
A Visual Tool for Interactively Privacy Analysis and Preservation
on Order-Dynamic Tabular Data

Figure 1: Tabular Privacy Assistant (TPA), a visual tool for the risk analysis and privacy preservation of tabular data with dynamic
attribute order. (a) A widget that allows personalized attribute order setting and dynamic adjustment. (b) Statistics of different
attributes for overall distribution analysis. (c) The main view for tabular data presentation (box plot means abstract of several items)
and interactive privacy enhancement (e.g., choosing five items to merge). (d) Privacy risk tree under the current attribute order (red:
privacy breach items on K-anonymity). (e) Historical privacy enhancement operations (allowing backtrack and comparison). (f) Data
utility dynamics during interactions.

ABSTRACT

The practice of releasing individual data, usually in tabular form, is
obligated to prevent privacy leakage. With rendered privacy risks,
visualization techniques have greatly prompted the user-friendly data
sanitization process. Yet, we point out, for the first time, the attribute
order (i.e., schema) of tabular data inherently determines the risk
situation and the output utility, while is ignored in previous efforts.
To mitigate this gap, this work proposes the design and pipeline of a
visual tool (TPA) for nuanced privacy analysis and preservation on
order-dynamic tabular data. By adapting data cube structure as the
flexible backbone, TPA manages to support real-time risk analysis
in response to attribute order adjustment. Novel visual designs,
i.e., data abstract, risk tree, integrated privacy enhancement, are
developed to explore data correlations and acquire privacy awareness.
We demonstrate TPA’s effectiveness with two case studies on the
prototype and qualitatively discuss the pros and cons with domain
experts for future improvement.

Index Terms: Human-centered computing—Visualization—Visu-
alization techniques—Treemaps; Human-centered computing—
Visualization—Visualization design and evaluation methods

1 INTRODUCTION

We are all providers and beneficiaries of the collection and release of
individual data. Generally maintained as multi-attribute tables, the
collected data can be used in various learning, statistic, and decision-
making tasks (e.g., disease diagnosing, product recommendation).
Alongside the well-known benefits, privacy issues in the publish
of data have raised massive concerns recently, as more and more
real-world safety violation caused by data leakage and abuse are
witnessed [9, 34] and the promulgation of regulations (e.g., GDPR).

The privacy risk stems from the fact that individual identity, al-
though usually anonymized, is correlated and may be re-identified
by the other seemingly harmless attributes. As a result, it is obli-
gated for data holders (e.g., organizations, companies) to properly
sanitize data before releasing it. Research communities have re-
sponded to this critical requirement with many privacy protection
techniques, including anonymity [21], differential privacy [10], and
synthetic data mixture [1, 42]. With such technical basis, visual-
ization has been introduced recently to facilitate illustrative, under-
standable, and easy-to-use privacy analysis tools on behalf of the
users [6, 7, 37–39, 41]. For example, in [39], visual presentations on
privacy exposure level and utility preservation degree are provided
for detecting and mitigating privacy issues in tabular data.

Previous visual methods for privacy analysis build on the set-
ting of fixed attribute order, i.e., the target table has fixed columns.
However, we find that the currently unexplored attribute order
(i.e., schema) inherently determines the privacy risk situation



and the output utility (Detail analysis in § 3.2). For example, in
the process of checking K-anonymity privacy constraints [36] on a
sheet, whereas we may find privacy breach on the 3rd attribute and
have 5 values changed during protection in an order of ‘Age, Work,
Disease’, we would face a totally different (thornier) privacy context,
like privacy breach on the 1st attribute with 10 values changed, in
order ‘Work, Disease, Age’. As a result, randomly choosing an
attribute order, as the existing proposals do, may unfortunately lead
to over-protection and unnecessary utility losses.

We are thus motivated to design a flexible visual tool (TPA) that
can support and explore order adjustment for nuanced (user-specific,
reactive) privacy investigation. The most challenging part for dy-
namic order is that one should dynamically re-perform risk analysis
(e.g., equivalent class parsing) according to the new attribute order.
This can be a disaster for existing implementations as it involves
aggregation calculations for all combinations under additive prefixes,
especially when the sheet owns vast amounts of data items and lots
of attributes, indicating significant interaction latency. As a remedy,
we adapt the data cube structure with flexibly pre-aggregation to or-
ganize the table and use an operation tree to handle order adjustment
in real-time (§ 4.1). Additionally, we present a data abstract function
for statistically analyzing attribute correlation (§ 5.3) and provide
fine-grained utility quantification that estimates the differential im-
pact of each privacy-preserving operation (§ 4.2).

Combined with various privacy enhancement technologies, TPA
guides data holders on the risks in their data, and prompt utility losses
of preserving operations. The main contributions are as follows:

• We identify the impact of tabular attribute order on privacy
analysis, utility loss, and processing costs. We propose a
new tool to explore such a property by adopting data cube to
guarantee real-time interaction.

• We leverage multi-dimensional value distance to measure util-
ity change at the back-end. We use abstract extraction for
inter-attribute relationship analysis and design an intuitive risk
tree that semantically bonded with data items for interactive
privacy analysis preservation at the front-end.

