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ABSTRACT

The Targeted Free Energy Perturbation (TFEP) method aims to overcome the
time-consuming and computer-intensive stratification process of standard meth-
ods for estimating the free energy difference between two states. To achieve this,
TFEP uses a mapping function between the high-dimensional probability densi-
ties of these states. The bijectivity and invertibility of normalizing flow neural net-
works fulfill the requirements for serving as such a mapping function. Despite its
theoretical potential for free energy calculations, TFEP has not yet been adopted
in practice due to challenges in entropy correction, limitations in energy-based
training, and mode collapse when learning density functions of larger systems
with a high number of degrees of freedom. In this study, we expand flow-based
TFEP to systems with variable number of atoms in the two states of considera-
tion by exploring the theoretical basis of entropic contributions of dummy atoms,
and validate our reasoning with analytical derivations for a model system contain-
ing coupled particles. We also extend the TFEP framework to handle systems of
hybrid topology, propose auxiliary additions to improve the TFEP architecture,
and demonstrate accurate predictions of relative free energy differences for large
molecular systems. Our results provide the first practical application of the fast
and accurate deep learning-based TFEP method for biomolecules and introduce it
as a viable free energy estimation method within the context of drug design.

1 INTRODUCTION

Free energy calculation methods such as Free Energy Perturbation (FEP) (Zwanzig, 1954) are valu-
able in the field of Computer-aided Drug Design (CADD) to evaluate binding affinities between
candidate compounds and receptors, or other biomolecular interactions (Brown et al., 2010; Po-
horille et al., 2010; De Vivo et al., 2016). Although useful in cases when experimental testing is
unfeasible, high computational cost remains the current drawback for otherwise reliable and accu-
rate in silico methods. For example, FEP calculations for the free energy difference between two
thermodynamic states requires a multitude of stratified molecular dynamics (MD) simulations so
that the distributions of the explored configuration space by these intermediates sufficiently overlap
to achieve convergence (Section A.1).

Targeted Free Energy Perturbation (TFEP) has been presented as a potential alternative method for
free energy calculation by applying a generalized FEP identity (Equation 1) whereby an invertible,
high-dimensional mapping function is used to transform a distribution of one system or state to
another (Jarzynski, 2002; Hahn & Then, 2009). The invertible and bijective normalizing flow neural
network has been suggested as a solution to overcoming the difficulty of formulating the required
complex mapping functions in order to achieve overlap of configuration space distributions, and its
application for TFEP has previously been demonstrated on a growing soft sphere solute in a solvated
box (Wirnsberger et al., 2020).

Despite early success, several challenges remained that hindered immediate application of the TFEP
method to larger systems with many more degrees of freedom (DOFs) which follow more complex
density functions, such as biomolecules. In our study, we expand on the flow-based TFEP method
by addressing the following points:
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• The bijectivity of flow-based generative neural networks must be upheld by keeping the
DOF consistent throughout, a critical point considering many biomolecular free energy
studies are performed to compare systems of different sizes. We convert systems to hy-
brid topologies where deleted atoms are replaced by dummy atoms and inserted atoms are
generated by geometric proposal engines.

• The use of dummy atoms in flow-based TFEP for single free energy difference calculations
(∆F ), as opposed to dual free energy differences (∆∆F ), leads to inaccuracies due to their
entropic contributions. We first delineate this effect through analytical derivations using
the coupled-particle toy system. We then propose two different methods of circumventing
free energy estimation variance due to the presence of dummy atoms. The first method is
incorporation of an auxiliary flow model to the TFEP flow architecture. The second method
uses the thermodynamic cycle for relative free energy difference calculation to cancel out
entropic effects resulting from dummy atoms.

• The difficulty in training a flow-based neural network rises concomitantly with increases
in the DOF. A secondary benefit of adding the auxiliary flow is that it approximates a
complex target probability density function which can then be set as prior for the free
energy difference estimating bijector. The similarity between the prior and target densities
reduces the scale and distance of transformation necessary by flow and impedes mode-
seeking behavior that often leads to incorrect learning.

• We use our extended TFEP method to demonstrate successful prediction of free energy dif-
ferences for two different tasks commonly studied in chemical biology and drug discovery:
Computation of hydration free energy and free energy differences of protein stability due to
mutagenesis. The results are comparable in accuracy to established computational methods
at significantly reduced computational costs due to circumvention of long simulations.

