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ABSTRACT

Segment Anything Model (SAM), a prompt-driven foundation model for natural
image segmentation, demonstrated impressive zero-shot performance. However,
SAM does not work when directly applied to medical image segmentation tasks,
since SAM lacks the functionality to predict semantic labels for predicted masks
and needs to provide extra prompts, such as points or boxes, to segment target
regions. Meanwhile, there is a significant gap between 2D natural images and
3D medical images, so the performance of SAM is imperfect for medical image
segmentation tasks. Following the above issues, we propose MaskSAM, a novel
mask classification prompt-free SAM adaptation framework for medical image
segmentation. We design a prompt generator combined with the image encoder
in SAM to generate a set of auxiliary classifier tokens, auxiliary binary masks,
and auxiliary bounding boxes. Each pair of auxiliary mask and box prompts,
which addresses the requirements of extra prompts, is associated with class label
predictions by the sum of the auxiliary classifier token and the learnable global
classifier tokens in the mask decoder of SAM to solve the predictions of semantic
labels. Meanwhile, we design a 3D depth-convolution adapter for image embed-
dings and a 3D depth-MLP adapter for prompt embeddings. We inject one of
them into each transformer block in the image encoder and mask decoder to en-
able pre-trained 2D SAM models to extract 3D information and adapt to 3D med-
ical images. Our method achieves state-of-the-art performance on AM0OS2022 Ji
et al.| (2022)), 90.52% Dice, which improved by 2.7% compared to nnUNet. Our
method surpasses nnUNet by 1.7% on ACDC [Bernard et al.| (2018) and 1.0% on
Synapse Landman et al.| (2015)) datasets.

1 INTRODUCTION

Foundation models [Devlin et al.|(2018)); He et al.| (2022), trained on vast and diverse datasets, have
shown impressive capabilities in various tasks|OpenAl|(2023b)); Radford et al.| (2021) and are revo-
lutionizing artificial intelligence. The extraordinary zero-shot and few-shot generalization abilities
of foundation models derive a wide range of downstream tasks and achieve numerous and remark-
able progress. In contrast to the traditional methods of training task-specific models from scratch,
the “pre-training then finetuning” paradigm has proven pivotal, particularly in the realm of computer
vision. Segment Anything Model (SAM) [Kirillov et al.|(2023)), pre-trained over 1 billion masks on
11 million natural images, was recently proposed as a visual foundation model for prompt-driven
image segmentation and has gained significant attention. SAM can generate precise object binary
masks based on its impressive zero-shot capabilities. As a crucial branch of image segmentation,
medical image segmentation was dominated by deep learning medical segmentation methods Ron-
neberger et al.| (2015); |Akkus et al.| (2017); |Avendi et al.| (2016)) for the past few years. The existing
deep learning models are often tailored for specific tasks and achieve remarkable progress due to
the consumption of a strong inductive bias. This raises an intriguing question: Can SAM still have
the ability to revolutionize the field of medical image segmentation? Or can SAM still achieve high-
performance results in medical image segmentation by properly fine-tuning based on SAM’s strong
zero-shot capabilities in natural image segmentation?

Since the publication of SAM, numerous studies have attempted to adapt it for medical image seg-
mentation; however, few SAM-based models have effectively addressed the medical challenges,
such as the AMOS22 challenges [Ji et al.| (2022)), a key benchmark for validating medical image
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Figure 1: The overview architecture of our proposed MaskSAM.

segmentation models. The limitations of existing SAM-based methods in tackling these challenges
can be attributed to three main factors:

Inability to predict semantic labels: SAM generates a single binary mask per prompt without associ-
ating semantic labels, which is insufficient for medical images that often contain multiple labels with
essential semantic information. Existing SAM-based methods typically produce binary (one-class)
segmentation. They can be categorized into two groups: The first group retains the original SAM
structure, using it directly or fine-tuning portions of it on target datasets, as seen in MedSAM Ma
et al.| (2024)), Polyp-SAM [Li et al.| (2024)), and SAM.MD Wald et al.| (2023)). These methods require
additional prompts to evaluate performance on medical datasets. The second group modifies SAM
but fails to implement semantic labeling, such as DeSAM |Gao et al.| (2023, AutoSAM |Shaharabany
et al.| (2023), and 3DSAM-Adapter Gong et al.[(2023), sacrificing SAM’s zero-shot capabilities and
restricting their functionality to one-class datasets.

Inadequate handling of prompt requirements: SAM demands precise user input prompts to seg-
ment target regions, a requirement not addressed by many models. Typically, these models rely
on ground truth (GT) data to generate prompts during inference, as seen in Med-SA [Zhang et al.
(2024), 3DSAM-Adapter |Gong et al.| (2023), and SAM-U |Deng et al.|(2023a). However, these
methods cannot participate in challenges where labels for prompts are unavailable.

Subpar performance: Even when using appropriate prompts, SAM often underperforms in med-
ical image segmentation tasks. Although some models, like SAMed [Zhang & Liu| (2023) and
SAM3D Bui et al.| (2024), attempt to address semantic label generation and prompt requirements,
their performance remains inferior. Consequently, refining the fine-tuning process for adapting SAM
from natural image segmentation to medical image segmentation is crucial, contributing to the lim-
ited participation of SAM-based models in medical challenges. Additional related work is presented
in the Appendix [A]

Our proposed SAM-based MaskSAM effectively addresses the aforementioned challenges and
achieves state-of-the-art performance in the AMOS22 challenge. To handle the extra prompt re-
quirements, we designed a prompt-free architecture for SAM. We observed that the image encoder
utilizes the Vision Transformer (ViT)Dosovitskiy et al.| (2020), pre-trained with a masked auto-
encoderHe et al.|(2022), as its backbone. Leveraging ViT’s robust representation capabilities, the
image encoder extracts essential features through a series of transformer blocks. To eliminate the
dependency on manual prompts, we introduce a prompt generator that employs multiple levels of
feature maps from the image encoder, generating a set of auxiliary binary masks and bounding boxes
as prompts, thus resolving the need for additional prompts.