• We implement the prototype of TPA and evaluate its effec-
tiveness with two use cases from the insurance and medical
domain, respectively. A qualitative interview points out the
pros and cons of TPA from the perspective of domain experts.

2 RELATED WORK

In this section, we provide the background of the privacy preserving
and review the literature on visualization.

2.1 Privacy Preserving Techniques
Data providers will make data sanitization before making it public.
There are three dominant technologies:

Anonymity method. The most widely used technique for dealing
with linking attacks is k-anonymity [36], which is one of the most
representative methods. K-anonymity calls all records with the same
quasi-identifier an equivalence class. It requires each equivalence
class has at least k records. The k-anonymity avoids attackers to
identify users by quasi-identifiers with a confidence level no more
than 1

k . However, it cannot prevent homogeneity attacks. For exam-
ple, the sensitive attributes in a equivalence classes are identical, and
the attackers can still confirm their sensitive information. Hence,
l-diversity was proposed [25]. If a sensitive attribute of an equiva-
lence class has at least l well-represented count, then the equivalence
class is said to be l-diversity. Similarly, if all the equivalence classes
meet l-diversity, the dataset can be considered to meet l-diversity.
If the distance between the distribution of the sensitive attribute in
the equivalence class and the distribution of the sensitive attribute in
the whole dataset does not exceed the threshold t, it is considered

to meet t-closeness [22]. Unlike the first two methods, it considers
the overall distribution of data rather than the specific count, which
can balance privacy preserving and data utility. In addition, there
are many other variants based on these three methods [20, 35]. But
anonymity methods are parameter sensitive, and apply to specific
constraints.

Differential Privacy. Differential privacy [10, 11, 27] is widely
used which has no disadvantages of anonymous methods (only ap-
plicable to attackers with specific background knowledge). If the
absence of a data item does not significantly affect the output result,
the function conforms differential privacy definition. For example, if
there is a function that queries 100 items in a certain way and results
in the same results as queries for the 99 items, there is no way for
an attacker to find information about the 100th item. Therefore, the
core idea of differential privacy is that there is only one record for
the difference between two data sets, making the probability of the
result is almost the same.

Synthetic Data. The intuitive advantage of synthetic data is that it
is ‘artificial data’, so synthetic data does not contain real information.
Synthesizing data is also presented to protect publishing data from
traditional attacks [1, 29, 42]. Therefore, many studies [2, 4, 33]
work on similarity between real and synthetic records to measure
privacy leakage in synthetic datasets. True, these techniques avoid
exposing real data, but as Stadler argues [33], these studies seriously
overestimate the ability of privacy preserving. They can’t always
prevent attacks. Synthetic data is far from the holy grail of privacy
preserving data publishing.

2.2 Privacy Visualization

Privacy preserving is a part of data processing. Visualization plays
a key role in data analysis and processing. Recent literature proves
that visualization is gaining momentum in the domain of privacy
preserving. Much work has assimilated and expanded the concept
of privacy and data mining, analyzed how to reduce privacy leaks,
maintain utility, and provide the preserving pipeline.

Visualization in data analysis. Data analysis [23, 40] mainly
analyzes the relationship between samples from the perspective of
distribution, correlation and clustering. Many visualization tools,
such as Hierarchical Cluster Explorer [32], PermutMatrix [5] and
Clustergrammer [14], are used to analyze the relationship between
samples.

Elmqvist and Fekete propose several aggregation designs that ag-
gregate data and convey information about the underlying data [13].
Aggregation can better reflect the statistical information of the data
and hide the visual interference caused by individual differences.
Aggregation visualization techniques are used more on parallel co-
ordinates, analyzing the utility of a cluster, using summaries of
histogram statistics [18].

Tabular is the main way to represent the binary relationship of
data. Tabular visualization [15, 16, 30] is extremely scalable because
cells in table can be divided into many pixels to show more infor-
mation about data. Taggle has became one of the most beloved
tool [15], which is an item-centric (cells in the sheet) visualization
technique that provides a seamless combination of details through
data-driven aggregation.

Visualization for privacy analysis. In recent years, a growing
number of studies focus on visualizing-specific contributions for
privacy preserving. Chou et al. proposed a visualization tool to
help avoid privacy risks in vision, and designed a visual method
based on anonymity technology for social network graphs [6] and
time series [7]. GraphProtector [38] guides users to protect privacy
by using graphical interactive visualizations to the connection of
sensitive and non-sensitive nodes and observe structural changes in
the graph of utility.

There are also some studies [3] that analyze how existing visu-
alizations of privacy preserving affect data and how effective they



are. Dasgupta et al. analyze the disclosure risks associated with
vulnerabilities in privacy-preserving parallel coordinates and scatter
plots [8], and present a case study to demonstrate the effectiveness
of the model. Zhang et al. investigate visual analysis of differential
privacy [43]. They analyze effectiveness of task-based visualiza-
tion techniques and a dichotomy model is proposed to define and
measure the success of tasks.

