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ABSTRACT

Identifying vulnerabilities in the source code is essential to protect the software
systems from cyber security attacks. It, however, is also a challenging step that
requires specialized expertise in security and code representation. To this end,
we aim to develop a general, practical, and programming language-independent
model capable of running on various source codes and libraries without diffi-
culty. Therefore, we consider vulnerability detection as an inductive text classifi-
cation problem and propose ReGVD, a simple yet effective graph neural network-
based model for the problem. In particular, ReGVD views each raw source code
as a flat sequence of tokens to build a graph, wherein node features are ini-
tialized by only the token embedding layer of a pre-trained programming lan-
guage (PL) model. ReGVD then leverages residual connection among GNN lay-
ers and examines a mixture of graph-level sum and max poolings to return a
graph embedding for the source code. ReGVD outperforms the existing state-
of-the-art models and obtains the highest accuracy on the real-world benchmark
dataset from CodeXGLUE for vulnerability detection. Our code is available at:
https://github.com/daiquocnguyen/GNN-ReGVD.

1 INTRODUCTION

The software vulnerability problems have rapidly grown recently, either reported through publicly
disclosed information-security flaws and exposures (CVE) or exposed inside privately-owned source
codes and open-source libraries. These vulnerabilities are the main reasons for cyber security attacks
on the software systems that cause substantial damages economically and socially (Neuhaus et al.,
2007; Zhou et al., 2019). Therefore, vulnerability detection is an essential yet challenging step to
identify vulnerabilities in the source codes to provide security solutions for the software systems.

Early approaches (Neuhaus et al., 2007; Nguyen & Tran, 2010; Shin et al., 2010) have been pro-
posed to carefully design hand-engineered features for machine learning algorithms to detect vulner-
abilities. These early approaches, however, suffer from two major drawbacks. First, creating good
features requires prior knowledge, hence needs domain experts, and is usually time-consuming. Sec-
ond, hand-engineered features are impractical and not straightforward to adapt to all vulnerabilities
in numerous open-source codes and libraries evolving over time.

To reduce human efforts on feature engineering, some approaches (Li et al., 2018; Russell et al.,
2018) consider each raw source code as a flat natural language sequence and explore deep learning
architectures applied for natural language processing (NLP) (such as LSTMs (Hochreiter & Schmid-
huber, 1997) and CNNs (Kim, 2014)) in detecting vulnerabilities. Recently, pre-trained language
models such as BERT (Devlin et al., 2018) have emerged as a trending learning paradigm, achiev-
ing significant success in NLP applications. Inspired by this BERT-style trending paradigm, pre-
trained programming language (PL) models such as CodeBERT (Feng et al., 2020) have improved
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the performance of PL downstream tasks such as vulnerability detection. However, as mentioned
in (Nguyen et al., 2019), all interactions among all positions in the input sequence inside the self-
attention layer of the BERT-style model build up a complete graph, i.e., every position has an edge
to all other positions; thus, this limits learning local structures within the source code to differentiate
vulnerabilities.

Graph neural networks (GNNs) have recently become a primary method to embed nodes and graphs
into low-dimensional continuous vector spaces (Hamilton et al., 2017; Wu et al., 2019; Nguyen,
2021). GNNs provide faster and practical training, higher accuracy, and state-of-the-art results for
downstream tasks such as text classification (Yao et al., 2019; Huang et al., 2019; Zhang et al.,
2020; Nguyen et al., 2021). Devign (Zhou et al., 2019) is proposed to utilize Gated GNNs (Li et al.,
2016) for vulnerability detection, wherein Devign uses a PL parser to extract multi-edged graph
information. However, Devign is difficult of being practiced in reality. The main reason is that there
is not a perfect parser in reality for each PL, which can successfully parse a variety of source codes
and libraries without any internal compile errors and exceptions.