To enable semantic label prediction, the prompt generator simultaneously produces a set of auxiliary
classifier tokens. Since the mask decoder lacks inherent classifier tokens for outputting class predic-
tions, we were inspired by MaskFormer (Cheng et al.| (2021)) to introduce global learnable classifier
tokens. These tokens, combined with the auxiliary classifier tokens, associate each predicted binary
mask with its corresponding class in the mask decoder.

We also designed a dataset mapping pipeline, as illustrated in Figure [} that converts multi-class
masks into sets of binary masks with semantic labels. This pipeline accommodates the varying
lengths of binary masks in the ground truth data. Drawing inspiration from DETR |Carion et al.
(2020) and MaskFormer (Cheng et al.| (2021), our prompt generator creates a sufficient number of
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Figure 2: (a) A prompt generator with learnable masks. (b) A prompt generator with learnable

boxes. (c) A prompt generator with learnable masks and learnable boxes. (d) A prompt generator

with learnable masks and average boxes.

prompts, exceeding the maximum number of class-level binary masks within the dataset. Bipartite
matching is then used to align predicted masks with ground truth segments, ensuring accurate loss
calculation.

While SAM addresses some functionality issues, it does not consistently perform well in medical
image segmentation tasks, even with appropriate prompts. Numerous studies |Deng et al.| (2023b));
Hu & Li (2023); [Zhou et al.| (2023)); Mohapatra et al.| (2023); |[Roy et al.| (2023); Wang et al.| (2023));
He et al.| (2023) have shown that SAM struggles, particularly in cases with weak boundaries, low
contrast, or small and irregular shapes, as supported by other investigations Ji et al.|(2023a3b). Con-
sequently, fine-tuning SAM for medical image segmentation has become a primary focus. However,
fine-tuning SAM, a large model, demands substantial computational resources.

Several studies Ma & Wang| (2023); (Wu et al. (2023); [Li et al| (2023); /Gong et al.
(2023) have demonstrated the effectiveness of efficient fine-tuning by incorporating lightweight
adapters [Houlsby et al.| (2019) for medical image segmentation tasks. In our approach, we em-
ploy these lightweight adapters for efficient fine-tuning. However, existing methods often exclude
the prompt encoder or mask decoder to circumvent the need for additional prompts, which disrupts
SAM’s inherent consistency and overlooks the valuable components trained on large-scale datasets.

To address this challenge, we maintain the complete structure of SAM by preserving all components
and freezing their weights, while strategically inserting our designed blocks for adaptation. This
approach enables us to retain SAM’s zero-shot capabilities while effectively adapting it to medical
image segmentation tasks. In this paper, we employ the lightweight adapter for efficient fine-tuning.
However, the above works usually abandon the prompt encoder or mask decoder to avoid the re-
quirements of additional prompts provided, which would destroy the consistent system of SAM and
abandon the robust prompt encoder and mask decoder, which are trained via large-scale datasets and
lots of resources. Therefore, the primary challenge lies in modifying the structure to preserve the
inherent capabilities of SAM. Therefore, we keep all structures, freeze all weights, and only insert
designed blocks into SAM to adapt. In this way, we retain the zero-shot capabilities of SAM and

adapt SAM to medical image segmentation. .
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sential for the model to understand spatial relationships. To address this, we developed a 3D depth-
convolution adapter (DConvAdapter) that integrates a 3D depth-wise convolution layer with a skip
connection within the original adapter, specifically for attention blocks handling image embeddings.

(a) DMLPAdapter  (b) DConvAdapter  (c) ViT w/ Adapters



Under review as a conference paper at ICLR 2025

Image Embedding H DConvAdapter

e mages DDDFDD — N

Cross-Attention

DConvAdapter  |———

Attention Block XN

g
£
T
g
5
E
<

ConvTranspose

DMLPAdapter
ConvTranspose

Cross-Attention

g Conv
DConvAdapter > §
[ pw

Atention Block
x3 N

1
DConvAdapter > [ —

Atention Block l xN
3
[P R *{ }—r{ }—» Boxes

DxC (B.M.2,2)

D n:lil—_'—rjﬂ—-D—» Classifier
Patch Embed }—» Hxwxc || e ® M1, 1) Tokens

xN [

Image Encoder

(8D, 3, imgH, imgW)

Prompt Encoder

(a) Redesigned Image Encoder (b) Prompt Generator (c) Redesigned Mask Decoder
Figure 4: Overview of (a) redesigned image encoder, (b) proposed prompt generator, and (c) re-
designed mask decoder. Blue and white boxes are frozen and the rests are tuned.

For the remaining attention blocks involving prompt embeddings, we introduce a 3D depth-MLP
adapter (DMLPAdapter), which incorporates an inverted-bottleneck architecture with two fully con-
nected (FC) layers and an activation layer to process the depth dimension, also featuring a skip
connection. This enables the adapter to learn additional depth information. These designed adapters
are illustrated in Figure [3] Given that the image encoder contains only attention blocks for image
embeddings, we insert a DConvAdapter into each transformer block in the image encoder.

Our main contributions are as follows:

* We introduce MaskSAM, a novel prompt-free SAM framework for mask classification in medical
image segmentation. To our knowledge, MaskSAM is the first prompt-free SAM-based frame-
work that retains the full structure of the original SAM.

* We design an innovative prompt generator that leverages multiple levels of feature maps from the
image encoder to generate auxiliary masks and bounding boxes as prompts, thereby eliminating
the need for additional prompts. It also generates auxiliary classifier tokens, which are combined
with learnable global classifier tokens within the SAM mask decoder to predict semantic labels
for binary masks.