Visualization for privacy preserving. The preserving pipeline
is designed to provide users with a complete processing framework
from analysis to protection. Xiao et al. proposed a visualization
tool named VISEE [41] to help protect privacy in the case of sensor
data sharing. VISEE makes a trade-off between utility and privacy
by visualizing the degree of mutual information between different
pairs of variables. Overlook [37] was developed for differential
privacy preserving of big data. It allows data analysts and data ad-
ministrators to explore noised data in the face of acceptable delays,
while ensuring query accuracy comparable to other synopsis-based
systems. Wang et al. [39] propose UPD-Matrix (utility preserva-
tion degree matrix) and PER-Tree (privacy exposure risk tree) and
developed a visualization tool for multi-attribute tabular based on
them. It provides a five-step pipeline of user interaction and iterative
processing of data.

These visualization tools are designed to help users troubleshoot
potential risks. However, most of them are based on a single ex-
ploration domain or automatic algorithms. We find that different
schema has great difference in risk analysis and handling (§ 3.2).
Our approach allows users to explore the tabular data of different
attribute order more flexibly and support different granularity of
privacy preserving operations.
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Figure 2: Aggregation for privacy analysis under a schema example.
(a) Original sheet. (b) Reordered records by schema. (c) Privacy-
enhanced sheet based on merging attribute values.

3 PRELIMINARIES, MOTIVATIONS, AND REQUIREMENTS

For ease of exposition, we first denote the relevant entities: 1) Indi-
viduals whose information are recorded in a sheet. One individual
can corresponds to several items. 2) Data holders1 (e.g., institutions,
administrators) that own, maintain, and release the sheet.

3.1 Preliminaries on Tabular Privacy
The basic privacy risk of sharing tabular data is that individual
identity is correlated and may be revealed by the other seemingly
harmless attributes. We denote such a unique combination of at-
tributes a quasi-identifier for individual privacy. We first give some
key definitions in this privacy context.

(Definition 1) Equivalent Class: A subset of items with equal
values on all the focused attributes.

For example, in Fig. 2, if ‘Gender’ is the focused attribute, then
all the items with value ‘M’ form an equivalent class, while all items
with ‘F’ form another class. According to K-anonymity argument, if
the size of a equivalent class is smaller than k, then the inside items
form quasi-identifiers that identify their owners’ identities.

Given a tabular set, a general privacy analysis process (e.g., [39])
involves calculating the size of equivalent classes under additive

1We use data holder and user interchangeably.

attribute prefix. For example, measuring the size of equivalent class
of prefix ‘Gender=F’ and raising a privacy risk if the number is
smaller than k; then checking prefix ‘Gender=F, Children = 1’, et al.

(Definition 2) Schema: The order of attributes assigned for mea-
suring the size of equivalent class to find a privacy breach.

We denote the process of finding equivalent classes according
to the schema as aggregation, so that privacy investigation turns
into aggregation in the given order of attributes. Fig. 2 shows
the aggregation under a specific schema (from the left column to
the right ones). Attribute of the left-most column (Gender) is first
investigated by measuring the equivalent class of Male (‘M’) and
Female (‘F’) separately. Wherein, the ‘M’ class would breach K-
anonymity if k > 1, which can be mitigated by merging values ‘M’
and ‘F’ together to loose the quasi-identifier (k = 5). Then the next
dimension (Children) is measured by counting items under prefix
‘M, 1’, ‘F, 1’, and ‘F, 2’ separately.

3.2 Motivations: Self-defined and Dynamic Schema
Previous studies use a fixed schema during privacy analysis for that
analyzing equivalent class for a tabular set is computation complex,
especially when there are large amounts of data items with many
attributes. As a result, they usually perform analysis according to
the original attribute order in the sheet. However, we find that:

Remark: Different schema will yield different privacy risk situa-
tions, facilitate distinguished privacy-preserving granularity, and
introduce distinct risk handling overhead.
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Figure 3: An example of performing equivalent class merging for pri-
vacy enhancement under different schemas (O1 and O2). Obviously,
the yielded sheets are different.

Taking the merging operation as an example, different schemas
correspond to different aggregations and result in different equiva-
lence classes after merging. In the case of Fig. 3, O1 and O2 are the
same sheet with different schema. When checking the first attribute,
O1 will merge the ‘Gender’ into M|F (operation a), whereas ‘Chil-
dren’ in O2 satisfies k = 2-anonymity and will be retained. Then,
O1 continues to check ‘Children’ without merging operation and
merge ‘Cancer’ under the prefix of ‘Gender-Children’. O2, on the
other hand, merges the ‘Cancer’ and ‘Gender’ attributes under the
prefix of ‘Children’. Finally, O1 has 10 values altered, while O2 got
eight changed during aggregation. That is, the schema has a explicit
impact on the privacy situations and enhancement level.

In particular, we note that the latter attribute in the schema order
has a higher chance of breaching privacy as the equivalent class of a
longer prefix (finer granularity) gradually gets smaller, namely, eas-
ier to go below the constraint k. As a result, the latter attribute may
be heavily merged for privacy preserving, losing more utility. Con-
sidering this, we point out that the schema should be assigned by
the data holder according to their privacy/utility preference, e.g.,
subjectively retaining information of some attributes by putting them
in the front. Furthermore, as we will show in § 6, data holders will
dynamically adjust the schema to analyze the risky attributes in



coarser granularity for flexible merging operations. For example,
instead of studying many equivalent classes for a latter attribute, one
can move it to the front to perform merging on fewer classes.

