Le Cam (for modern exposi-
tion see (Van der Vaart, 2000)) is that maximum likelihood
is the asymptotically most sample-efficient estimator among
all “sufficiently regular” estimators (Section 8.5 in Van der
Vaart (2000)) — so we will treat it as the “gold standard”
against which we will compare other estimators. The class
of estimators we will be focusing most is the a broad gener-
alization of the pseudo-likelihood estimator (Besag, 1975).
Definition 2 (Weighted pseudolikelihood). Consider a
partition of [N ], namely a collection of sets K :=
{K1, . . . ,K|K|} such that

⋃
i Ki = [N ], and a distribu-

tion pK : K → R+.

Given n i.i.d samples of sequences and masks:
{
(
X(i),K(i)

)
|X(i) ∼ pX ,K(i) ∼ pK}i∈[n], the weighted

maximum pseudolikelihood estimator (MPLE) is θ̂PL :=

argminθ
∑n

i=1 − log pθ(X
(i)

K(i) |X
(i)

−K(i)). The population
loss is 4 LPL(θ) := EX∼pX ,K∼pK [− log pθ(XK |X−K)].

3In language models, Ω is the set of tokens in the vocabulary.
4This is equivalent to minimizing the KL divergence of

As a special case, if K contains all subsets of a certain
size k and pK is uniform over K, we get the classical k-
pseudolikelihood estimator:

Definition 3 (k-pseudolikelihood (Huang & Ogata, 2002)).
Same as Definition 2 except that K := {K ⊆ [N ] | |K| =
k}, pK = Unif(K).

Remark 1. The distribution of X and K in the above loss is
independent. In Section 2.2.3 we will show that our results
readily generalize to losses in which the distribution of the
masks K can depend on the current X . We present the
independent case first for ease of presentation.

Informally, we predict the variables in positions K ∈ K,
conditioned on the remaining variables. The benefit is that
parametrizing conditionals over smaller subsets K is often
computationally cheaper. For instance, if pθ(x) is an undi-
rected graphical model, i.e. pθ(x) ∝ exp(

∑
C ϕC,θ(xC)),

where the sum is over all maximal cliques C of the graph
describing the distribution, the conditional distribution of
K only depends on its Markov blanket, which can be very
small for sparse graphs and small sets K. Thus, computing
the partition function corresponding to p(xK |x−K) takes
time exponential in this Markov blanket. By contrast, com-
puting the likelihood requires calculating the partition func-
tion of pθ(x), which takes time exponential in the dimen-
sion of X . In fact, for Ising models, the corresponding
loss is even convex 5. A similar tradeoff exists for masked
language models: fitting the conditionals for larger masks
would likely require a larger model, thus would be compu-
tationally more expensive.

2.2. Asymptotic sample efficiency via functional
inequalities

In this section, we will provide a framework for bounding
the asymptotic sample complexity of learning the parame-
ters θ of a discrete probability distribution by minimizing
a loss in a broad family of “masked prediction” objectives.
We will measure the quality of an estimator in terms of
parameter recovery. To make this formal, we first recall
that under mild technical conditions, the estimator will be
asymptotically normal:

Lemma 1 (Asymptotic normality (Van der Vaart,
2000)). Consider the weighted MPLE objective in Def-
inition 2, and let θ∗ ∈ argminθ LPL(θ). Un-
der mild regularity conditions (Lemma 11 in Ap-
pendix J), as n → ∞,

√
n(θ̂PL − θ∗)

d−→
N (0, (∇2

θLPL(θ
∗))−1Cov(∇θlPL(θ

∗))(∇2
θLPL(θ

∗))−1)

the ground-truth conditional distribution p(XK |X−K)
from the predicted conditional distribution pθ(XK |X−K):
EX∼pX ,K∼pK [DKL (p(·|X−K), pθ(·|X−K))]

5This fact is well known, but for completeness included in Ap-
pendix K
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If we know
√
n(θ̂PL − θ∗)

d−→ N (0,ΓPL), we can extract
bounds on the expected ℓ22 distance between θ̂n and θ∗.
Namely, from Markov’s inequality, (see e.g., Remark 4 in
Koehler et al. (2023)), for sufficiently large n, with proba-
bility at least 0.99 it holds that ∥θ̂PL − θ∗∥22 ≤ Tr(ΓPL)

n .

2.2.1. MASKING MORE IS (STATISTICALLY) BETTER

As a first application of our framework, we prove that
increasing the number of variables k we predict in k-
pseudolikelihood (Definition 3) strictly improves the sta-
tistical efficiency of the resulting estimator. Note, for larger
k, we expect the computational cost to optimize the corre-
sponding loss to be larger, and when k = N we just get
max likelihood. Thus, this naturally formalizes a computa-
tional/statistical tradeoff in choosing k.

Assumption 1 (Finite gradient and Hessian).
∀θ ∈ Θ,∀x ∈ X ,K ⊂ [N ], the norms of the
gradient ∥∇θ log pθ(xK |x−K)∥2 and the Hessian
∥∇2

θ log pθ(xK |x−K)∥F exist and are finite .

Assumption 2 (Realizability). The data distribution pX
satisfies: ∃θ∗ ∈ Θ such that pθ∗ = pX .

Theorem 1 (Masking more is (statistically) better). Let
Assumption 1 and Assumption 2 be satisfied, and let Γk

PL

denote the asymptotic variance of the k-MPLE estimator
(Definition 3). Then, we have:6 Γk+1

PL ⪯ Γk
PL

Remark 2. By monotonicity of trace, Thm 1 implies
Tr(Γk+1

PL ) ≤ Tr(Γk
PL). By the remarks after Lemma 1,

larger k implies a better asymptotic l2 bound for learning θ

since EX1:n,K1:n

[
∥θ̂kPL − θ∥22

]
→ Tr(Γk

PL)
n .

The main lemma needed for Theorem 1 is that the two ma-
trices in the asymptotic covariance of MPLE, ∇2

θLPL(θ
∗)

and CovX∼pX ,K∼pK(−∇θ log pθ(XK |X−K))|θ=θ∗ are ac-
tually equal. For MLE (namely, when k = N ) this is well-
known and called the information matrix equality. Proofs
of Lemma 2 and Theorem 1 are in Appendix A and Ap-
pendix B. We empirically verify Theorem 1 in Section 3.1.

Lemma 2 (Generalized information matrix equality). Un-
der Assumption 1 and Assumption 2, the weighted pseu-
dolikelihood loss (Definition 2) verifies: ∇2

θLPL(θ
∗) =

CovX∼pX ,K∼pK(−∇θ log pθ(XK |X−K))|θ=θ∗ .

2.2.2. STATISTICAL EFFICIENCY BOUNDS VIA MIXING
TIME BOUNDS

We could in general conceive of masking strategies where
certain subsets of variables get masked with different proba-
bilities. For instance, in language, nearby words will tend
to be more correlated; grammatical constraints will dictate

6The notation A ⪯ B means B −A is positive semidefinite.

the parts-of-speech that can occur in different positions. We
would then like to have theoretical guidance on what choices
of masking distributions are better. Remarkably, it turns out
that we can relate the statistical efficiency — in the sense
of E∥θ̂ − θ∗∥2 for the resulting estimator θ̂ — and the mix-
ing time of an appropriately chosen Markov Chain. In fact,
this is the Markov Chain that would be typically chosen at
inference time. Towards making this formal, we will need
several preliminary concepts and results for Markov chains.
Recall, a Markov chain on a state space Ω is described by
a (row-stochastic) transition matrix P . Moreover, we can
assign a natural bilinear form called the Dirichlet form:
Definition 4 (Dirichlet form). Let M be an ergodic,
reversible Markov chain with transition matrix P on
state space Ω. Let µ be its unique stationary dis-
tribution. ∀f, g : Ω → R the associated Dirich-
let form is defined as EP (f, g) := ⟨f, (I − P )g⟩µ =
1
2Σx,y∈Ωµ(x)P (x, y)(f(x)− f(y))(g(x)− g(y))

Mixing time of the Markov chain can be bounded in the χ2

sense by the gap between the 1st and 2nd eigenvalue of the
Laplacian matrix I − P , expressed as Poincaré inequality:
Definition 5 (Poincaré inequality). We say that a Markov
chain satisfies a Poincaré inequality with constant C if for
all f : Ω → R, we have EP (f, f) ≥ 1

CVarµ(f).

The Poincaré inequality implies exponential ergodicity of
the Markov chain in χ2-divergence, precisely χ2(pt, µ) ≤
e−2t/Cχ2(p0, µ), where µ is the stationary distribution of
the chain and pt is the distribution after running the Markov
process for time t, starting at p0. We will be particularly
interested in several generalizations of Gibbs sampling:
Definition 6 (Weighted block dynamics). Let K :=
{K1, . . . ,K|K|} be a collection of sets (or blocks) such
that

⋃
i Ki = [N ]. A block dynamics with blocks K is a

Markov chain that picks a block K in each step according
to some distribution pK : K → R+ 7 and then updates the
coordinates in K according to the conditional distribution
pX (XK |X−K).

The stationary distribution for the above Markov Chain is
pX . Caputo & Parisi (2021) also derived the Dirichlet form
(Definition 4) corresponding to this Markov chain:

E(f, g) := EK∼pKEX−K

[
CovXK |X−K

(f, g)
]
.

The crucial result we show is that the statistical efficiency of
the weighted MPLE (Definition 2) as captured by the asymp-
totic variance can be related to the Poincaré constant of
the corresponding weighted block dynamics (Definition 6).
Proof of Theorem 2 is in Appendix C.4.
Theorem 2 (Asymptotic variance under a Poincaré Inequal-
ity). Suppose the distribution pθ∗ satisfies a Poincaré in-
equality with constant C with respect to the weighted block

7This is analogous to the training objective setting in Definition 2.

4



Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines

dynamics. Then under Assumption 1 and Assumption 2 the
asymptotic variance of the weighted MPLE can be bounded
as: ΓPL ⪯ CI−1 where I is the Fisher Information matrix
(Definition 1).

2.2.3. ADAPTIVE MASKING: MASKED POSITIONS
DEPEND ON THE SEQUENCE

The machinery we developed in Section 2.2.2 is in fact
substantially more general — it applies to even “adaptive”
masking losses in which the conditional distribution of the
mask can depend on the current X (that is, for each X , there
is a different conditional distribution pK(K|X) which can
be manually designed and is known to the model during
training).
Definition 7 (Adaptively weighted pseudolikelihood).
Given n i.i.d samples of sequences and masks:
{
(
X(i),K(i)

)
|X(i) ∼ pX ,K(i) ∼ pK(·|X(i))}i∈[n],

the weighted maximum pseudolikelihood estimator (MPLE)
is θ̂PL := argminθ

∑n
i=1 − log pθ(XK |X−K ,K), where

pθ(XK |X−K ,K) :=

pθ(X)pK(K|X)∑
X′

K
pθ (X ′

K , X−K) pK(K| (X ′
K , X−K))

(1)

The population loss is :

LPL(θ) := EX∼pXEK∼pK(·|X) [− log pθ(XK |X−K ,K)] .

Remark 3. Note, the distribution pK(·|X) doesn’t de-
pend on θ, so K(i) can be generated readily by draw-
ing samples from this distribution. Note also, the term
pθ(XK |X−K ,K) is expressible in terms of the joint distri-
bution pθ(X) and pK(·|X) and the expression in (1) can be
interpreted as a conditional distribution in the joint distri-
bution pθ,K(X,K) := pθ(X)pK(K|X). Finally, note that
conditioning on the set K is subtle, but important — see
Lemma 3 in Appendix C.1.

We can analogously generalize the sampling process to the
following Markov chain in which K is sampled dependent
on X:
Definition 8 (Adaptive weighted block dynamics). Let K :=
{K1, . . . ,K|K|} be a collection of sets (or blocks) such
that

⋃
i Ki = [N ]. A block dynamics with blocks K is a

Markov chain that picks a block K in each step according
to some distribution 8 pK(· | X), and then updates the
coordinates in K according to the conditional distribution
pX (XK |X−K ,K).9

If we understand the domain of this Markov chain to be
{(X,K) | X ∈ X ,K ∈ K}, its stationary distribution is

pX ,K(X,K) := pX (X)pK(K | X).

8This is analogous to the training objective setting in Definition 7.
9Defined analogously as in Definition 1.

The Dirichlet form can also be explicitly written down (note,
f and g are functions of both X and K):

Proposition 1 (Dirichlet form for adaptive weighted
block dynamics). The Dirichlet form corresponding to the
weighted block dynamics (Definition 8) is:

E(f, g) = E(X−K ,K)∼pX ,K

[
CovXK |(X−K ,K)(f, g)

]
The proof of Proposition 1 is in Appendix C.3.

Analogous to Theorem 2, we again show that the statistical
efficiency of the adaptively-weighted MPLE (Definition 7),
captured by the asymptotic variance, can be related to the
Poincaré constant of the corresponding adaptively-weighted
Block dynamics (Definition 8):

Theorem 3 (Asymptotic variance of adaptively-weighted
MPLE under a Poincaré Inequality, generalization of The-
orem 2). Suppose the distribution pθ∗ satisfies a Poincaré
inequality with constant C with respect to the adaptively-
weighted block dynamics. Then under Assumption 1
and Assumption 2 where pθ(xK |x−K) is replaced by
pθ(xK |x−K ,K), the asymptotic variance of the adaptively-
weighted MPLE can be bounded as: ΓPL ⪯ CI−1 where
I is the Fisher Information matrix (Definition 1).

The proof of Theorem 3 is in Appendix C.4.

2.3. Finite sample bounds and distributional distance
The framework in Section 2.2 was asymptotic in nature, and
used parameter closeness as a notion of “quality” of the
estimator. In this section, we remove both requirements, at
the cost of the bounds depending on a notion of “complexity”
of the parametric class we are fitting. It turns out that we
can prove very similar results, with the notion of “mixing”
— as captured by the Poincaré constant — being replaced by
a different constant called the “approximate tensorization
constant”. These results mirror results in Section 5.1 in
(Koehler et al., 2023), who focus on 1-MPLE and use a
differrent notion of “complexity” based on Rademacher
complexity. We first introduce several preliminary concepts.

Definition 9 (Block approximate tensorization of entropy
(Caputo & Parisi, 2021)). Under fixed distribution pK(· |
X) over binary masks K conditioned on X , we say the dis-
tribution qX over X satisfies block-generalized approximate
tensorization of entropy with constant C̄AT (qX ) if for any
distribution rX over X ,

DKL(rX , qX ) ≤ C̄AT (qX ) · EX∼rX [EK∼pK(·|X)[

DKL (rX (· | X−K ,K), qX (· | X−K ,K))]]

This inequality is closely related to the mixing time of
weighted-block dynamics (Definition 6). Namely, the in-
equality is weaker than the standard discrete version of the
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log-Sobolev inequality (Diaconis & Saloff-Coste, 1996) and
stronger than the Modified Log-Sobolev Inequality (Bobkov
& Tetali, 2006), which implies exponential ergodicity of
the weighted block-dynamics in KL divergence10, that is:
KL(pt, q) ≤ e−2t/CAT (q)KL(p0, q).