In this paper, our goal is to develop a general, practical, and programming language-independent
model capable of running on various source codes and libraries without difficulty. Hence, we con-
sider vulnerability detection as an inductive text classification problem and introduce ReGVD – a
simple yet effective GNN-based model for vulnerability detection as follows: (i) ReGVD views
each raw source code as a flat sequence of tokens to construct a graph (in Section 2.2), wherein node
features are initialized by only the token embedding layer of a pre-trained PL model. (ii) ReGVD
leverages GNNs (such as GCNs (Kipf & Welling, 2017) or Gated GNNs (Li et al., 2016)) using
residual connection among GNN layers (in Section 2.3). (iii) ReGVD examines a mixture between
the sum and max poolings to produce a graph embedding for the source code (in Section 2.4). This
graph embedding is fed to a single fully-connected layer followed by a softmax layer to predict the
code vulnerabilities. Extensive experiments show that ReGVD significantly outperforms the exist-
ing state-of-the-art models on the benchmark vulnerability detection dataset from CodeXGLUE (Lu
et al., 2021). ReGVD produces the highest accuracy of 63.69%, gaining absolute improvements of
1.61% and 1.39% over CodeBERT and GraphCodeBERT, respectively; thus, ReGVD can act as a
new strong baseline for future work.

2 THE PROPOSED REGVD

2.1 PROBLEM DEFINITION

We consider vulnerability detection for source code at the function level, i.e., we aim to identify
whether a given function in raw source code is vulnerable or not (Zhou et al., 2019). We define a data
sample as {(ci, yi)|ci ∈ C, yi ∈ Y}ni=1, where C represents the set of raw source codes, Y = {0, 1}
denotes the label set with 1 for vulnerable and 0 otherwise, and n is the number of instances. In this
work, we consider vulnerability detection as an inductive text classification problem and leverage
GNNs for the problem. Therefore, we construct a graph gi(V,X,A) ∈ G for each source code ci,
wherein V is a set of m nodes in the graph; X ∈ Rm×d is the node feature matrix, wherein each
node vj ∈ V is represented by a d-dimensional real-valued vector xj ∈ Rd; A ∈ {0, 1}m×m is the
adjacency matrix, where Av,u equal to 1 means having an edge between node v and node u, and 0
otherwise. We aim to learn a mapping function f : G → Y to determine whether a given source
code is vulnerable or not. The mapping function f can be learned by minimizing the loss function
with the regularization on model parameters θ as:

min
n∑

i=1

L(f(gi(V,X,A), yi|ci)) + λ‖θ‖22

where L(.) is the cross-entropy loss function and and λ is an adjustable weight.
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Figure 1: An illustration for two graph construction methods with a fixed-size sliding window of
length 3.

2.2 GRAPH CONSTRUCTION

We consider a raw source code as a flat sequence of tokens and illustrate two graph construction
methods (Huang et al., 2019; Zhang et al., 2020) in Figure 1, wherein we omit self-loops in these
two methods since the self-loops do not help to improve performance in our pilot experiments.1

Unique token-focused construction We represent unique tokens as nodes and co-occurrences be-
tween tokens (within a fixed-size sliding window) as edges, and the obtained graph has an adjacency
matrixA as:

Av,u =

{
1 If v and u co-occur within a sliding window

and v 6= u.
0 Otherwise.

Index-focused construction Given a flat sequence of l tokens {ti}li=1, we represent all tokens as
the nodes, i.e., treating each index i as a node to represent token ti. The number of nodes equals
the sequence length. We also consider co-occurrences between indexes (within a fixed-size sliding
window) as edges, and the obtained graph has an adjacency matrixA as:

Ai,j =

{
1 If i and j co-occur within a sliding window

and i 6= j.
0 Otherwise.

Node feature initialization It is worth noting that pre-trained programming language (PL) models
such as CodeBERT (Feng et al., 2020) have recently improved the performance of PL downstream
tasks such as vulnerability detection. To make a fair comparison, we use only the token embedding
layer of the pre-trained PL model to initialize node feature vectors for reporting our final results.