2 RELATED WORKS

2.1 TARGETED FREE ENERGY PERTURBATIONS

TFEP is an elegant approach to free energy difference estimation devised by Jarzynski (2002), ex-
tending Zwanzig’s FEP identity function (Zwanzig, 1954). For two thermodynamic states A and B,
the relationship between the true free energy difference ∆F of the two states can be recovered using
a generalized estimator Φ instead of potential energy differences ∆U :

e−β∆F = EA

[
e−βΦA→A′

]
, (1)

where β denotes the thermodynamic beta and A′ the new proposal distribution so that for configu-
rations x ∼ A, the mapping is M(x) ∼ A′. In the forward transfer mapping A to B, expectations
are taken with respect to the equilibrium density of A, ρA ∝ e−βUA (similar for B when mapping
the reverse from B to A).

The neural network perfoming the role of TFEP mapping function M : A → A′ must be invertible
so that M−1 : B → B′. The generalized energy differences for forward and reverse directions
are defined as the difference in potential energies between target and base, from where the log
determinant of the Jacobian (J) associated with the respective map direction has been subtracted:

ΦF (x) = UB(M(x))− UA(x)− β−1 log |JM (x)|
ΦR(x) = UA(M

−1(x)− UB(x)− β−1 log |JM−1(x)|. (2)
Additional details are provided in Section A.2.

TFEP harnesses a path-independent mapping function to overlap the configuration space distribution
between reference and target state. With a correctly formulated mapping function in place, conver-
gence of the free energy differences is instantaneous and can significantly accelerate free energy
predictions compared to conventional methods dependent on simulations which require a lengthy
sequence of energy calculations per stratification step. The bottleneck thus far has been the diffi-
culty in formulating such a complex mapping function, for which normalizing flow neural networks
have recently been presented as a solution Wirnsberger et al. (2020); Rizzi et al. (2021); Falkner et al.
(2022). Normalizing flows rely on identical dimensionality between reference and target spaces for
bijector transforms in order to perform exact density estimations, a point that is discussed further in
Section 3.
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Figure 1: Schematics for the toy system example. (A) Comparison of a standard normalizing flow
(left) and an auxiliary flow stacked on a bijector flow (right). Normalizing flows conventionally
learn mapping between a data distribution p̂X for data space X and a prior distribution pZ (typically
Gaussian) for reference space Z. (B) Schematic of the thermodynamic cycle for the coupled particle
system. Dotted line particles represent dummy atoms. (C) Scheme representing the process of atom
annihilation and its corresponding probability density. The probability density of the annihilated
particle is transformed to a Gaussian distribution (intermediate state, with dummy atom). The theo-
retical mapping of this density to a Dirac delta function cannot be modeled by flow-based methods
but is computed by analytical means.

2.2 NORMALIZING FLOWS AND BOLTZMANN GENERATORS

The architecture of the mapping function M is crucial for accurate free energy prediction using the
TFEP method because convergence must be reached based on a finite number of samples obtained
from the two end states A and B. Previous reports exhibit the effectiveness of normalizing flows (Pa-
pamakarios et al., 2019; Rezende et al., 2020) in free energy calculations (Ding & Zhang, 2021a;b;
Noé et al., 2019), which are transformations of variables z from a known prior density such as a
Normal distribution to those from a more complex distribution, x = f(z). Boltzmann Generators
are a type of flow-based generative model that learns such diffeomorphisms for molecular structures
with many DOFs (Noé et al., 2019). Additional details are provided in Section A.3.

3 ENTROPIC CONTRIBUTIONS OF DUMMY ATOMS

As reported by Wirnsberger et al. (2020), normalizing flows satisfy requirements for mapping func-
tion implementation in TFEP in that they are bijective, allow for efficient computation of the inverse
and the Jacobian determinant, and are highly flexible. The significance of bijectivity is that although
DOFs need to stay conserved for flow-based TFEP, the systems being compared do not always
share the same number of atoms for many free energy questions posed in computational chemistry.
To preserve the same dimensionality throughout the bijective transformation layers of normalizing
flow, dummy atoms can be used as placeholders and the systems can be represented with a hybrid
topology.
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We designed a toy system where states A and B differ by a single particle to test our treatment
of dummy atoms within the TFEP method, and validate that the differences in the Jacobian term
are equivalent to the analytically derived entropy of a Normal distribution function. If a transfer
mapping function M : A → A′ with target B is optimally formulated such that A′ = B, the
Jacobian term from the TFEP generalized estimator log |JM (x)| represents the entropy difference
between A and B.