* We present two specialized adapters: the 3D depth-convolution adapter (DConvAdapter) for im-
age embeddings and the 3D depth-MLP adapter (DMLPAdapter) for prompt embeddings. These
adapters are integrated into each transformer block of the image encoder and mask decoder, en-
abling pre-trained 2D SAM models to extract 3D information and adapt to 3D medical images.

* We conducted extensive experiments on three challenging datasets—AMOS Ji et al.| (2022,
ACDC [Bernard et al.| (2018), and Synapse |[Landman et al.| (2015). The results demonstrate
that MaskSAM achieves state-of-the-art performance, outperforming nnUNet by 2.7%, 1.7%, and
1.0% on the AM0OS2022, ACDC, and Synapse datasets, respectively.

2 THE PROPOSED METHOD

In this section, we first review SAM. Then, we introduce the whole structure of our proposed
MaskSAM. Finally, we describe each component of MaskSAM.

2.1 SAM PRELIMINARIES

SAM is a prompt-driven foundation model for natural image segmentation, trained on the extensive
SA-1B dataset containing 1 billion masks and 11 million images. Its architecture comprises three
main components: an image encoder that employs a Vision Transformer as the backbone, a prompt
encoder that embeds various types of prompts (e.g., points, boxes, or text), and a lightweight mask
decoder that generates masks based on image embeddings, prompt embeddings, image positional
embeddings, and output tokens. For segmenting a provided 2D image, SAM requires prompts such
as points or boxes, subsequently generating a single binary mask per prompt without any associ-
ated semantic labels. However, medical segmentation tasks typically involve multiple objects with
distinct semantic labels within a single image, making this approach insufficient.
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2.2 OVERVIEW OF THE PROPOSED MASKSAM

In this section and the ones that follow, we introduce the complete pipeline and individual compo-
nents of MaskSAM, as illustrated in Figure [T] and Figure l] MaskSAM retains the full structure
of SAM but introduces specifically designed blocks to adapt the model from 2D natural images to
3D medical images. The architecture of MaskSAM includes a modified image encoder, a custom
prompt generator, the original prompt encoder, and a modified mask decoder. Additionally, we have
developed a dataset mapping process that converts multi-class labels into binary masks for each class
with semantic labels, ensuring that each predicted binary mask corresponds to a single class.

2.3 PROPOSED DATASET MAPPING

SAM generates a single binary mask without an associated semantic label for each prompt, whereas
the typical ground truth for medical images comprises multiple classes. Each input patch image may
contain several different classes, and the challenge lies in handling varying lengths of binary masks
in the ground truth. Inspired by DETR |Carion et al.[(2020) and MaskFormer |Cheng et al.| (2021)),
our model generates a sufficient number of binary masks, with each mask dedicated to predicting a
single class. We employ bipartite matching to align the predicted masks with ground truth segments
accurately. As shown at the bottom of of Figure |1} our dataset mapping pipeline converts a multi-
class mask into a set of binary masks with semantic labels per class.

2.4 PROPOSED PROMPT GENERATOR

To address the need for additional prompts, we introduce a prompt generator, illustrated in Fig-
ure[d{(b), that automatically generates a set of auxiliary binary masks and bounding boxes instead of
relying on manual prompts. We utilize both box and mask prompts, as point prompts tend to intro-
duce instabilities detrimental to medical segmentation tasks. Leveraging the strong representation
capabilities of the Vision Transformer (ViT), we extract multiple levels of feature maps from the
image encoder as input to our prompt generator. The final output of the image encoder is connected
to convolution layers, upsampled, and concatenated with feature maps from lower levels, resulting
in feature maps with the same size as the ground truth.

A convolutional layer is then applied to adjust the channel size to a fixed number, /N, which exceeds
the maximum number of object-level binary masks in the dataset. Additionally, we extract outputs
from the last convolutional layer at each level, apply adaptive average pooling to adjust the spatial
dimensions to (2,2) for box queries, and concatenate all box queries. An MLP layer then adjusts
the channel to N, resulting in N learnable binary masks and bounding boxes.

There are several combinations of learnable binary masks and boxes, as illustrated in Figure [2[(a)-
(d). Figure[2[a) depicts a prompt generator that produces only learnable binary masks, using these
masks to calculate their corresponding bounding boxes. Figure [2(b) shows a prompt generator that
creates only boxes as prompts. Figure 2fc) combines both learnable binary masks as mask prompts
and learnable boxes as box prompts. In Figure[2[d), the prompt generator produces learnable binary
masks as mask prompts and learnable boxes, with the final box prompts obtained by averaging the
bounding boxes derived from the binary masks and the learnable boxes. Based on extensive experi-
mentation, we found that the approach shown in Figure 2[d) is the most effective, as it incorporates
more information and offers greater robustness.

To address the challenge of predicting semantic labels, the prompt generator simultaneously gener-
ates a set of auxiliary classifier tokens in a similar manner to the generation of auxiliary box prompts,
with the exception of using adaptive average pooling layers to adjust the spatial dimension to (1,1)
for classifier tokens. These auxiliary classifier tokens are then combined with our designed learnable
global classifier tokens within the mask decoder.