Yet, existing visualization cannot meet the above dynamic schema
intentions, as the change in schema requires a new round of aggrega-
tion, which will cause significant latency in online interaction. We
are thus motivated to design a new privacy visualization tool that
supports schema dynamics.

3.3 Requirement Analysis
Through meetings with domain experts, we acknowledge that they
are familiar with common privacy enhancement technologies, such
as k-anonymity and differential privacy. In fact, they have actively
applied these techniques to mitigate risk before data released. On
this basis, we discussed the insufficiency in current privacy practice
and have identified four main requirements:

R1: Ability to control schema. As indicated above, different
order of attributes shows different preference on attributes and has
different granularity when applying privacy preserving operations.
Flexible support for adjustable schema is widely required.

R2: Multidimensional data analysis. Users’ prior knowledge
is important in risk analysis. Even professional data analysts can-
not find relation between attributes by simply glancing at a sheet.
Heuristic algorithms for risk assessing do not know the semantic
knowledge and their results are unreliable. Therefore, domain ex-
perts believe that a sketch view on for exploring attribute relations is
beneficial.

R3: Intuitive risk cue. Prior privacy preserving studies have
addressed visual designs for privacy risk. In these realizations,
users are reminded that there are risks somewhere without mapping
directly to the specific records on the sheet. Thus, it is expected to
provide an integrated process for risk presentation and mitigation.

R4: Operation-granularity utility evaluation. The sanitization
of data inevitably discard some information details. It would blur the
data, deviate the statistics, and reduce releasing utility. In particular,
as different schema and sanitization operations lead to different
utilities, users generally want to attain the utility outputs of the
current settings for further involvement.

4 BACK-END ENGINE

This section introduces the key techniques of TPA and how they are
used in the system.

4.1 Data Structure for Order-dynamic Schema
Section 3 discusses the necessity and challenges of adjusting schema
dynamically. We propose to adapt data cube as the basis for data
management, which has efforts in addressing R1 and R2. With data
cube, we design the operation tree and facilitate users to change
schema and perform operations with almost no perceptible latency.
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Figure 4: Data cube of a dataset with attributes D = A,B,C. (a) Tree-
based data cube. (b) Aggregation relationships of the data cube.

Data cube. Data Cube [17] is well suited to handle online analyt-
ical processing queries. It is a data processing form for statistics of
data, such as SUM, MIN, MAX and AVERAGE. Queries have low

latencies by pre-aggregated. We introduce the data cube into TPA,
and pre-calculated aggregations are used to reduce query latency.

As shown in Fig. 4, (a) shows a tree-based data cube. Similar to a
search tree, records are added as a node based on the value of each
dimension. However, the data cube also stores the aggregated results
(i.e., the subtree pointed to by the blue arrows). The aggregation
results store records when a dimension value was ignored. When
a query does not care about the values of specific dimensions, data
cube can response quickly by access aggregation. For example, The
user wants to find all records which attribute C is c1 and doesn’t care
about other attributes. The result can be obtained by accessing the
aggregation of {all,all,c1}, which is the green node in the figure.

We did not calculate statistics of records, but store records’ in-
dexes into aggregations. TPA use the Nanocubes [24], which is
an implementation of the data cube. Nanocubes proposes shared
links to avoid duplicate aggregations, thus using less memory. TPA
stores categorical attribute and numeric attribute in different ways.
For the categorical attribute, creating branches directly based on
their values. For the numeric attribute, will have a default branch to
store the all original data and others branches have a specific split
range. Data cube is built on the server side, which can quickly access
aggregations according to the schema.

Operation tree. We propose the operation tree for interaction and
visualization on the client side. When the user specifies a schema,
the operation tree is generated quickly based on the data cube. The
operation tree is similar to the data cube in that each node denotes an
aggregation and stores indexes of all records in the aggregation. The
nodes in the operation tree have the same aggregated order as the
schema, only dimensions involved in the schema are stored, which
is a lightweight tree designed for front-end (client) interaction. All
operations from TPA are performed in the operation tree, such as
merging, noise adding, fake data adding and so on. Besides, the node
stores privacy-related parameters for visualization (e.g., number of
equivalence classes, whether the noise is added, and so on).

When requesting a new schema, TPA will quickly create the
operation tree by accessing the aggregations from the data cube.
Fig. 5 (a) abd (b) illustrates the process of creating an operation tree,
when a user is interested in two attributes and given an schema of
Cancer → Gender. Taking advantages of the data cube, TPA no
need to walk through all records to build the operation tree. TPA can
quickly find out records of each node (operation tree) just by looking
at aggregations of the data cube. TPA is able to create the operation
tree with little overhead, even if the user frequently reorders the
dimensions.