To numerically derive the entropic contribution by dummy atoms, we use a 2-dimensional coupled-
harmonic particle system (Figure 1B, C), defined by the energy functions provided in Section A.4.
These potential functions confine movement of the particles to a predefined range of coordinate
space to emulate a physical harmonic bond term, and represent biological ligands in bound and
unbound states. The objective is to analytically solve for the explicit entropy contribution to free
energy difference predictions by the dummy particle that replaces the deleted atom.

The model we use for TFEP free energy estimation is a combination of two stacked flows as shown in
Figure 1A. We construct an auxiliary flow as an RQNSF-based BG (Durkan et al. (2019a), Section
A.7) of 4 affine coupling layers with alternating even and odd binary masking using the nflows
library (Durkan et al., 2020). Supposing we perform a transfer mapping of B to A, this auxiliary
flow is foremost trained as a density estimator for A (120 epochs, 4096 batch size, 5e−4 learning
rate) by maximum likelihood. The prior is set as a Normal distribution function and the target as A.

The auxiliary flow is stacked on top of a second bijector flow, which is the mapping function between
A and B and responsible for the free energy difference estimation between the two systems. The
bijector is constructed and trained similarly to the auxiliary flow, the only difference being that
the prior is set as the estimated density of the auxiliary flow (the learned A), and the target is B.
Training is conducted via maximum likelihood so that samples from B are transformed such that the
generated distribution B′ has maximized overlap in the domain of the distribution of the auxiliary
flow-estimated A. Finally, the TFEP loss function is used to evaluate the transformation.

The advantage of using a dual flow is that the learned prior and target of the bijector occupy distribu-
tions that are more similar than a normalizing flow with a noise prior, heightening the efficiency and
accuracy of training (Figure S2). Invertible transformations between similar distributions are more
straightforward and easier to find because they preserve the general structure of the distributions and
can map similar regions to each other. This method avoids increased complexity in the transforma-
tion that can lead to difficulty in optimization, risk of overfitting, intractability in computation, and
burdens in memory requirements.

In contrast, training a bijector alone with no auxiliary density estimate would be driven by minimiza-
tion of Kullback-Leibler (KL) divergence, which leads to mode-seeking behavior. For larger systems
that follow highly complex and multimodal density functions, this behavior leads to difficulties in
convergence and ultimately inaccurate free energy difference predictions.

Table 1: Entropy Effects on Single Free Energy Differences

Ground truth Flow
Bound Unbound Bound Unbound

∆F -1.853 -0.470 -3.300 -1.950
∆∆F -1.383 -1.350

As shown in Table 1, we obtained single free energy differences (∆F ) for atom deletion between
prior (A, coupled two-particle system) and target (B, single-particle system) using the dual flow
method with TFEP. In the bound state, the difference in ∆F between ground truth and flow is 1.447,
and that for unbound state is 1.480. These values are indeed comparable with the known entropy
of a Normal distribution, S = ln

√
2π + 1

2 = 1.4189. We are therefore able to demonstrate with
our coupled particle deletion example that a dummy atom defined by a Gaussian will contribute en-
tropically to single free energy difference estimations, and it is crucial to take this into consideration
when using the TFEP method for free energy studies of molecular systems with changes in DOFs.
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4 CONSTRUCTION OF HYBRID TOPOLOGY

Relative free energy difference studies in drug discovery often involve end states that have different
numbers of atoms, or DOFs. To preserve the bijective nature of normalizing flow for the TFEP
method and simultaneously allow the method to be applicable for systems of different size and
topology, we implement a hybrid topology approach. Hybrid topologies fuse two systems and map
their corresponding atoms to each other (Figure 2A). In this section, we describe the particle types in
hybrid topology, the setup for traditional relative free energy calculations by FEP approach (RFEP),
and how it is integrated in our proposed deep learning model.

Particles in a hybrid topology are assigned to one of four groups: environment, core, unique old, and
unique new. Suppose we are estimating free energy differences between Molecule A and Molecule
B. All atoms of common residues in A and B are environment atoms, while common atoms on the
differing residue are designated core atoms (e.g. the C-alpha atom of the mutated residue in the
Trpcage W6F study, Section 7). When considering a transformation in the direction from A to B,
unique atoms for A would be considered unique old and those for B would be considered unique
new.