2.3 GRAPH NEURAL NETWORKS WITH RESIDUAL CONNECTION

GNNs aim to update vector representations of nodes by recursively aggregating vector representa-
tions from their neighbours (Scarselli et al., 2009; Kipf & Welling, 2017). Mathematically, given a
graph g(V,X,A), we simply formulate GNNs as follows:

H(k+1) = GNN
(
A,H(k)

)
1In our implementation, we firstly tokenize the source code using the corresponding tokenizer of the pre-

trained PL model, and then we construct the graph from the tokenized sequence.
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Figure 2: An illustration for our proposed ReGVD.

where H(k) is the matrix representation of nodes at the k-th iteration/layer; and H(0) = X . There
have been many GNNs proposed in recent literature (Wu et al., 2019), wherein Graph Convolutional
Networks (GCNs) (Kipf & Welling, 2017) is the most widely-used one, and Gated graph neural
networks (“Gated GNNs” or “GGNNs” for short) (Li et al., 2016) is also suitable for our data
structure. Our ReGVD leverages GCNs and GGNNs as the base models.

Formally, GCNs is given as follows:

h(k+1)
v = φ

(∑
u∈Nv

av,uW
(k)h(k)u

)
,∀v ∈ V

where av,u is an edge constant between nodes v and u in the Laplacian re-normalized adjacency
matrix D−

1
2AD−

1
2 (as we omit self-loops), wherein D is the diagonal node degree matrix of A;

W (k) is a weight matrix; and φ is a nonlinear activation function such as ReLU.

GGNNs adopts GRUs (Cho et al., 2014), unrolls the recurrence for a fixed number of timesteps, and
removes the need to constrain parameters to ensure convergence as:

a(k+1)
v =

∑
u∈Nv

av,uh
(k)
u

z(k+1)
v = σ

(
Wza(k+1)

v + Uzh(k)v

)
r(k+1)
v = σ

(
Wra(k+1)

v + Urh(k)v

)
h̃(k+1)
v = φ

(
Woa(k+1)

v + Uo
(

r(k+1)
v � h(k)v

))
h(k+1)
v =

(
1− z(k+1)

v

)
� h(k)v + z(k+1)

v � h̃(k+1)
v

where z and r are the update and reset gates; σ is the sigmoid function; and � is the element-wise
multiplication.

The residual connection (He et al., 2016) is used to incorporate information learned in the lower
layers to the higher layers, and more importantly, to allow gradients to directly pass through the
layers to avoid vanishing gradient or exploding gradient problems. Motivated by that, we follow
(Bresson & Laurent, 2017) to adapt residual connection among the GNN layers, with fixing the
same hidden size for the different layers. In particular, ReGVD redefines GNNs as:

H(k+1) = H(k) + GNN
(
A,H(k)

)
2.4 GRAPH-LEVEL READOUT POOLING LAYER

The graph-level readout layer is used to produce a graph embedding for each input graph. ReGVD
leverages the sum pooling as it produces better results for graph classification (Xu et al., 2019).2
Besides, ReGVD utilizes the max pooling to exploit more information on the node representations.

2In our pilot studies, using the sum pooling
∑

v∈V ev also provides higher accuracies than using the mean
pooling 1

|V|
∑

v∈V ev employed in (Zhang et al., 2020).
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ReGVD then considers a mixture between the sum and max poolings to produce the graph embed-
ding eg as:

ev = σ
(

wTh(K)
v + b

)
� φ

(
Wh(K)

v + b
)

eg = MIX

(∑
v∈V

ev,MAXPOOL {ev}v∈V

)

where ev is the final vector representation of node v, wherein σ
(

wTh(K)
v + b

)
acts as soft attention

mechanisms over nodes (Li et al., 2016), and h(K)
v is the vector representation of node v at the

last K-th layer; and MIX(.) denotes an arbitrary function. ReGVD examines three MIX functions
consisting of SUM, MUL, and CONCAT as:

SUM : eg =
∑
v∈V

ev + MAXPOOL {ev}v∈V

MUL : eg =
∑
v∈V

ev �MAXPOOL {ev}v∈V

CONCAT : eg =

[∑
v∈V

ev ‖ MAXPOOL {ev}v∈V

]
After that, ReGVD feeds eg to a single fully-connected layer followed by a softmax layer to predict
whether the source code is vulnerable or not as: ŷg = softmax (W1eg + b1) Finally, ReGVD is
trained by minimizing the cross-entropy loss function as mentioned in Section 2.1. We illustrate the
proposed ReGVD in Figure 2.

