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Abstract

To address spatial imbalances in the supply and
demand of drivers, ridesharing platforms can make
use of policies to direct driver relocation. We study
a simple model of this problem, which allows us to
give a constructive characterization of the unique
fixpoint of system dynamics. Using this construc-
tion, we design a dynamic policy that provides
stronger, than previous work, guarantees about its
rate of convergence to the fixpoint. Simulations
demonstrate the benefits of our approach.

1 INTRODUCTION

Ridesharing platforms such as Didi, Lyft, and Uber match
passengers in need of transportation with drivers who can
provide it. As drivers provide service to passengers, they
themselves travel and so may end up in a new region when
seeking to next provide service. Unbalanced demand to and
from a region leads to an excess or shortage of drivers in
that region and calls for a policy for relocation of drivers.
Designing good relocation policies that direct drivers from
regions where there is an excess to regions where there
is a shortage is therefore a key challenge both for provid-
ing efficient service [Afeche et al., 2018] and minimizing
environmental costs [Ward et al., 2021].

Prior work has developed a number of models of the prob-
lem of designing relocation policies, including in the context
of other decisions such as pricing. Many of these models are,
however, quite complex and the results are often focused on
optimizing a particular objective such as revenue or avail-
ability. This leads to several related challenges. In some
analyses it is simply assumed that the system has achieved
some notion of steady state or equilibrium without justifica-
tion of how the system dynamics lead there [Bimpikis et al.,
2019, Besbes et al., 2021]. Furthermore, this steady-state
behavior may only be examined for an optimal policy for

a particular objective, leaving the behavior of the system if
a policy is chosen to address another objective [Bimpikis
et al., 2019, Hosseini et al., 2021, Iglesias et al., 2019, Zhang
and Pavone, 2016]. Even for those few analyses that have
addressed the convergence behavior of arbitrary policies,
the complexity of the model has typically lead to a non-
constructive analysis [Braverman et al., 2019].

In this paper we address these problems by adopting a sim-
ple stylized model that can be thought of as a special case
or limiting behavior of a number of models in the literature
(see Section 1.1). In it, the area where the ridesharing plat-
form operates is divided into r regions and there is a fixed
total mass of drivers available to serve passengers. Time is
discrete and at each step a fixed mass of passengers seek
service in each region. The drivers currently in that region
carry passengers to their destination. If the mass of drivers
exceeds the mass of passengers in a region, the remaining
drivers relocate according to a fixed policy (which may in-
clude staying where they are). Both carrying passengers
and relocating take a single time unit. If the mass of pas-
sengers exceeds the mass of drivers in a region, the excess
passengers are simply not served.

The simplicity of our model allows us to provide concise
arguments that establish a number of key properties.

• Each combination of policy and total mass of drivers
has a unique fixpoint of the system dynamics.

• Starting from any initial conditions, the system dynam-
ics converge to this unique fixpoint.

• The fixpoint is continuous and monotone in the mass
of drivers and can be constructed via the stationary
distributions of a linear number of Markov chains.

Our arguments are based on the analysis of a piecewise
linear generalization of Markov chains which may be of
independent interest.

As an example of the benefits of such a rigorous understand-
ing of the behavior of the system, we analyze the problem
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of dynamically adjusting the policy to converge to the fix-
point as rapidly as possible from arbitrary initial conditions.
We introduce a dynamic policy that makes use of our fix-
point construction and is the first to have guarantees about
its rate of convergence and the welfare loss while converg-
ing relative to welfare in the chosen fixpoint. Simulations
based on data from Didi show superior performance to prior
approaches for handling stochastic demands. Additional
simulations on synthetic data show that it converges sub-
stantially faster than previous heuristic approaches. In our
simple model these previous approaches target maximiz-
ing efficiency and our approach matches their performance
while being more flexible in its ability to target other metrics
such as availability.

1.1 RELATED WORK

Our model is part of a growing literature that analyzes the
stationary behavior of ridesharing systems either in a direct
formulation as optimization problem [Bimpikis et al., 2019,
Pavone et al., 2012] or as the fluid limit of a queueing
model [Braverman et al., 2019, Hosseini et al., 2021, Iglesias
et al., 2019, Banerjee et al., 2017, Zhang and Pavone, 2016,
Waserhole and Jost, 2012]. Indeed, our model is a special
case of a number of these. There are also models of service
networks which lack the crucial aspect of ridesharing that
providing service changes which customers can be served
in the future [Caldentey et al., 2009, Adan and Weiss, 2012,
Gurvich and Ward, 2014].