RFEP can be divided into three stages: First, a hybrid 2D topology is generated from single topolo-
gies of Molecules A and B. Second, the topology and coordinates of Molecule A are used as input
to initiate a hybrid 3D system. Third, atoms are generated using a geometric proposal engine (Ad-
ditional details, Section A.6).

For our study, we follow strategies implemented in the Perses framework (Rufa et al., 2022) that
use a variant of maximum common substructure algorithm from OEChem TK (OpenEye Scientific
Software, Santa Fe, NM) and the force constant and equilibrium state of dummy atoms.

Figure 2: Flow-based TFEP model implementations. (A) Hybrid topology for ethane and methanol
with dummy atoms (du) inserted for consistent DOFs in bijective transformation via flow models.
Environment atoms are numbered 0, 2-4, core atoms are numbered 1, and unique atoms are num-
bered 5-8 and marked with a bold outline. Black bidirectional arrows indicate the mapping of each
atom to its corresponding atom in the other system. (B) Z-matrices for ethane, methanol, and the
hybrid systems. Atom numbering identical to (A). (C) Schematic summarizing the flow architecture
that transforms between base System A and target System B. RQNSF coupling layers are repre-
sented as blue blocks, Cartesian coordinates are labeled ‘xyz’, and internal coordinates are ‘ic’.
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5 ARCHITECTURE AND METHOD DESIGN

Variations of normalizing flow networks have been published, where some are permutation equiv-
ariant but lacking rotation-translation equivariance (Wirnsberger et al., 2020) and others exhibit E(n)
equivariance at the expense of learning instability (Satorras et al., 2021). We base our implementa-
tion (Fig. 2C) on the BG concept (Noé et al., 2019) with the following minor adjustments:

(i) We opt for a rotation-translation invariant solution by leveraging the space of internal coor-
dinates as a product of hypertori and compact intervals, similar to previous literature (Noé
et al., 2019; Köhler et al., 2021; Invernizzi et al., 2022), and bookend the bijector flow
with layers that transform Cartesian to internal coordinates or vice versa. These are non-
trainable layers that transform Euclidean coordinates x ∈ Rn×3 into bonds d ∈ [a1, b1]×
. . .× [an−1, bn−1], angles α ∈ [0, π]n−2, and torsions τ ∈ Tn−3. The internal coordinate
transformation is performed by rational quadratic spline flows (Durkan et al., 2019a). The
model learns a joint distribution p(d,α, τ ) on the topological space XIC := I2n−3×Tn−3,
where the closed unit interval is I = [0, 1].

(ii) We set priors as nontrivial probability distributions that are sampled via MD. MD simu-
lations are performed using the hybrid topology for each end state (lambda 0 and 1) in
Cartesian coordinates from which we obtain a representative set of configurations for train-
ing in the forward (A to B) or reverse direction (B to A). Due to the similarity between
the prior and the target, the learning by energy scheme (Noé et al. (2019), Section A.3) is
much smoother and we are able to train at fast speed by using a simple flow architecture
with only a few coupling layers.

Normalizing flows are capable of tractable transformations, but they are not necessarily expressive
enough to capture any and all complex mapping from a naive prior to a high-dimensional, complex
target distribution. Training a BG in practice may also be difficult because energy-based training is
characterized by mode-seeking behavior and struggles to converge reliably when the target distri-
bution is multimodal. Our method overcomes this by designing a mapping between similar density
functions, which makes the transform more straightforward and enables the model to train quickly
and accurately for molecular systems.

5.1 CANCELLATION OF DUMMY ENTROPY

For end states A and B that represent the initial Molecule A (λ=0, where λ represents an alchemical
coupling parameter) and final Molecule B (λ=1), we perform simulations using a hybrid topology
as described in Section 4, where dummy atoms are either turned on or annihilated during the trans-
formation depending on which end state molecule they represent. Dummy atoms are connected to
the common core through alchemical bonded force field terms, which can skew energies calculated
for the end states if they are placed with disregard to physical context. Additionally, the DOFs of
dummy atoms are included in the mapping between A and B and contribute entropically to the free
energy difference.