To bound the distance between the population and empirical
losses, as well as relate it to the distance between the esti-
mated parameters and the ground truth, we first introduce a
few useful pieces of notation.

Notation: For each sample X(i), i ∈ [n], we as-
sume we observe m masks {K(i)

j | j ∈ [m]}
sampled iid from pK(· | X(i)). We denote
the corresponding empirical loss by L̂PL(θ) :=
1

nm

∑n
i=1

∑m
j=1 − log pθ(X

(i)

K
(i)
j

|X(i)

−K
(i)
j

,K
(i)
j ). Further-

more, we will denote by p̃X the uniform distribution over
{X(i), i ∈ [n]}, and denote

L̃PL(θ) := EX∼p̃X ,K∼pK(·|X) [− log pθ(XK |X−K ,K)]
(2)

This is an intermediate quantity: it averages in the popula-
tion sense over the masks, but it assumes a finite number of
samples from pX . It will be a useful intermediate quantity
for several concentration bounds.

We will also need a few mild assumptions on the distribution
we are fitting. First, we assume that the learned conditional
probabilities are uniformly lower-bounded by a constant:
Assumption 3 (Support margin). Exists constant β ∈ (0, 1)
s.t. ∀X ∈ X ,∀K ⊂ [N ], ∀θ ∈ Θ, if pX (XK |X−K ,K) >
0, then pθ(XK |X−K ,K) ≥ β.

We also assume that the log-probabilities (and hence the
losses L̂PL and L̃PL) are Lipschitz with respect to θ, and
Θ has a finite covering bound. Namely:
Assumption 4 (Covering bound and Lipschitzness).
∀ϵ > 0, there exists a finite partition Parϵ(Θ) =
{Θ1, · · · ,Θ|Par(Θ)|} of Θ, such that ∀i,∀θ1, θ2 ∈ Θi, and
∀(X,K) ∈ X ×K:

|log pθ1(XK |X−K ,K)− log pθ2(XK |X−K ,K)| ≤ ϵ

2
.

Moreover, Cϵ(Θ) denote the smallest possible cardinality
among such partitions Parϵ(Θ).

With this setup, we can prove the following finite-sample
bound on the closeness of the learned distribution, provided
the weighted pseudolikelihood loss (Definition 2) is small:
Theorem 4 (Generalization bound for learning the joint
distribution). Let θ̂ := argminθ L̂PL(θ). Under As-
sumption 3 and Assumption 4, ∀ϵ > 0, ∀δ ∈ (0, 1),

10This in turns, also implies a Poincaré inequality and exponential
ergodicity in χ2 divergence.

with probability at least 1 − δ we have DTV

(
pθ̂, pX

)
<√

1
2 C̄AT (pθ̂)

(
L̂PL(θ̂) +B · ln 1

β + ϵ
)
+ C where B =√

23N |Ω|NCϵ(Θ)
m·δ +

√
ln

8Cϵ(Θ)
δ

2n , and C =

√
|Ω|3N
8δn .

Proof of Theorem 4 is in Appendix D. We can compare
the statement to Theorem 3: (1) On the LHS, rather than
parameter distance, we have total variation distance between
the learned distribution and p. (2) On the RHS, rather than
a Poincaré inequality, we have the C̄AT (pθ̂) constant. (3)
On the RHS, instead of the Fisher information matrix, we
have quantities capturing the generalization error, through a
notion of complexity of the class (Cϵ(Θ)).

2.4. Inference-time limitations due to parallelism

In this section, we focus on limitations in the representa-
tional and computational efficiency that arise when using
a parallel decoding approach to implement a step of the
inference-time sampling algorithm. Precisely, at inference-
time, using weighted block-dynamics with bigger blocks
enables larger sets of coordinates to be re-randomized, fa-
cilitating a faster mixing time. A canonical example of this
are k-Gibbs samplers:

Definition 10 (k-Gibbs sampler). The k-Gibbs sampler is
a special case of the block dynamics (Definition 6) when
K := {K ⊆ [N ] | |K| = k}, and pK = Unif(K).

X
(t+1)
K ∼ p

(
· | X(t)

−K

)
, X

(t+1)
j = X

(t)
j ∀j /∈ K (3)

Samplers with larger k are well-known to mix faster (e.g.
(Lee, 2023) shows the Poincaré inequality improves by a
factor of at least k). However, taking a step of this Markov
Chain requires being able to re-randomize the k coordinates
according to their conditional distribution — which is intu-
itively harder for larger k if we are trying to re-randomize
the coordinates in parallel.

In Section 2.4.1, we show that the canonical GMLM-type
parallel decoding language models can only implement
Markov chains whose transitions are product distributions
over the sequence positions. 11

We also consider a natural Markov Chain whose transitions
are product distribution, and show it can be substantially
slower to reach the modes of the distribution compared to k-
Gibbs for a large k, i.e. a Markov Chain with transitions that
are far from a product distribution. Precisely, we consider:

Definition 11 (Independent parallel sampler). The indepen-
dent parallel sampler performs coordinate-wise updates for

11Remark 6 in Appendix I connects our results to technical details
of model architectures in prior works.
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all i in parallel 12, namely:

∀i ∈ [N ], X
(t+1)
i ∼ p

(
· | X(t)

−{i}

)
(4)

In Section 2.4.2, we show that even if we do not care about
mixing—just reaching the modes of the distribution—the
independent parallel sampler can be much slower compared
to k-Gibbs, for a large k.

2.4.1. WHICH MARKOV CHAINS ARE IMPLEMENTABLE
VIA PARALLEL DECODING?

In this section, we characterize the power and restrictions of
Transformers at inference time when they are restricted to
decoding the tokens of the sequence in parallel. The infer-
ence algorithms for a model that has access to approximate
conditional probabilities typically look like (potentially mul-
tiple) steps of block dynamics (Definition 6). We focus on
understanding what kinds of transitions are implementable
with a standard Transformer architecture.

Note that while there are well-known prior results about the
expressive power of Transformers as sequence-to-sequence
modelers (Yun et al., 2020), representing steps of a Markov
Chain with parallel decoding is more subtle, due to the fact
that a step of a Markov Chain requires randomness. First,
we state a result characterizing the power of Transform-
ers to approximate “deterministic” Markov Chains: that
is, Markov Chains whose transition distributions are delta
functions. Unsurprisingly, standard universal approximation
results apply to this case. Namely:

Proposition 2 (informal). Transformers (with sufficient
depth and width) can implement any number of transitions
of any deterministic Markov Chain over sequences in ΩN .

On the other hand, Transformers using parallel decoding
cannot implement general Markov chains over ΩN . In fact,
they can only implement Markov Chains for which the
transition probabilities are product distributions:

Proposition 3 (informal). The class of Markov chains over
sequences in ΩN implementable by (sufficiently wide and
deep) Transformers is those whose next-state transition
probability distributions are product distributions over the
positions, conditioned on the current state.

Background information on the Transformer architecture,
as well as proofs of Proposition 2 and Proposition 3 are rel-
egated to Appendix I. Note that this does not mean one can
only simulate Markov Chains whose stationary distribution
is a product distribution. In fact, the standard 1-Gibbs sam-
pler, by virtue of the fact that it only updates one coordinate
at a time, encodes a product distribution for each transition.

12The stationary distribution of this chain is unclear: in fact, it is not
even clear the chain is ergodic.

On the other hand, under fairly mild conditions on a joint p,
the 1-Gibbs sampler corresponding to p is ergodic and has
p as a stationary distribution. On the other hand, a step of a
k-Gibbs sampler for k > 1 is in general not a product dis-
tribution, and will not be implementable by a Transformer
with parallel decoding.

2.4.2. MARKOV CHAINS WITH DEPENDENT
TRANSITIONS CAN BE (MUCH) FASTER

In this section, we show that the k-Gibbs (Definition 10)—
the prototypical example of a Markov Chain with dependent
transitions—can reach modes of the distribution much faster
than the independent parallel sampler (Definition 11)—the
prototypical example of a Markov Chain with independent
transitions. Intuitively, in cases where there is a strong
dependence between subsets of variables, jointly updating
them will bring us much faster to their modes.

The toy probabilistic family in which we will illustrate this
phenomenon is Ising models. Specifically, we consider
an undirected graphical model G that can be represented
by the union of a clique CG (in which |CG| ≥ 2, and
the dependency among variables is strong) and a set of
N−|CG| independent vertices. More formally, we consider:
pG : {±1}N → R+,

pG(x) =
1

ZG
exp

∑
i∈[N ]

hixi +
∑

i ̸=j∈CG

Jxixj

 (5)

in which ZG is the partition function, and hi ∈ R s.t.∑
i∈CG

hi > 0 and J > 0 are scalar constants. This is a fer-
romagnetic Ising model (i.e. the pairwise interactions prefer
the variables to have the same value), and when J ≫ ∥h∥1,
the two “modes” of the distribution pG are such that all
variables have the same value:

R1 := {X ∈ {−1, 1}N |Xi = 1∀i ∈ CG} (6)

R−1 := {X ∈ {−1, 1}N |Xi = −1 ∀i ∈ CG} (7)

The above distribution can be seen as a simple prototype
of language tasks in which grammatical rules or semantic
constraints create “clusters” of positions in which changing
isolated words leads to very unlikely sentences. Next, we
formalize the concentration around the “modes”:
Assumption 5 (Strongly ferromagnetic Ising model). There
exist constants hG > 0, J0 > 0 such that hG :=∑

i∈CG
hi >

∑
i/∈CG

|hi|, J − ∥h∥1 ≥ J0.

Informally, under Assumption 5, sequences in R1 are much
more likely under the groundtruth distribution than those in
R−1, which are further much more likely than all other se-
quences. The formal statement and proof are in Appendix E.
As a result, we can think of sampling from R1 as analo-
gous to sampling a high-quality sentence, and moreover, not

7
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reaching R1 implies the Markov chain sampling process has
not mixed to the groundtruth distribution yet. In the analogy
to language tasks, in tasks like machine translation, for each
source sentence, sampling one high-quality target sentence
is potentially good enough. In some other tasks like cre-
ative writing, producing well-calibrated samples might be
desirable—so mixing would be needed.

We show that running k-Gibbs sampler requires a small
number of steps to reach R1. This implies that if a model
can efficiently approximate one step of k-Gibbs sampler,
then it is fast to sample a high-probability sequence by
iteratively applying the model. Proof is in Appendix F.

Proposition 4 (k-Gibbs sampler can reach the mode fast).
On Ising model G in Equation (5) under Assumption 5,
with any initial X(0), ∀δ ∈ (0, 1), with probability at least

1 − δ, after T :=
⌈
logcR1

δ
⌉

steps of k-Gibbs sampler

(Definition 10) with k ≥ |CG|, we have {X(t)|t ∈ [T ]} ∩
R1 ̸= ∅ in which the constant cR1

∈ (0, 1), cR1
:= 1 −

(N−|CG|
k−|CG|)
(Nk)

e2(J0+hG)

e2(J0+hG)+e2J0+2|CG|−2

By contrast, we show that for nontrivial probability over the
randomness in the initial sequence, running independent
parallel requires a large number of steps to reach the largest
mode R1 of the distribution. This implies that the sampling
process may not reach a high-probability sequence in less
than exponentially large number of iterations.

Proposition 5 (Independent parallel sampling stuck in bad
samples). On Ising model G in Equation (5) under As-
sumption 5, if the initial X(0) is such that

∑
i∈CG

X
(0)
i ≤

−2, ∀δ ∈ (0, 1), with probability at least 1 − δ, after
T :=

⌊
δ
2 exp (cstuck)

⌋
steps of independent parallel (Defi-

nition 11), we have ∀t ∈ [T ],
∑

i∈CG
X

(t)
i ≤ −2, in which

cstuck :=
2

(
−1+

1−exp (−2J0)

exp (−2J0)+1

|CG|
2

)2

|CG|

The proof is in Appendix G. Combining Proposition 4 and
Proposition 5 leads to a separation result between k-Gibbs
sampler and independent parallel, in particular when the
clique size in G is large and dependency is strong within the
clique: with high probability, while the former reaches R1

in 1 step, the latter cannot do so in arbitrarily large number
of steps. Proof is in Appendix H. We empirically verify our
theory in Appendix L.7.

3. Experiments
3.1. Synthetic experiments on Ising model

To empirically validate Theorem 1 (Masking more is (sta-
tistically) better), we run controlled experiments with syn-
thetic data generated by a ground-truth Ising model. We
train an Ising model using k-pseudolikelihood, and measure

the squared error of parameter estimation. The results verify
that with the same training data size, larger k leads to lower
error. We plot the results in Figure 1, with several related
experiments, in Appendix L.6. 13

3.2. Parallel Decoding by Iterative Refinement (PaDIR)

We consider an encoder-decoder architecture, in which the
decoder is modified to be non-autoregressive: instead of
iteratively predicting the next token, each of our decoder
forward pass predicts an update to all target positions in
parallel. The encoder extracts features from the source se-
quence, and based on these features, each decoder forward
pass refines its current hypothesis of the target sequence.
The initial decoder hypothesis is a purely random sequence,
and more decoder forward passes correspond to more steps
of refinement. Note that we are not the first in the literature
to propose this language modeling paradigm. 14 Our focus
in this paper is to provide theoretical and empirical analy-
ses to characterize its potentials, limitations and document
useful training practices. Details of inference and training
frameworks are in Appendix L.1.

3.3. Evaluation

We train models on machine translation datasets, provide
practical recommendations based on our empirical observa-
tions, and discuss their connections to our theory. Details of
training recipe are provided in Appendix L.2.

Benchmarking PaDIR models and AR models reach simi-
lar BLEU (Papineni et al., 2002) and BLEURT (Sellam et al.,
2020; Pu et al., 2021) scores. Quantitative experimental re-
sults and common baselines are shown in Table 1, Table 2,
and Table 3 in Appendix L.4. We discuss several considera-
tions for evaluation metrics in Appendix L.3. While bridg-
ing the gap between autoregressive and non-autoregressive
model has so far focused on achieving parity in terms of
BLEU scores, we believe this is insufficient. Since BLEU
relies on n-gram overlaps between groundtruths and model
predictions, it does not capture readability very well. Yet
readability is paramount for most practical applications, and
it is indisputably something that current autoregressive LMs
excel at. To provide additional perspectives, we introduce a
word-level stutter metric, computing how often consecutive
words are repeated in the model output but not in the refer-
ence. For all datasets, we found that word-level stutter is 2
or more times more frequent for non-autoregressive models.