3 EXPERIMENTAL SETUP AND RESULTS

3.1 EXPERIMENTAL SETUP

Dataset We use the real-world benchmark from CodeXGLUE (Lu et al., 2021) for vulnerabil-
ity detection at the function level.3 The dataset was firstly created by Zhou et al. (2019), includ-
ing 27,318 manually-labeled vulnerable or non-vulnerable functions extracted from security-related
commits in two large and popular C programming language open-source projects (i.e., QEMU and
FFmpeg) and diversified in functionality. Then Lu et al. (2021) combined these projects and then
split into the training/validation/test sets.

Training protocol We construct a 2-layer model, set the batch size to 128, and employ the Adam
optimizer (Kingma & Ba, 2014) to train our model up to 100 epochs. As mentioned in Section
2.3, we set the same hidden size (“hs”) for the hidden GNN layers, wherein we vary the size value
in {128, 256, 384}. We vary the sliding window size (“ws”) in {2, 3, 4, 5} and the Adam initial
learning rate (“lr”) in

{
1e−4, 5e−4, 1e−3

}
. The final accuracy on the test set is reported for the

best model checkpoint, which obtains the highest accuracy on the validation set. Table 1 shows the
optimal hyper-parameters for each setting in our ReGVD.

Baselines We compare our ReGVD with strong and up-to-date baselines as follows:

• BiLSTM (Hochreiter & Schmidhuber, 1997) and TextCNN (Kim, 2014) are two well-
known standard models applied for text classification.

• RoBERTa (Liu et al., 2019) is built based on BERT (Devlin et al., 2018) by removing
the next-sentence objective and training on a massive dataset with larger mini-batches and
learning rates.

• Devign (Zhou et al., 2019) builds a multi-edged graph from a raw source code, then uses
Gated GNNs (Li et al., 2016) to update node representations, and finally utilizes a 1-D

3https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/
Defect-detection
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Table 1: The optimal hyper-parameters on the validation set for each ReGVD setting. “Const” de-
notes the construction method, wherein “Idx” and “UniT” denote the index-focused construction and
the unique token-focused one, respectively. “Init” denotes the feature initialization, wherein “CB”
and “G-CB” denote using only the token embedding layer of CodeBERT and GraphCodeBERT to
initialize the node features, respectively.

Const Init Base lr ws MIX hs

Idx
CB GGNN 1e−4 2 SUM 384

GCN 5e−4 2 MUL 384

G-CB GGNN 1e−4 2 MUL 256
GCN 1e−4 2 SUM 128

UniT
CB GGNN 5e−4 2 MUL 256

GCN 5e−4 5 MUL 256

G-CB GGNN 5e−4 3 MUL 384
GCN 5e−4 5 MUL 128

CNN-based pooling (“Conv”) to make a prediction. We note that Zhou et al. (2019) did not
release the official implementation of Devign. Thus, we re-implement Devign using the
same training and evaluation protocols.

• CodeBERT (Feng et al., 2020) is a pre-trained model also based on BERT for 6 program-
ming languages (Python, Java, JavaScript, PHP, Ruby, Go), using masked language model
(Devlin et al., 2018) and replaced token detection (Clark et al., 2020) objectives.

• GraphCodeBERT (Guo et al., 2021) is a new pre-trained PL model, extending CodeBERT
to consider the inherent structure of code data flow into the training objective.

3.2 MAIN RESULTS

Table 2: Vulnerability detection accuracies (%) on the test set. The best scores are in bold, while the
second best scores are in underline. The results of BiLSTM, TextCNN, RoBERTa, and CodeBERT
are taken from (Lu et al., 2021). ? denotes that we report our own results for other baselines.