When we apply certain preserving operations, they are directly
performed to the operation tree. Fig. 5 (c) show how the operation
tree updated after a merging operation performed. Updating may
add or delete nodes and branches, and update the values of node
records. Since these changes only tweak the tree structure, they
do not incur much computing overhead on the client side, while
changes to the operation tree are synchronized to the data cube of
the server side, again with no additional delay in interaction.

4.2 Utility Quantification
Utility is a summary term describing the value of a given data release
as an analytical resource [12], which is essentially a measure of
the information obtained from the dataset. There is no accepted
measure of utility and few studies focus on utility quantification of
tabular data. According to the definition of utility, we consider using
distance and distribution to measure the utility loss. For any values
fa(x) in original dataset (where fa(x) is the value of the attribute a)
and handling values f

′
a(x) which is obtained after privacy preserving,

we use Ldistance(Fa,F
′
a) and Ldistribution(Fa,F

′
a) to denote the utility

loss according to the difference in distance and distribution between
them. We propose different algorithms to calculate utility losses for
numerical data and categorical data, respectively.
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Figure 5: An illustration of creating and updating the operation tree. (a) Data cube is built at the back-end based on the tabular data above. (b)
Operation tree is generated based on the data cube. (c) An example of updating the operation tree.

Numerical Distance. Inspired by EMD [31], Earth Mover’s
Distance is used to compare the distance between two datasets.
Sort all records of two datasets, and calculate the distance of the
corresponding records:

Ldistance(Fa,F
′
a) =

n

∑
i=1

|i− j|
n

, (1)

where i and j refer to the sorted index of fa(x) and f
′
a(x) and n is

the number of records.
Categorical Distance. Since the Categorical data may be

fuzzy, the value of fa(x) is actually a set. For example, fgender =
{male, f emale} represents an uncertain value that the gender of this
record may be male or female. First, we calculate I of these two
fuzzy sets, where I denotes the number of individual values that can
only be taken from one of the sets. Taking {a,b,c} and {b,c,d} as
an example, a and d are individual values, hence the I is 2. Then the
distance between sets can be calculated by:

Ldistance(Fa,F
′
a) =

n

∑
i=1

2I
| fa(x)|+ | f ′

a(x)|
, (2)

where | fa(x)| refers to the size of the set (i.e., the number of fuzzy
values contained).

Numerical Distribution. As a nonparametric test method, K-S
test [26] is applicable to compare the distribution of two datasets
when the distribution is unknown. We use the K-S test to measure
the distribution of numerical distribution and use the p-value to
represent the utility loss:

Ldistribution(Fa,F
′
a) = 1− p. (3)

Categorical Distribution. To measure the distribution of fuzzy
sets, we first get the global distribution of all possible values. For
an attribute a, count the number of occurrences of all values C =
{ca1 ,ca2 , . . . ,can}, where can refers to the number of values with
an. Given a fuzzy set fa(x), counting each possible value an by
can = can +

1
| fa(x)| . After getting the global count, the distance of

each value can be calculated by:

Ldistribution(Fa,F
′
a) =

n

∑
i=1

|C−C′|
n

. (4)

5 FRONT-END VISUALIZATION

As shown in Fig. 6, the front-end of TPA works in 5 steps: import-
ing, building data cube, privacy analysis, privacy preserving, and
exporting. Among them, (c) and (d) are of the most concern for
data holders. Being at the heart of visualization and interaction,
these two steps work iteratively by presenting risks and performing
enhancement until privacy and utility are both satisfactory.

5.1 Importing
As the first step in the pipeline, the user needs to upload the data sheet
here. TPA will attempt to automatically identify the attributes type
(categorical or numeric), and user can correct possible misjudgments
by manually setting the type. Once the attribute type is determined,
it cannot be modified in subsequent steps.

5.2 Building Data Cube
After receiving the sheet uploaded at the first step, TPA will build
the data cube for management and create a session. The session
created is used to respond to requests for schemas and to keep track
of updates to the operation tree.

5.3 Privacy Analysis
Fig. 1 (a) shows how the schema is modified. This widget has two
boxes (left and right), and user changes the order by moving the
attributes in these two boxes. The first time got to this step all the
attributes are in the right side area, and users can select the interested
attributes and move them to the left. Users can also add or remove
interested attributes at any time. The attributes of the left box can
be dragged at will to adjust the aggregated order. Thanks to data
cube applied, any changes to the schema will instantly generate the
corresponding operation tree. In addition, clicking an attribute can
mark it as sensitive (used for l-diversity and t-closeness).

Abstract. Aggregations have sorted records in equivalent classes
according to the schema, but dozens or even hundreds of lines of
records are hardly to be summarized. To help data holders under-
stand and analyze the relation between attributes (R2), we design
the visual abstract. As shown in Fig. 1 (b), TPA provides a global
abstract, which shows the distribution and proportion of values. In
addition to the global summary, TPA supports draw abstract for any
aggregation selected. Clicking on the left of the record to collapse
or expand the aggregation, and draw abstract for the collapse one.
There are two types of the abstracts, as shown in Fig. 7:

• The categorical abstract in (a). Its value distribution is rep-
resented by the percentage of color block. For fuzzy values,
such as null values and uncertain values, are bisected among
all possible blocks. The light (upper) part of the color block



Figure 6: TPA visualization framework, a 5-step pipeline: import the data sheet, build the data cube, iterate to analyze and deal with privacy risks,
and finally export the data sheet.

