
Under review as a conference paper at ICLR 2021

SPARSE RECOVERY VIA BOOTSTRAPPING: COLLABO-
RATIVE OR INDEPENDENT?

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse regression problems have traditionally been solved using all available mea- 1

surements simultaneously. However, this approach fails in challenging scenarios 2

such as when the noise level is high or there are missing data / adversarial samples. 3

We propose JOBS (Joint-Sparse Optimization via Bootstrap Samples) – a collab- 4

orative sparse-regression framework on bootstrapped samples from the pool of 5

available measurements via a joint-sparse constraint to ensure support consistency. 6

In comparison to traditional bagging which solves sub-problems in an independent 7

fashion across bootstrapped samples, JOBS achieves state-of-the-art performance 8

with the added advantage of having a sparser solution while requiring a lower 9

number of observation samples. 10

Analysis of theoretical performance limits is employed to determine critical optimal 11

parameters: the number of bootstrap samples K and the number of elements L in 12

each bootstrap sample. Theoretical results indicate a better bound than Bagging 13

(i.e. higher probability of achieving the same or better performance). Simulation 14

results are used to validate this parameter selection. JOBS is robust to adversarial 15

samples that fool the baseline method, as shown by better generalization in an 16

image reconstruction task where the adversary has similar occlusions or alignment 17

as the test sample. Furthermore, JOBS also improves discriminative performance 18

in a facial recognition task in a sparse-representation-based classification setting. 19

1 INTRODUCTION 20

In compressed sensing (CS) and sparse regression, a classic linear inverse solution via least squares 21

plus a sparsity-promoting penalty term has been extensively studied. Sparse regression is important 22

for feature selection, reducing over-fitting, and representation learning. and there are rich variants that 23

solve important problems such as dictionary learning (Duarte-Carvajalino & Sapiro, 2009), matrix 24

completion (Candès & Recht, 2009), Robust Principle Component Analysis (Candès et al., 2011), 25

matrix factorization (Lee & Seung, 2001), and sparse neural networks (Alvarez & Salzmann, 2016). 26

Mathematically speaking, let A 2 Rm⇥n be the sensing matrix, x 2 Rn contains the sparse codes 27

with very few non-zero entries, z is a noise vector with low bounded energy, and y 2 Rm be the 28

measurement vector, commonly generated by a linear model with measurement noise: y = Ax+ z. 29

The `1 norm minimization is the most common strategy, also known as LASSO (Tibshirani, 1996) or 30

Basis Pursuit denoising (Chen et al., 2001). 31

The performance of `1 minimization has been thoroughly studied in the CS literature (Cohen et al., 32

2009; Candes, 2008; Candes et al., 2006; Donoho, 2006; Candess & Romberg, 2007), including the 33

correctness and robustness based on the Null Space Property (NSP) (Cohen et al., 2009) and the 34

Restricted Isometry Property (RIP) (Candes, 2008; Candes et al., 2006) and mild sufficient conditions 35

on random matrices with sufficient sample complexity to obtain bounded reconstruction error with 36

high probability (Candes, 2008). 37

Even though the baseline `1 min., works pretty well in many applications, Unfortunately, its perfor- 38

mance suffers in challenging, high noise cases. Moreover it has trouble with partially missing and/or 39

severely corrupted samples. Additionally, it is not robust against adversarial samples (illustrated in 40

