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Abstract

The enhancement of Visual Language Mod-001
els (VLMs) has traditionally relied on knowl-002
edge distillation from larger, more capable mod-003
els. This dependence creates a fundamental004
bottleneck for improving state-of-the-art sys-005
tems, particularly when no superior models ex-006
ist. We introduce AIDE (Agentic Improvement007
through Domain Experts), a novel framework008
that enables VLMs to autonomously enhance009
their capabilities by leveraging specialized do-010
main expert models. AIDE operates through011
a four-stage process: (1) identifying instances012
for refinement, (2) engaging domain experts013
for targeted analysis, (3) synthesizing expert014
outputs with existing data, and (4) integrating015
enhanced instances into the training pipeline.016
Experiments on multiple benchmarks, includ-017
ing MMMU, MME, MMBench, etc., demon-018
strate AIDE’s ability to achieve notable perfor-019
mance gains without relying on larger VLMs020
nor human supervision. Our framework pro-021
vides a scalable, resource-efficient approach022
to continuous VLM improvement, addressing023
critical limitations in current methodologies,024
particularly valuable when larger models are025
unavailable to access.026

1 Introduction027

Visual Language Models (VLMs) have achieved028

impressive advancements in understanding and029

reasoning about visual content (Alayrac et al.,030

2022; Liu et al., 2023c; Fang et al., 2024). How-031

ever, their continued improvement often hinges on032

knowledge distillation from larger, more capable033

models through approaches like instruction tun-034

ing (Liu et al., 2023a,c,b). While this approach035

has proven effective for intermediate-scale mod-036

els, it introduces a significant limitation for the037

largest state-of-the-art systems: the absence of a038

superior model renders further enhancement in-039

feasible. This "chicken-and-egg" problem stifles040

progress and raises a critical question: how can041

VLMs be improved when no superior models ex- 042

ist? Despite their general capabilities, VLMs often 043

underperform in specialized tasks compared to do- 044

main expert models such as object segmentation 045

tools or Optical Character Recognition (OCR) sys- 046

tems. For instance, models like Grounding DINO 047

(Liu et al., 2023d) consistently outperform general- 048

purpose VLMs (Yuan et al., 2021; Huang et al., 049

2023) in visual recognition tasks (Table 1). This 050

observation suggests an alternative pathway: rather 051

than relying on larger general models, VLMs can 052

leverage the specialized capabilities of expert mod- 053

els for improvement (Shi et al., 2024). 054

In this paper, we introduce AIDE (Agentic Im- 055

provement through Domain Experts), a framework 056

that enables VLMs to strategically collaborate with 057

domain expert models to enhance their training 058

data. As shown in Fig. 1. AIDE employs a four- 059

stage workflow: (1) identifying instances requiring 060

refinement, (2) invoking expert models for special- 061

ized outputs, (3) synthesizing these outputs with 062

existing data, and (4) systematically integrating 063

improved data points into the training process. 064

We validate AIDE ’s effectiveness through exten- 065

sive experiments on benchmarks such as MMMU 066

(Xiang et al., 2024), MME (Fu et al., 2024), MM- 067

Bench (Yuan et al., 2024), etc., showing that it 068

achieves notable performance improvements using 069

only off-the-shelf lightweight expert models. Un- 070

like traditional methods, AIDE does not depend 071

on access to larger models nor human supervision, 072

making it a scalable and computationally efficient 073

solution for advancing state-of-the-art VLMs. 074

2 Related Work 075

Knowledge Distillation. Traditional methods for 076

improving VLMs rely on knowledge distillation 077

(Wang et al., 2022), where a larger “teacher" model 078

generates training data to enhance a smaller “stu- 079

dent" model. While effective for intermediate-scale 080
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Figure 1: AIDE Workflow. AIDEconsists of two agents, a Selector and a Synthesizer. The Selector interacts with
the data instances and autonomously invoke the expert tools as it deems fit. The Synthesizer collects information
from the original data instances along with outputs from the select experts and generate enriched response.