Collapse Expand

(a) categorical

(b) numeric

uncertain value

min max

quartile

click

Figure 7: An abstract design for focused data items (e.g., equivalent
class) summarizing. An example abstract of the categorical attributes
(a) and numeric attributes (b).

refers to the uncertain value. By observing the proportion of
the light part, users can know how many records apply the
merging operation.

• The numeric abstract in (b), based on a box-plot design. The
box-plot clearly shows the extreme, quartile, and mean values
of the aggregation.

With summaries by the abstract, users can quickly get the informa-
tion of the selected aggregation and the relation between the data of
different attributes, which is helpful for data analysis.

Privacy risk tree. Abstract can guide data analysis, and help to
explore data relations, but users also like to tell them directly where
the privacy risks are (R3). We came up with a more intuitive visual
design, the risk tree, locating privacy risks according to anonymity
technologies. Fig. 8 illustrates the risk tree widget. A selector on
the top left of the widget allow user to select a specific anonymity
technology from k-anonymity, l-diversity and t-closeness. The con-
straint parameters are set by the slider. Risk Tree consists of layers
of pie charts, with the layers from inside to outside corresponding
to the given schema. The division of piece at each layer represents
the distribution of the value of this attribute, and each piece is a
corresponding node (aggregation) from the operation tree. Calculate
whether each piece satisfies the constraint based on the parameters
set by the user, and map the privacy risk of aggregations to different
colors. When the block does not meet the constraint, the color is
calculated by linear interpolation, and the color can relay the degree
of risk of each aggregation. Users can hover to view specific aggre-
gation information, and click to quickly jump to it’s location in the
main view.

Due to the different granularity of each layer, the actual priority
of risks are different. Obviously, the aggregation node of the outer
layer has fewer records, exposing fine-grained privacy risk easily. On
the contrary, the high risk color of the inner aggregation indicates
that the aggregation has large-scale leakage and should be paid
more attention to. A simple understanding is that the risk of inner
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Figure 8: A risk tree design for intuitive perception of privacy risks in
aggregations.

aggregations means that an attacker can use less information to
identify items and should be dealt with first.

5.4 Privacy Preservation

The privacy risks identified in the previous step could be addressed in
the this step. TPA provides four operations for privacy enhancement:
merging, noise injection, fake data injection, and removing. Opera-
tions other than merging require a selection of records. As shown in
Fig. 9 (b), user can select records by ctrl+clicking equivalent classes
or records.

drag

(a) merge equivalent class

ctrl + click

add noise

fake data

remove row

right-click

(b) select items

(c) perform privacy enhancement

Figure 9: Preserving operations. (a) Merging operation. (b) Select
records. (c) Open operations menu.

Merging . Merging is the primary preserving operation, which
prevents an attacker from identifying items by making the value
fuzzy. Two equivalent classes can be merged when all prior attributes
of them have same values (i.e., the two nodes in the operation tree
have the same parent node). As shown in Fig. 9(a), dragging one
folded class onto another to merge them. The value of these two
classes will be updated from a concrete value (A, B) to an uncertain
value (A|B). Besides, the two aggregations that are merged will exist



as a new class in the operation tree, so user can continue to merge it
with other classes which have the same parent.

Adding noise. The noise operation applies to numeric attributes.
By clicking the ‘Add noise’ of the menu, a new view for noise
operation is shown in Fig. 10. The view shows the histogram for
all numeric attributes, and the number of bars in the histogram
determines the granularity of bins, which can be set by tweaking
the slider above. The noise operation adds Laplace noise to the data
based on differential privacy. One can click the switch in the upper
right corner to set the noise parameter, and drag the white dot in
Fig. 9(b) to set λ of Laplace for each bin that how much noise to add.
After parameters are set, view will prompt some red lines which
denote the fluctuations of each bin after adding noise.

Figure 10: A visual design for adding noise.

It is unreasonable to add noise to all data indiscriminately. As
shown in Fig. 11, TPA provides a matrix view for data analysis and
filter data of interest.It shows the two-dimensional distribution of
attributes, where the x-axis of the chart is the attribute above the view
and the y-axis is the corresponding numeric attribute. A Scatter-plot
is used for numeric-numeric combinations and a grouping Box-plot
is used for numeric-categorical combinations. User can select data
by brushing and clicking, at which point the noise operation will
only be applied to the selected data.

Figure 11: The matrix view presents the two-dimensional distribution
of data and provides data filters.

Adding fake data. The fake operation uses CTGAN [42] to gen-
erate synthetic records and adds these records into sheet to confuse

attackers. After clicking ‘Generate fake data’ in the menu, TPA
will use the selected records as training inputs to generate synthetic
records. Synthetic data is not always effective in preventing leakages,
but it provides a method that does not require other prior knowledge.
Since the synthetic data have similar distribution as the training
inputs, the utility loss can be controlled to some extent.