Figure 1) which are similar to the test case but are from a different class. Adversarial samples can 41

be caused by lack of variation in the training data, and algorithms that can overcome these samples 42

exhibit better generalization. 43
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Bagging, a classic method for regression and classification tasks, has shown its robustness in high44

noise cases (Breiman, 1996). In this paper, we use Bagging to refer to employing Bagging procedure45

in sparse recovery. To obtain the Bagging solution, the same objective function is solved multiple46

times independently from bootstrap (Efron, 1979) samples (uniformly sampled at random with47

replacement) and then multiple predictions are averaged. Applying the Bagging method in sparse48

regression has been shown to reduce estimation error when the sparsity level s is high for a specific49

sparsity pattern (Breiman, 1996).50

However, individually solved predictors are not guaranteed to have the same support, and in the worst51

case, their average can be quite dense – its support size growing up to a multiple of the number of52

estimates. Bolasso was proposed to alleviate this problem (Bach, 2008a) by estimating the support53

from the intersection of all bootstrapped estimators. However, this strategy is very aggressive and54

during large noise cases, the supports of the estimators may not align and it recovers an extremely55

sparse solution.56

In this paper, we propose to collaboratively enforce the row sparsity constraint among all predictors57

using the `1,2 norm to resolve the support inconsistency issue in Bagging and avoid the overly58

aggressive Bolasso type of scheme. We name this algorithm JOBS (Joint-sparse Optimization from59

Bootstrap Samples). The proposed method involves two key parameters: the bootstrap sample size L60

of random sampling with replacement from the original m measurements and the K number of those61

bootstrap vectors. JOBS improves the robustness of sparse recovery in challenging scenarios such as62

high noise, limited measurements, and in the presence of adversarial samples. A short summary of63

comparing JOBS to classical methods is in Table 1.64

Methods `1 min. Bagging JOBS

Robustness against baseline better betterlarge noise;
against adversarial No No Yessamples

Sparsity medium dense sparse

Optimal L = m small smaller

Factor to `1 bound, 1
p
L/m < 1

p
L/m < 1

with probability 1 1� eO(K/L) 1� eO(K/L2)

Table 1: Comparison of different methods of sparse recov-
ery. The factor in the last row is the term associated with
measurement noise power kzk2.

Figure 1: Adversarial sam-
ple is from a different class
and is more similar to the
test than dictionary atoms
from the same class.

NOTATIONS: Let A denote the original sensing matrix of size m ⇥ n. Let y represent the mea-65

surement vector. Let I1, I2, ..., IK be bootstrap samples, each containing L elements. For each66

bootstrapped sample Ij , the corresponding bootstrapped sensing matrix A[Ij ] and bootstrapped67

measurements vector y[Ij ] are generated, where the operation (·)[I] takes the rows of a matrix/ vector68

supported on I . xj is a feasible estimator for the j-th bootstrap sample. Concatenating K estimators69

x1,x2, ...,xK , we obtain the sparse-code matrix X of size n⇥K. The row sparsity norm that we70

impose in the optimization is defined as the sum of the `2 norm of each row of this matrix: for X ,71

kXk1,2 =
P

(kx[1]T k2, kx[2]
T
k2, ..., kx[n]

T
k2).72

The proposed method: JOBS consists of three steps. First, we generate K bootstrap samples:73

{I1, I2, .., IK}, each containing L indices. The bootstrapped data contains K pairs of sensing74

matrices measurements: {y[I1],A[I1]}, {y[I2],A[I2]}...., {y[IK ],A[IK ]}. Second, we solve the75

collaborative recovery on those sets. For parameter �L,K > 0 that balances the least squares fit and76

the joint sparsity penalty based on the choice of (L,K), the joint sparse optimization is:77

cX = min
X

�L,KkXk1,2 + 0.5
KX

j=1

ky[Ij ] �A[Ij ]xjk
2
2. (1)
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The proposed form in J�
12 is a special case of block (group) sparse recovery (Berg & Friedlander, 78

2008) and there are numerous optimization methods for solving them such as (Boyd et al., 2011; 79

Baron et al., 2009; Heckel & Bolcskei, 2012; Sun et al., 2009; Bach, 2008b; Berg & Friedlander, 80

2008; Wright et al., 2009b; Deng et al., 2011). Finally, the JOBS solution is obtained by averaging 81

the columns of the solution from (1): 82

JOBS: x
J =

1

K

KX

j=1

bxj . (2)