Closest to our theoretical results, Braverman et al. [2019]
analyze the dynamics of a queueing system with a fluid
limit, which generalizes our model. As we do, they show
convergence to a unique fixpoint. Their analysis is non-
constructive and substantially more complex. They examine
dynamic relocation but provide only simple heuristics. Our
analysis is constructive and simpler, and we provide theoret-
ical guarantees for dynamic relocation.

Hosseini et al. [2021] recently examined the use of dynamic
policies to address stochastic deviations from the fixpoint
of system dynamics due to a finite population of drivers and
passengers. While their analysis is quite different from ours,
they exploit some of the same underlying properties of the
dynamics and we use an adaptation of their heuristic as a
comparison in our experiments. As we demonstrate, in our
experiments we obtain faster convergence and can target a
wider range of objectives.

While our focus is on the design of relocation policies, there
is also a literature on the implications of implementing
them with self-interested drivers through pricing or other
mechanisms. Closest to our work are those on spatial pric-
ing [Afeche et al., 2018, Besbes et al., 2021, Lu et al., 2018,
Bimpikis et al., 2019], but other work examines temporal
policies such as charging “surge” prices at times of peak de-

mand [Hall et al., 2015, Banerjee et al., 2015, Cachon et al.,
2017, Chen and Sheldon, 2015, Garg and Nazerzadeh, 2021,
Hall et al., 2017] and combining both spatial and temporal
pricing [Buchholz, 2015, Guda and Subramanian, 2017, Ma
et al., 2019].

While we treat all drivers and passengers in a region as
interchangeable, there are also finer-grained models which
focus on decisions about which specific driver to match to
each passenger [Hu and Zhou, 2022, Castillo et al., 2017,
Özkan and Ward, 2020, Biswas et al., 2017].

2 PRELIMINARIES

2.1 NOTATION

Let r denote the number of regions. In the sequel, all the
vectors are r-dimensional and all the matrices are r × r
dimensional. We sometimes abuse notation and denote by
A[i, j] the term (A[i])[j].

For two vectors A and B, we say that A ≥ B if
max(A,B) = A, where the max (here and elsewhere
in this document) is taken point-wise. Thus, for every i,
A[i] ≥ B[i]. Similarly, for vectors A and B, A ≤ B
if min(A,B) = A. Similarly, if A and B are matrices,
we say that A ≥ B (resp. A ≤ B) if for every i and j,
A[i, j] ≥ B[i, j] (resp. A[i, j] ≤ B[i, j]).

We denote by c the vector whose entries are all c. In particu-
lar we use 0—the all 0 vector, and 1—the all 1 vector.

We use boldface to denote the sum of a vector or a matrix.
Thus, A is the sum of A’s entries.

For a matrix A, 1A is the vector whose ith entry is the sum
of the ith column of A. Similarly, A1, is the vector whose
ith entry is the sum of the ith row of A.

For a positive real x, let a vector induced by x be any (r-
dimensional) vector of non-negative reals whose sum is x.
We call a vector A induced by 1 a probability vector. Every
vector induced by a positive x uniquely defines a probability
vector A by normalization. Conversely, every probability
vector A defines a vector induced by x, namely xA, which
we call the the vector induced by x given A.

A right stochastic matrix, or just a stochastic matrix is a
matrix all of whose rows are probability vectors. Such a
matrix corresponds to a Markov chain and is ergodic if for
some power k, Ak is positive. Ergodic matrices have unique
stationary distribution. We use the predicate Erg(A) to
denote that a stochastic matrix A is ergodic. If Erg(A),
we denote by σ(A) its unique stationary distribution, thus
σ(A) = σ(A)A.



2.2 MODEL

Our model of a ridesharing system has four key parts:

1. A demand matrix W such that W [i, j] denotes the
mass of passengers wishing to travel from i to j. For
technical convenience we assume that for every i and
j, W [i, j] > 0. W induces a right stochastic matrix
which we denote V where V [i, j] is the fraction of
passengers in region i who wish to travel to j;

2. A policy π—a probability vector where π[j] denotes
the fraction of drivers who have no passengers that
relocate to region j. We denote by Zπ the set of regions
i for which π[i] = 0. For notational convenience we
sometimes refer to a stochastic matrix Π where each
row is π.

3. A total mass of drivers in the system q ≥ 0.

4. At each timestep the current state of the system is rep-
resented by a mass distribution M where M [i] denotes
the mass of drivers at region i. Thus we requireM ≥ 0
and M = q.