Removing records. Sometimes, users want to remove records
directly (e.g., outlier data). The removing operation can be applied
to remove the selected records from the sheet.

History View. The history view records all privacy enhancement
operations applied. As shown in Fig. 12, the view lists historical
states and their detail, allowing user to go back to the historical state.
It also provides the user the number of records that are affected. This
helps users understand the granularity of each operation. In addition,
users can compare utility losses by selecting two historical states.

Figure 12: The history view records the historical states.

Utility analysis. For any preserving operation, whether it is
modifying the original value or adding/removing records, will result
in a loss of utility. Thus, user want to see how utility changes
with each operation (R4). TPA uses the measure introduced in
section 5.2 to estimate the utility loss by calculating the distance
and distribution. To compare utility changes in each operation, we
propose the utility comparison view (Fig. 13). Users can select
two historical states at history view to compare. When we select a
historical state, TPA will compute the result from applying the first
operation to the operation selected, and then calculates the difference
in utility between selected state and the original sheet.

To compare two different states, we utilize a superimposed ma-
trix to visualize the changes in two historical states. The rows
represent algorithms to be compared and the columns represent at-
tributes. Each cell is divided into an outer region and an inner region,
with the background color saturation representing the difference of
the utility in two different state. The higher the saturation, the more
the differs from the original data in this attribute (high utility loss).
The view is designed to help users understand changes in utility.

Distance

Distribution

attr 1 attr 2 attr 3 attr 4

historical state A
historical state B

score difference
highlow

Figure 13: Comparison of two historical states, indicating the differ-
ence in utility loss.

5.5 Exporting
The analysis and preserving loop stops if data holder considers the
privacy and utility situation are satisfactory. The corresponding
sheet is such downloaded and released.

6 CASE STUDIES

We conduct two case studies with the prototype of TPA, with data
from the insurance domain and medical domain.



6.1 Analyzing the Medical Cost Dataset

The medical cost dataset is an insurance-billed personal medical
cost obtained from a book [19]. It has a sheet which shows the
age, gender, bmi, children (number of children), smoker, region
and charges of 1,339 personal information. This dataset has been
sanitized before releasing. In this example, we assume that the
dataset collects data from the same hospital and the attacker is most
likely to identify individuals through linking attacks.

The records of children are numerical. Obviously, the number of
children doesn’t vary that much and people focus more on whether
the patient has a child. Therefore, we mark children as categorical
in step 1. After completing the basic setup, we continue to conduct
the preserving pipeline.

Figure 14: Process of dealing with privacy risks in the Medical Cost
Dataset. (a) Privacy risks are associated with smokers. (b) Adjust
the schema to identify high risk aggregations. (c) Use the merging
operation to address risks. (d) Affected records.

In the case of unfamiliar data, anonymous analysis can be con-
sidered first. By setting the k-anonymity constraint of the risk tree
as k = 7 and observing the visualization in Fig. 14 (a), we find that
there are two prominent high risk aggregations. By jumping to the
specific aggregations in the sheet, we find they are all smokers. In
this case, we can merge ‘yes’ and ‘no’ of the attribute ”smoker”, but
many non-smoking data will also be blurred. Comparing aggrega-
tions of the previous attribute ‘children’, we find that both of them
have more than four children. It’s easy to understand that people
with more children are the minority that are easier to identify. Thus,
we adjust ‘smoker’ and ‘children’ to the front of the order. At this
schema in Fig. 14 (b), the new risk-tree indicates their high risk
aggregations. As a result, the patients with high risk are those who
have more than four children. As shown in Fig. 14 (c) and (d), by
merging aggregations of smokers who have ‘4’ and ‘5’ children,
risks have been reduced, and only four records related to risks are
modified.

When we adjust the ‘charges’ and ‘smoker’ to the front of the
order and collapse the aggregation of ‘smoker’ (Fig. 15), abstracts
in (a) show an interesting pattern that smokers have much higher
charges than non-smokers. This pattern indicates that attacker can
simply predict their charges by whether patients smoke or not, with
a high degree of confidence. To prevent potential background knowl-
edge attacks, we focus on smokers to protect their privacy, since

Figure 15: Identify potential risks through abstracts. (a) Smokers have
extremely high charges. (b) Filter the records to be protected by a
filter. (c) and (d) Result of applying preserving operations.

smokers are a small group. Therefore, we set a filter to find out high
charges of both non-smokers and smokers, and merge aggregations
of them in (b). (c) indicates that we make high charges records
fuzzy which protect the privacy of smokers. Besides, it is reasonable
to keep the low charges data which are mostly non-smokers (the
majority of people).

6.2 Analyzing Personal Key Indicators of Heart Disease
This dataset comes from the CDC (Centers for Disease Control and
Prevention) [28], which collects data on the health of U.S. residents.
Each record has 300 attributes, including various indicators of the
body. According to a CDC report, heart disease is the leading cause
of death in the United States. Considering indicators related to heart
disease, we narrowed it down to 12 attributes and randomly selected
20,000 records for this example.