2 THEORETICAL RESULTS 83

2.1 CORRECTNESS OF JOBS VIA BLOCK NULL SPACE PROPERTY (BNSP) 84

Block Null Space Property (BNSP), characterizes the exact recovery condition of our algorithm as a 85

Necessary and sufficient condition of noiseless program (Gao et al., 2015). we established BNSP 86

for JOBS and since it established characterizes the existence and uniqueness of the true noiseless 87

JOBS solution, and then we prove the correctness of JOBS-noiseless defined in (14). Since the final 88

estimate the average of the solution, the latter part of Theorem 2 implies that the JOBS solution is 89

also optimal xJ = x
?. The detailed proof is shown in Appendix 8. 90

Definition 1 (BNSP for JOBS) A set of bootstrapped sensing matrices {A[I1],A[I2], ...,A[IK ]} 91

satisfies BNSP of order s if 8 (v1,v2, ...,vK) 2 Null(A[I1]) ⇥ Null(A[I2])... ⇥ 92

Null(A[IK ])\{(0,0, ...,0)}, such that for all S : S ⇢ {1, 2, ..., n}, card(S)  s, kV [S]k1,2 < 93

kV [Sc]k1,2. 94

Theorem 2 (Correctness of JOBS) The noiseless JOBS program successfully recovers all the 95

s�row sparse solution if and only if {A[I1],A[I2], ...,A[IK ]} satisfies BNSP of the order of s 96

described in Definition 1. The solution is of the form X
? = (x?,x?, ...,x?), where x

?
is the unique 97

true sparse solution. Then, the JOBS solution x
J

, which is the average over columns of X
?

, is x
?

. 98

2.2 BLOCK RESTRICTED ISOMETRY PROPERTITY (BRIP) OF JOBS 99

Let the JOBS block diagonal matrix A
J = block_diag(A[I1],A[I2], ...,A[IK ]), where block_diag 100

denotes the operator that stacks matrices as a block diagonal matrices, and B = {B1,B2, ...,Bn} is 101

the block partition of all indices of vectorized matrix X 2 Rn⇥K that correspond to the row sparsity 102

pattern. Let �s|B denote row sparse Block Restrict Isometry Property (BRIP) constant of order s over 103

a given block partition B and �s denote the standard RIP constant of order s. We have the following 104

proposition for JOBS by using the induced vector norm form of eigenvalue function. 105

Proposition 3 (BRIP for JOBS) For all s  n, s 2 Z+
, 106

�s|B(A
J ) = max

j=1,2,...,K
�s(A[Ij ]). (3)

It is not surprising at all that the BRIP of JOBS depends on the worst case among all K bootstrapped 107

matrices since a smaller RIP constant indicates better recovery ability. The proof of this proposition 108

is elaborated in Appendix 10. 109

2.3 NOISY RECOVERY FOR JOBS 110

Next, we analyze the error bound for JOBS using BNSP and BRIP in the noisy case. Note that our 111

theorems are based on deterministic sensing matrix, measurements and noise vectors: A,y, z and 112

the randomness in our framework is introduced by the bootstrap sampling process. 113

From previous analysis, we have established that if the BRIP constant of order 2s is less than
p
2� 1, 114

it implies that {A[I1],A[I2], ...,A[IK ]} satisfies BNSP of order s. Then, Theorem 2 establishes 115

that the optimal solution to J12 the noiseless version of joint sparse optimization is the s�row sparse 116

signal X? with every column being x
?. Similar to the bound in Theorem 2 in (Eldar & Mishali, 117