The first method of balancing these energetic and entropic contributions by implementing an auxil-
iary flow as a density estimator for the free energy predicting bijector has been previously demon-
strated using a toy system in Section 3. As a second approach, we take advantage of the dummy
atoms decoupling from the core environment with regards to their nonbonded interactions in their
annihiliated state. This causes the configurational samples of the dummy atoms and their energetic
evaluation to be independent of the core and environment. Moreover, these independent energetic
and entropic contributions of the dummy atoms cancel each other out in parallel legs of thermody-
namic cycles. Dummy atoms in the solvated and vacuum states cancel each other out for solvation
free energy calculations, those in folded and unfolded states do so for mutation free energy calcu-
lations, and those in bound and unbound complexes also for relative free energies of binding. As a
result, it is unnecessary to correct for the energetic and entropic contributions of annihilated dummy
atoms for single free energy differences (∆F ) of each transformation leg separately. Instead, we
directly compute the dual free energy difference (∆∆F ) from the full thermodynamic cycle.
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Figure 3: Thermodynamic cycles for application example systems. (A) Thermodynamic cycle for
mutation between ethane and methanol. (B) Thermodynamic cycle for W6F residue mutation in Trp-
cage miniprotein. Legs of the thermodynamic cycle where the flow-based TFEP mapping function
is used are marked orange.

6 APPLICATION ON SMALL MOLECULE MUTATION

The energy difference when a molecule transitions from vacuum to a solvated state at constant tem-
perature and pressure is represented by solvation free energy, ∆F solvation (or hydration free energy
in cases where the solvent is water). Solvation free energy difference estimations are pertinent to
computational chemistry and drug design and traditionally require stratified, alchemical methods
(Section A.8). Commonly, a series of nonphysical intermediates parameterized by the alchemical
coupling parameter λ are simulated to ultimately transfer a solute from gas phase to solvent or vice
versa.

We test our TFEP method on prediction of hydration free energy difference between ethane
and methanol. From the thermodynamic cycle in Figure 3A, we see that ∆∆Fhydration =
∆Fmethanol

hydration − ∆F ethane
hydration = ∆Fmutation

solvated − ∆Fmutation
vacuum . In this section, we investigate two

pathways. The first is the solvation pathway adapted from Duarte Ramos Matos et al. (2017), where
ethane and methanol are respectively flow transformed from water to vacuum or vice versa. The
energy functions that calculate potential energy for each end state include terms and parameters for
either vacuum or implicit solvent.

Table 2: Free energy difference estimation from solvation legs.

Experimental Vac → Water Water → Vac Gromacs TI
Ethane 1.83 1.89 -1.91 2.46
Methanol -5.10 -4.75 4.71 -3.49
Hydration ∆∆F (kcal/mol) -6.93 -6.64 -5.95
Dehydration ∆∆F (kcal/mol) 6.62

For the second mutation pathway experiment, we use the hybrid z-matrix topology scheme con-
structed by merging the z-matrices of ethane and methanol as shown in Figure 2B. We compare
the flow-based free energy estimations (NF) with reference methods thermodynamic integration
(SOMD-TI) and Multiple Bennett Acceptance Ratio (SOMD-MBAR) (Section A.8) following al-
chemical free energy calculation molecular dynamics simulations run by the OpenMM-interfacing
SOMD engine Loeffler et al. (2015); Hedges et al. (2019). NF results are comparable to other meth-
ods as shown in Table 3. The loss profile of the transformation of ethane to methanol in solvated
and vacuum states and the solvation free energy is given in Figure S4.
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Table 3: Comparison with alternative free energy calculation methods.

NF SOMD-TI SOMD-MBAR
Ethane → Methanol (kcal/mol) -5.75 -6.02 -6.16

7 APPLICATION ON PROTEIN RESIDUE MUTATION

Trp-cage or TC5b (Neidigh et al., 2002) is a 20-residue (NLYIQWLKDGGPSSGRPPPS) minipro-
tein with a two-state folding mechanism that has been featured extensively in energy and confor-
mation change studies (Simmerling et al., 2002; Snow et al., 2002; Chowdhury et al., 2003; Niki-
forovich et al., 2003; Pitera & Swope, 2003; Zhou, 2003; Ding & Dokholyan, 2005; Linhananta
et al., 2005; Sidky et al., 2019; Juraszek & Bolhuis, 2006). The key stabilizing components are
the six residues making up the buried hydrophobic core (TYR3, TRP6, LEU7, GLY11, PRO12,
PRO19), four prolines that minimize ∆SU , and a salt bridge interaction.

Many single-site mutation studies have been performed on Trp-cage, both empirically and compu-
tationally. Among these we use W6F, which reportedly leads to completely unfolding in water with
destabilization of ∆∆GF = 12.5± 0.6 kJ/mol (Barua et al., 2008).