Speed The average target length in all datasets ranges be-
tween 28 and 33 tokens, including the EOS token. As such

13Related simulations were also reported in Huang & Ogata (2002).
14Representative prior works: Ghazvininejad et al. (2020); Savinov

et al. (2022), inter alia. See Section 4.
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a non-autogressive model using 4 decoding steps does 7 to
8 times fewer decoder passes. In practice we see an end-to-
end speedup greater than >2x for the median and >5x for
the 99th percentile latency on TPU v3 (with 4 decoding steps
and batch size 1). The gap between expected and observed
speedup is due to fixed costs (input tokenization, encod-
ing, etc.) as well as a better optimization of AR decoding
(e.g. through caching of intermediate results). For longer se-
quences, the constant number of decoding passes in GMLM
is advantageous. For completeness, it is worth noting that
the number of decoder passes necessary to achieve good
quality (and thus model speed) is application dependent,
with some tasks like non-autoregressive text in-painting re-
maining slower than their autoregressive counterparts, as
shown in Savinov et al. (2022).

3.4. Connecting to theory: quantifying dependency via
attention scores

Our theory suggests that stronger dependency between tar-
get positions leads to worse generalization guarantee and
sampling efficiency. However, it is unclear how to measure
such dependency for Transformer-based language models
trained on natural language data. In this section, we empiri-
cally investigate: how to predict what target positions have
strong dependency which may be challenging for Transform-
ers? We test the following two hypotheses: (1) Strongly de-
pendent target positions have larger decoder self-attention
between each other. (2) Strongly dependent target positions
have similar cross-attention distribution to source tokens.

For a pair of target positions, to measure how well their
dependency is modeled in the generated output, we focus
on adjacent repetitive tokens, a.k.a. stutter. Stuttering is a
common error mode among parallel decoding models, and
we use it as one reasonable proxy for measuring failures in
modeling target-side dependency. We show:

• Hypothesis 1 is unlikely to hold: even on average,
stuttering positions do not have larger decoder self-
attention between each other, compared with non-
stuttering adjacent positions. 15

• By contrary, Hypothesis 2 is potentially promising:
with various of distribution distance measures, stutter-
ing positions in the generated output have more similar
cross-attention distributions to source tokens, com-
pared with non-stuttering adjacent positions.

Details are in Table 4 and Table 5 in Appendix L.5.

15Since all stuttering positions are by definition adjacent, we think a
fair comparison should only consider adjacent positions for non-
stuttering position pairs.

4. Related works
Our theory is inspired by recent progress in sampling: the
connections between pseudolikelihood and approximate ten-
sorization of entropy are discussed in Marton (2013; 2015);
Caputo et al. (2015); Caputo & Parisi (2021); Koehler et al.
(2023). Benefits of k-Gibbs sampler are discussed in Lee
(2023). Our experiments follow the framework that trains
generative masked language models and generates samples
using parallel decoding by iterative refinement: (Lee et al.,
2018; Ghazvininejad et al., 2019; 2020; Kasai et al., 2020;
Savinov et al., 2022), which tend to be at least twice faster
than autoregressive approaches with a small drop in quality
for tasks like machine translation. The inference process,
which converts complete noise to full samples, might re-
semble diffusion models (Hoogeboom et al., 2021; Austin
et al., 2021; Li et al., 2022; Gong et al., 2023; Zheng et al.,
2023; Lou et al., 2023), but a key conceptual difference is
that diffusion models are trained to revert a small amount
of noise at each step, whereas the family of models that
we study in this work are more similar to masked autoen-
coders: the training objective encourages reconstructing the
whole target sequence in each step of decoding. We discuss
additional related works in Appendix M.

5. Conclusion
We introduce a new theoretical framework for understand-
ing the power and limitations of generative masked lan-
guage models (GMLM). In particular, our theory offers
some guidance on the design spaces of learning and infer-
ence algorithms, through the perspectives of asymptotic
sample complexity for parameter learning, finite-sample
generalization bound for distribution learning, and the ef-
ficiency of Gibbs-like sampling algorithms. Empirically
we adapt T5 to parallel decoding by iterative refinement
(an non-autoregressive GMLM-based language generation
strategy which showed strong speed-quality trade-off in
the literature for tasks like machine translation). We rec-
ommend some rules of thumb for key design choices, and
discuss the connection between the the empirical findings
and our theory. For future works, we hope the theoretical
framework and empirical observations can inspire new train-
ing objectives, inference algorithms, and neural network
architectures better-suited for parallel decoding.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Supplementary Material

A. Proof of Lemma 2: Generalized information matrix equality
For convenience, we restate the generalized information matrix equality we are going to show:

Lemma 2 (Generalized information matrix equality). Under Assumption 1 and Assumption 2, the weighted pseudolikelihood
loss (Definition 2) verifies: ∇2

θLPL(θ
∗) = CovX∼pX ,K∼pK(−∇θ log pθ(XK |X−K))|θ=θ∗ .

Proof. All the expectations in the proof will be taken with respect to (X,K) ∼ pX × pK. To decrease the notational load,
we will not explicitly write pX × pK. The proof proceeds by first exchanging the order of expectations and derivatives, and
using that to show the appropriate terms in the expression for ∇2

θLPL(θ
∗) vanish.

Step 1: Changing the order of expectations and derivatives

We will show that the following two equalities hold:

∇θE(X,K) log pθ(xK |x−K) = E(X,K)∇θ log pθ(xK |x−K) (A.8)

∇2
θE(X,K) log pθ(xK |x−K) = E(X,K)∇2

θ log pθ(xK |x−K) (A.9)

Since Ω, [N ], and K ⊂ [N ] are both discrete finite, the conditions for the Dominated Convergence Theorem holds under
Assumption 1: namely, there exists a function f : Θ × Ω × K 7→ R such that ∀θ ∈ Θ, E(X,K) [f(θ,X,K)] < ∞,
∥∇θ log pθ(xK |x−K)∥2 ≤ f(θ,X,K), and ∥∇2

θ log pθ(xK |x−K)∥F ≤ f(θ,X,K).

Denoting by ei the i-th standard basis vector, we have:

∂

∂θj
E(X,K) [log pθ(xK |x−K)] = lim

h→0

1

h

(
E(X,K)

[
log pθ+ejh(xK |x−K)

]
− E(X,K) [log pθ(xK |x−K)]

)
(A.10)

= lim
h→0

E(X,K)

[
log pθ+ejh(xK |x−K)− log pθ(xK |x−K)

h

]
(A.11)

By the Mean Value Theorem, there exists ξ(h) ∈ (0, h) such that

log pθ+ejh(xK |x−K)− log pθ(xK |x−K)

h
=

∂

∂θj
log pθ+ejξ(h)(xK |x−K)

So

∂

∂θj
E(X,K) [log pθ(xK |x−K)]

= lim
h→0

(
E(X,K)

[
∂

∂θj
log pθ+ejξ(h)(xK |x−K)

])
= E(X,K)

[
lim
h→0

(
∂

∂θj
log pθ+ejξ(h)(xK |x−K)

)]
(Dominated Convergence Thm and Assumption 1)

= E(X,K)

[
∂

∂θj
log pθ(xK |x−K)

]

This implies that
∇θE(X,K) log pθ(xK |x−K) = E(X,K)∇θ log pθ(xK |x−K)
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which proves (A.10). The proof of (A.11) follows analogously.

Step 2: Rewrite ∇2
θLPL(θ

∗)

∇2
θLPL(θ) = −∇2

θE(X,K) log pθ(xK |x−K)|θ=θ∗

1
= −E(X,K)∇2

θ log pθ(xK |x−K)|θ=θ∗

2
= E(X,K)∇θ log pθ(xK |x−K)∇θ log pθ(xK |x−K)⊤|θ=θ∗ − ∇2

θpθ(xK |x−K)

pθ(xK |x−K) |θ=θ∗

3
= E(X,K)∇θ log pθ(xK |x−K)∇θ log pθ(xK |x−K)⊤|θ=θ∗ (A.12)

where 1 follows by exchanging the order of expectation and Hessian (S ∈ Sk and x ∈ Ω are finite), and this is valid by
Step 1 above , 2 by an application of chain rule. The last equality 3 follows by a similar calculation as the proof of the
classical information matrix equality:

E(X,K)
∇2

θpθ(xK |x−K)

pθ(xK |x−K) |θ=θ∗

= EKEx−K
ExK |x−K

∇2
θpθ(xK |x−K)

pθ(xK |x−K) |θ=θ∗

= EKEx−K

∫
∇2

θpθ∗(xK |x−K)

pθ∗(xK |x−K)
· pX (xK |x−K)dxK

= EKEx−K

∫
∇2

θpθ∗(xK |x−K)dxK , since pθ∗ = pX by Assumption 2)

= EKEx−K
∇2

θ

∫
pθ∗(xK |x−K)dxK , by exchanging the order of expectation and Hessian

= 0

where the last equality follows since
∫
pθ∗(xK |x−K)dxK = 1 (so doesn’t depend on θ). Similarly, we have:

E(X,K)∇θ log pθ(xK |x−K)|θ=θ∗

= EKEx−K
ExK |x−K

∇θpθ(xK |x−K)

pθ(xK |x−K) |θ=θ∗

= EKEx−K

∫
∇θpθ(xK |x−K)dxK |θ=θ∗

= EKEx−K
∇θ

∫
pθ(xK |x−K)dxK |θ=θ∗

= 0

where the last equality follows since
∫
pθ(xK |x−K)dxK = 1 (so doesn’t depend on θ). Plugging this into the definition of

covariance, we have:

Cov(∇θ − log pθ(XK |X−K))|θ=θ∗

= E(X,K)∇θ log pθ(xK |x−K)∇θ log pθ(xK |x−K)⊤

− E(X,K)∇θ log pθ(xK |x−K) · E(X,K)∇θ log pθ(xK |x−K)⊤|θ=θ∗

= E(X,K)∇θ log pθ(xK |x−K)∇θ log pθ(xK |x−K)⊤|θ=θ∗ (A.13)

The proof of the lemma thus follows because the RHS of Equation (A.13) matches that of Equation (A.12).

17
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B. Proof of Theorem 1: Masking more is (statistically) better
In this Section, we provide the proof for Theorem 1.

Proof of Theorem 1. All the expectations in the proof will be taken with respect to (X,K) ∼ pX × pK. To decrease the
notational load, we will not explicitly write pX × pK. By Lemma 2, we have:

∇2
θL

k
PL(θ

∗) = E(X,K)∇θ log pθ(xK |x−K)∇θ log pθ(xK |x−K)⊤|θ=θ∗ (B.14)

Let Sk denote the set {K ⊂ [N ] | |K| = k}. For every T ∈ Sk+1 and a ∈ T we have:

log p(xT |x−T ) = log p(xS , xa|x−{S∪a}) where S := T\{a}
= log

(
p(xa|x−{S∪a}) · p(xS |x−{S∪a}, xa)

)
= log p(xa|x−{S∪a}) + log p(xS |x−S)

Using this identity, we can write:

∇2
θL

k+1
PL (θ∗) = ET∼Sk+1

ExT ,x−T
∇θ log pθ(xT |x−T )∇θ log pθ(xT |x−T )

⊤
|θ=θ∗

= ES∼Sk
Ea ̸∈SExS ,xa,x−{S∪a}∇θ log pθ(xT |x−T )∇θ log pθ(xT |x−T )

⊤
|θ=θ∗

= ES∼Sk
Ea ̸∈SExS ,xa,x−{S∪a}

(
∇θ log pθ(xa|x−{S∪a}) +∇θ log pθ(xS |x−S)

)
·
(
∇θ log pθ(xa|x−{S∪a}) +∇ log pθ(xS |x−S)

)⊤
|θ=θ∗ (B.15)

Let us denote:

A := ES∼Sk
Ea̸∈SEx∇θ log pθ(xS |x−S) · ∇θ log pθ(xS |x−S)

⊤
|θ=θ∗

B := ES∼Sk
Ea̸∈SEx∇θ log pθ(xa|x−{S∪a}) · ∇θ log pθ(xS |x−S)

⊤
|θ=θ∗

C := ES∼Sk
Ea ̸∈SEx∇θ log pθ(xa|x−{S∪a}) · ∇θ log pθ(xa|x−{S∪a})

⊤
|θ=θ∗

By expanding the previous expression, we have

∇2
θL

k+1
PL (θ∗) = A+B +B⊤ + C (B.16)

Consider A first. Note that for a fixed S ∈ Sk, Ex∇θ log pθ(xS |x−S) · ∇θ log pθ(xS |x−S)
⊤ is independent of a ̸∈ S and

therefore:

A = ES∼Sk
Ex∇θ log pθ(xS |x−S) · ∇θ log pθ(xS |x−S)

⊤
|θ=θ∗

= ∇2
θL

k
PL(θ

∗) (by Equation (B.14))

Proceeding to B, for a given S ∈ Sk, x−S , we have

ExS |x−S

[
∇θ log pθ(xS |x−S)

⊤]
|θ=θ∗

=

∫
∇θ log pθ(xS |x−S)

⊤ · p(xS |x−S)dxS |θ=θ∗

=

∫
∇θpθ(xS |x−S)

pθ∗(xS |x−S)

⊤
· p(xS |x−S)dxS |θ=θ∗

=

∫
∇θpθ(xS |x−S)

⊤dxS |θ=θ∗

= ∇θ

∫
pθ(xS |x−S)

⊤dxS |θ=θ∗ (valid under Assumption 1, see Step 1 in the proof of Lemma 2)

= ∇θ1 = 0 (B.17)

18
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Therefore:

B = ES∼Sk
Ea̸∈SExS ,xa,x−{S∪a}∇θ log pθ(xa|x−{S∪a}) · ∇θ log pθ(xS |x−S)

⊤|θ=θ∗

= ES∼Sk
Ea̸∈SExa,x−{S∪a}∇θ log pθ(xa|x−{S∪a}) · ExS

[
∇θ log pθ(xS |x−S)

⊤] |θ=θ∗

(valid under Assumption 1, see Step 1 in the proof of Lemma 2)
= ES∼Sk

Ea̸∈SExa,x−{S∪a}∇θ log pθ(xa|x−{S∪a})|θ=θ∗ · 0 (by Equation (B.17))

= 0

Finally, each term ∇θ log pθ(xa|x−{S∪a}) · ∇θ log pθ(xa|x−{S∪a})
⊤ ⪰ 0 therefore C ⪰ 0.

Plugging this back in (B.16), we have:

∇2
θL

k+1
PL (θ∗) = ∇2

θL
k
PL(θ

∗) + C ⪰ ∇2
θL

k
PL(θ

∗)

Consequently, by monotonicity of the matrix inverse, we have

Γk+1
PL =

(
∇2

θL
k+1
PL (θ∗)

)−1 ⪯
(
∇2

θL
k
PL(θ

∗)
)−1

= Γk
PL

as we need.