2009) ,the reconstruction error is determined by the s�block sparse approximation error and the 118

noise level. The Hoeffding’s tail bound is used to obtain the worst case performance for JOBS. The 119
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following theorem states the performance bound for JOBS when the ground truth signal x? is exactly120

s�sparse.121

The relationship to the upper bound of RIP constant is discussed in Section 2.5. In the more general122

case, when the sparsity level of x? possibly exceeds s, we use the we derived the following error123

bounded associated with measurements error and s� sparse approximation error.124

The error bound in Theorem 5 relates to s�sparse approximation error as well as the noise level,125

which is similar to `1 minimization and block sparse recovery bounds. JOBS also introduces a126

relaxation error bounded by kek2, which is the distance of the true vector to its top s� sparse127

approximation.128

Theorem 4 (JOBS: error bound for kx
?
k0 = s ) Let y = Ax

? + z, kzk2 < 1. If there exists a129

constant related to parameters (L,K) such that, �2s|B(A
J )  �L,K <

p
2� 1 and the true solution130

is exactly s�sparse, then for any ⌧ > 0, JOBS solution x
J

satisfies131

P
⇢
kx

J
� x

?
k2  C1(�L,K)(

r
L

m
kzk2 + ⌧)

�
� 1� exp

�2K⌧4

Lkzk4
1

, (4)

where C1(·) is the same non-decreasing functions of � as in Theorem 1.3 in (Candes, 2008), which is132

reminded in Preliminary results session in Appendix 6.133

Theorem 5 (JOBS: error bound for the general case) Let y = Ax
? + z, kzk2 < 1. If there134

exists a constant related to parameters (L,K) such that, �2s|B(A
J )  �L,K <

p
2� 1, then for any135

⌧ > 0, JOBS solution x
J

satisfies136

P{kxJ
� x

?
k2  C0(�L,K)s�1/2

kek1 + C1(�L,K)(

r
L

m
kzk2 + ⌧)} � 1� exp

�2K⌧4

Lkzk4
1

. (5)

where C1(·) is the same non-decreasing function of � as in in Theorem 1.3 in (Candes, 2008); e is the137

s-sparse approximation error: e = x
?
� x0 with x0 containing the largest s components of the true138

solution x
?

; and kAk1,1 = maxi=1,2,...,m(ka[i]T k1) denotes the largest `1-norm of all rows of A.139

We use Theorem 5 to explain the case when the number of measurements is low compared to the true140

sparsity level s. The trade-offs for a good choice of the bootstrap sample size L and the number of141

bootstrap samples K are discussed in Section 2.5.142

2.4 NOISY RECOVERY FOR BAGGING IN SPARSE RECOVERY143

We now give the error bounds for employing the Bagging scheme in sparse recovery problems, in144

which the final estimate is the average over multiple estimates solved individually and independently145

from bootstrap samples.146

Theorem 6 (Bagging: Error bound for kx
?
k0 = s ) Let y = Ax

?+z, kzk2 < 1. If there exists147

a constant related to parameters (L,K) such that, for all j 2 {1, 2, ...,K}, �2s(A[Ij ])  �L,K <148
p
2� 1, where A[Ij ] is the bootstrapped matrix. and let x

B
be the solution of Bagging, then, for149

any ⌧ > 0, x
B

satisfies150

P
⇢
kx

B
� x

?
k2  C1(�L,K)(

r
L

m
kzk2 + ⌧)

�
� 1� exp

�2K⌧4

L2kzk4
1

, (6)

where C1(·) is the same non-decreasing function of � as in Theorem 1.3 in (Candes, 2008).151

Theorem 7 (Bagging: Error bound for the general case) Let y = Ax
? + z, kzk2 < 1. If there152

exists a constant related to parameters (L,K) such that, for all j 2 {1, 2, ...,K}, �2s(A[Ij ]) 153

�L,K <
p
2� 1, and then, for any ⌧ > 0, the Bagging solution x

B
satisfies154

P
⇢
kx

B
� x

?
k2  C0(�L,K)s�1/2

kek1 + C1(�L,K)(

r
L

m
kzk2 + ⌧)