Tripeptides and mutation structure files were created and prepared using Schrödinger Maestro (wild-
type PDB ID: 1L2Y). Explicitly solvated structures were prepared using the pdb4amber tool from
the AmberTools MD package (Case et al., 2020) and MD simulations were run using OpenMM
(Eastman et al., 2017). Frames from a 40 ns simulation were collected at equal intervals and used
as starting states for multiple short (1 ns) simulations. All spawned simulations were concatenated
as a single 40 ns trajectory of 400,000 frames to be used as training input structures to ensure sta-
tistically converged results (Genheden & Ryde, 2010). For all simulations, nonbonded cutoff was
0.9 nm, temperature 300 K, timestep 1fs, and a Langevin dynamics integrator was used with 1 ps−1

friction coefficient. Solvent molecules were removed and potential energy was calculated implicitly
prior to network training (Paschek et al. (2007), Section 8).

We obtained flow-based TFEP free energy difference estimations for W6F mutation (NF) and com-
pared the results with predictions from a non-equilibrium switching method implemented by open
source software pmx (Seeliger & De Groot, 2010; Gapsys et al., 2015). We also compared esti-
mations from equilibrium replica-exchange via lambda hopping (FEP-REMD) as implemented by
Schrödinger (Wang et al., 2015).

Table 4: Results for Trp-cage W6F mutation free energy estimation.

Experimental NF pmx FEP-REMD (MBAR)
W6F (kcal/mol) 2.98 3.18 3.48 3.19

As shown in Table 4, results for the flow-based TFEP method are comparable with both experimental
and computational free energy difference values.

8 CONCLUSION AND DISCUSSION

In this work, we introduce a range of contributions to the concept of flow-based free energy dif-
ference estimations and related physical problems. The objective of the proposed approach is to
provide an alternative computational method of free energy estimation that performs at accelerated
speeds compared to conventional methods by eliminating the need for a multitude of computation-
ally expensive, stratified MD simulations.

To summarize, we first acknowledge dummy atoms are necessary for preserving bijector dimen-
sionality and these dummies should not influence the free energy calculations. We then analytically
derive the Jacobian contribution in the TFEP generalized estimator by these dummy particles using
a toy system.
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In the next section, we propose integration of a hybrid topology scheme to the TFEP method as
an efficient way of preserving dimensionality for molecular systems in normalizing flows. We also
discriminate our method from normalizing flow-based BGs (Noé et al., 2019; Invernizzi et al., 2022;
Mahmoud et al., 2022) by mapping between similar prior and target instead of between a noise prior
and complex target, enhancing efficiency and the capacity to train larger systems.

We also provide two approaches to ensure that deep-TFEP free energy difference estimations do not
suffer from variance due to dummy atoms. The first is an architectural solution, stacking an auxiliary
flow density estimator on the bijector as a prior. The second is by taking advantage of double free
energy difference settings, under assumption that free energy differences for parallel legs of the
thermodynamic cycle will contain the same entropic contributions that cancel out. A caveat to note
is that this assumption may not hold true in all cases Boresch & Karplus (1996); Fleck et al. (2021),
indicating a need for further study.

Regarding training data for our deep generative models, we used Generalized Born (GB)-solvated
data samples. Although better agreement can be achieved with experiments using explicit solvent,
the choice for implicit solvation was deliberate due to challenges in modelling ensemble distributions
that included explicit solvent molecules. Furthermore, inclusion of waters greatly increases the
system size (DOFs) and also introduces permutation symmetry. Future studies on this topic may
attempt a combination of promising developments in flow-based generative models for large systems
with permutational symmetry (Noé et al., 2019; Wirnsberger et al., 2020; Köhler et al., 2023) with
the current TFEP approach. Another possible direction for improving the current approach is to
enhance physical accuracy by integrating deep learning potentials that implicitly account for explicit
water (Chen et al., 2021; Mahmoud et al., 2020; Ghanbarpour et al., 2020).
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A APPENDIX

A.1 FREE ENERGY PERTURBATION

The pairwise free energy difference for the transfer between neighboring intermediate states are
individually calculated and summed to obtain the overall free energy change:

∆F = FB − FA

= (FB − FN ) + (FN − FN−1) + ...+ (F1 − FA)

= −kBT

N∑
i=0

ln

〈
exp

(
−Ui+1 − Ui

kBT

)〉
i

The flow-based TFEP method allows us to bypass the computational expense of simulating numer-
ous intermediate states i and accelerate computation time without compromising the accuracy of
free energy difference estimation.