From a region i, the first up to W1[i] drivers are distributed
full, that is with passengers, to every region j proportional
to V [i, j]. The other drivers, if any, drive empty, that is
passenger-less, to a destination according to π. A region
i for which M [i] ≥ W1[i] is called saturated; otherwise
it is called unsaturated. Let UM be the set of unsaturated
regions given M . Let out(M)[i] be the vector describing
the outflow from region i given M . For every region i,

outW,π(M)[i] =

{
M [i]V [i] i ∈ UM
W1[i]V [i] + (M [i]−W1[i])π o.w.

The first line, as well as the first term in the second line,
refer to full rides from i, while the second term in the second
line refers to empty rides from i.

We assume that time is discrete and all rides and relocations
take unit time. Denote by next(M) the vector of the drivers
available in each location in the next step. Then for every
region i,

next(M)W,π[i] =
∑
j

outW,π(M)[j, i]

For brevity, when it does not create ambiguity we may omit
the W or π from the subscript. A fact that will be used
repeatedly is that next(M) (and its component parts) are
monotone and continuous in M :

Lemma 1 The functions out(M) and next(M) are contin-
uous and increasing in M .

Proof: Consider a region i and the function out(M)[i]
which is either a product of M [i]— a scalar which is con-
tinuous in M—and a constant vector, or a sum of two such

vectors. Hence out(M)[i] is continuous. In either case, it is
also increasing in M . Since next(M) is a summation over
out(M)’s columns, the claim follows. ./

The stylized model we have described is a special case of
a number of models in the literature (e.g. [Bimpikis et al.,
2019, Braverman et al., 2019, Hosseini et al., 2021]). We
have made it as simple as possible to enable a clear, concise
analysis. We discuss relaxing assumptions in Sec. 8.

3 CONSTRUCTING A FIXPOINT

Fix a demand matrix W and a policy π. We present an al-
gorithm (Alg. 1) that, given a quantity q ≥ 0, constructs a
mass distribution M such thatM = q and M = next(M).
Here, next(M) is analogous to the action of a Markov chain
and such a fixed point would correspond to a stationary dis-
tribution. However, in general the action of next(M) is not
a Markov chain because outW,π is piecewise linear rather
than linear. We first introduce some notation and claims that
are used in the algorithm and its proof of correctness.

3.1 BUILDING BLOCKS

A mass distribution M defines the marginal transition ma-
trix TM where for every region i,

TM [i] =

{
V [i] i ∈ UM
π otherwise

Because W [i, j] > 0 for all i and j, TM is ergodic for every
M for which UM includes some non-Zπ regions. Given M
such that Erg(TM ) and σ = σ(TM ), define

q(M) = min
i∈UM

((W1[i]−M [i])/σ[i])

That is, q(M) is the maximal mass that can be added, ac-
cording to σ, to M as not to cause any region that was
unsaturated to be oversaturated. The following lemma es-
tablishes that if M = next(M) and there are some non-Zπ
unsaturated regions, then adding any quantity q ≤ q(M) to
M , proportionally to σ(TM ), will maintain the fixpoint.

Lemma 2 Assume M = next(M) and UM ∩Zπ 6= ∅, and
let σ = σ(TM ). Then for every q′, 0 ≤ q′ ≤ q(M),M+q′σ
is a fixpoint mass distribution of next().

Proof: Consider some q′, 0 ≤ q′ ≤ q(M) and i ∈ UM∩Zπ .
The additional outflow from region i in M ′ = M +q′σ rela-
tive toM is q′σ[i]. Every region j contributes q′σ[j]TM [j, i]
into i. Since σ = σ(TM ),

∑
j q
′σ[j]TM [j, i] = q′σ[i]. ./

The following lemma establishes that if M = next(M)
with all unsaturated regions in Zπ , then adding any quantity
q ≥ 0 to M , according to π, will maintain the fixpoint.



Lemma 3 Assume M = next(M) and UM ⊆ Zπ. Then
for every q ≥ 0, M + qπ is a fixpoint mass distribution.

The proof, along with subsequent omitted proofs, can be
found in App. C

3.2 THE CONSTRUCTION

Let q ≥ 0. We now describe a construction that allocates
q drivers into a mass distribution M such that M is a fix-
point. The function mapping q into the fixpoint is piecewise
linear and is accomplished in at most r + 1 phases. In all
but possibly the last phase, a portion of the remaining q-
allocation is distributed among the regions as to satisfy the
fixpoint yet so that no unsaturated region becomes oversatu-
rated, until either q is exhausted or all non-Zπ regions are
saturated. If all non-Zπ regions are saturated and q is not
exhausted, the remaining mass is distributed according to π.
The construction algorithm is in Alg. 1.