19



Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines

C. Generalizations for adaptive masking
In this section, we provide proofs for several of the claims in Section 2.2.3.

C.1. Conditioning on K

First, we clarify a slightly subtle (and counterintuitive) point stressed in Remark 3: in general, pX (xK |x−K ,K) ̸=
pX (xK |x−K).

Lemma 3. Consider X = {(0, 0), (0, 1), (1, 0), (1, 1)}. There exists a distribution pX ,K such that pX (xK |x−K ,K) ̸=
pX (xK |x−K) for some x ∈ X , K ∈ K.

Proof. To define pX ,K, it suffices to define pX and pK(·|x),∀x ∈ X .

pX (X) =


(0, 0), with probability 1

2

(0, 1), with probability 1
3

(1, 0), with probability 1
6

(0, 0), with probability 0

and let

pK(K | X = (0, 0)) =

{
{0}, with probability 1

2

{1}, with probability 1
2

pK(K | X = (0, 1)) =

{
{0}, with probability 1

3

{1}, with probability 2
3

pK(K | X = (1, 0)) =

{
{0}, with probability 1

4

{1}, with probability 3
4

By multiplying pX (X) and pK(K | X), we have

p((0, 0), {0}) = 1

4
, p((0, 0), {1}) = 1

4

p((0, 1), {0}) = 1

9
, p((0, 1), {1}) = 2

9

p((1, 0), {0}) = 1

24
, p((1, 0), {1}) = 1

8

Finally, we will see that pX (x1 = 0|x0 = 0, {0}) ̸= pX (x1 = 0|x0 = 0):

pX (x1 = 0|x0 = 0, {0}) = p((0, 0), {0})
p((0, 0), {0}) + p((0, 1), {0})

=
9

13

pX (x1 = 0|x0 = 0) =
pX ((0, 0))

pX ((0, 0)) + pX ((0, 1))
=

3

5

Instead, by correctly marginalizing, the following equality obtains:

Lemma 4. For any distribution pX ,K, we have:

∀x ∈ X , ∀K ∈ K, pX (xK |x−K) = EK′∼pK(·|x−K) [pX ,K(xK |x−K ,K ′)] (C.18)
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Proof. The proof proceeds by a sequence of straightforward rewrites:

pX (xK |x−K) =
pX (xK , x−K)

pX (x−K)

=
∑
K′

pX ,K(xK , x−K ,K ′)

pX (x−K)

=
∑
K′

pX ,K(K
′, x−K)

pX (x−K)
· pX ,K(xK , x−K ,K ′)

pX ,K(x−K ,K ′)

=
∑
K′

pK(K
′ | x−K)pX ,K(xK |x−K ,K ′)

= EK′∼pK(·|x−s) [pX ,K(xK |x−K ,K ′)]

C.2. Information matrix equality for adaptive masking

We prove a more general version of Lemma 2 when pK is allowed to depend on X , which is needed for Theorem 3. Recall
from Section 2.2.3 that the distribution pX ,K is defined such that:

pX ,K(X,K) := pX (X)pK(K|X)

Lemma 5 (Generalized information matrix equality, adaptive masking). Under Assumption 1 and Assumption 2, the
weighted pseudolikelihood loss (Definition 7) verifies: ∇2

θLPL(θ
∗) = Cov(X,K)∼pX ,K(−∇θ log pθ(XK |X−K ,K))|θ=θ∗ .

Proof. All the expectations in the proof will be taken with respect to (X,K) ∼ pX ,K. To decrease the notational load, we
will not explicitly write pX ,K. Same as Lemma 2, the proof proceeds by first exchanging the order of expectations and
derivatives, and using that to show the appropriate terms in the expression for ∇2

θLPL(θ
∗) vanish.

In fact, it’s readily seen that the proof of Step 1 in Lemma 2 (Appendix A) doesn’t depend on pX ,K being a product
distribution, and the same proof applies to our setting, namely we have:

∇θE(X,K) log pθ(xK |x−K ,K) = E(X,K)∇θ log pθ(xK |x−K ,K) (C.19)

∇2
θE(X,K) log pθ(xK |x−K ,K) = E(X,K)∇2

θ log pθ(xK |x−K ,K) (C.20)

We can also rewrite the expression for ∇2
θLPL(θ

∗) almost the same way we did in Step 2 in Lemma 2:

∇2
θLPL(θ) = −∇2

θE(X,K) log pθ(xK |x−K ,K)|θ=θ∗

1
= −E(X,K)∇2

θ log pθ(xK |x−K ,K)|θ=θ∗

2
= E(X,K)∇θ log pθ(xK |x−K ,K)∇θ log pθ(xK |x−K ,K)⊤|θ=θ∗ − ∇2

θpθ(xK |x−K ,K)

pθ(xK |x−K ,K) |θ=θ∗

3
= E(X,K)∇θ log pθ(xK |x−K ,K)∇θ log pθ(xK |x−K ,K)⊤|θ=θ∗ (C.21)

where 1 follows by exchanging the order of expectation and Hessian (S ∈ Sk and x ∈ Ω are finite), and this is valid by
Step 1 above , 2 by an application of chain rule. The last equality 3 follows by a similar calculation as the proof of the
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classical information matrix equality (and again, analogously to the calculation in Lemma 2):

E(X,K)
∇2

θpθ(xK |x−K ,K)

pθ(xK |x−K ,K) |θ=θ∗

= EKEx−K |KExK |x−K ,K
∇2

θpθ(xK |x−K ,K)

pθ(xK |x−K ,K) |θ=θ∗

= EKEx−K |K

∫
∇2

θpθ∗(xK |x−K ,K)

pθ∗(xK |x−K ,K)
· pX ,K(xK |x−K ,K)dxK

= EKEx−K |K

∫
∇2

θpθ∗(xK |x−K ,K)dxK , since pθ∗ = pX by Assumption 2 and Definition (1)

= EKEx−K |K∇2
θ

∫
pθ∗(xK |x−K ,K)dxK , by exchanging the order of expectation and Hessian

= 0

where the last equality follows since
∫
pθ∗(xK |x−K ,K)dxK = 1 (so doesn’t depend on θ). Similarly, we have:

E(X,K)∇θ log pθ(xK |x−K ,K)|θ=θ∗

= EKEx−K |KExK |x−K ,K
∇θpθ(xK |x−K ,K)

pθ(xK |x−K ,K) |θ=θ∗

= EKEx−K |K

∫
∇θpθ(xK |x−K ,K)dxK |θ=θ∗

= EKEx−K |K∇θ

∫
pθ(xK |x−K ,K)dxK |θ=θ∗

= 0

where the last equality follows since
∫
pθ(xK |x−K ,K)dxK = 1 (so doesn’t depend on θ). Plugging this into the definition

of covariance, we have:

Cov(∇θlPL(θ
∗))

= Cov(∇θ − log pθ(XK |X−K ,K))|θ=θ∗

= E(X,K)∇θ log pθ(xK |x−K ,K)∇θ log pθ(xK |x−K ,K)⊤|θ=θ∗ (C.22)

which finishes the proof of the Lemma.

C.3. Proof of Proposition 1: Dirichlet form for adaptive block dynamics

Proposition 1 (Dirichlet form for adaptive weighted block dynamics). The Dirichlet form corresponding to the weighted
block dynamics (Definition 8) is:

E(f, g) = E(X−K ,K)∼pX ,K

[
CovXK |(X−K ,K)(f, g)

]

Proof. Let us denote by Ξ := X × K, and note that Ξ is the domain for both f and g. According definition of block
dynamics in Definition 6, for each pair of states (X,K1), (Y,K2) ∈ Ξ, the transition matrix P is:

P ((X,K1), (Y,K2)) = 1K1=K2
1X−K1

=Y−K1
p(YK1

| X−K1
,K1) (C.23)

The rest of the proof is straightforward calculation, expanding the expression in the definition of the Dirichlet form
(Definition 4). Namely, we have:
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EP (f, g)

=
1

2

∑
(X,K1),(Y,K2)∈Ξ

p(X,K1)P ((X,K1), (Y,K2)) (f(X,K1)− f(Y,K2))(g(X,K1)− g(Y,K2))

=
1

2

∑
(X,K1),(Y,K2)∈Ξ

p(X,K1) · (f(X,K1)− f(Y,K2))(g(X,K1)− g(Y,K2))

· 1K1=K2
1X−K1

=Y−K1
p(YK1

| X−K1
, X1)

=
1

2

∑
X∈X

pX (X)
∑
K∈K

pK(K | X)
∑

Y ∈X ,Y−K=X−K

p(YK | X−K ,K) · (f(X,K)− f(Y,K))(g(X,K)− g(Y,K))

=
1

2
EXEK|XEYK |X−K ,K(f(X,K)− f(Y,K))(g(X,K)− g(Y,K))

=
1

2
·
(
2 · EKEX−K |KEXK |X−K ,Kf(X,K)g(X,K)− 2 · EKEX−K |KEXK |X−K ,K [f(X,K)] · EXK |X−K ,K [g(X,K)]

)
(we can merge terms because the roles of X and Y are symmetric)

= EK∼p

[
Ex−K∼p(x−K |K)

[
EyK∼p(xK |x−K ,K) [f(y,K)g(y,K)]− EyK∼p(xK |x−K ,K) [f(y,K)]

· EyK∼p(xK |x−K ,K) [g(y,K)]
]]

= E(X−K ,K)∼pX ,K

[
CovXK |(X−K ,K)(f, g)

]
(C.24)

which completes the proof.

C.4. Proof of Theorem 3: Asymptotic sample complexity for adaptively-weighted MPLE

Note that Theorem 3 generalizes Theorem 2. To reduce proof duplication, we only write the proof for the more general
Theorem 3 here. Notational definition for pθ(xK |x−K ,K) and other background info are in Section 2.2.3.

Theorem 3 (Asymptotic variance of adaptively-weighted MPLE under a Poincaré Inequality, generalization of Theorem 2).
Suppose the distribution pθ∗ satisfies a Poincaré inequality with constant C with respect to the adaptively-weighted block
dynamics. Then under Assumption 1 and Assumption 2 where pθ(xK |x−K) is replaced by pθ(xK |x−K ,K), the asymptotic
variance of the adaptively-weighted MPLE can be bounded as: ΓPL ⪯ CI−1 where I is the Fisher Information matrix
(Definition 1).

Proof. By Lemma 5 and Lemma 11, for n training samples as n → ∞, we have:

√
n(θ̂PL − θ∗) → N

(
0, (Cov(X,K)∼pX ,K(−∇θ log pθ(XK |X−K ,K))|θ=θ∗)−1

)
(C.25)

Now we relate the RHS of (C.25) to I. Let dΘ denote the dimensionality of θ, i.e. θ ∈ RdΘ . Then, for any test vector
v ∈ RdΘ we have:

v⊤E(X,K)∇θ log pθ(xK |x−S ,K)∇θ log pθ(xK |x−S ,K)⊤v|θ=θ∗

= E(X,K)(∇θ log pθ(xK |x−K ,K)⊤v)2|θ=θ∗

= EKEx−K |KVarxK |x−K,K
(∇θ log pθ(xK |x−K ,K)⊤v)|θ=θ∗ + (ExK |x−K ,K∇θ log pθ(xK |x−K ,K)⊤v)2|θ=θ∗ (C.26)

Denote f(X,K) := ∇θ log pθ(xK |x−K ,K)⊤v Consider the two parts in Equation (C.26) separately: the first term is
simply EKEx−K |KVarxS |x−K,K

(f(X,K)), which, by Proposition 1, is equal to EP (f, f). Moreover, by Poincaré inequality
(Definition 5), this is ≥ 1

CVarp(f).
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The second term simplifies to

EKEx−K |K
(
ExK |x−K ,K

[
∇θ log pθ(xK |x−K ,K)⊤v

])2
|θ=θ∗

= EKEx−K |K

(
ExK |x−K ,K

[(
∇θpθ(xK |x−K ,K)

pθ(xK |x−K ,K)

)⊤

v

])2

|θ=θ∗

= EKEx−K |K

[∫ (
∇θpθ(xK |x−K ,K)

pθ(xK |x−K ,K)

)⊤

v · pX ,K(xK |x−K ,K) dxK

]2
|θ=θ∗

= EKEx−K |K

[∫
(∇θpθ(xK |x−K ,K))

⊤
v dxK

]2
|θ=θ∗

, since pθ∗ = pX by Assumption 2 and Definition (1)

= EKEx−K |K

[
∇θ

(∫
pθ(xK |x−K ,K) dxK

)⊤

v

]2
|θ=θ∗

(since pθ is differentiable wrt θ by Assumption 1)

= 0

Therefore, we have Cov(X,K)∼pX ,K(−∇θ log pθ(XK |X−K ,K))|θ=θ∗ ⪰ 1

C
I.

Plugging into Equation (C.25), and using the monotonicity of the matrix inverse (Toda, 2011), we obtain the upper bound on
the asymptotic variance of our estimator we want:

ΓPL ⪯ CI−1
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D. Proof of Theorem 4: Generalization bound for learning the joint distribution
We first state our overall structure of the proof of Theorem 4, and then state and prove the key lemmas mentioned therein.
Theorem 4 (Generalization bound for learning the joint distribution). Let θ̂ := argminθ L̂PL(θ). Under As-
sumption 3 and Assumption 4, ∀ϵ > 0, ∀δ ∈ (0, 1), with probability at least 1 − δ we have DTV

(
pθ̂, pX

)
<√

1
2 C̄AT (pθ̂)

(
L̂PL(θ̂) +B · ln 1

β + ϵ
)
+ C where B =

√
23N |Ω|NCϵ(Θ)

m·δ +

√
ln

8Cϵ(Θ)
δ

2n , and C =

√
|Ω|3N
8δn .

Proof. We first introduce a few pieces of notation. We will denote the data samples as SX := {X(i)|X(i) ∼ p(X)},
|SX | = n, and for each X(i) we sample m masks SK

(i) := {K(i)
1 , . . . ,K

(i)
m } in which K

(i)
j is sampled iid from K according

to probabilities pK(· | X). 16 Theorem 4 follows by combining the following steps:

Step 1: relating closeness of the conditional distributions (i.e. the loss) to closeness of the joint distribution. The
connection is established through the definition of the block-generalized approximate tensorization of entropy in Definition 9,
by which we get17:

DKL

(
p̃X , pθ̂

)
≤ C̄AT (pθ̂)L̃PL(θ̂)

The details are in Proposition 6. By Pinsker’s inequality, this implies

DTV

(
p̃X , pθ̂

)
≤
√

1

2
DKL

(
p̃X , pθ̂

)
≤
√

1

2
C̄AT (pθ̂)L̃PL(θ̂) (D.27)

Step 2: generalization bound for learning the conditional distributions. We show that Assumption 3 and Assumption 4
imply a generalization guarantee for learning the conditional distributions from a finite sample of sequences and masked
positions. We show that with probability at least 1− δ

2 , we have

∣∣∣LPL(θ̂)− L̃PL(θ̂)
∣∣∣ <

√23N |Ω|N Cϵ(Θ)

m · δ
+

√
ln 8Cϵ(Θ)

δ

2n

 · ln 1

β
+ ϵ (D.28)

Proof details of this step are in Corollary 2.