�
� 1� exp

�2K⌧4

(b0)2
. (7)

where C0(·), C1(·) are the same non-decreasing functions of � as in Theorem 1.3 in (Candes, 2008),155

and b0 = (C0(�)C1
�1(�)s�1/2

kek1 +
p
Lkzk1)2.156
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Theorem 7 gives the performance bound for Bagging in general signal recovery without the s�sparse 157

assumption, and it reduces to Theorem 6 when the s�sparse approximation error is zero, i.e., 158

kek1 = 0. Both Theorem 6 and 7 above show that increasing the number of estimates K improves 159

the result by increasing the lower bound of the certainty for the same performance level. 160

JOBS vs Bagging bounds: The RIP condition for Bagging is the same as the RIP condition for 161

JOBS, under the assumption that all bootstrapped matrices A[Ij ]s are well-behaved for the worst 162

case analysis. When kx
?
k0 = s, kek = 0, the bound in Bagging is worse than JOBS since the 163

certainty for algorithm is at least 1� exp �2K⌧4

L2kzk4
1

, compared to the error bound 1� exp �2K⌧4

Lkzk4
1

in 164

JOBS. When kek > 0, we can derive (the right hand side) r.h.s. of Bagging (7) < the r.h.s. of Bagging 165

in s� sparse (6) < the r.h.s. of JOBS (5). With an L2 term instead of L in the denominator, the 166

bound is tighter for JOBS given the same L and K. This comparison shows that JOBS has a better 167

theoretical worst-case performance bound for an s-sparse signal; recovery of a nearly s-sparse signal 168

follows similar behavior. 169

2.5 KEY PARAMETERS (L,K) SELECTION FROM THEORETICAL ANALYSIS 170

Concerning the sampling ratio L/m, two competing factors influence the optimal choice. In general, 171

the BRIP constant decreases with increasing L; thus, more measurements leads to better recovery. 172

Additionally, increasing L also results in smaller � and C1(�). However, larger L can also increase 173

noise, evidenced by the second factor associated with the noise power term,
p
L/m. Thus, a moderate 174

choice of the L/m ratio is best. Experimental results show best performance at L/m ⇡ 0.4. As m 175

grows larger and problem becomes easier, the optimal L/m also increases. 176

As for the number of estimates K, increasing K weakly increases the BRIP constant, but not by a 177

significant margin. In the sparse regression simulation, we find that increasing K in general does not 178

degrade performances. Increasing K mainly reduces uncertainty in (5), which decays exponentially 179

with K. The certainty can be written as p(K) = 1 � exp{�↵K}, for some ↵ > 0. The growth 180

rate of dp(K)/dK is non-negative and decreasing with K. In short, although increasing K will in 181

general improve the results, the improvement margin decreases as K gets larger. We validate this 182

phenomenon in our simulation. 183

3 EXPERIMENTAL RESULTS 184

Three experiments are done to investigate the property of JOBS: (i) on classic sparse reconstruction 185

task on synthetic data, (ii) image reconstruction with presence of adversarial examples on real dataset 186

(iii) standard image classification task on real dataset. 187

3.1 SPARSE RECONSTRUCTION FROM COMPRESSED MEASUREMENTS 188

In this section, we perform sparse recovery on a generic synthetic dataset to study the performance 189

of the proposed algorithm. In our experiment, all entries of A 2 Rm⇥n are i.i.d. samples from 190

the standard normal distribution N (0, 1). The signal dimension n = 200, and various numbers of 191

measurements from 50 to 150. The ground truth signals x? has its sparsity level set to s = 50. The 192

location of each non-zeros entry is selected uniformly at random whereas its magnitude is sampled 193

from the standard Gaussian distribution. For the noise processes z, all entries are sampled i.i.d. from 194

N (0,�2), with variance �2 = 10�SNR/10
kAxk

2
2, where SNR represents the Signal-to-Noise Ratio. 195

In our experiment, we study three different noise levels: when SNR = 0, 1 and 2 dB. The same solver 196

to solve sparse regression in all comparison methods: JOBS, Bagging, Bolasso, `1 minimization. 197