Algorithm 1: Construction of Fix Point
Input: A willing demand W , a policy π, and a total

mass of drivers, and q
Output: A mass distribution M such that M = q and

next(M) = M
1 M : a vector, init 0 /* current mass

distribution */
2 m : init q /* current mass */
3 i : init r /* ghost variable for

correctness proof */
4 while (m > 0) do
5 if UM ⊆ Zπ then
6 σ ← π
7 ∆q ← m

8 else
9 σ ← σ(TM )

10 ∆q ← min(q(M),m)

11 end
12 M ← M + ∆q · σ
13 m ← m −∆q
14 i← i− 1

15 end
16 return M

We now show that:

Theorem 1 The Algorithm in Alg. 1 terminates, and upon
termination M = next(M ) and M = q.

4 UNIQUENESS OF FIXPOINT FOR next

Fix a demand matrix W and a policy π. For every q ∈ R+

we have shown how to construct a fixpoint of next with

total mass q. We now show this fixpoint is unique. Let

Sq = {M ∈ (R≥0)r : M = q}

denote the set of mass distributions with total mass q. In the
proof, rather than confining our analysis to Sq we extend it
to a complete lattice L on which one can, with the aid of
an auxiliary monotonically increasing function (aux ) that
has the same fixpoints as next , apply the Knaster-Tarski
theorem to show that the fixpoint of next in Sq is unique.

Theorem 2 Let W and π be given. For all q ≥ 0, the
function next has a unique fixpoint in Sq .

The proof of the theorem relies on the following techni-
cal lemma. Consider two mass distributions M0 and M1

such that M0 � M1 and let i and j be regions such that
next(M0)[i] = next(M1)[i] and M0[j] < M1[j]. That
is, the increase in mass from M0 to M1 adds drivers to
j but does not result in additional inflow to i. The following
lemma show that this is equivalent to having i assigned no
rides by π and j being saturated in M0.

Lemma 4 Let M0 and M1 be mass distribution vectors
such thatM0 �M1. Let J ⊆ UM0

be the set of unsaturated
regions j for which M0[j] < M1[j]. Then for all regions i,

next(M0)[i] = next(M1)[i] iff i ∈ Zπ and J = ∅

5 OPTIMAL MASS ALLOCATION

So far, we have shown how given a fixed willingness W
(and thus also V ), policy π, and mass q we can compute the
unique fixpoint. However, a ridesharing platform will typi-
cally have at least some control over π. A natural question
is how π should be chosen. We examine how this can be
done to maximize the number of full rides. We give a linear
programming approach to calculating such an optimal π.
This type of approach has been used in a number of simi-
lar models [Braverman et al., 2019, Hosseini et al., 2021,
Bimpikis et al., 2019], but we provide a complete treatment
as we use it in our experiments

Recall the definition of out from Sec. 2. There we split the
computation of number of rides outgoing from a region
according to whether the region is saturated. If the region is
unsaturated, then obviously all outgoing rides are full. Else,
some outgoing rides are empty, and distributed according
to π. Let F [i, j] denote the full outgoing rides from i to j
and E[i, j] the empty outgoing rides. That is, for a mass
distribution M ,

F (M)[i] =

{
M [i]V [i] M [i] < W1[i]
W [i] otherwise

and

E(M)[i] =

{
0 M [i] < W1[i]
(M [i]−W1[i])π otherwise



Rather than directly calculating a policy π that at the fix-
point maximizes F , we instead provide a linear program in
Fig. 1 that defines when a solution 〈F,E〉 is feasible in that
it results from the fixed point of some policy π for supply
q. The first constraint restricts to non-negative values. The
second, Supply-constraint, requires that the total traffic is q.
The third, Flow-constraint, requires that at each region the
in- and out- flows are equal (thus the solution is a fixpoint).
The fourth, Demand-constraint, requires that the full outgo-
ing traffic at each region is no more than the willing demand
at the region. Finally, the fifth, Proportion-constraint, re-
quires that full outgoing traffic at each region is allocated
according to the willingness entry for that region.

F [i, j], E[i, j] ≥ 0 ∀i, j
(F +E) = q S-constraint
(F + E)1[i] = 1(F + E)[i] ∀i F-constraint
F1[i] ≤W1[i] ∀i D-constraint
F [i, j] = F [i, k] · VW [i, j]/VW [i, k] ∀i, j, k P-constraint

Figure 1: Definition of feasibility of 〈F,E〉 for supply q

Below are some properties of feasibility as defined here.

Observation 1 Let W and π be given. Given any q ≥ 0,
there is a feasible solution for q.