Step 3: empirical joint distribution converges to population joint distribution. With probability at least 1− δ
2 , we have:

DTV (p̃X , pX ) <

√
|Ω|3N

8δn
(D.29)

The proof of this is standard and details are in Lemma 8.

Step 4: union bound and triangle inequality By union bound, with probability at least 1− δ, both Equation (D.28) and
Equation (D.29) hold. Therefore, putting together the previous steps, we get:

DTV

(
pθ̂, pX

)
≤ DTV

(
p̃X , pθ̂

)
+DTV (p̃X , pX ) (by triangle inequality)

≤
√

1

2
C̄AT (pθ̂)L̃PL(θ̂) +

√
|Ω|3N

8δn
(by Equation (D.27) and Equation (D.29))

<

√√√√√1

2
C̄AT (pθ̂)

L̂PL(θ̂) +

√23N |Ω|N Cϵ(Θ)

m · δ
+

√
ln 8Cϵ(Θ)

δ

2n

 · ln 1

β
+ ϵ

+

√
|Ω|3N

8δn

(by Equation (D.28))

This completes the proof of the Theorem.

16Note that the {·} notation does not mean sets: duplicate entries are allowed in the training data SX and SK
(i).

17Recall, L̃PL is defined in (2)
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We proceed to Step 1 first. We show:

Proposition 6. DKL (pX , pθ) ≤ C̄AT (pθ)LPL(θ) and DKL (p̃X , pθ) ≤ C̄AT (pθ)L̃PL(θ)

Proof. By definition of block-generalized approximate tensorization of entropy in Definition 9

DKL(pX , pθ) ≤ C̄AT (pθ) · EX∼pX

[
EK∼pK(·|X) [DKL (pX (· | X−K ,K), pθ(· | X−K ,K)]

]
= C̄AT (pθ) · LPL(θ)

Likewise the latter holds when we replace p with p̃.

We will need the following simple observation in several concentration bounds we prove:

Proposition 7 (Bound on KL). Under Assumption 3,

DKL (p̃X (·|X−K ,K), pθ(·|X−K ,K)) ∈
[
0, ln

1

β

]
Proof. By definition of DKL,

0 ≤ DKL (p̃X (·|X−K ,K), pθ(·|X−K ,K)) =
∑

XK∈Ω|K|

p̃X (XK |X−K ,K) ln
p̃X (XK |X−K ,K)

pθ(XK |X−K ,K)

≤
∑

XK∈Ω|K|

p̃X (XK |X−K ,K) ln
1

pθ(XK |X−K ,K)

≤
∑

XK∈Ω|K|

p̃X (XK |X−K ,K) ln
1

β
(by Assumption 3)

= ln
1

β

we also recall a standard version of Hoeffding’s inequality we’ll use repeatedly:

Lemma 6 (Hoeffding’s inequality). Let Y1, · · · , Yn be independent random variables such that a ≤ Yi ≤ b almost surely.
Consider the sum of these random variables, Sn = Y1+ · · ·+Yn whose expectation is E [Sn]. Then, ∀t > 0, with probability

at least 1− 2e
− 2t2

n(b−a)2 , we have |Sn − E [Sn]| < t.

Most of the generalization bounds we need for Step 2 (in particular, Corollary 2) will be derived from the following Lemma:

Lemma 7 (Point-wise generalization bound for learning conditional distributions). Fix a θ ∈ Θ satisfying Assumption 3.

∀ϵ, t > 0, with probability at least 1− 2N−2|Ω|N
ϵ2m − 2e

− 2t2

n·(ln 1
β )

2

, we have∣∣∣L̂PL(θ)− L̃PL(θ)
∣∣∣ < 2N ϵ · ln 1

β
+

t

n

Proof. For notational convenience, let us denote by SX the training data points {X(i)}i∈[n], and let us denote by SK(X)
the set of masks corresponding to the training data point X .

Step 1: concentration over masked configurations

We first prove that L̂PL(θ) (Definition 2) concentrates to the expectation over masked positions K as m increases. 18

18Note that the terms DKL (p̃X (·|X−K ,K), pθ(·|X−K ,K)) are (generally) not independent for different K. Besides, the terms∑
K∈SK

DKL (p̃X (·|X−K ,K), pθ(·|X−K ,K)) are (generally) not independent for different SK.
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Denote
f(X) := EK∼pK(·|X) [DKL (p̃X (·|X−K ,K), pθ(·|X−K ,K))] (D.30)

Then the expectation of L̂PL(θ) over the randomness of SK is:

E{SK(j) | j∈[n]}

[
L̂PL(θ)

]
=

1

n

∑
X∈SX

1

m
ESK(j)

 ∑
K∈SK(X)

DKL (p̃(·|X−K ,K), pθ(·|X−K ,K))


=

1

n

∑
X∈SX

EK∼pK(·|X) [DKL (p̃X (·|X−K ,K), pθ(·|X−K ,K))]

=
1

n

∑
X∈SX

f(X) (D.31)

Moreover, for each K, the (observed) empirical probability pS(K | X) converges to the true probability pK(K | X) as m
increases, because the count, pS(K | X) ·m, follows the binomial distribution Binomial(m, pK(K | X)). More specifically,
by Chebyshev’s inequality, ∀ϵ > 0, and a fixed X we have:

P {|pS(K | X)− pK(K | X)| ≥ ϵ} = P {|pS(K | X)m− pK(K | X)m| ≥ ϵm}

≤ Var (pS(K | X)m)

ϵ2m2
(Chebyshev’s inequality)

=
mpK(K | X)(1− pK(K | X))

ϵ2m2
(since pS(K)m ∼ Binomial(m, p(K)))

=
pK(K | X)(1− pK(K | X))

ϵ2m

≤ 1

4ϵ2m

Applying union bound over K ∈ {0, 1}N , X ∈ X ,

P
{
|pS(K | X)− pK(K | X)| < ϵ, ∀K ∈ {0, 1}N ,∀X ∈ SX

}
≥ 1− 2N |Ω|N

4ϵ2m
= 1− 2N−2 |Ω|N

ϵ2m
(D.32)

Plugging into Equation (D.30) and Equation (D.31), we get with probability at least 1− 2N−2|Ω|N
ϵ2m ,∣∣∣∣∣L̂PL(θ)−

1

n

∑
X∈SX

f(X)

∣∣∣∣∣
= | 1

n

∑
X∈SX

1

|SK(X)|
∑

K∈SK(X)

DKL (p̃X (·|X−K ,K), pθ(·|X−K ,K))

− 1

n

∑
X∈SX

EK [DKL (p̃X (·|X−K ,K), pθ(·|X−K ,K))] |

≤ 1

n

∑
X∈SX

∑
K∈{0,1}N

|pS(K | X)− pK(K | X)| ·DKL (p̃X (·|X−K ,K), pθ(·|X−K ,K)) (triangle inequality)

<
1

n

∑
X∈SX

∑
K∈{0,1}N

ϵ ·DKL (p̃X (·|X−K ,K), pθ(·|X−K ,K)) (by Equation (D.32))

≤ 1

n

∑
X∈SX

∑
K∈{0,1}N

ϵ · ln 1

β
(by Proposition 7)

=
1

n

∑
X∈SX

2N ϵ · ln 1

β
= 2N ϵ · ln 1

β
(D.33)
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Step 2: concentration over sequences X in training data.

Recall f(X) defined in Equation (D.30). We have:

E [f(X)] = EX∼p̃X

[
EK∼pK(·|X) [DKL (p̃(·|X−K ,K), pθ(·|X−K ,K))]

]
= L̃PL(θ)

Note that f(X) ∈ [0, ln 1
β ] by Proposition 7. Thus, applying Hoeffding’s inequality (Lemma 6), ∀t > 0, with probability at

least 1− 2e
− 2t2

n·(ln 1
β )

2

, we have ∣∣∣∣∣ 1n ∑
X∈SX

f(X)− E [f(X)]

∣∣∣∣∣ < t

n
(D.34)

Step 3: combining results: concentration over both masks K and sequences X .

By union bound, with probability at least

1− 2N−2 |Ω|N

ϵ2m
− 2e

− 2t2

n·(ln 1
β )

2

both Equation (D.33) and Equation (D.34) hold, giving us:∣∣∣L̂PL(θ)− L̃PL(θ)
∣∣∣

≤

∣∣∣∣∣L̂PL(θ)−
1

n

∑
X∈SX

f(X)

∣∣∣∣∣+
∣∣∣∣∣ 1n ∑

X∈SX

f(X)− L̃PL(θ)

∣∣∣∣∣ (triangle inequality)

< 2N ϵ · ln 1

β
+

t

n

Remark 4. The two terms in the bound given by Lemma 7, i.e. 2N ϵ · ln 1
β and t

n , can be controlled by setting appropriate ϵ
and t based on m and n, respectively. These two terms can reduce by increasing m and n, respectively, as we will show in
the subsequent corollary. This is intuitive: we expect a smaller generalization gap when the model is trained on more mask
configurations for each sequence, and when more sequences are included in the data. The first term grows with N — this is
also intuitive: when the sequences are longer, it is natural to require observing more mask configurations.

Corollary 1 (Point-wise generalization bound for learning conditional distributions, special case). Fix a θ ∈ Θ satisfying
Assumption 3. with probability at least 1− δ, we have

∣∣∣L̂PL(θ)− L̃PL(θ)
∣∣∣ <

√23N−1 |Ω|N

m · δ
+

√
ln 4

δ

2n

 · ln 1

β

Proof. Apply Lemma 7 with ϵ and t satisfying

ϵ =

√
2N−1 |Ω|N

m · δ

t =

√
ln 4

δ · n
2

ln
1

β
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we have that with probability at least 1− δ, it holds:∣∣∣L̂PL(θ)− L̃PL(θ)
∣∣∣

< 2N ϵ · ln 1

β
+

t

n

=

√23N−1 |Ω|N

m · δ
+

√
ln 4

δ

2n

 · ln 1

β

Corollary 2 (Uniform convergence generalization bound for learning conditional distributions). Under Assumption 3 and
Assumption 4, ∀δ ∈ (0, 1), ∀ϵ > 0, with probability at least 1− δ, we have

∣∣∣L̂PL(θ)− L̃PL(θ)
∣∣∣ <

√23N−1 |Ω|N Cϵ(Θ)

m · δ
+

√
ln 4Cϵ(Θ)

δ

2n

 · ln 1

β
+ ϵ

Proof. By Assumption 4, let Cϵ(Θ) denote the complexity of parameter space Θ, with the corresponding partition
Parϵ(Θ) = {Θ1, · · · ,ΘCϵ(Θ)}. As a corollary of Assumption 4, ∀i,∀θ1, θ2 ∈ Θi,

∣∣∣L̃PL(θ1)− L̃PL(θ2)
∣∣∣ ≤ ϵ

2 ,∣∣∣L̂PL(θ1)− L̂PL(θ2)
∣∣∣ ≤ ϵ

2 .

Moreover, for each i ∈ [Cϵ(Θ)], arbitrarily select any point θ∗i ∈ Θi (as a “representative” of that region of the parameter
space). Let the set of “representative points” be Θ∗ = {θ∗i | i ∈ [Cϵ(Θ)]}. By Corollary 1, fixing any θ ∈ Θ satisfying
Assumption 3, then with probability at least 1− δ

Cϵ(Θ) , we have

∣∣∣L̂PL(θ)− L̃PL(θ)
∣∣∣ <

√23N−1 |Ω|N Cϵ(Θ)

m · δ
+

√
ln 4Cϵ(Θ)

δ

2n

 · ln 1

β

Applying union bound over θ∗i ∈ Θ∗, since |Θ∗| = Cϵ(Θ), with probability at least 1− δ,

∀i ∈ [Cϵ(Θ)],
∣∣∣LPL(θ

∗
i )− L̃PL(θ

∗
i )
∣∣∣ <

√23N−1 |Ω|N Cϵ(Θ)

m · δ
+

√
ln 4Cϵ(Θ)

δ

2n

 · ln 1

β
(D.35)

Finally, by Assumption 4, ∀θ ∈ Θ, there exists i ∈ [Cϵ(Θ)] such that θ ∈ Θi (i.e. θ falls into that partition), and∣∣∣L̃PL(θ)− L̃PL(θ
∗
i )
∣∣∣ ≤ ϵ

2∣∣∣L̂PL(θ)− L̂PL(θ
∗
i )
∣∣∣ ≤ ϵ

2
(D.36)

Combining Equation (D.35) and Equation (D.36) gives∣∣∣L̂PL(θ)− L̃PL(θ)
∣∣∣

≤
∣∣∣L̂PL(θ)− L̂PL(θ

∗
i )
∣∣∣+ ∣∣∣L̂PL(θ

∗
i )− L̃PL(θ

∗
i )
∣∣∣

+
∣∣∣L̃PL(θ

∗
i )− L̃PL(θ)

∣∣∣ (by triangle inequality)

<
ϵ

2
+

√23N−1 |Ω|N Cϵ(Θ)

m · δ
+

√
ln 4Cϵ(Θ)

δ

2n

 · ln 1

β
+

ϵ

2
(by Equation (D.35) and Equation (D.36))

=

√23N−1 |Ω|N Cϵ(Θ)

m · δ
+

√
ln 4Cϵ(Θ)

δ

2n

 · ln 1

β
+ ϵ
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Finally, we complete Step 3 (proving Equation (D.29)):

Lemma 8 (Empirical PMF converges to population PMF). For any δ > 0, with probability at least 1− δ, we have:

DTV (p̃X , pX ) <

√
|Ω|3N

16δn

Proof. ∀X ∈ ΩN , the number of times that X appears in the training data SX follows the binomial distribution

p̃X (X)n ∼ Binomial(n, pX (X))

with mean npX (X) and variance npX (X)(1− pX (X)). Hence, by Chebyshev’s inequality, ∀ϵ > 0

P {|p̃X (X)− pX (X)| ≥ ϵ} = P {p̃X (X)n− pX (X)n ≥ ϵn}

≤ Var (p̃X (X)n)

ϵ2n2
(Chebyshev’s inequality)

=
npX (X)(1− pX (X))

ϵ2n2
(since p̃X (X)n ∼ Binomial(n, pX (X)))

=
pX (X)(1− pX (X))

ϵ2n

≤ 1

4ϵ2m

Applying union bound over X ∈ ΩN ,

P
{
|p̃X (X)− pX (X)| < ϵ, ∀X ∈ ΩN

}
≥ 1− |Ω|N

4ϵ2n
(D.37)

Hence, we get with probability at least 1− |Ω|N
4ϵ2n ,

DTV (p̃X , pX ) =
1

2

∑
X∈ΩN

|p̃X (X)− pX (X)| < 1

2

∑
X∈ΩN

ϵ =
1

2
|Ω|N ϵ (D.38)

Solving for δ = |Ω|N
4ϵ2n gives ϵ =

√
|Ω|N
4δn . Therefore, by Equation (D.37), with probability at least 1− δ, we have

DTV (p̃X , pX ) <
1

2
|Ω|N ϵ =

√
|Ω|3N

16δn
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E. Proof of Proposition 8: Modes of the strongly ferromagnetic Ising model
This section provides additional information for the discussion under Assumption 5 in Section 2.4.2.