2.5 PROPOSED ADAPTERS

We adopt the lightweight adapter [Houlsby et al.| (2019), a bottleneck architecture consisting of two
fully connected (FC) layers and an activation layer in between, which we inject into each transformer
block during fine-tuning. Unlike classic 2D natural images, many medical scans, such as MRI and
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Semantic labels | Prompts | Method | Spl. RKd LKd GB Eso. Liver Stom. Aorta IVC Panc. RAG LAG Duo. Blad. Pros. | Average
TransBTS|Wang ot al J2021] 0.885 0.931 0916 0.817 0.744 0.969 0.837 0.914 0.855 0.724 0.630 0.566 0.704 0.741 0.650| 0.792
UNETR [Hatamizadeh et al. (2022} 0.926 0.936 0.918 0.785 0.702 0.969 0.788 0.893 0.828 0.732 0.717 0.554 0.658 0.683 0.722| 0.762
v ~ | nnFormer|Zhou et aL {2021] 0935 0.904 0.887 0.836 0.712 0964 0.798 0901 0.821 0.734 0.665 0.587 0.641 0.744 0.714| 0.790
SwinUNETR|Hatamizadeh et al.|(2021] | 0.959 0.960 0.949 0.894 0.827 0.979 0.899 0.944 0.899 0.828 0.791 0.745 0.817 0.875 0.841| 0.880
nn-UNet|Isensee et al. (2019 0.965 0.959 0.951 0.889 0.820 0.980 0.890 0.948 0.901 0.821 0.785 0.739 0.806 0.869 0.839| 0.878
X nnUNet | SAM Kirillov et al. (2023} 1 point 0.001 0.000 0.051 0.000 0.002 0.003 0.010 0.018 0.019 0.012 0.000 0.008 0.007 0.005 0.017| 0.011
X nnUNet | SAMKirillov et al. (2023} 1 bbox 0.679 0.741 0.640 0.168 0.443 0.773 0.671 0.651 0.554 0.434 0.232 0.324 0.444 0.698 0.602| 0.538
X nnUNet | MedSAM Ma et al.|(2024] 1 point 0.000 0.000 0.078 0.000 0.008 0.008 0.014 0.010 0.025 0.024 0.009 0.000 0.012 0.008 0.023| 0.020
X nnUNet | MedSAM|Ma et al. l27024g 1 bbox 0.714 0.811 0.702 0.193 0.469 0.759 0.725 0.701 0.681 0.434 0.365 0.412 0.462 0.783 0.758 | 0.600
v No needs | SAMed|Zhang & Liu (2023] 0.849 0.857 0.830 0.573 0.733 0.894 0.816 0.855 0.784 0.727 0.622 0.683 0.701 0.844 0.829| 0.773
v No needs | SAM3D|Bui et al. [(2024] 0.796 0.863 0.871 0.428 0.711 0.908 0.833 0.878 0.749 0.699 0.564 0.607 0.635 0.884 0.850| 0.752
v No needs | MaskSAM (Ours) 0.963 0.973 0.969 0.872 0.876 0.982 0.940 0.962 0.922 0.888 0.794 0.813 0.851 0.920 0.854| 0.905

Table 1: The comparison of MaskSAM with SOTA methods on the AMOS testing dataset evaluated
by Dice Score. To fair comparison, all results are based on 5-fold cross-validation without any
ensembles. “Semantic labels” indicate the model’s ability for semantic labeling, while “Prompt”
specifies the source of the prompt. The best results are indicated as in bold.

CT, are 3D volumes with additional depth dimensions. To incorporate this extra depth information,
we introduce learnable layers into the adapters to handle the depth dimension.

In SAM, both the image encoder and mask decoder contain transformer blocks where adapters can
be inserted. The mask decoder includes two types of attention blocks: one for prompt embeddings
and another for image embeddings. The original adapter processes only the last (channel) dimension,
which limits its ability to capture relationships between tokens. Since image embeddings contain
crucial spatial information, understanding spatial relationships is essential for the model. To address
this, we designed a 3D depth-convolution adapter (DConvAdapter), as shown in Figure [3[a), which
adds a 3D depth-wise convolution layer in the middle of the original adapter, along with a skip
connection, for all attention blocks processing image embeddings in the mask decoder.

For the remaining attention blocks that handle prompt embeddings, only a learnable block in the
depth dimension is needed, as prompt embeddings lack spatial relationships. Hence, we designed
a 3D depth-MLP adapter (DMLPAdapter), depicted in Figure [3(b). This adapter incorporates an
inverted-bottleneck architecture consisting of two FC layers and an activation layer to process the
depth dimension within the original adapter, along with a skip connection, allowing it to learn addi-
tional depth information.

Since the image encoder contains only attention blocks for image embeddings, we insert the DCon-
vAdapter into each transformer block of the image encoder. Figure [3[c) illustrates how we insert
adapters into the vision transformers, placing an adapter after the multi-head attention block and in
parallel with the MLP block.

2.6 MODIFIED IMAGE ENCODER

Figure [4(a) illustrates the redesigned image encoder. i) SAM works on natural images that have 3
channels for RGB while medical images have varied modalities as channels. There are gaps between
the varied modalities of medical images and the RGB channels of natural images. Therefore, we
design a sequence of convolutional layers to an invert-bottleneck architecture to learn the adaption
from the varied modalities with any size to 3 channels. ii) The image encoder includes one positional
embedding. To better understand the extra depth information, we can insert a learnable depth posi-
tional embedding with the original positional embedding. iii) Since we use the base ViT backbone,
it contains 12 attention blocks. We insert our designed DConvAdapter blocks into each attention
block. We extract the feature maps of each three attention blocks and the final output of the image
encoder for the prompt generator.

2.7 MODIFIED IMAGE ENCODER

Figure[{(a) illustrates the redesigned image encoder.