Observation 2 Let W and π be given and let 〈F,E〉 be
feasible for q. Then the following all hold:

1. For every c, 0 ≤ c ≤ 1, 〈cF, cE〉 is feasible for cq;

2. If 〈F ′, E′〉 is feasible for q′ and (F + F ′) ≤W , then
〈F + F ′, E + E′〉 is feasible for q + q′;

3. (Every non-trivial x > 0 carrying empty cycle can be
removed:)

(a) If for some region i, E[i, i] > x > 0, then if E′

is just like E only that E[i, i] = E[i, i]− x, then
〈F,E′〉 is feasible for q − x;

(b) If for some regions i and j, i 6= j, and some
x > 0, E[i, j], E[j, i] ≥ x, then if E′ is just like
E only that E′[i, j] = E[i, j]− x and E′[j, i] =
E[j, i]− x, then 〈F,E′〉 is feasible for q − 2x.

The requirements of feasibility are linear, thus the problem
OA, in Fig. 2, is a linear programming problem.

Maximize F such that
〈F,E〉 is a feasible solution for supply q

Figure 2: The Optimal Allocation (OA) problem

The only requirement of a fixpoint not directly enforced
by feasibility is that drivers do not leave empty if there are

passengers waiting. The following lemma shows that, at the
optimal solution, every region has a greedy strategy: it only
sends empty cars after all demand is satisfied.

Lemma 5 Let q ≥ 0, and assume 〈F0, E0〉 is feasible for
q. If there exists some i0 and j0 such that E0[i0, j0] > 0
and F0[i0, j0] < W [i0, j0], then 〈F0, E0〉 is not an optimal
solution of OA.

6 DYNAMIC RELOCATION VIA FIXED
POINT CONSTRUCTION

In this section we introduce our formulation of the problem
of computing a dynamic relocation policy, introduce a par-
ticular policy based on our fixed point construction in Alg. 1,
and show it has attractive theoretical properties in terms of
convergence rate and welfare loss while converging.

6.1 THE DYNAMIC RELOCATION PROBLEM

Given W and π and some q > 0, let M∗ such that M∗ = q
be the unique fixed point of next whose existence is guaran-
teed by Th. 2. In analogy with a Markov chain, M∗ serves
as a stationary distribution. As part of our analysis in this
section (Cor. 1), we will show that it also serves as a limit
distribution. That is, starting from any mass distribution M0

such that M0 = M∗, limt→∞ next t(M0) = M∗. However,
obtaining M∗ by repeated application of next() may take a
long time, which has been observed to be an important prob-
lem for applying relocation policies in practice [Braverman
et al., 2019].

The problem of dynamic relocation is to find a sequence
of policies that accelerate convergence. Given an initial
mass distribution M0, a dynamic relocation policy com-
putes a sequence of policies {πi}t=0 such that the sequence
{Mt}t=0, where each Mt+1 = nextπt(Mt), converges
to M∗ faster than the sequence obtained when nextπ is
applied iteratively. Unless no region is saturated, mass
distributions M and M ′ = nextπ′(M) uniquely defines
π′ = (M ′ − 1F (M))/E(M) (see Sec. 5). Hence the prob-
lem of dynamic relocation can be stated as identifying a
sequence {Mt}t=0 as above that satisfies:

1. mass conservation: for every step t, Mt = M∗

2. relocation constraint: for every step t ≥ 0, Mt+1 ≥
1(F (Mt))

6.2 OUR DYNAMIC RELOCATION POLICY

We now introduce our dynamic policy based on our fixpoint
construction. Before doing so, we introduce some additional
notation.



• Let ν(q) be the unique fixpoint of nextπ with mass q.
That is, nextπ(ν(q)) = ν(q) and ν(q) = q.

• Let ν−1 be the ν’s inverse extended to all mass dis-
tributions, ν−1(M) = max{q′ : ν(q′) ≤ M}, that is,
captures the mass of the greatest fixpoint vector that is
no larger than M .

We next define our dynamic relocation policy inductively.
For a vectorA, define ([A])

+
= max(A,0), where as usual 0

is the all zeroes vector and the maximum is taken coordinate-
wise. GivenMt, we define qt+1 to be the maximum solution
to ∑

i

([ν(qt+1)− 1F (Mt)])+
[i] = E(Mt)

Th. 1 implies that ν(q) is monotone increasing and con-
tinuous in q. Thus, ([(ν(q) − 1F (Mt))])+

is also mono-
tone non-decreasing and continuous in q. If E(Mt) > 0,
qt+1 is the unique solution, and if E(Mt) = 0, the set
of solutions {q′ | ν(q′) ≤ 1F (Mt)} has as its maximum
qt+1 = ν−1(1F (Mt)), hence qt+1 is well defined.