Proposition 8 (Modes of the strongly ferromagnetic Ising model). On Ising model G in Equation (5) under Assumption 5,
the high-probability regions R1 and R−1 defined in Equation (6) and Equation (7) satisfy

1. ∀x ∈ R1, ∀y ∈ R−1, ∀z ∈ {−1, 1}N\R1\R−1, pG(x) > pG(y) > e2J0pG(z)

2. There exists a bijection f : R1 7→ R−1 such that ∀x ∈ R1, pG(x) = e2hGpG(f(x))

Proof. ∀x ∈ R1,∀y ∈ R−1,

pG(x)

pG(y)
=

exp
(∑

i∈[N ] hixi +
∑

i ̸=j∈CG⊂[N ] Jxixj

)
exp

(∑
i∈[N ] hiyi +

∑
i ̸=j∈CG⊂[N ] Jyiyj

)
=

exp
(∑

i∈[N ] hixi

)
exp

(∑
i∈[N ] hiyi

) (since xixj = yiyj = 1∀x ∈ R1,∀y ∈ R−1)

=
exp

(∑
i∈CG

hixi +
∑

i/∈CG
hixi

)
exp

(∑
i∈CG

hiyi +
∑

i/∈CG
hiyi

)
=

exp
(∑

i∈CG
hi +

∑
i/∈CG

hixi

)
exp

(
−
∑

i∈CG
hi +

∑
i/∈CG

hiyi

) (since x ∈ R1,y ∈ R−1)

≥
exp

(∑
i∈CG

hi −
∑

i/∈CG
|hi|
)

exp
(
−
∑

i∈CG
hi +

∑
i/∈CG

|hi|
) (since xi,yi ∈ ±1)

= exp

2
∑
i∈CG

hi − 2
∑
i/∈CG

|hi|


> exp (0) = 1 (by Assumption 5)

∀y ∈ R−1,∀z ∈ {−1, 1}N\R1\R−1,

pG(y)

pG(z)
=

exp
(∑

i∈[N ] hiyi +
∑

i ̸=j∈CG⊂[N ] Jyiyj

)
exp

(∑
i∈[N ] hizi +

∑
i ̸=j∈CG⊂[N ] Jzizj

)
=

exp
(∑

i∈[N ] hiyi +
∑

i ̸=j∈CG⊂[N ] J
)

exp
(∑

i∈[N ] hizi +
∑

i ̸=j∈CG⊂[N ] Jzizj

) (since yiyj = 1∀y ∈ R−1)

≥
exp

(∑
i∈[N ] hiyi +

∑
i ̸=j∈CG⊂[N ] J

)
exp

(∑
i∈[N ] hizi +

∑
i ̸=j∈CG⊂[N ] J − 2(|CG| − 1)J

)
(since z ∈ {−1, 1}N\R1\R−1 and consider min edge number in bipartite graph)

=
exp

(∑
i∈[N ] hiyi

)
exp

(∑
i∈[N ] hizi − 2(|CG| − 1)J

) ≥
exp

(∑
i∈[N ] hiyi

)
exp

(∑
i∈[N ] hizi − 2J

) ≥ exp (−∥h∥1)
exp (∥h∥1 − 2J)

= exp (2(J − ∥h∥1)) ≥ exp (2J0) (by Assumption 5)
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For part 2, let f : R1 7→ R−1 be defined as

∀x ∈ R1, f(x)i =

{
−1, if i ∈ CG

xi, if i /∈ CG

Let w := f(x). Then,

pG(x)

pG(w)
=

exp
(∑

i∈[N ] hixi +
∑

i ̸=j∈CG⊂[N ] Jxixj

)
exp

(∑
i∈[N ] hiwi +

∑
i ̸=j∈CG⊂[N ] Jwiwj

)
=

exp
(∑

i∈[N ] hixi

)
exp

(∑
i∈[N ] hiwi

) (since xixj = wiwj = 1∀x ∈ R1,∀w ∈ R−1)

=
exp

(∑
i∈CG

hixi +
∑

i/∈CG
hixi

)
exp

(∑
i∈CG

hiwi +
∑

i/∈CG
hiwi

)
=

exp
(∑

i∈CG
hi +

∑
i/∈CG

hixi

)
exp

(
−
∑

i∈CG
hi +

∑
i/∈CG

hiwi

) (since x ∈ R1,w ∈ R−1)

=
exp

(∑
i∈CG

hi

)
exp

(
−
∑

i∈CG
hi

) (since wi = xi, ∀i /∈ CG)

= exp

(
2
∑
i∈CG

hi

)
= exp (2hG) (by Assumption 5)
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F. Proof of Proposition 4: k-Gibbs sampler can reach the mode fast
Proposition 4 (k-Gibbs sampler can reach the mode fast). On Ising model G in Equation (5) under Assumption 5,
with any initial X(0), ∀δ ∈ (0, 1), with probability at least 1 − δ, after T :=

⌈
logcR1

δ
⌉

steps of k-Gibbs sampler

(Definition 10) with k ≥ |CG|, we have {X(t)|t ∈ [T ]} ∩ R1 ̸= ∅ in which the constant cR1
∈ (0, 1), cR1

:= 1 −
(N−|CG|
k−|CG|)
(Nk)

e2(J0+hG)

e2(J0+hG)+e2J0+2|CG|−2

Proof. At any step, let K (with |K| = k) denote the set of coordinates to re-sample. We first consider the probability of
CG ⊂ K, which allows the whole CG to be updated jointly:

P {CG ⊂ K} =

(
N−|CG|
k−|CG|

)(
N
k

) (F.39)

∀t ∈ N,∀X(t) ∈ {−1, 1}N , and K ∈ [N ] such that |K| = k and CG ⊂ K, consider X(t+1)
K ∼ pG(· | X(t)

−K). There are
three cases (a partition of all possibilities):

1. X(t+1) ∈ R1

2. X(t+1) ∈ R−1

3. X(t+1) ∈ {−1, 1}N\R1\R−1

Then by Proposition 8 we show that Case 1 occurs with probability at least a (not arbitrarily small) constant,

P
{
X(t+1) ∈ R1

}
= e2hGP

{
X(t+1) ∈ R−1

}
P
{
X(t+1) ∈ R−1

}
P
{
X(t+1) ∈ {−1, 1}N\R1\R−1

} ≥ e2J0
|R−1|

|{−1, 1}N\R1\R−1|
=

e2J0

2|CG| − 2

Since the probabilities of the three cases sum up to 1,

P
{
X(t+1) ∈ R1

}
≥ e2(J0+hG)

e2(J0+hG) + e2J0 + 2|CG| − 2

Therefore, ∀t ∈ N,∀X(t) ∈ {−1, 1}N , combined with Equation (F.39),

P
{
X(t+1) ∈ R1

}
≥ P

{
CG ⊂ K,X(t+1) ∈ R1

}
≥

(
N−|CG|
k−|CG|

)(
N
k

) e2(J0+hG)

e2(J0+hG) + e2J0 + 2|CG| − 2
:= 1− cR1

i.e. let constant cR1
denote the above upper bound of P

{
X(t+1) /∈ R1

}
. Then

P
{
{X(t)|t ∈ [T ]} ∩ R1 = ∅

}
≤ cTR1

Therefore, when T ≥ logcR1
δ,

P
{
{X(t)|t ∈ [T ]} ∩ R1 = ∅

}
≤ δ
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G. Proof of Proposition 5 independent parallel sampling stuck in bad samples
Proposition 5 (Independent parallel sampling stuck in bad samples). On Ising model G in Equation (5) under As-
sumption 5, if the initial X(0) is such that

∑
i∈CG

X
(0)
i ≤ −2, ∀δ ∈ (0, 1), with probability at least 1 − δ, after

T :=
⌊

δ
2 exp (cstuck)

⌋
steps of independent parallel (Definition 11), we have ∀t ∈ [T ],

∑
i∈CG

X
(t)
i ≤ −2, in which

cstuck :=
2

(
−1+

1−exp (−2J0)

exp (−2J0)+1

|CG|
2

)2

|CG|

Proof. Suppose at step t, X(t) is such that
∑

i∈CG
X

(t)
i ≤ −2 (satisfied at t = 0), then

∀j ∈ CG,
∑

i∈CG,i̸=j

X
(t)
i ≤ −1 (G.40)

Hence its next-step distribution X
(t+1)
j ∼ p(· | X(t)

−{j}) satisfies

P
{
X

(t+1)
j = 1

}
P
{
X

(t+1)
j = −1

} =
exp

(∑
i∈[N ] hixi +

∑
i ̸=j∈CG⊂[N ] Jxixj

)
|xj=1

exp
(∑

i∈[N ] hixi +
∑

i̸=j∈CG⊂[N ] Jxixj

)
|xj=−1

(by definition in Equation (5))

=
exp

(
hj +

∑
i∈CG,i̸=j Jxi

)
exp

(
−hj −

∑
i∈CG,i̸=j Jxi

) (canceling the same terms)

= exp

2hj + 2J
∑

i∈CG,i̸=j

xi


≤ exp (2hj − 2J) (by Equation (G.40))
≤ exp (−2J0) (by Assumption 5)

Therefore

X
(t+1)
j =

{
1, with prob ≤ exp (−2J0)

exp (−2J0)+1

−1, with prob ≥ 1
exp (−2J0)+1

(G.41)

Denote

Yj :=
X

(t+1)
j + 1

2
(G.42)

Note that {Yj | j ∈ [N ]} are independent Bernoulli random variables.

By Lemma 6, ∀r > 0, with probability at least 1− 2e
− 2r2

|CG| ,

1

|CG|
∑
j∈CG

Yj < Ej∈CG
[Yj ] +

r

|CG|
(by Hoeffding’s inequality Lemma 6)

≤ exp (−2J0)

exp (−2J0) + 1
+

r

|CG|
(by Equation (G.41) and definition of Yj in Equation (G.42))

implying that with probability at least 1− 2e
− 2r2

|CG| ,

1

|CG|
∑
j∈CG

X
(t+1)
j = 2

1

|CG|
∑
j∈CG

Yj − 1 < 2

(
exp (−2J0)

exp (−2J0) + 1
+

r

|CG|

)
− 1
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i.e. ∑
j∈CG

X
(t+1)
j <

exp (−2J0)− 1

exp (−2J0) + 1
|CG|+ 2r

Setting RHS to -2 solves to

r = −1 +
1− exp (−2J0)

exp (−2J0) + 1

|CG|
2

Hence

with probability at least 1− 2e
−

2

(
−1+

1−exp (−2J0)
exp (−2J0)+1

|CG|
2

)2

|CG| ,
∑
j∈CG

X
(t+1)
j < −2 (G.43)

By union bound, ∀T ∈ N+,

with probability at least 1− 2Te
−

2

(
−1+

1−exp (−2J0)
exp (−2J0)+1

|CG|
2

)2

|CG| , ∀t ∈ [T ],
∑
j∈CG

X
(t)
j < −2 (G.44)

Note that when
∑

j∈CG
X

(t)
j < −2, X(t) /∈ R1.

Finally, aligning the probabilities: setting

2Te
−

2

(
−1+

1−exp (−2J0)
exp (−2J0)+1

|CG|
2

)2

|CG| = δ

solves to

T =
δ

2
e

2

(
−1+

1−exp (−2J0)
exp (−2J0)+1

|CG|
2

)2

|CG|
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H. Proof of Corollary 3: Separation between N -Gibbs sampler and independent parallel
sampling

This section provides additional information for the discussion at the end of Section 2.4.2.

Assumption 6 (Strong interactions in Ising model). On Ising model G in Equation (5), for parameters δ ∈ (0, 1) and
M ∈ N+,

|CG| ≥ 8

(
1 + ln

4M

δ

)
hG ≥ 1

2
ln

2(2− δ)

δ

J0 ≥ 1

2
|CG| ln 2

Corollary 3 (Separation between N -Gibbs sampler and independent parallel sampling). On Ising model G in Equation (5)
under Assumption 5, ∀δ ∈ (0, 1), ∀M ∈ N+, If G additionally satisfies Assumption 6 and the initial X(0) is such that∑

i∈CG
X

(0)
i ≤ −2, then with probability at least 1− δ,

1. Running N -Gibbs sampler: X(1)
N.c.w. ∈ R1, and

2. Running independent parallel: {X(t)
indep|t ∈ [M ]} ∩ R1 = ∅

Proof. Under the given conditions, with N -Gibbs sampler, by Proposition 4,

with probability at least 1− δ

2
, {X(t)

N.c.w.|t ∈ [

⌈
logcR1

δ

2

⌉
]} ∩ R1 ̸= ∅ (H.45)

in which the constant

cR1
:= 1−

(
N−|CG|
N−|CG|

)(
N
N

) e2(J0+hG)

e2(J0+hG) + e2J0 + 2|CG| − 2
= 1− e2(J0+hG)

e2(J0+hG) + e2J0 + 2|CG| − 2
(H.46)

Applying Assumption 6 to bound parts of the RHS:

e2J0

e2(J0+hG)
= e−2hG ≤ e− ln

2(2−δ)
δ =

δ

2(2− δ)

2|CG| − 2

e2(J0+hG)
≤ 2|CG|

e2(J0+hG)
≤ 2|CG|

e|CG| ln 2+ln
2(2−δ)

δ

=
2|CG|

2|CG| 2(2−δ)
δ

=
1

2(2−δ)
δ

=
δ

2(2− δ)

Taking the sum:
e2J0 + 2|CG| − 2

e2(J0+hG)
≤ δ

2− δ

Adding 1 to both sides:
e2(J0+hG) + e2J0 + 2|CG| − 2

e2(J0+hG)
≤ 2

2− δ

Taking the inverse:
e2(J0+hG)

e2(J0+hG) + e2J0 + 2|CG| − 2
≥ 2− δ

2

Plugging to Equation (H.46):

cR1
≤ 1− 2− δ

2
=

δ

2
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Plugging into Equation (H.45):

with probability at least 1− δ

2
, {X(t)

N.c.w.|t ∈ [1]} ∩ R1 ̸= ∅ (H.47)

On the other hand, with independent parallel, by Proposition 5,

with probability at least 1− δ

2
, {X(t)

indep|t ∈ [

⌊
δ

4
exp (cstuck)

⌋
]} ∩ R1 = ∅ (H.48)

in which the constant

cstuck :=
2
(
−1 + 1−exp (−2J0)

exp (−2J0)+1
|CG|
2

)2
|CG|

(H.49)

Applying Assumption 6 to bound parts of the RHS:

1− exp (−2J0)

exp (−2J0) + 1
≥ 1

2

Plugging into Equation (H.49):

cstuck ≥
2
(
−1 + 1

2
|CG|
2

)2
|CG|

=
2
(
1− |CG|

2 + |CG|2
4

)
|CG|

≥ −1 +
|CG|
8

≥ −1 +

(
1 + ln

4M

δ

)
(by Assumption 6)

= ln
4M

δ

Plugging into Equation (H.48):

with probability at least 1− δ

2
, {X(t)

indep|t ∈ [

⌊
δ

4
· 4M

δ

⌋
] = [M ]} ∩ R1 = ∅ (H.50)

By union bound, with probability at least 1− δ, both Equation (H.47) and Equation (H.50) hold.
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I. Background and proofs of Proposition 2 and Proposition 3: on the expressive power of
Transformers for implementing sequence-to-sequence Markov chains in parallel

I.1. Technical setup and proofs

Background: Transformer network architecture. The transformer architecture (Vaswani et al., 2017) is a critical
building block of many leading approaches to language modeling (Devlin et al., 2019; Brown et al., 2020). We refer the
readers to these works for more details on the empirical promise that Transformer-based models have demonstrated. For
theoretical understanding of Transformers, we refer the readers to prior works on their representational power (Yun et al.,
2020; Yao et al., 2021; Liu et al., 2023; Zhao et al., 2023), statistical sample complexity (Wei et al., 2021; Edelman et al.,
2022), optimization process (Lu et al., 2021; Jelassi et al., 2022; Li et al., 2023), and interpretability (Wen et al., 2023), and
references cited therein.