1) While SAM operates on natural images with 3 RGB channels, medical images have varied modal-
ities that differ significantly from RGB channels. To bridge this gap, we introduce a sequence of
convolutional layers within an inverted-bottleneck architecture to adapt these varied modalities, re-
gardless of their size, into a standardized 3-channel format.

ii) The original image encoder utilizes a single positional embedding. To incorporate additional
depth information crucial for medical imaging, we introduce a learnable depth positional embedding
alongside the original positional embedding.
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Semantic labels | Prompts | Method |Aorta GB L.Kd RKd Liv. Panc. Spl. Stom.|DSC
TransUNet/Chen et al.|(2021] 87.23 63.16 81.87 77.02 94.08 55.86 85.08 75.62 |77.48

SwinUNet|Cao et al. |(2021] 85.47 66.53 83.28 79.61 94.29 5658 90.66 76.6 |79.13

v - | UNETR Hatamizadeh et al.[(2022) | 89.99 60.56 85.66 84.80 94.46 59.25 87.81 73.99 | 79.56
nnUNet[[sensee et al. (2019} 92.39 71.71 86.07 91.46 95.84 82.92 90.31 79.01 |86.21

nnFormer[Zhou et al.|(2021) 92.40 70.17 86.57 86.25 96.84 8335 90.51 86.83 | 86.57

X GT | SAM[Kirillov etal.[(2023) 1 point | 1.18 833 0.00 0.6 1.80 2.10 044 117 | 1.90
X GT | SAM[Kirillov et al.[(2023) 1 bbox | 60.05 24.90 68.87 54.22 76.91 4536 69.20 67.93 |58.43
X GT |MedSAMMaetal.[(2024] 1 point | 0.93 833 000 511 069 273 000 118|237
X GT | MedSAMMa etal.[(2024} 1 bbox | 70.16 22.44 79.08 64.63 7638 5231 73.07 79.10 | 64.65
4 No needs | SAMed|[Zhang & Liu|(2023] 87.77 69.11 80.45 79.95 94.80 72.17 88.72 82.06 | 81.88
v No needs | SAMed_s|Zhang & Liu[(2023) ~ |83.62 57.11 79.63 78.92 93.98 65.66 85.81 77.49 [77.78
v No needs | SAM3D |Bui et al.|(2024] 89.57 49.81 86.31 85.64 9542 69.32 84.29 76.11|79.56
4 [ No needs | MaskSAM (Ours) [91.75 72.20 87.32 88.15 97.21 79.62 92.47 89.11|87.23

Table 2: The comparison of MaskSAM with SOTA methods on Synapse dataset. “Semantic labels”
indicate the model’s ability for semantic labeling, while “Prompt” specifies the source of the prompt.

iii) Our model employs the base ViT backbone, which comprises 12 attention blocks. We insert our
DConvAdapter blocks into each of these attention blocks. Additionally, we extract feature maps
from every third attention block, as well as from the final output of the image encoder, for use in the
prompt generator.

2.8 LOSSES AND MATCHING

Following the methods in |Cheng et al.| (2021)); (Carion et al.[(2020), we construct an auxiliary loss
that includes a combination of binary cross-entropy and dice loss for auxiliary binary mask pre-
dictions (Lmask™™), as well as an L; loss and generalized IoU loss |Rezatofighi et al.| (2019) for
bounding box predictions (Lbox), in our prompt generator. Additionally, we create a loss compris-
ing the standard classification cross-entropy (CE) loss for class predictions and a combination of
binary cross-entropy and dice loss for final binary mask predictions (£final ) for the final output of
MaskSAM.

To identify the lowest cost assignment, we apply bipartite matching Cheng et al.|(2021);|/Carion et al.
(2020) between the ground truths and the combined set of auxiliary and final predictions. Our model
then selects the matching indices from /N auxiliary binary masks and N final binary masks through
bipartite matching, using these indices to obtain specific predictions for loss calculation with the
ground truths. Specifically, the desired final output z = {(p;, m;)}~_, contains N pairs of binary
masks {mfinad|mfinal ¢ [0, 1]H>*WIN  with classes of probability distribution p; € AK+!, which
contains K category labels with an auxiliary ”no object label (&). Meanwhile, our model produces
N pairs of auxiliary boxes and masks, zax = {(b2%, m3)|p2* € [0, 1]*, m2** € {0, 1}H>*WIN .
Additionally, the set of N9* ground truth segments 29 = {(c¢?*, 67", m?")|c" € {1,.., K}, b €
0, 1]%,m?" € {o, 1}HXW}£V:9; is required. Since we set N < N, and pad the set of ground truth
labels with “no object token” & to allow one-to-one matching. To train the model parameters, given
a matching o, the main 1oss £ sk -box-cls 1S expressed as follows,

N
Linask-box-cls = Z[_ log po (])(ngt) + ]lc;’t#@ ;I;JL)((wk (mz;ux (.])a m?t)
j=1
+ Lot 2 Loor (b (1), 0F) + Lot o Lot (mg™ (7), m)]- (1)

3 EXPERIMENTS

Datasets and Evaluation Metrics. We used three publicly available datasets: AMOS22 Abdom-
inal CT Organ Segmentation Ji et al.| (2022), Synapse Multiorgan Segmentation [Landman et al.
(2015), and the Automatic Cardiac Diagnosis Challenge (ACDC)|Bernard et al.|(2018). (i) AMOS22
Dataset: The AMOS22 dataset comprises 200 abdominal CT scan cases with annotations for 16
anatomies, including the spleen, right kidney, left kidney, gallbladder, esophagus, liver, stomach,
aorta, inferior vena cava, pancreas, right adrenal gland, left adrenal gland, duodenum, bladder, and
prostate/uterus. We evaluated our model on the AMOS22 leaderboard using the 200 testing images.
(ii) Synapse Dataset: This dataset contains 30 cases of abdominal CT scans. Following the split
strategy in |Chen et al.| (2021)), we randomly split the data into 18 training cases and 12 validation
cases. Model performance was evaluated using the average Dice Score (DSC) across 8 abdominal
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Figure 5: Qualitative comparison on the ACDC medical image segmentation dataset. MaskSAM is
the most precise for each class and has fewer segmentation outliers

organs: aorta, gallbladder, spleen, left kidney, right kidney, liver, pancreas, and stomach. (iii) ACDC
Dataset: The ACDC dataset consists of 100 patient cases, with segmentation targets including the
right ventricle cavity, myocardium of the left ventricle, and left ventricle cavity. The labels cover the
right ventricle (RV), myocardium (MYO), and left ventricle (LV). We randomly split the data into
70 training cases, 10 validation cases, and 20 testing cases. Model performance was assessed using
the average DSC.