We define Mt+1 = max(1F (Mt), ν(qt+1)). To verify that
this is a dynamic policy, note that the relocation constraint,
Mt+1 ≥ 1(F (Mt)), is satisfied by construction. As for
the mass conservation constraint, Mt+1 =

∑
i([1F (Mt) +

(ν(qt+1)− 1F (Mt)])+
[i] = F(Mt) + E(Mt) = M∗.

6.3 CONVERGENCE PROPERTIES

We now analyze the convergence properties of our dynamic
relocation policy. We show that it converges, at least linearly,
to M∗ and that a same argument shows that M∗ acts as a
limit distribution. To obtain a stronger guarantee, we relate
the progress made by the dynamic policy to E(M), the mass
of drivers we actually control. The resulting guarantee also
provides a bound on the mass of extra empty rides relative
to those inherent in M∗.

Our first result is that the qt are strictly increasing at a
rate that implies (at least linear) convergence. Let ∆(t) =
M∗−qt. Since ν(M∗) = M∗, ∆(t) can serves as a measure
of the distance between the fixed point we have succeeded
in “constructing” so far and our goal.

Lemma 6 ∃c > 0 s.t. qt+1 − qt ≥ c∆(t).

Lem. 6 shows that we are guaranteed to make progress
even if we do not control the relocation of any drivers, and
is analogous to results about the convergence of Markov
chains toward their stationary distributions. Because it does
not rely on relocation, it is quite weak; a simpler version
of its proof shows that simply statically using π satisfies
essentially the same bound. This also shows that M∗ acts
as a limit distribution of the dynamics.

Corollary 1 For all mass distributionsM0 such that M0 =
M∗, limt→∞ next tπ(M0) = M∗

To get an (often) stronger bound, recall that the essence of
our dynamic relocation policy is that it makes the maximum
progress it can given the mass it controls. Let ∆E(t) =
E(Mt) − E(ν(qt)). This captures the mass of relocating
drivers beyond that present in ν(qt). The following lemma,
whose proof is in App. C, shows that this provides a lower
bound on the progress made by the algorithm.

Lemma 7 qt+1 − qt ≥ ∆E(t).

When ∆E(t) is large, which requires many drivers to be
relocating, Lem. 7 guarantees that we make rapid progress
toward our goal. It also guarantees that our dynamic reloca-
tion policy has an attractive welfare property: because we
make progress at least equal to the mass of drivers relocat-
ing who would not also be relocating under ν(qt) (and also
under M∗), we end up paying the cost of extra relocation
at most once for each driver. Thus, the total excess mass
of empty rides

∑
tE(Mt)−E(M∗) is at most M∗, as the

following observation, whose proof is in App. C, shows.

Observation 3
∑
t(E(Mt)−E(M∗)) ≤M∗.

We are aware of no prior approach that provides such a
guarantee. It is easy to see, for example, that the static
policy π can have more than one extra relocation per driver.
(Construct an example where all the drivers start in the same
region and essentially all relocate in the first step but this is
not the fixpoint.) Many other prior approaches are heuristic
and do not even provide a guarantee of convergence.

7 SIMULATIONS

Our simulations are based on a dataset from Didi from 2016
for an unspecified region in China that was processed by
Braverman et al. [2019] into a form suitable for our model,
representing nine major regions of the city. For complete-
ness we provide the model parameters in App. A. Notably,
these include non-uniform distances between regions. While
our theoretical analysis assumed unit travel times, our con-
structive approach is easily adapted to this richer setting. See
App. A for a discussion. Braverman et al. [2019] perform
their experiments in a large continuous-time system while
we apply our discrete time model using 15-minute intervals.
Our results are similar which validates our discrete approach.
The results of both this recreation and a variant we introduce
show that our dynamic relocation policy outperforms prior
approaches in this setting.



7.1 WHAT WE COMPARE

We compare our approach, which we refer to as CON, with
four other policies:

STA. This is a static policy that sets πt = π for all t. From
Cor. 1 it follows that STA guarantees convergence to
the fixpoint, yet, as we pointed out, it may do so slowly.
Thus STA represents a baseline in the absence of a
more sophisticated dynamic policy.

GDY. This is a greedy policy that distributes the relocating
mass proportional to the unmet demand in each region
with a one-step look ahead. That is, it takes πt[i] ∝
([W1 − 1F (Mt)])+

, which guarantees that as many
relocating drivers as possible will have a passenger at
time t + 1 while spreading them among the regions
where they can be useful. As GDY does not depend
on π, it may not converge to the fixpoint, but it does
provide a meaningful baseline for other metrics based
purely on the provision of service.