Model Accuracy
BiLSTM 59.37
TextCNN 60.69
RoBERTa 61.05
CodeBERT 62.08
GraphCodeBERT? 62.30
Devign (Idx + CB)? 60.43
Devign (Idx + G-CB)? 61.31
Devign (UniT + CB)? 60.40
Devign (UniT + G-CB)? 59.77
ReGVD (GGNN + Idx + CB) 63.54
ReGVD (GGNN + Idx + G-CB) 63.29
ReGVD (GGNN + UniT + CB) 63.62
ReGVD (GGNN + UniT + G-CB) 62.41
ReGVD (GCN + Idx + CB) 62.63
ReGVD (GCN + Idx + G-CB) 62.70
ReGVD (GCN + UniT + CB) 63.14
ReGVD (GCN + UniT + G-CB) 63.69

Table 2 presents the accuracy results of the proposed ReGVD and the strong and up-to-date base-
lines on the real-world benchmark dataset from CodeXGLUE for vulnerability detection. We note
that both the recent models CodeBERT and GraphCodeBERT obtain competitive performances and
perform better than Devign, indicating the effectiveness of the pre-trained PL models. More impor-
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tantly, ReGVD gains absolute improvements of 1.61% and 1.39% over CodeBERT and GraphCode-
BERT, respectively. This shows the benefit of ReGVD in learning the local structures inside the
source code to differentiate vulnerabilities (w.r.t using only the token embedding layer of the pre-
trained PL model). Hence, our ReGVD significantly outperforms the up-to-date baseline models. In
particular, ReGVD produces the highest accuracy of 63.69% – a new state-of-the-art result on the
CodeXGLUE vulnerability detection dataset.

We look at Figure 3a to investigate whether the graph-level readout layer proposed in ReGVD per-
forms better than the Conv pooling layer utilized in Devign. Since Devign also uses Gated GNNs to
update the node representations and gains the best accuracy of 61.31% for the setting (Idx+G-CB);
thus, we consider the ReGVD setting (GGNN+Idx +G-CB) without using the residual connection
for a fair comparison, wherein ReGVD achieves an accuracy of 63.51%, which is 2.20% higher
accuracy than that of Devign. More generally, we get a similar conclusion from the results of three
remaining ReGVD settings (without using the residual connection) that the graph-level readout layer
utilized in ReGVD outperforms that used in Devign.

(a) Accuracy with and without residual connec-
tion.

(b) Accuracy w.r.t the MIX functions.

Figure 3: Accuracy with different settings.

We analyze the influence of the residual connection and the mixture function. We first look back
Figure 3a for the ReGVD accuracies w.r.t with and without using the residual connection among the
GNN layers. It demonstrates that the residual connection helps to boost the GNNs performance on
seven settings, where the maximum accuracy gain is 2.05% for the ReGVD setting (GCN+Idx+G-
CB). Next, we look at Figure 3b for the ReGVD results w.r.t the MIX functions. We find that ReGVD
generally gains the highest accuracies on six settings using the MUL operator and on two remaining
settings using the SUM operator. But it is worth noting that the ReGVD setting (GGNN+Idx+CB)
using the CONCAT operator obtains an accuracy of 62.59%, which is still higher than that of Devign,
CodeBERT, and GraphCodeBERT.

4 CONCLUSION

We consider vulnerability identification as an inductive text classification problem and introduce a
simple yet effective graph neural network-based model, named ReGVD, to detect vulnerabilities in
source code. ReGVD transforms each raw source code into a graph, wherein ReGVD utilizes only
the token embedding layer of the pre-trained programming language model to initialize node feature
vectors. ReGVD then leverages residual connection among GNN layers and a mixture of the sum
and max poolings to learn graph representation. To demonstrate the effectiveness of ReGVD, we
conduct extensive experiments to compare ReGVD with the strong and up-to-date baselines on the
benchmark vulnerability detection dataset from CodeXGLUE. Experimental results show that the
proposed ReGVD is significantly better than the baseline models and obtains the highest accuracy
of 63.69% on the benchmark dataset. ReGVD can be seen as a general, practical, and programming
language-independent model that can run on various source codes and libraries without difficulty.
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