Details is in Appendix 11. 198

We explore how two key parameters – the number of estimates K and the bootstrapping ratio L/m 199

– affect sparse regression results. In our experiment, we vary K = 30, 50, 100 while setting the 200

bootstrap ratio L/m from 0.1 to 1 with an increment of 0.1. We report the average recovered Signal 201

to Noise Ratio (SNR) as the error measure to evaluate the recovery performance: SNR(bx,x?) = 202

�10 log10 kbx� x
?
k
2
2/kx

?
k
2
2 (dB) averaged over 20 independent trials. For all algorithms, we vary 203

the balancing parameter �L,K at different values from .01 to 200 and then select the optimal value 204

that gives the maximum averaged SNR over all trials at each (L,K). 205
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Figure 2: Recovery performance curves for JOBS and Bagging (with various L,K) versus `1 min-
imization. Left 1-4: The number of measurements are m = 75, 100 from left to right. Left 5-6:
Phase diagrams of JOBS, Bagging. Noise level is set to SNR = 0 dB.

Performance of JOBS, `1 min., Bagging is illustrated in Figure 2 with different total numbers206

of measurements m = 50, 150. Note, for each condition with a particular choice of (L,K), the207

information available to JOBS, Bagging and Bolasso algorithms is identical and `1-minimization208

always has access to all m measurements. When the number of measurements m is limited, JOBS209

outperforms `1 minimization significantly. As m increases, the margin decreases. When the number210

of measurements is low (the sparsity level s = 50 and m is only 50� 150, which is between 1s� 3s),211

and with very small bootstrap sampling ratio L/m (L/m is only 0.3� 0.5) JOBS and Bagging are212

quite robust and outperform all other algorithms using the same parameters (L,K). In addition,213

although JOBS and Bagging are similar in terms of the best performance limit, which are within 3%214

in our overall experiments. Bagging requires higher L/m ratios (typically � 0.6) to achieve peak215

performance than JOBS. This is explored more in the next paragragh.216

JOBS VS BAGGING217

• JOBS Optimal Sampling Ratio is Consistently Smaller than That of Bagging. Both JOBS and218

Bagging outperform the classical `1 minimization algorithm in the challenging case when the total219

number of measurements m is low. The peak performance of JOBS and Bagging are comparable220

(within 3%). Table 2 shows the optimal ratios for JOBS algorithm and for Bagging with the number221

of measurements m from 50� 150 and various SNR ratios SNR = 0, 1, 2 dB. The optimal bootstrap222

sampling ratio for JOBS is smaller than that for Bagging. With the same K as Bagging, JOBS223

achieves optimal performance with a much smaller vector size L compared to Bagging.224

A smaller bootstrap size leads leads to a reduction of the algorithm complexity. With the225

ADMM implementation, the theoretical complexity levels for both Bagging and JOBS algorithms are226

the same for the same (L,K): O(n2(L+ n)K) + TO(n2K), where T is number of iterations. This227

result Since the optimal L is smaller, JOBS yields a smaller complexity than Bagging.228

SNR = 0 SNR = 1 SNR = 2
m JOBS Bag. JOBS Bag. JOBS Bag.
50 0.5 0.6 0.6 0.8 0.5 0.8
75 0.4 0.9 0.4 1 0.4 0.7

100 0.3 0.7 0.3 1 0.4 1
150 0.4 1 0.5 1 0.5 1

Table 2: The Empirical Optimal Sampling Ratios
L/m with Limited Measurements m. K = 100.

Bootstrapping-based methods
m JOBS Bagging Bolasso
50 89± 3% 91± 2% 0.03± 0.1%
75 78± 4% 82± 5% 0.20± 0.4%
100 71± 4% 91± 2% 0.25± 0.3%
150 47± 6% 87± 5% 3.6± 1%

Table 3: The averaged sparsity ratios of re-
covered signals. The numerical threshold for
being non-zero is 10�2. SNR = 0 dB.