In Table [T} 2] 3] “Semantic labels” indicate the model’s ability to perform semantic labeling, while
“Prompt” specifies the source of the prompt. As SAM and MedSAM do not inherently predict
semantic labels and require additional prompts, we utilized ground truth (GT) data or inferred pre-
dictions from a pre-trained nnUNet to generate prompts, using the same predictions’ labels as the
semantic labels.

3.1 COMPARISON WITH STATE-OF-THE-ART METHODS

Results on the AMOS 2022 Dataset: We present the quantitative results of our experiments on
the AMOS 2022 dataset in Table[I] comparing our proposed MaskSAM with several widely recog-
nized segmentation methods, including convolution-based methods (nnUNet [sensee et al.| (2019)),
transformer-based methods (UNETR [Hatamizadeh et al.| (2022), SwinUNETR [Hatamizadeh et al.
(2021)), and nnFormer [Zhou et al.| (2021)), as well as SAM-based methods (SAM Kirillov et al.
(2023), MedSAM Ma et al.|[(2024), SAMed [Zhang & Liu| (2023)), and SAM3D [Bui et al.|(2024)).
For a fair comparison, all methods were evaluated using 5-fold cross-validation without any ensem-
bling. Our observations indicate that MaskSAM outperforms all existing methods on most organs,
establishing a new state-of-the-art in terms of the Dice Similarity Coefficient (DSC). Additionally,
we noted that using point prompts resulted in lower performance compared to using box prompts.
When utilizing predictions from nnUNet for bounding box prompts, SAM and MedSAM showed
decreases in accuracy by 34% and 27%, respectively, compared to nnUNet’s accuracy of 87.8%,
highlighting a negative impact on their results. Notably, MaskSAM outperforms nnUNet and Swi-
nUNETR by 2.7% and 2.5% in DSC, respectively, and surpasses SAMed and SAM3D by 13%
and 15% in DSC, respectively. These findings demonstrate that MaskSAM achieves state-of-the-art
performance on the challenging AMOS 2022 dataset, confirming the effectiveness of our method.

Results on the ACDC Dataset: Ta- Semanuc labels | Prompts | Method | RV1 Myot LVt |DSCT
ble 3] presents the quantitative results of UNETR [Fatamizadeh <Ll J072] | 8529 8652 9402 | 8861
. rans' {& cn et al. 1 B . 0./3 .

our experiments on the ACDC dataset. v - | swinUNei[Cao etal j021] 8855 8562 9583 | 90.00
We Compal‘e the proposed MaSkSAM :lr:gNe( Isgnsec et al. (2019] 90.24 89.24 9536 | 91.61
ormerlZhou et al. (20211 90.94 8958  95.65 | 92.06
with several leadineg methods. includin X GT SAM Kirillov et al. [(2023] 1 point | 333 320 27.47 | 11.33
& X g X GT | SAM[Kirilloy etal. (2023 1 bbox | 70.95 3333 8131 | 62.53
SAM-based methods (e.g., SAM3D Bui X GT | McdSAMMa ctal (2024 1 point | 188 490 948 | 542
et al. (2023)), convolution-based meth- X GT | MedSAM|Ma et al. (2024| 1 bbox | 85.86 8031 92.33 | 86.17
v No needs | SAM3D|Bui et al.|(2024] 8944 8712 94.67 | 904l

ods (e.g., R50-U-Net Ronneberger et al. gnecs =L
4 [ No needs | MaskSAM (Ours) [9230 9137 9649 [ 9339

(2015) and nnUNet |[Isensee et al.

(2019)), and transformer-based meth- Table 3: The comparison of MaskSAM with SOTA meth-

ods on ACDC dataset (DSC in %). The best are in bold.
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Figure 6: Qualitative comparison on the Synapse medical image segmentation dataset. MaskSAM
is the most precise for each class and has fewer segmentation outliers.

ods (e.g., TransUNet|Chen et al.| (2021},

SwinUNet |Cao et al.| (2021)), and LeViT-UNet-384s [Xu et al.| (2021)). The results indicate that
MaskSAM outperforms various state-of-the-art approaches, surpassing nnFormer by 1.3%, 2.3%,
1.8%, and 0.8% in overall DSC, right ventricle (RV) dice, myocardium (Myo) dice, and left ventri-
cle (LV) dice, respectively. Furthermore, our method outperforms SAM-based methods—SAM (1
bbox), MedSAM (1 bbox), and SAM3D—by 31%, 7%, 6%, and 3%, respectively, demonstrating
the superior effectiveness of MaskSAM. In Figure Figure [5] we provide qualitative comparisons
with several state-of-the-art methods, showing that MaskSAM achieves highly accurate predictions
across all labels, even in the challenging and densely saturated dataset. These results validate the
efficacy of our approach, as our proposed modules effectively address the limitations of SAM in
adapting to medical image segmentation.