A.2 DEEP MAPPING IN TARGETED FREE ENERGY PERTURBATION

The relationship between the Kullback-Leibler Divergence loss function and the generalized esti-
mator has been reformulated by Wirnsberger et al. (2020):

DKL [ρA′ ||ρB ] = β(EA[ΦF ]−∆F ).

When both ΦF and ΦR are available, the Bennett Acceptance Ratio (BAR) can be used to predict
statistically accurate free energy:

EA[f(β(ΦF −∆F ))] = EB [f(β(ΦR −∆F ))],

While not directly related to the free energy calculations, the TFEP loss function has also been
recently used to develop LREX to skip the replica-exchange ladder (Invernizzi et al., 2022).

A.3 BOLTZMANN GENERATORS

The multimodal complexity of energy function-dependent Boltzmann distributions requires a gen-
erative model that is capable of non-parametric density estimations. Flow-based Boltzmann Gen-
erators (BGs) have been reported to successfully obtain configuration samples of small molecular
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structures (up to 892 atoms) from the Boltzmann distribution e−U(x) following a training protocol
based on valid reference structures from molecular dynamics (MD) and the energy function U(x)
Noé et al. (2019). BGs learn invertible coordinate transformations of variables x ∼ pX(x), configu-
ration states which have high Boltzmann probability, from the latent space variables z ∼ pZ(z). The
latent space distribution follows a simple Gaussian for easy backward propagation derivative calcu-
lations, same as other NFs (Figure S1, left). Each latent variable z from this fixed and prescribed
probability distribution function belongs to a unique conditional distribution that is learnable by
parameters θ. The task of the BG network is therefore to learn θ for the transformations:

x = M(z; θ), z = M−1(x; θ), (3)

BGs are tailored for generating states of molecular systems because not only are the models trained
using energetically and structurally valid states obtained through MD simulations (example-based
training), they are also trained on the energy function so that the target distribution pX(x) ∝ e−U(x)

(energy-based training). Once q has been learned and optimized, structures that do not violate the
Boltzmann distribution can be generated from the trained model in one-shot.

Figure S1: Schematic for distribution learning in Boltzmann Generators. The flow-based model
learns the unique distribution for a protein system using a sequence of bijective, invertible func-
tions, here depicted as dot-connected orange arrows. The exact prior and exact target are pZ(z)
and pX(x) ∝ exp(−u(x)). The BG-generated distribution is q, so that qX(x) = M(z) and
qZ(z) = M−1(x). The prior pZ(z) is typically a Gaussian for BGs (left). In our method, we
set an auxiliary density estimator as prior instead of a Gaussian (right).
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A.4 ENERGY FUNCTION DEFINITIONS FOR THE COUPLED PARTICLE SYSTEM.

Bound State

System A V1(x1, x2) = 0.5 · k1(x1 − x◦
1)

2

V2(x1, x2) = 0.5 · k2(x2 − x◦
2)

2

V3(x1, x2) = 0.5 · κ · 0.5(C tanh(α(x1 − x◦
1)) + 1.0) · ((x2 − x1)− d)2

V = V1 + V2 + V3

System B V1(x1) = 0.5 · k1(x1 − x◦
1)

2,

where k1 = 5.0, k2 = 10.0, x◦
1 = −2.0, x◦

2 = 2.0, , d = 3.0, κ = 10.0, C = 0.5, α = 2.0.

Unbound State

System A V1(x1) =


0.5 · k(x1 − xl)

2, if x1 < xl

0.5 · k(x1 − xr)
2, if x1 > xr

0, otherwise

V2(x2) =


0.5 · k(x2 − xl)

2, if x2 < xl

0.5 · k(x2 − xr)
2, if x2 > xr

0, otherwise

V3(x1, x2) = 0.5 · κ · 0.5(C tanh(α(x1 − x◦
1)) + 1.0) · ((x2 − x1)− d)2

V = V1 + V2 + V3

System B V1(x1) =


0.5 · k(x1 − xl)

2, if x1 < xl

0.5 · k(x1 − xr)
2, if x1 > xr

0, otherwise,

where k = 10.0, x◦
1 = −2.0, xl = 3.0, xr = 3.0, d = 3.0, κ = 10.0, C = 0.5, α = 2.0.
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A.5 TRAINING RESULTS FOR DUAL FLOW METHOD.