Mathematical setup. In the following we adapt and use the mathematical notations for the Transformer network
architecture in Yun et al. (2020) and Li et al. (2023).

For each position of an input sequence (N tokens), use a d-dimensional positional embedding to represent that position,
and use a d-dimensional token embedding for the content at that position. Hence, for the input sequence, both the token
embeddings E and the positional embeddings P are matrices in Rd×N . Following empirical convention, let the input to the
Transformer be

X := E + P

A Transformer block th,m,r (with h heads, head size m, and feed-forward hidden layer size r) is defined as

th,m,r(X) := Attn(X) +W2 · ReLU(W1 · Attn(X) + b11
T
n ) + b21

T
n (I.51)

where

Attn(X) := X +
∑h

i=1
W i

OW
i
V X · σ[(W i

KX)TW i
QX] (I.52)

where the weight parameters W i
O ∈ Rd×m, W i

V ,W
i
K ,W i

Q ∈ Rm×d, W2 ∈ Rd×r,W1 ∈ Rr×d, b2 ∈ Rd, b1 ∈ Rr, and

σ : RN1×N2 7→ (0, 1)N1×N2

is the column-wise softmax operation, such that

σ(A)ij =
exp (Aij)∑N
l=1 exp (Alj)

(I.53)

Finally, a Transformer is a composition of Transformer blocks:

T := {g : Rd×N → Rd×N | g is a composition of Transformer blocks th,m,r’s}. (I.54)

and its output T (X) ∈ Rd×N goes through a final affine transform and softmax (Equation (I.53)) to predict a distribution
over tokens, for all positions

Tpred(X) := σ
(
W predT (X) + bpred) ∈ (0, 1)|Ω|×N (I.55)

where W pred ∈ R|Ω|×d and bpred ∈ R|Ω| are the prediction head weights and biases. Ω is the vocabulary of tokens.

For each position j, the predicted token τj is sampled from the predicted distribution Tpred(X):,j independently with other
positions

τj ∼ sample(Tpred(X):,j) j ∈ [N ] (I.56)

where sample can be the standard sampling algorithm for multinomial distributions, or truncating the low-probability tail
(Holtzman et al., 2020), or more conservatively, argmax sampling.

Yun et al. (2020) proved the following result on the expressivity of the Transformer network architecture:
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Lemma 9 (Universal approximation by Transformers, informal (Yun et al., 2020)). Let 1 ≤ p < ∞ and ϵ > 0, then for
any compact set D ⊂ Rd×n, for any given function f : D 7→ Rd×n, there exists a Transformer network g ∈ T 2,1,4 of
O(N

(
1
δ

)dN
) layers such that (∫

∥f(X)− g(X)∥pp dX
)1/p

≤ ϵ

in which δ is the smallest real number such that ∀X,Y ∈ Rd×n, if ∥X−Y ∥∞ < δ, then ∥f(X)− f(Y )∥p < ϵ. Moreover,
the bound on the size of the constructed Transformer is asymptotically tight.

Lemma 10 (Transformers can simulate parallel solution to automata, informal (Liu et al., 2023)). Transformers can simulate
the length-T output of all semiautomata with states Q, input alphabet Σ, and transition function δ : Q×Σ 7→ Q. Moreover,
the size of the simulating Transformer has depth O(log T ), embedding dimension O(|Q|), attention width O(|Q|), and MLP
width O(|Q|2).
Remark 5. Lemma 10 gives a more compact construction than a direct implication of more general universal approximation
results Lemma 9 for Transformers.

A direct corollary is Proposition 2:

Proposition 2 (informal). Transformers (with sufficient depth and width) can implement any number of transitions of any
deterministic Markov Chain over sequences in ΩN .

Informal proof sketch. When each transition of a Markov chain is deterministic, i.e. if the next state distribution from any
state is always a delta function, then the Markov chain reduces to a deterministic finite state automata, with states ΩN ,
length N .

Applying Lemma 10, we get Transformers can simulate length-T output of this automata with depth O(log T ), embedding
dimension O(|Ω|N ), attention width O(|Ω|N ), and MLP width O(|Ω|2N ).

Proposition 3 (informal). The class of Markov chains over sequences in ΩN implementable by (sufficiently wide and deep)
Transformers is those whose next-state transition probability distributions are product distributions over the positions,
conditioned on the current state.

Informal proof sketch. The statement involves both a positive result and a negative result.

Positive: if the transition probability distribution is a product distribution conditioned on the current state, then the task of
representing a Markov chain can be reduced to universally approximating a continuous function which maps all sequences
to the correct logits W predT (X) + bpred in Equation (I.55), such that after softmax (Equation (I.53)) these logits produce
the correct marginal distribution at each position. This is achievable by the construction in Lemma 9.

Negative: if the transition probability distribution is not a product distribution conditioned on the current state, then note
that the sampling operations (Equation (I.56)) at positions j1 and j2 are independent, so Transformers cannot implement
such Markov chains.

I.2. Connection to prior works in GMLM

Among existing language generation approaches via iterative refinement, Wang & Cho (2019) uses 1-Gibbs sampler. The
approaches in Ghazvininejad et al. (2019); Savinov et al. (2022) and our experiments do not closely fall into either of
independent parallel (Equation (4)) or the k-Gibbs sampler (Equation (3)) in Section 2.4. See Remark 6 for technical details.

Moreover, these approaches train models to learn the parameterized conditional distributions, which empirically may not
admit a consistent joint distribution (Young & You, 2022; Torroba Hennigen & Kim, 2023).

To formally reason about the iterative refinement process in GMLMs, in Section 2.4 we relax some of these limitations to
focus on several underlying theoretical obstacles that these methods face.

Remark 6 (Technical details in theoretically formalizing GMLM architectures). By Proposition 3, the sampling process in
Ghazvininejad et al. (2019); Savinov et al. (2022) and our experiments are different from N -Gibbs sampler. Moreover, the
sampling process is also different from independent parallel (Gibbs sampler 11): note that independent parallel strictly
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freezes all X(t)
−{i} when sampling

X
(t+1)
i ∼ p(· | X(t)

−{i})

whereas in Savinov et al. (2022) and our experiments, the model is trained to update all positions in parallel, which implies
a different groundtruth next-iteration token distribution compared with p(· | X(t)

−{i}). In other words, although the updates

are conditionally independent given the current state, the update probabilities are not trained to model p(· | X(t)
−{i}).

Mechanistically, Savinov et al. (2022) and our models in principle can take certain inter-position dependency into consider-
ation (which independent parallel cannot): for example, in layer L, position i can attend to 19 other positions e.g. j in the
layer-(L− 1) representations. This enables the layer-L computation at position i to be conditioned upon the intermediate
representations at position j, which are not independent from the final prediction at position j.

Ghazvininejad et al. (2019) can be understood as predicting the subset of masked indices K in each update. The extent to
which each update incorporates dependency between masked positions depends on implementation details: for example,
whether attention masks are added to prevent any masked position from receiving attention.

19via Transformer attention Equation (I.52)
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J. Regularity conditions for asymptotic behavior of M-estimators
In the limite of infinite samples, M-estimators (in particular, maximum likelihood and the estimators in Definitions 2 and 7)
converge in distribution to a normal distribution, under mild regularity conditions:

Lemma 11 ((Van der Vaart, 2000), Theorem 5.23; statement adapted from Qin & Risteski (2023)). Consider a loss
L : Θ 7→ R, such that L(θ) = Ep[ℓθ(x)] for lθ : X 7→ R. Let Θ∗ be the set of global minima of L, that is

Θ∗ = {θ∗ : L(θ∗) = min
θ∈Θ

L(θ)}

Suppose the following conditions are met:

• (Gradient bounds on lθ) The map θ 7→ lθ(x) is measurable and differentiable at every θ∗ ∈ Θ∗ for p-almost every x.
Furthermore, there exists a function B(x), s.t. E

[
B(x)2

]
< ∞ and for every θ1, θ2 near θ∗, we have:

|lθ1(x)− lθ2(x)| < B(x)∥θ1 − θ2∥2

• (Twice-differentiability of L) L(θ) is twice-differentiable at every θ∗ ∈ Θ∗

with Hessian ∇2
θL(θ

∗), and furthermore ∇2
θL(θ

∗) ≻ 0.

• (Uniform law of large numbers) The loss L satisfies a uniform law of large numbers, that is

sup
θ∈Θ

∣∣∣Ê[lθ(x)]− L(θ)
∣∣∣ p−→ 0

• (Realizability) The data distribution p satisfies: ∃θ∗ ∈ Θ such that pθ∗ = p.

Then, for every θ∗ ∈ Θ∗, and every sufficiently small neighborhood S of θ∗, there exists a sufficiently large n, such that
there is a unique minimizer θ̂n of Ê[lθ(x)] in S. Furthermore, θ̂n satisfies:

√
n(θ̂n − θ∗)

d−→ N
(
0, (∇2

θL(θ
∗))−1Cov(∇θℓ(θ

∗;x))(∇2
θL(θ

∗))−1
)

41



Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines

K. Convexity of pseudolikelihood for Ising models
Here, we expand on a comment in Section 2. We show that for a classic parameteric class of distributions (namely, Ising
models — which appear also in Section 2.4) the k-MPLE loss is in fact convex. This is a known fact which has been used to
design (provably) efficient algorithms for learning bounded-degree Ising models (Ravikumar et al., 2010; Vuffray et al.,
2016), and is just included for completeness. Recall the definition of Ising models:

Ising models. For random variables X = {Xi ∈ {−1, 1} : i ∈ [N ]}, an Ising model with parameters J ∈ RN×N and
h ∈ RN has joint distribution

p(X = x) =
1

Z
exp (

∑
i∈[N ]

hixi +
∑

i ̸=j∈[N ]

Jijxixj), (K.57)

in which Z is the partition function.

Proposition 9 (Fitting an Ising model over the conditional distributions is convex). When pθ is an Ising model (Equa-
tion (K.57)), i.e. θ = (J ,h), the weighted pseudolikelihood objective (Definition 2) is convex.

Proof. When pθ is an Ising model (Equation (K.57)), we have:

− ln pθ(xK |x−K) = − ln
exp (

∑
i∈[N ] hixi +

∑
i ̸=j∈[N ] Jijxixj)

Z(x−K)

= −

∑
i∈[N ]

hixi +
∑

i ̸=j∈[N ]

Jijxixj

+ lnZ(x−K)

in which the denominator

Z(x−K) =
∑

XK∈{−1,1}|K|

exp

(∑
i∈K

hiXK +
∑

i∈[N ]\K

hixi

+
∑

i ̸=j∈[K]

JijXiXj +
∑

i∈K,j∈[N ]\K

JijXixj +
∑

i ̸=j∈[N ]\K

Jijxixj

)

Note that −
(∑

i∈[N ] hixi +
∑

i ̸=j∈[N ] Jijxixj

)
is linear in (h,J) and lnZ(x−K) is convex in (h, J), so

− ln pθ(XK = xK |X−K = x−K) is convex in (h,J), which completes the last piece of the proof.
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L. Additional experimental details
L.1. Training and inference approach for PaDIR

We provide a formal description of the training and inference strategy outlined in Section 3.2.

L.1.1. INFERENCE

An input sequence Xsource first goes through the encoder f enc
θe

(parameterized by θe) to produce the hidden representation h:

h = f enc
θe (Xsource)

A length predictor f len
θl

(parameterized by θl) takes h and predicts Bl most likely target lengths, where Bl ∈ N+ (beam size
for length prediction) is an inference-time hyperparameter.

For each predicted length N , an initial hypothesis target sequence X(0) = X
(0)
1 · · ·X(0)

N in which each X
(0)
i can be a

[MASK] token, or chosen uniformly randomly from the vocabulary of tokens.

For each decoder step t ∈ 1 · · ·T , the decoder f dec
θd

(parameterized by θd) takes two inputs: h and X
(t)
1···N , and refines the

hypothesis target sequence to X
(t+1)
1···N , using one forward pass:

X
(t+1)
1···N = f dec

θd
(X

(t)
1···N , h) (L.58)

where T ∈ N+ (number of refinement steps) is an inference-time hyperparameter, and we can stop early if X(t+1) = X(t).

L.1.2. TRAINING

One-stage training Given source sequence Xsource and target sequence X target in the supervised training data Dtrain, we
use a preprocessing rule to create the initial hypothesis target sequence X(0). 20 The training objective is

L(1) =
∑

Xsource,X target∈Dtrain

l(f dec
θd

(X(0), f enc
θe (Xsource)) (L.59)

where l is the cross-entropy loss applied to each position.