Figure 16: For a hight-dimensional complex dataset, t-clossness is
used to explore dimensional correlations and locate high risk ag-
gregations. (a), (b) and (c) Iterate through the schema to find high
correlated attributes. (d) and (e) Compare the utility loss after using
the preserving operation on ‘Race’ and ‘Sex’. (f) Result of applying
preserving operations.

Patients certainly don’t want to expose their disease. In this ex-
ample, we focus on analyzing and dealing with privacy risks related
to ‘HeartDisease’ attribute. From the perspective of publishers, we
should first find out what other attributes are related to the disease.
We set the ‘HeartDisease’ as a sensitive attribute and adjust it to



the end of the order. As a result in Fig. 16 (a), the t-closeness view
in risk-tree points out that the distribution of heart disease among
drinkers was clearly different from the global distribution. It can
be considered that drinking is highly correlated with heart disease.
We move ‘AlocholDrinking’ to the front of the order and look at
the risk-tree again. The new view (b) shows that ”Stoke” also has a
significant effect on the distribution. Thus, we move ‘Stroke’ after
‘AlocholDrinking’.

We have moved high correlated attributes to the front of the
order, and adjusted schema is easier to locate risks than a random
schema (c). After switching to the K-anonymity view, we find some
aggregations with salient high risk in branches of the ‘Sex’ and
‘Race’. To reduce risk, we merge aggregations of ‘Sex’, which is
shown in Fig. 16(d). Jump to the high risk aggregation and try to
deal with two attributes separately by merging operation. Fig. 16 (e)
indicates the comparison of the feedback from utility view, we
find that to merge ‘Sex’ has less utility loss than to merge ‘Race’.
Therefore, merging aggregations of ‘Sex’ is a better choice to reduce
risks.

Figure 17: The result of abstracts indicates that people with stroke
have more physical and mental health problems.

To further explore the risks, we collapse the attribute ‘Stroke”
(Fig. 17). Abstracts show that people who have had a stroke tend to
have high value of mental and physical problems. The proportion of
people who had both stroke and alcohol drinking is small, and stroke
is highly associated with heart disease. Although health scores are
less sensitive. That also means health scores are also more likely to
be collected by attackers, which should be blurred for patients with
heart disease. As shown in Fig. 18, We filtered and selected stroke
and alcohol drinking among patients with heart disease, adding noise
to the high values of mental and physical problems.

Figure 18: Add noise to blur the health score and protect the privacy
of people who smoke, stroke and have heart disease.

For a dataset with 12 dimensions and 20,000 records, taking a
long time to calculate once aggregations. Taking advantage of the
data cube, even such a high-dimensional dataset can still interact in
real-time and dynamically adjust the aggregated order.

7 QUALITATIVE DISCUSSIONS

We conducted interview with four domain experts on the applicabil-
ity of TPA in real-world scenarios. These users are experienced in
data analysis and often work with tabular data. They commented
positively on our work and indicated suggestions for improvement.

7.1 Effectiveness
Interviewees agreed that TPA was effective in data analysis, es-
pecially in aggregation abstract that help them to grasp the value
distribution of attributes and the correlation between attributes in
the dataset (R2). They favored the function that they could adjust
the schema in real-time (R1), and also appreciated TPA’s capability
to efficiently handle big datasets. One of the users said that it was
difficult to effectively analyze the risks of data sets in the past when
faced with high-dimensional data sets. When used in conjunction
with risk tree, dynamic adjustment order were considered to help
perceive privacy risks intuitively (R3). In addition, TPA saved them
a lot of time than other visualization tools, by providing more pre-
serving operations and allowing them to control the granularity of
them (R4).

7.2 Limitations
However, some users pointed out that the interaction design of the
prototype was not good enough, even though we instructed users
how to use TPA in prior. Further, some supposed that the utility view
may be of limited use. While the utility view could remind them
of the differences between the current state and the original one,
they still don’t understand how those differences mean. Some users
also suggested providing a recommendation scheme function to help
to carry out privacy enhancement operations. This indicates that,
whereas TPA is designed to provide users with high flexibility, they
can often get lost in the choices, thus providing some recommended
actions shall be a good way to get started quickly.

7.3 Future Work
Considering that data will be shared to work for specific analysis
tasks, we plan to extract patterns for those tasks (e.g., extreme values
of samples, clustering, etc.). By indicating the pattern differences
before and after privacy preserving, one can more easily take balance
between privacy and utility. We will also improve the interface
and provide support for more diverse data type, like time, location,
sequence, etc.

8 CONCLUSION

We propose a visual tool, TPA, for privacy protection of tabular data.
Our design helps users analyze multidimensional data relationships
and identify potential privacy issues. In addition, we provide users
with some preserving operations to reduce privacy risks and a utility
view is designed to help control the utility loss of operations. By
introducing data cube, we have implemented a system that support
user exploring any aggregated order in real-time, allowing users to
analyze privacy risks from different perspectives and flexibly control
the granularity of preserving operations. We use two real datasets
to demonstrate that TPA can handle all kinds of data, including big
datasets and high dimensional datasets.
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