Model RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test

general-purpose model
Kosmos-2 52.3 57.4 47.3 45.5 50.7 42.2 60.6 61.7
Florence-2-B 53.9 58.4 49.7 51.5 56.4 47.9 66.3 65.1
Florence-2-L 56.3 61.6 51.4 53.6 57.9 49.9 68.0 67.0

expert model

Grounding DINO L 90.56 93.19 88.24 82.75 88.95 75.92 86.13 87.02

Table 1: Performance comparison between general-purpose models and expert models on referring expression
comprehension tasks. Expert model like Grounding DINO outperforms general-purpose models by a large margin.

models (Liu et al., 2023c,a), this paradigm creates081

a dependency on the availability of superior mod-082

els, which limits its applicability to state-of-the-art083

systems.084

Specialized Models. Recent studies (Fei et al.,085

2024) highlight the superiority of domain-specific086

expert models in certain tasks. For example, ob-087

ject detection systems such as Grounding DINO088

and OCR models like PaddleOCR (pad) signifi-089

cantly outperform general-purpose VLMs in their090

respective domains (Yuan et al., 2021; Ren et al.,091

2024; Liu et al., 2023d). These findings underscore092

the potential of leveraging specialized models to093

complement the general capabilities of VLMs.094

Data Synthesis and Augmentation. Existing095

methods for augmenting training data often involve096

the model generating synthetic examples (Liu et al.,097

2023a; Chen et al., 2023) or applying templates to098

initial human annotations for more truthful data099

(Chiu et al., 2024b,a). While this approach can100

enhance performance on specific benchmarks, it101

risks perpetuating the biases and limitations of the102

model, resulting in diminishing returns. In contrast,103

AIDE integrates external expert knowledge and the104

original samples into the data generation pipeline,105

enabling more robust and unbiased improvements.106

3 AIDE Framework 107

The AIDE framework enables VLMs to au- 108

tonomously improve by collaborating with do- 109

main expert models. It comprises two primary 110

agents—Selector and Synthesizer—and operates 111

through three principal actions: Selection, Execu- 112

tion, and Synthesis. AIDEpresumes an existing 113

base dataset as the environment for agents to in- 114

teract with. Fig. 1 provides an overview of the 115

AIDE pipeline. 116
Selector. The selector serves two objectives, iden- 117

tify improvement candidates and match candidates 118

with expert tools: the selector interacts with the 119

base dataset and is presented with detailed infor- 120

mation and functionalities of the expert tools and 121

judge if any of the additional information the ex- 122

perts can provide may be beneficial to improve the 123

quality of the data. If it is, then the selector will 124

exercise the corresponding expert tool. 125

Synthesizer. The Synthesizer integrates expert 126

outputs with the original data to generate enhanced 127

training examples. This process involves: (i) Ag- 128

gregating information from multiple sources, i.e. 129

the original instances and domain expert outputs; 130

(ii) Resolving potential conflicts. E.g. between orig- 131

inal instances and expert outputs. (iii) Producing 132

richer and more coherent responses. By these in- 133

structions, we expect the new response s would 134

inherently be richer and contain reasoning flavors. 135
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Selector ChartQA TextVQA Mathvista MMbench MME-c MME-p MMMU_val SciQA POPE

Eagle-Baseline (reproduced) 80.24 7.469 55.8 74.1 337.5 1529.1 41.0 80.42 89.29

Eagle Heuristic (ans ≤5 tokens) 79.64 41.49 54.5 71.0 336.4 1511.9 40.9 77.05 89.56
Eagle-Small-step (AIDE) 79.64 76.85 56.6 74.4 385.7 1590.1 41.4 82.99 89.19
Eagle-Retention (AIDE) 80.42 74.46 56.9 74.8 335.7 1583.6 42.2 78.83 90.07

Table 2: AIDE performance Improvements. Using VLM for self improvement enhanced the performance on
various benchmarks.

Figure 2: Small-step Prompting. We observe even when VLM is able to answer the query (middle-column),
sometimes the instruction following is not stable. And simplifying the prompt into smaller steps by giving the
answer (last column) gives more detailed responses.

See Sec. 4.3 for comparisons.136

3.1 Integration137

After generating enhanced samples, the integration138

incorporates them back into the training pipeline.139

This involves filtering: ensures new formulations140

maintain sensible information along with the origi-141

nal instances to prevent model collapse.142

4 Experiment143
Setup. We evaluate AIDE using the Eagle-8B144

(Shi et al., 2024) as both Selector and Synthe-145

sizer, interacting with the Cambrian1-7M dataset146

for one iteration. Experiments are conducted on an147

NVIDIA A100 node with 8 GPUs. Note that the148

choice of Selector and Synthesizer can be adaptable149

and need not be the same.150
Expert Tool Choice. Two lightweight domain151

experts, PaddleOCR (pad) and Grounded-SAM152

(Ren et al., 2024), are employed. These tools153

complement the visual data-rich composition of154

Cambrian1-7M (Tong et al., 2024). AIDE is exten-155

sible to incorporate additional expert models for156

multimodal tasks.157
Integration. We use simple heuristics like n-158

gram filtering, etc. because we use small-step159

prompting that we deem enough to maintain quality160

of new responses (Fig. 2 & Fig. 4), but AIDE can161

easily add verifiers to further enhance data genera-162

tion quality (see Sec. 5 for discussions).163
Results. Table 2 shows that applying AIDE is164