Results on the Synapse Dataset: Table 2] presents the quantitative results of our experiments on the
Synapse dataset, comparing our proposed MaskSAM with several leading methods, including SAM-
based methods (e.g., SAMed|Zhang & Liu|(2023)) and SAM3D Bui et al.[(2023))), convolution-based
methods (e.g., VNet Ronneberger et al.|(2015) and nnUNet Isensee et al.[(2019)), and transformer-
based methods (e.g., TransUNet|Chen et al.|(2021), SwinUNet|Cao et al.|(2021), and nnFormer|Zhou
et al./(2021)). The results indicate that MaskSAM outperforms all existing methods, achieving a new
state-of-the-art performance. Specifically, MaskSAM surpasses nnFormer by 0.7% in DSC for this
challenging dataset. Additionally, it outperforms the SAM-based methods—SAM (1 bbox), Med-
SAM (1 bbox), SAMed, and SAM3D—by 29%, 23%, 6%, and 8%, respectively, demonstrating the
superior effectiveness of our approach. Notably, our model excels in predicting large-size labels
such as Liver,” Spleen,” and Stomach,” which can be attributed to our innovative DConvAdapter and
DMLPAdapter. These adapters enhance the model’s ability to learn intricate 3D spatial information,
effectively adapting the 2D SAM framework to medical image segmentation. Figure [6] provides
qualitative comparisons with representative methods, further demonstrating MaskSAM’s ability to
accurately predict Liver,” Spleen,” and Stomach’ labels. In summary, both the quantitative and qual-
itative results robustly confirm the effectiveness of our method.

3.2 ABLATION STUDY

Baseline Models: The proposed MaskSAM includes 9 baseline models (denoted as B1 through B9),
as summarized in Table ] Each baseline model comprises the complete SAM structure, a prompt
generator, and a learnable class token. (i) B1 utilizes a prompt generator that only produces learnable
binary masks, using them as mask prompts to calculate bounding boxes as box prompts, as shown
in Figure 2a). (ii) B2 employs a prompt generator that generates only learnable boxes as prompts,
as depicted in Figure 2JB). (iii) B3 uses a prompt generator that creates both learnable binary masks
as mask prompts and learnable boxes as box prompts, illustrated inFigure [2{C). (iv) B4 adopts a
prompt generator that generates learnable binary masks as mask prompts and learnable boxes, av-
eraging the bounding boxes calculated from the binary masks with the learnable boxes to produce
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the final box prompts, as shown in Figure 2[D). (v) B5 extends B4 by incorporating depth positional
embedding blocks (DPosEmbed) into the image encoder and mask decoder. (vi) B6 further modifies
BS5 by enhancing the vanilla adapter with an inverted-bottleneck depth MLP and a skip connec-
tion, added after the fully connected layers for upsampling. (vii) B7 builds on B5 by inserting the
inverted-bottleneck depth MLPs with a skip connection before the fully connected layers for down-
sampling. (viii) B8 replaces the vanilla adapter in B5 with our custom-designed DMLPAdapter. (ix)
B9 represents our complete model, named MaskSAM, as illustrated in Figure [I] B9 incorporates
the DMLPAdapter for prompt embeddings and the DConvAdapter for image embeddings, building
upon B8.

Ablation Analysis: The results

of the ablation study are pre- Method | DSCt
. Bl SAM + MaskPG + vAdapt 89.53

sented in Table When us- g gam+ BgszG:VvAdzgtirr 88.78
ing our proposed MaskAVgB_ B3 SAM + MaskBBoxPG + vAdapter 90.08
. B4 SAM + MaskAvgBBoxPG + vAdapter 91.45

BoxPG to first generate auxil- B5 SAM+ MaskAvgBBoxPG + vAdapter + DPosEmbed 91.61
3 3 i1 B6 SAM + MaskAvgBBoxPG + vAdapter w/ D-MLP after FC-Up + DPosEmbed 92.88
lary blnary masks and a]:lXIhary B7 SAM + MaskAvgBBoxPG + vAdapter w/ D-MLP before FC-Down + DPosEmbed | 92.93
boxes, and then averaging the B8 SAM +MaskAvgBBoxPG + DMLPAdapter + DPosEmbed 93.10
bOllIldiIlg bOXCS derived from the B9 Our Full Model (B8 + DConvAdapter) 93.39

auxiliary binary masks with the Table 4: Ablation studies of proposed methods on ACDC. {}IPG
learnable auxiliary boxes to form Means a prompt generator with different prompts. vAdapter
the final box prompts, the model ~Means vanilla adapter. D-MLP means MLP layers on depth di-
achieves the best performance. mension. DPosEmbed means depth positional embedding.

It shows improvements of 1.9%,

2.6%, and 1.3% compared to B1 (using a learnable mask prompt generator), B2 (using a learnable
box prompt generator), and B3 (using both a learnable mask and box prompt generator), respec-
tively. This result confirms the effectiveness of our proposed prompt generator.

Inserting depth positional embedding (DPosEmbed) into the image encoder and mask decoder in BS
results in more than a 0.15% improvement over B4, demonstrating the value of DPosEmbed blocks.

The DMLPAdapter (B8), which involves inserting depth MLPs with a skip connection in the mid-
dle of the vanilla adapter, achieves the highest performance. It shows improvements of 0.2% and
0.1% compared to B6 (where depth MLPs are inserted with a skip connection after the fully con-
nected layers for upsampling) and B7 (where depth MLPs are inserted with a skip connection before
the fully connected layers for downsampling), respectively. This confirms the effectiveness of the
proposed DMLPAdapter.

B9 represents our complete model, MaskSAM, which utilizes the DMLPAdapter for prompt embed-
dings and the DConvAdapter, where we replace the depth MLP with a 3D depth-wise convolution
layer from the DMLPAdapter for image embeddings, as shown in Figure[I] Compared to B8, our
full model achieves approximately a 0.3% improvement, demonstrating the overall effectiveness of
the proposed MaskSAM.