• JOBS solutions are consistently sparser than Bagging solutions. We check the sparsity of the229

reconstructed signals through the numeric sparsity ratio: the sparsity ratio for a reconstructed vector bx230

is the ratio elements with whose magnitude higher than the threshold (⌧ > 0) over all elements. From231

Table 3, JOBS generally produces sparser solutions than Bagging. It verifies our motivation to have232

more precise control over the sparsity level in JOBS algorithm than individually solved predictors233

such as Bagging, which are not guaranteed to have the same support on bootstrapped solutions.234
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3.2 IMAGE RECONSTRUCTION: JOBS IS ROBUST AGAINST ADVERSARIAL SAMPLES 235

Figure 3: Reconstruction with adversarial sample with sim-
ilar occlusion as test. Top: adversarial sample (a) and dic-
tionary examples. Mid-Bot.: The test image (b) and recon-
structions. `1 favors (a). Bagging solutions contain energy
from (c), far from ground truth. Bolasso has visible com-
ponents from (a). JOBS successfully avoids (a) as sparsity
regularization increases (yellow box). Ground truth PSNRs
calculated with respect to b0, the top 100 rows of (b).

This experiment verifies the robustness 236

of JOBS in the presence of adversarial 237

samples. A adversarial sample defi- 238

nition is illustrated as in Fig. 1. We 239

evaluate two cases: Case A - Adver- 240

sarial sample from occlusion: Test 241

image, to be recovered, is of a woman 242

with scarf. The dictionary does not in- 243

clude any images with a scarf from the 244

same class, but it does include an ad- 245

versarial sample from a different class: 246

i.e. a man wearing a scarf. Case B 247

- Adversarial sample from misalign- 248

ment: Test image is of a woman. All 249

dictionary atoms from the same class 250

are rotated to various degrees. How- 251

ever, there is a picture of a man with 252

the same alignment as the test image. 253

In both cases, we use a common face 254

recognition dataset: the cropped AR 255

dataset (Martinez & Kak, 2001), con- 256

taining pre-aligned images taken in 257

various controlled conditions. The di- 258

mensions of all images are 165⇥ 120 259

pixels. We took images from two peo- 260

ple: one woman (with label W -001) 261

and one man (with label M -001) as 262

our dictionary and test signal to be 263

reconstructed in both cases. We use 264

simplified notation W# to indicate la- 265

bel # from W -001 and M# for pic- 266

tures of the man. For each person, the 267

same label corresponds to the same 268

controlled condition. 269

Case A: The dictionary contains W1�W10 from the woman and M1�M11 from the man. The 270

test image to be reconstructed is of the woman wearing the scarf: W11. M11 serves as an adversarial 271

sample that may fool recovery methods due to a scarf occlusion very similar to that in the test image. 272

Parameters: The reconstruction is performed directly in the vectored image domain. As a variation 273

for JOBS and Bagging, instead of picking random bootstrap samples, we pick 200 random 12⇥ 12 274

patches, to take advantage of the local robust features. We adopt a soft version of Bolasso: Bolasso-S 275

to reduce the chance of zero solutions. The estimated support contains locations present in at least S 276

replications, rather than requiring them to be in all K (Bach, 2008a). We take S = 0.7. 277

Bagging reconstruction is taken from the exact same set of measurements as JOBS. The sparsity 278

regularization parameters for (dense, sparse) solutions for `1 are (100, 5000); for Bagging are 279

(100, 2500); for Bolasso�0.7 are (0.01, 1.2); and for JOBS are (103, 104), respectively. 280

Performance from all four methods is shown in Figure 3. `1 minimization is fooled by the adversarial 281

example and selects it at any sparsity level. Although Bagging does not suffer as much from the 282

adversarial sample, its dense solution contains strong artifacts from an image with glasses as shown in 283