able to improve on MMMU (Xiang et al., 2024)165

by 1.2%, MMBench (Liu et al., 2023e) by 0.77%,166

MME (Fu et al., 2023) by 52, Mathvista (Lu et al.,167

2024) by 1.1 %, ChartQA (Masry et al., 2022) by 168

1.1 % etc. These results (Saikh et al., 2022; Li 169

et al., 2023) highlight AIDE ’s effectiveness by 170

using domain expertise for VLM improvement. 171

4.1 Ablations 172

Selector Choice. We evaluated variations in Se- 173

lector strategies, including text-only LLMs and 174

heuristic methods. Tab. 2 (row 2) shows that heuris- 175

tic like synthesizing the instances that has ≤ 5 to- 176

kens is not comparable to using a VLM-selector, 177

even though the heuristic would select much more 178

instances for synthesis (2.5M vs 950k). 179

Small-step Prompting. In the synthesis step, we 180

tried to directly prompt the VLM to generate more 181

detailed responses and then put final answer at the 182

end, but it often fails to do so (Fig. 2-mid). Fig. 2- 183

last shows that it is effective to simply prompt the 184

VLM with the whole information of the instance 185

and with one task (e.g. just generate the reasoning). 186

Even though the VLM knows the correct answers, 187

slightly more complex prompt cannot achieve the 188

desirable outcome. 189

Originals Retention. Tab. 2 shows that AIDE is 190

able to provide improvements with or without the 191

original turn (question, answer pair), suggesting 192

the effectiveness of AIDE. 193

4.2 Analysis on AIDE-selected data 194

We analyze the VLM selected data points for im- 195

provement. Out of the 7M training instance, about 196

2M are text-only and 5M are multimodal. And of 197

the multimodal training instances, around 950K 198
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Figure 3: Left: Breakdown of selected data instances by VLM-Selector. Synthdog takes the most proportion of
the selection. Right: Ratio of data instances selected by the VLM-Selector to the total instances in the original
Cambrian-1.

Figure 4: Comparisons of the original and the new answer produced by AIDE. Our AIDE workflow enriches the
responses.

were selected by VLM-Selector. We provide the199

breakdown of the 950K in Fig. 3. Detailed analysis200

of AIDE-selected data reveals interesting patterns201

in two directions, the proportions chosen among202

the 950k and proportions among the multimodal203

samples in Cambrian1. We observe that the major-204

ity (over 40%) of the selected are from synthdog,205

an OCR dataset, suggesting the Selector deems206

the quality of synthdog need most improvement.207

On the other hand, we analyze the percentage of208

the selected candidates compared to the original209

data by source from Cambrian1. Again, about 80%210

of the synthdog are chosen by the VLM selector211

for improvement. Arxivqa llavar, textvqa are also212

predominately selected. We suspect the Selector213

deems the quality of these document datasets need214

improvement and posit AIDE may serve as an al-215

ternative way to estimate the quality of a dataset216

through a VLM-as-a-judge approach.217

4.3 Qualitative results218

Figure 4 illustrates the comparisons between the219

original data instances and the enriched data in-220

stances by our AIDE workflow. The new responses221

provides more details and reasoning-flavored con-222

text than the original answers. These contextual223

enhancements (Chiu et al., 2024b) may explain 224

AIDE’s ability to improve the performances on var- 225

ious benchmarks (Tab. 2). 226

5 Conclusions 227

We presented AIDE, an agentic framework enabling 228

VLM improvement through domain expert models. 229

Unlike traditional methods, AIDE offers a scalable, 230

resource-efficient alternative to reliance on larger 231

models. Our contributions include: (i) A novel 232

approach to VLM enhancement without superior 233

models. (ii) Demonstrated improvements across 234

benchmarks like MMMU, MMBench, and SciQA. 235

(iii) Detailed analysis of data selection strategies 236

and their impacts. 237

Future work may explore adapting AIDE for pref- 238

erence optimization, generating new (question, an- 239

swer) pairs and incorporating test-time inference 240

techniques to further guarantee the quality of new 241

data. These advancements aim to further refine 242

synthesized data quality and broaden AIDE’s ap- 243

plicability, paving the way for continuous VLM 244

training paradigms. 245
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6 Limitations246

Although AIDE avoids the need for larger VLMs,247

integrating expert models and synthesizing en-248

hanced data require additional computational re-249

sources. While we utilized lightweight models250

in our experiments, applying AIDE to large-scale251

datasets or in real-time settings may be constrained252

by computational costs. Optimizing selection253

heuristics and developing more efficient integra-254

tion strategies could enhance scalability.255
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