LKA. This is a heuristic proposed by Braverman et al.
[2019] that forms a model based on the average of
demand patterns over a lookahead window and finds
the optimal static policy for this average. For the look
head, we use 2, 3, and 4 steps.

HMR. We adapt the dynamic policy of Hosseini et al.
[2021], which dispatches a single car at a time, to our
setting. In particular, their algorithm computes a mea-
sure of which region will generate the most long-run
service and sends the car there. Since the results of this
computation do not change until a region is saturated,
we adapt their policy by assigning relocating drivers
to this region until (a) it becomes saturated or (b) the
mass reaches the fixpoint mass of the region.

7.2 RESULTS

Our first experiment is based on a similar experiment by
Braverman et al. [2019] and uses the same parameters. We
simulate the system for four hours. Initially the supply of
drivers is large relative to the demand for rides, so almost all
requests can be served. However, after two hours demand
increases sharply and passengers’ destinations (i.e. V ) are
randomly permuted. Table 1 show the resulting availability
averaged over 20 runs. Availability is a standard metric in
this setting and is the average fraction of demand served
across regions. (See App. B for more discussion of this and
other metrics.)

Our results for STA and LKA are qualitatively similar to
those reported by Braverman et al. [2019] in their Table
4. In the first two hours almost all demand is served while
the STA performance drops with the demand transition as
it is slow to adapt to the new demand pattern. In contrast,
LKA with lookaheads of 2, 3, and 4, steps (30, 45, or 60

Hour1 Hour2 Hour3 Hour4 4-hour Total
CON 1.000 1.000 0.937 0.938 0.969
GDY 1.000 1.000 0.912 0.915 0.957
HMR 1.000 1.000 0.888 0.918 0.952
LKA4 0.983 0.990 0.897 0.931 0.950
LKA3 0.982 0.991 0.882 0.930 0.946
LKA2 0.983 0.995 0.858 0.929 0.941
STA 0.983 0.998 0.814 0.929 0.931

Table 1: Availability improvement in a 4 hour simulation
with single demand change

minutes) can anticipate the change and has a smoother tran-
sition. The other three approaches (HMR, GDY, and CON)
do not anticipate the change but simply adapt to it rapidly.
HMR and GDY achieve similar performance to LKA, while
our CON adapts the fastest and outperforms the alternatives.

Our second experiment extends this approach by keeping
the overall level of demand (W ) fixed while permuting the
pattern of demand as in the previous experiment. We per-
mute the demand 19 evenly-spaced times over the course
of the experiment and report results averaged over 20 runs.
We treat STA as a baseline and report the percentage change
in availability relative to it for each of the other policies.
Fig. 3 shows two variations. On the left, we fix the ratio
between supply (M ) and demand (W ) at 1.15 and vary the
number of steps between demand changes. We start this vari-
ation from 5 steps, which corresponds to updates every 75
minutes, as we think smaller values represent unreasonably
fast changes of demand. In contrast to our first experiment,
LKA only slightly outperforms STA. Intuitively, while LKA
can anticipate future demand patterns without a significant
excess of drivers, its ability to reposition them for future
demand while still serving current demand is limited. Since
CON simply adapts changing demand patterns rapidly, it
remains highly effective although the benefits decrease as
changes in demand become less frequent. Neither GDY nor
HMR performs well in this setting relative to STA.

On the right, we fix the number of steps between demand
changes at 10 and vary the ratio between supply and demand.
The performance of all policies improves relative to STA as
the supply of drivers increases. GDY, as a simple baseline,
is still outperformed by the other approaches. However,
now HMR does better than the lookahead approaches at
sufficiently high levels of supply.

7.3 ADDITIONAL SIMULATIONS

In App. B we present the results additional simulations on
synthetic data. They show that with static demand patterns
CON consistently converges substantially faster than other
policies and has a performance that is often close to or



Figure 3: Comparison of Policies with STA

matching a lower bound. The effect of this on efficiency (the
mass of passengers served) relative to the other policies is,
however, quite small. When targeting an objective for select-
ing an optimal fixedpoint that puts weight on fairness rather
than just efficiency, CON leads to economically meaningful
improvements in availability, showings its ability to target a
wider range of objectives than previous approaches.

8 DISCUSSION

We have studied a model of relocation policies for rideshar-
ing platforms and given a constructive characterization of
the unique fixpoint of system dynamics. Using this construc-
tion, we designed a dynamic policy that provides guarantees
about its rate of convergence to the fixpoint and analyzed
the magnitude of these benefits in simulations.