Figure 3(c). Bolasso, like `1 min., is strongly influenced by the adversarial sample. In contrast, JOBS 284

avoided the adversarial sample well: the component of the adversarial example in JOBS solution 285

reduces with increasing sparsity regularization, and the scarf eventually becomes invisible. 286

Case B: The test is W7. The dictionary contains W1�W6, each rotated 5� incrementally counter- 287

clockwise, as well as an adversarial sample W7. The test and adversarial images have the same 288

alignment whereas all other dictionary atoms are misaligned. 289

7



Under review as a conference paper at ICLR 2021

Parameters: We pick 1200 random patches of dimension 3 ⇥ 3. The sparsity regularization290

parameters for `1, Bagging, Bolasso, and JOBS are 105, 600, 200 and 1500, respectively.291

Figure 4: Reconstruction with adversarial sample with the
same alignment condition as the test. Top: Adversarial sam-
ple (a) and examples in dictionary. Bot.: Reconstructions:
`1 returns similarly to (a). Bagging solutions are too dense
and therefore blurred. Bolasso contains large energy from
(a). JOBS performs the best: a clear image with more than
90% from the correct class.

Performance of four algorithms is il-292

lustrated in Figure 4. Here we use293

two metrics: the ratio of reconstructed294

signal from atoms from women dictio-295

nary over all locations and the PSNR296

to adversarial sample (a). According297

to both measures, the order of robust-298

ness to (a) from weak to strong is `1299

min., Bolasso, Bagging and JOBS. Al-300

though Bagging has a large compo-301

nent from the correct class (75%), it302

is too dense and the reconstructed pic-303

ture is blurry due to different align-304

ment conditions in the dictionary.305

3.3 IMAGE CLASSIFICATION306

To confirm that improvements in re-307

gression directly lead to improve-308

ments in classification, we performed309

classification experiments on the same310

cropped AR dataset. We first use ran-311

dom projection (Gaussian matrix) for312

dimension reduction to generate m =313

50 random features as measurements.314

Then we solve the sparse regression315

problem using all four algorithms all316

within a Sparse Representation-based317

Classification (SRC) framework proposed by Wright in (Wright et al., 2009a) to predict class label.318

As shown in Table 4, classification based on sparse representations generated by JOBS shows a319

consistent improvement of 3% in classification accuracy over the baseline `1 minimizatioon. As with320

regression, the optimal bootstrapping ratio for JOBS at only 0.5 is lower than Bagging. The JOBS321

solution is also much sparser than Bagging’s (threshold for being non-zero is 10�6), similar to `1.322

Table 4: Classification accuracy, optimal parameters, and sparsity comparison with various methods.
Bagging is NOT directly used on classification but on bagged sparse code. Dataset is Cropped AR
(m = 50), with training ratio 0.92.

Baseline Bootstrapping-based methods
Metrics `1 min. JOBS Bagging Bolasso

Accuracy 0.855 0.880 0.855 0.790
Optimal (L/m,K) (1,1) (0.5,30) (1,50) (0.9,30)

Sparsity Ratio 3.6% (±0.5%) 2.7%(±0.5%) 27% (±3%) 0.56% (±0.3%)

4 CONCLUSION323

We propose a collaborative signal recovery framework named JOBS, motivated from powerful324

bootstrapping ideas in machine learning. JOBS improves the robustness of sparse recovery in325

challenging scenarios of noisy environments and/or limited measurements, and with the presence326

of adversarial samples. Below are highlights: (i) JOBS is particularly powerful when the number327

of measurements m is limited, outperforming `1 min. by a large margin. (ii) JOBS achieves328

desirable performances with relatively low bootstrap ratio L/m than Bagging and small number of329

bootstrapped observation vectors K. (iii) The optimal sampling ratio for collaborative JOBS is lower330

than that of independent Bagging while achieving similar results, resulting in a lower computation331

complexity. (iv) JOBS solutions are generally more sparse than Bagging’s – a desirable property in332

sparse recovery. (v) JOBS is robust against adversarial samples.333
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