4 CONCLUSION

In this paper, we introduce MaskSAM, a mask classification prompt-free SAM adaptation frame-
work for medical image segmentation that adapts pre-trained SAM models from 2D natural images
to 3D medical images without requiring any prompts. We achieve this by designing a prompt gen-
erator integrated with the SAM image encoder to generate auxiliary classifier tokens, binary masks,
and bounding boxes. Each pair of auxiliary mask and box prompts addresses the need for additional
prompts and is linked to class label predictions through the sum of auxiliary classifier tokens and
learnable global classifier tokens within SAM’s mask decoder, enabling semantic label predictions.
We further enhance our model by incorporating a 3D depth-convolution adapter (DConvAdapter)
for image embeddings and a 3D depth-MLP adapter (DMLPAdapter) for prompt embeddings into
each transformer block of the image encoder and mask decoder. This enables pre-trained 2D SAM
models to effectively extract 3D information and adapt to 3D medical images. Our method achieves
state-of-the-art performance, with a Dice score of 90.52% on the AMOS2022 Ji et al.|(2022)) dataset,
representing a 2.7% improvement over nnUNet. Additionally, MaskSAM outperforms nnUNet by
1.7% on the ACDC Bernard et al.[(2018) dataset and by 1.0% on the Synapse |Landman et al.| (2015)
dataset.
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A APPENDIX

A.1 RELATED WORK

Deep Learning Methods for Medical Image Segmentation. Deep learning methodologies have
dominated medical image segmentation recently. The predominant approaches can be categorized
into convolution-based models [Ronneberger et al.|(2015)); Zhou et al.| (2018)); Milletari et al.|(2016));
Cicek et al.| (2016); Isensee et al.| (2019), transformer-based models Zhou et al.| (2021]), and hybrid
models (Chen et al.| (2021)); [Cao et al|(2021) that integrate convolutional and transformer architec-
tures. The adoption of encoder-decoder networks, particularly U-shaped networks, has dominated
the prevailing trend. These methods stand out by explicitly tailoring architectures for medical image
segmentation and training from scratch. However, the models exhibit high inductive bias, which
also limits their adaptability and overall capacity.

Foundation Models and Parameter-efficient Finetuning. Foundation models Brown et al.[(2020);
OpenAll (2023a)) are dedicated to the development of large-scale, general-purpose language and
vision models. These models derive a wide range of downstream applications, achieving remarkable
success following the pre-training and fine-tuning paradigm He et al.| (2019); |Hu et al.| (2021). The
goal of parameter-efficient finetuning Houlsby et al.| (2019); [Pan et al.| (2022)); Hu et al.| (2021);
Yang et al.|(2023) is to decrease the number of trainable parameters and reduce the computation cost
while achieving or surpassing the performance of full finetuning. Recently, the Segment Anything
Model (SAM) Kirillov et al.| (2023)), pre-trained over 1 billion masks on 11 million natural images,
was proposed as a visual foundation model for image segmentation and has gained a lot of attention.
In this paper, we adopt the strategy of parameter-efficient finetuning to adapt SAM from 2D natural
image segmentation to 3D medical image segmentation.

SAM-based Medical Image Segmentation. SAM-based medical image segmentation research can
be broadly divided into two primary streams. The first stream of studies [Deng et al.| (2023b)); Hu
& Li| (2023); [Zhou et al.| (2023)); IMohapatra et al| (2023); Roy et al.| (2023); |Wang et al.| (2023);
He et al.|(2023) focuses on evaluating SAM’s performance across various medical image segmen-
tation tasks and modalities using manually provided prompts. These evaluations, conducted across
different datasets, reveal that SAM performs well with certain objects and modalities compared to
state-of-the-art methods. However, SAM’s performance is often suboptimal in scenarios with weak

14



Under review as a conference paper at ICLR 2025

boundaries, low contrast, or small and irregular shapes, limiting its effectiveness for many medical
imaging tasks. The second stream of research|Ma & Wang|(2023)); Wu et al.| (2023); |L1 et al.|(2023));
Gong et al.|(2023) aims to adapt SAM more effectively for medical image segmentation tasks. The
challenge lies in addressing the need for prompts. While some studies attempt to bypass this re-
quirement by modifying or removing the prompt encoder or mask decoder, such approaches risk
disrupting SAM’s cohesive structure and diminishing the strengths of these components.

To overcome these limitations, we propose a prompt-free SAM framework that generates auxiliary
masks and bounding boxes directly through the image encoder using a specially designed prompt
generator. This approach not only retains SAM’s zero-shot capabilities but also eliminates the de-
pendence on additional prompts, providing a more comprehensive and efficient solution for medical
image segmentation.

A.2 IMPLEMENTATION DETAILS

We utilize some data augmentations such as rotation, scaling, Gaussian noise, Gaussian blur, bright-
ness, and contrast adjustment, simulation of low resolution, gamma augmentation, and mirroring.
We set the initial learning rate at 0.001 and employ a “poly” decay strategy in Eq. equation

e
l =init_l l— )% 2

rie) = initdr>x (1= yxEpocH) @)
where e means the number of epochs, MAX_EPOCH means the maximum of epochs, set it to 1000
and each epoch includes 250 iterations. We use SGD as our optimizer and set the momentum to
0.99. The weighted decay is set to 3e-5. All experiments are conducted using single NVIDIA RTX
A6000 GPUs with 40GB memory.

Deep Supervision. Our network is trained with deep supervision when training. Auxiliary losses are
added in the decoder to the last three stages (the three largest resolutions). For each deep supervision
output, we downsample the ground truth segmentation mask for the loss computation with each deep
supervision output. The final training objective is the sum of all resolutions loss:

L=w Ly +wy Lo+ ws-L3 3)

where the weights halve with each decrease in resolution (i.e., wy = % Swy w3 = i - w1, etc), and

all weight are normalized to sum to 1. Meanwhile, the resolution of £; is equal to 2 - Lo and 4 - L3
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