To obtain these results, we used a stylized model. We con-
clude by discussing the extent to which our results extend to
richer models. Within our basic setup we made use of sev-
eral assumptions. First, that drivers do not relocate if there
are waiting passengers. This is typically a mild assump-
tion in models of spatial demand imbalances, but would
be more relevant in a study of temporal ones [Ma et al.,
2019]. Second, that drivers carry passengers regardless of
their destination. This is a common requirement, but some
work has investigated the benefits from allowing strategic
passenger selection [Afeche et al., 2018]. Third, that there
is a positive demand in in between every two regions. This
assumption guarantees ergodicity, and in many of our re-
sults could likely be reduced to that weaker requirement.
It is also relevant for our convergence rate analysis of dy-
namic policies, although there it could likely be replaced
by an eigenvalue-based bound, as is typical in the analysis
of mixing time of Markov chains. This assumption seems
quite reasonable in practice: All it requires is that, for a
reasonable decomposition of a city to regions, people oc-
casionally wish to travel from any given part of the city to

any other. Unless this grid of regions is very fine this seems
quite likely. Fourth, that the relocation policy is the same for
every region. We believe our results can be obtained without
it, albeit with substantial additional notational clutter. For
our experiments on the Didi data, our results demonstrate
empirically the effectiveness of this extension.

There are also a number of features our basic model ex-
cludes. We work with a continuum of drivers, but previous
work has shown that dynamics with a continuum of drivers
approximately hold with discrete drivers as the number of
drivers grows [Braverman et al., 2019, Banerjee et al., 2017].
We also assume that time is discrete and all journeys take
a single unit of time. As in the simulations, discrete but
non-uniform journey times can be modeled by introducing
additional “regions” which represent drivers in transit, and
our results likely generalize.1 Adding travel times to the
linear programming approach is straightforward, and previ-
ous work has observed that, as long as the platform controls
the relocation policy, non-uniform travel times do not sig-
nificantly affect the behavior of the model [Bimpikis et al.,
2019]. Journey times of a single pair of regions may vary
over time. A key takeaway from prior work is that as long
as the number of vehicles is large this factor is essentially
irrelevant, which is why we did not include it in our model
or experiments [Braverman et al., 2019].

While we do not explicitly consider a dynamic willing
demand matrix W , it is the motivation for our results in
Sec. 6.3 with guarantees on convergence speed towards the
fixed point comes from this issue. In particular, policies that
are slow to adapt can be stuck, never approaching the fix-
point beforeW changes. In contrast, our dynamic policy can
deal with a changing demand matrix by converging rapidly
before the change is so large that the target becomes out-
dated. Our simulations on synthetic data (the left subfigures
of Fig. 1, Fig. 2, Fig. 4, and Fig. 6 in the appendix) show that

1This would involve relaxing the previously discussed positive
demand assumption.



the convergence towards the fixed point is indeed very fast
and is generally faster than an expected substantial change
of the demand. Table 1, which is drawn from real scenarios,
shows similarly rapid adaptation (note the availability in
hour 3, after the change in W, is nearly identical to hour 4
for CON while most other methods do substantially better
in hour 4 than hour 3.) Both subfigures of Fig. 3 also deal
with dynamic W and the results demonstrate the superior
performance of our dynamic policy.

Our constructive algorithm myopically attempts to make
as much progress toward the fixpoint as possible. An inter-
esting direction for future work would be to treat the prob-
lem of dynamic relocation as a planning or reinforcement
learning problem. Our theoretical results can be viewed as
providing a characterization of key aspects of a model to
enable model-based approaches. One could imagine adding
an approach based on Monte Carlo Tree Search or similar
techniques [Sutton and Barto, 2018]. From this perspective,
the lower bound (LB) we compare to in some of the addi-
tional experiments in the appendix is the optimal plan for
a relaxed version of the problem and in those experiments
CON shows near-optimal performance.

Finally, we do not model prices or monetary relocation costs.
As these do not affect the system dynamics, most of our re-
sults would be unchanged. The primary effect would be to
adjust the objective of problem OA (Fig. 2) accordingly. Nor
do we consider settings where drivers have partial or total
control over relocation decisions, and thus the sequential
decision problem is faced by drivers rather than the plat-
form. Of course, a major role of prices is to influence the
relocation decisions of rational drivers. Our results provide
key characterizations that justify formulating the problem
from the perspective of a single driver in terms of the fix-
point induced by the behavior of other drivers, an approach
which has been fruitful in other game-theoretic work on
marketplaces [Kash et al., 2015].
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