Figure S2: Sampling histograms for the 2D coupled-particle system. System A is the two-particle
system, System B is comprised of the first particle and an uncorrelated dummy atom that is defined
by a Gaussian energy distribution with a mean of 0. The left two columns are for the bound state,
the right two columns for the unbound state. The first row is the target System A, the second row
target System B. The third row is the flow-generated distribution before using an auxiliary flow as
prior. The final row shows correct training upon implementing the auxiliary flow. Improvements are
especially more pronounced in histograms for the unbound state.

A.6 ADDITIONAL INFORMATION ON THE RFEP METHOD

Unique new atoms and their corresponding dummies receive coordinate placement by a reversible
jump Monte Carlo geometry proposal engine to ensure generation of favorable molecular geometries
that avoid steric clash or other errors in energy evaluation (Rufa et al., 2022). For the final stage,
investigators have the option of using either equilibrium methods (e.g. replica exchange) or non-
equilibrium methods (e.g. non-equilibrium switching) to estimate the free energy difference.

A.7 RATIONAL QUADRATIC NEURAL SPLINE FLOWS

Rational Quadratic Neural Spline Flows (RQNSFs) are a class of normalizing flow models that
transform using rational quadratic spline functions (Equation 4), or continuous functions mapped to
a bound region (i.e. [−B,B]) for each DOF. The monotonic increase of rational quadratic functions
ensure bijectivity in transform. The continuous first derivatives are piece-wise defined on intervals
splitting this region.

z = f(x) = z0 +
(z1 − z0)

[
sξ2 + d0ξ (1− ξ)

]
s+ [d1 + d0 − 2s] ξ (1− ξ)

, (4)
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We note in the above equation that x0(1), z0(1), and d0(1) are the locations and derivatives at the left
(right) interval boundaries, and ξ = (x− x0)/(x1 − x0), s = (z1 − z0)/(x1 − x0).

We implemented RQNSF Durkan et al. (2019b) coupling layers in the mapping transformations of
our architecture (Figure S3) for a flow module expressive enough to capture the complex probability
densities of systems that have high DOFs. Implementations are based on methods described in
Mahmoud et al. (2022).

Figure S3: Scheme of a Rational Quadratic Spline function transformation. In our RQNSF imple-
mentation, a residual network is used to condition the spline coupling transformation.

A.8 FREE ENERGY ESTIMATION METHODS

In this section, we describe a few approaches to solvation free energy calculation for the sake of
comparison with the TFEP approach. We define end states A and B with the respective Hamilto-
nians HA(q,p;λ) and HB(q,p;λ), where q and p represent positions and momenta of the system
at given points in phase space and λ the nonphysical coupling parameter. We then obtain the λ-
dependent Hamiltonian as:

H(q,p;λ) = f(λ)HA(q,p;λ) + g(λ)HB(q,p;λ).

By convention, H = HA at λ = 0 and H = HB at λ = 1. The Hamiltonians are mixed using the
functions f(λ) and g(λ). In the thermodynamic integration (TI) method, simulations are performed
for a discrete set of λ values and subsequently the free energy difference between A and B can be
estimated by solving for ∆F =

∫ λ=1

λ=0

〈
∂H
∂λ

〉
λ
dλ by numerical quadrature approach. In the expo-

nential averaging (EXP) or free energy perturbation (FEP) method (Zwanzig, 1954), λ-dependent
Hamiltonians are similarly used to to estimate ∆F = − 1

β ln
〈
e−β[HB(qp;λ)−HA(q,p;λ)]

〉
A

As a third alternative method, Bennett Acceptance Ratio (BAR) relies on bidirectional transfers to
iteratively solve for the following:〈

1

1 + NA

NB
eβ∆HBA(q,p)−β∆F

〉
A

=

〈
1

1 + NB

NA
eβ∆HAB(q,p)+β∆F

〉
B

.

Here, the respective numbers of statistically independent samples from A and B are denoted
as NA and NB and the Hamiltonian differences as ∆HBA(q,p) = HB(q,p) − HA(q,p) =
−∆HAB(q,p).
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A.9 ETHANE TO METHANOL SOLVATION LEARNING CURVE

Figure S4: Learning curve and free energy difference between ethane and methanol in water and
vacuum.
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