Multi-stage training One limitation of the one-stage training is that the inference situation is out-of-distribution: when
decoder step t > 1, the model needs to refine its own predictions in step t− 1, which is not reflected in the training objective.
Therefore, we use the multi-stage training objective (Ghazvininejad et al., 2020; Savinov et al., 2022): L(S) = 1

S

∑
s∈[S] L

(s)

where S is the number of training stages, and L(s) =
∑

Xsource,X target∈Dtrain
l(f dec

θd
(X(s−1), f enc

θe
(Xsource))

L.2. Details of training recipe

We provide more details to Section 3.3.

Model training We use Transformer encoder-decoder with size similar to Transformer-Base (Vaswani et al., 2017) and
T5-Small-1.0 (Raffel et al., 2020): 6 encoder and decoder layers, 8 attention heads, 512 embedding dimensions and 2048
FFN hidden dim. We add a positional attention mechanism (Gu et al., 2018; Kreutzer et al., 2020) in each Transformer layer
and use learnt positional embeddings. The total number of parameters is 67M. We initialize model parameters randomly and
train using a batch size of 2048 for 500k iterations, with a 10% dropout rate, 15% unmasking rate 21 and 2 training stages.
The optimizer is AdaFactor (Shazeer & Stern, 2018), with default T5X hyperparameters (Roberts et al., 2022). The learning
rate peaks at 0.003 with a linear rampup for 10k steps followed by cosine decay, from and to a minimum value of 1e− 5.
Unlike most prior work, we do not use a remasking schedule; 22 we simply remask token-level stutter (i.e., consecutive

20Each position in X(0) may contain a [MASK] token, a random token, or the correct token in X source, dependning on the preprocessing
rule.

21This means, in Equation (L.59), 15% of the tokens in X(0) are the correct tokens in X target, and the remaining 85% are random tokens in
the vocabulary.

22We experimented with various remasking schedules but the results were not visibly affected.
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repeated tokens) across iterations and drop repeated tokens after the final iteration. As commonly done, we distill our models
by training on the output of an autoregressive model. For simplicity, we use the Google Cloud Translation API to generate
this distillation data.

Datasets We evaluate our models on machine translation benchmarks commonly used in the non-autoregressive modeling
literature. We conduct experiments on both directions of three WMT datasets: WMT14 DE↔EN (4.5M examples) (Bojar
et al., 2014), WMT16 RO↔EN (610k examples) (Bojar et al., 2016) and WMT17 ZH↔EN (20M examples) (Bojar et al.,
2017). We load the data from the tensorflow datasets library and do not apply any preprocessing other than sentence
piece tokenization ((Kudo & Richardson, 2018)). Bilingual vocabularies of 32k tokens are created using the training sets of
each language pair.

L.3. Discussion on modeling and metrics

This section provides additional information about Section 3.3.

Remark 7. In principle, following a similar paradigm, a non-autoregressive decoder-only architecture is also possible. In
this work we use encoder-decoder for two reasons: (1) Efficiency: in the iterative refinement process of the hypothesis target
sequence, each forward pass only involves the decoder, but not the encoder. (2) Benchmarking: the encoder-decoder design
is closer to a series of prior works, allowing for more informative comparison on benchmarks.

We measure BLEU (Papineni et al., 2002) using the SacreBLEU implementation (Post, 2018) with language appropriate
tokenizers 23. For the same model, SacreBLEU on average reports a lower score than BLEU (e.g. see (Savinov et al., 2022)).
Unfortunately, this does not allow a direct comparison with most of the existing literature. This is a deliberate choice since it
has been shown that subtle differences in preprocessing can significantly impact metrics (Schmidt et al., 2022), making
comparisons error prone, and SacreBLEU is the recommended metric in Post (2018). Furthermore, common preprocessing
steps (lowercasing, separating punctuation, stripping diacritics, etc.) may artificially inflate scores while not being fully
reversible, as such preventing real-world uses for such models.

For our experiments in Section 3.4, there are other error modes connected to the challenge of modeling target-side
dependency, but they are more ambiguous for measuring and exactly locating. We do not aim to develop decoding algorithms
tailored to just reducing stuttering rate. (After all, stuttering can be easily removed by rule-based postprocessing.) Instead,
the above are general-purpose hypotheses which are potentially also predictive of other (more complex) failure modes
related to target-side dependency.

L.4. Quantitative experimental results on machine translation task

This section provides quantitative evaluation results for Section 3.3.

Table 1. Test SacreBLEU scores on three WMT datasets. We report scores without any preprocessing. Our AR baselines are trained on
the distilled dataset for a fair comparison. The ‘Steps’ column indicates the number of decoding iterations. The ‘# Hyp.’ column denotes
the number of hypotheses decoded in parallel (beam size for AR models and top k predicted lengths for NAR models).

WMT14 WMT16 WMT17
Model # Hyp. Steps DE→EN EN→DE RO→EN EN→RO ZH→EN EN→ZH
AR Baselines 5 N 33.50 29.54 34.89 29.75 27.59 33.94

PaDIR 5 4 33.49 28.61 33.98 28.98 26.47 32.59
5 10 33.63 28.58 33.99 28.97 26.54 32.68

23For public reproducibility: SacreBLEU signatures: BLEU+c.mixed+#.1+s.exp+tok.zh+v.1.3.0 for Chinese and
BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.3.0 for other languages.
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Table 2. Test BLEU scores on three WMT datasets for baselines. Note that they use different BLEU implementations and sometimes
additional preprocessing than the results reported for our approach. We include results for our PaDIR under the T5X default BLEU score
(SacreBLEU tok intl). As we remarked in Appendix L.3, these different BLEU implementations may not be directly comparable.

WMT14 WMT16 WMT17
Model # Hyp. Steps DE→EN EN→DE RO→EN EN→RO ZH→EN EN→ZH
DisCo AR Baselines 5 N 31.71 28.60 34.46 34.16 24.65 35.01

CMLM 5 4 30.75 26.73 33.02 33.67 22.57 33.58
5 10 31.24 27.39 33.67 33.33 23.76 34.24

DisCo Easy-First 5 3-6 31.31 27.34 33.25 33.22 23.83 34.63

SUNDAE Stochastic 16 4 32.10 27.94 - - - -
16 10 32.29 28.33 - - - -

PaDIR 5 4 34.17 29.49 34.55 29.57 27.18 32.59
5 10 34.33 29.48 34.57 29.56 27.25 32.60

Table 3. Test BLEURT scores on three WMT datasets for our models.

WMT14 WMT16 WMT17
Model # Hyp. Steps DE→EN EN→DE RO→EN EN→RO ZH→EN EN→ZH
AR Baselines 5 N 73.55 74.97 67.23 71.76 68.14 65.71

PaDIR 5 4 71.26 72.08 65.90 70.23 65.16 63.95
5 10 71.82 73.28 66.09 70.49 66.19 64.30
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L.5. Quantifying dependency via attention scores

We report quantitative results of the investigations introduced in Section 3.4.

Table 4. Stuttering positions have comparable average last-layer self-attentions compared with non-stuttering adjacent positions. For each
pair of adjacent positions in the generated sequence: (1) the ‘self-attention scores’ include both directions ; (2) The column ‘min’ denotes
only including the minimum among such score over all attention heads, and likewise for ‘avg’ and ‘max’; (3) the entries are mean ±
standard deviation; (4) P {top-k overlap} denotes the chances that the self-attention distribution at one position includes the other position
among its top-k “most attended to” positions.

self-attention scores P {top-k overlap}
stutter min avg max k = 1 k = 2
yes 0.0004 ± 0.0007 0.032 ± 0.023 0.16 ± 0.11 0.20 0.39
no 0.0005 ± 0.0007 0.033 ± 0.025 0.17 ± 0.12 0.17 0.37

Table 5. Stuttering positions on average have more similar last-layer cross-attentions than non-stuttering adjacent positions. For each pair
of adjacent positions in the generated sequence: (1) the ‘total variation distance’ and ‘cosine distance’ (both have range [0, 1]) are taken
for the two corresponding cross-attention distributions; (2) The column ‘min’ denotes only including the minimum among such distance
over all attention heads, and likewise for ‘avg’ and ‘max’; (3) the entries are mean ± standard deviation; (4) P {top-k overlap} denotes
the chances that the two cross-attention distributions overlap in terms of their top-k “most attended to” source positions.

total variation distance cosine distance P {top-k overlap}
stutter min avg max min avg max k = 1 k = 2
yes 0.06 ± 0.05 0.13 ± 0.09 0.23 ± 0.15 0.01 ± 0.01 0.10 ± 0.06 0.25 ± 0.11 0.57 0.89
no 0.11 ± 0.10 0.23 ± 0.14 0.35 ± 0.18 0.04 ± 0.08 0.20 ± 0.11 0.38 ± 0.12 0.40 0.81
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L.6. Masking more is statistically better for learning synthetic Ising models

We show our observations in Section 3.1 and Figure 1 are robust to the shape of the groundtruth Ising model distribution:
under a much more peaky groundtruth distribution (with 2 modes), it still holds that with the same training data size, larger
k leads to lower error. We plot the results in Figure 2.

Figure 1. Average squared error in parameter estimation for fitting an Ising model on data generated by a groundtruth Ising model
(N = |CG| = 4, J = 0.05, hi = 0 in Equation (5)) using the k-pseudolikelihood objective optimized by gradient descent. Error bars
denote ± 0.5 * stdev for 10 repetitions of the experiment.

Figure 2. Average squared error in parameter estimation for fitting an Ising model on data generated by a groundtruth Ising model
(N = |CG| = 4, J = 0.3, hi = 0 in Equation (5)) using the k-pseudolikelihood objective optimized by gradient descent. Error bars
denote ± 0.5 * stdev for 10 repetitions of the experiment.
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L.7. Markov Chains with dependent transitions can be (much) faster in sampling Ising models

To verify our theory in Section 2.4.2, we run controlled experiments benchmarking various sampling algorithms for Ising
models: k-Gibbs sampler (Definition 10), and the independent parallel sampler (Definition 11).

The Ising model distribution that we sample from contains two modes, one larger and the other smaller, corresponding to R1

and R−1 defined in Equation (6) and Equation (7), respectively.

We show in Figure 3 that if we initialize the sample in the smaller mode R−1, running the k-Gibbs sampler (Definition 10)
can often reach the larger mode R1 within a relatively small number of steps (though more peaky distributions i.e. those with
larger J , are slower to sample). Moreover, larger k is faster than smaller k. By contrast, running the independent parallel
sampler (Definition 11) cannot reach R1 within the compute budget we set. The results verify our theory in Section 2.4.2 that
Markov Chains with dependent transitions can be (much) faster in sampling Ising models (compared with the independent
parallel sampler).

Figure 3. Number of steps for the k-Gibbs sampler (Definition 10) to reach the larger mode R1 (Equation (6)) of Ising models, starting
from the smaller mode R−1 (Equation (7)). The parameters of our Ising models are: N = 10, |CG| = 4, hi = 5.0 in Equation (5). We
vary the parameter J (a larger J corresponds to a more peaky distribution). Error bars denote ± 0.5 * stdev for 10 repetitions of the
experiment. The compute budget is 1000 steps. Thus, a point with vertical coordinate 103 means that the sampler did not reach R1 within
compute budget. The k-Gibbs sampler can often reach the R1 (larger k is faster). For context, the independent parallel sampler (not on
the plot) can never reach R1 within the compute budget for any of the J’s we tried.
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M. Additional related works
We expand on the discussion in Section 4.

Non-autoregressive text generation Previous works applied various generative models to text, such as VAEs (Bowman
et al., 2016; Bosc & Vincent, 2020), GANs (Che et al., 2017; Yu et al., 2017; Lin et al., 2017; Guo et al., 2018), and
normalizing flows (Ziegler & Rush, 2019; Ma et al., 2019; Hoogeboom et al., 2021), but without a strong autoregressive
component, the quality of generated text is often suboptimal. Later works achieve high-quality text generation through
diffusion models (Hoogeboom et al., 2021; Austin et al., 2021; Li et al., 2022; Gong et al., 2023; Zheng et al., 2023)
and energy-based models (Deng et al., 2020; Goyal et al., 2022; Qin et al., 2022), but their generation speeds tend to
be much slower than autoregressive language models. Inference latency can be mitigated by approaches like Lee et al.
(2020). Unlike the above paradigms that adapt continuous-domain generative models to text, our approach is closer to the
following line of works that iteratively refine the generation process through parallel updates in the space of discrete token
sequences, which tend to be at least twice faster than autoregressive approaches with a small drop in quality (Lee et al.,
2018; Ghazvininejad et al., 2019; Stern et al., 2019; Guo et al., 2020; Ghazvininejad et al., 2020; Kasai et al., 2020; Savinov
et al., 2022) (though autoregressive models also have the potential for speedup by using a shallower decoder for certain tasks
(Kasai et al., 2021)). The generation quality of non-autoregressive models can be further improved by incorporating some
autoregressive components (Kong et al., 2020; Reid et al., 2022) or input-output alignment (Chan et al., 2020; Saharia et al.,
2020), or adaptive training curriculum (Qian et al., 2021). Insights such as the multimodality problem and components
such as sequence-level knowledge distillation and input token fertility prediction were also proposed in (Gu et al., 2018).
The benefit of distillation was verified in Kim & Rush (2016); Gu et al. (2018); Zhou et al. (2020); Gu & Kong (2021).
Positional attention was tested in Gu et al. (2018); Kreutzer et al. (2020). Relevant to our experiments in Section 3.4, Ren
et al. (2020) measure the target-side dependency as the proportion of attention paid to target tokens as opposed to the source
tokens, in some modified attention architecture. Related to generation from MLMs, Wang & Cho (2019) use the learned
conditionals inside a Gibbs sampler, but when the conditionals are not consistent, i.e. there is not a joint distribution that
satisfies these conditionals, Gibbs sampler may amplify errors. In general, mathematical understanding about sampling from
masked language models is still lagging substantially behind. Additionally, related to MLMs, Meng et al. (2023) analyzes
some representational limitations, and Liu et al. (2022) analyzes subtleties from a parameter identifiability view. Related to
parallel decoding, recent work (Cai et al., 2024) parallelizes the inference with multiple heads by finetuning autoregressive
LLM backbones.

Theory about parallel sampling Koehler et al. (2023) proved a generalization bound for pseudolikelihood estimator
via the classic (k = 1) approximate tensorization of entropy, in the “proper learning” setting. Our generalization bound
(Theorem 4) uses the generalized notion of the approximate tensorization of entropy (Definition 9), also apply to “improper
learning” settings, and the proof involves quite different techniques. The classic approximate tensorization of entropy are
discussed in Marton (2013; 2015); Caputo et al. (2015), which was more recently generalized to the “α-weighted block”
version (Definition 9) in Caputo & Parisi (2021). Lee (2023) proves that k-Gibbs sampler mixes at least k times faster than
1-Gibbs sampler. For future works, recent algorithmic advances in parallel sampling could potentially be incorporated into
our framework to achieve finer-grained theoretical analysis or better empirical quality-efficiency trade-off (Anari et al.,
2023).
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