
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OBJECT-BASED SUB-ENVIRONMENT RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning agents are advancing beyond laboratory settings into the open and
realistic environments driven by developments in AI technologies. Since these
environments consist of unique sub-environments, empirical recognition of such
sub-environments that form the entire environment is essential. Through sub-
environment recognition, the agent can 1) retrieve relevant sub-environments for
a query, 2) track changes in its circumstances over time and space, and 3) iden-
tify similarities between different sub-environments while solving its tasks. To
this end, we propose the Object-Based Sub-Environment Recognition (OBSER)
framework, a novel Bayesian framework for measuring object-environment and
environment-environment relationships using a feature extractor trained with met-
ric learning. We first design the (ϵ, δ) Statistically Separable (EDS) function to
evaluate to show the robustness of trained representations both theoretically and
empirically that the optimized feature extractor can guarantee the precision of the
proposed measures. We validate the efficacy of the OBSER framework in open-
world and photorealistic environments. The result highlights the strong general-
ization capability and efficient inference of the proposed framework.

1 INTRODUCTION

Bright sunlight awakens the agent. Bathed in the sunlight filtering through the
leaves, it follows its inner voice to complete its tasks. As tasks become familiar,
it leaves its spot and walks across the plains. Realizing that it needs wood, it
remembers that it was in a forest full of trees. But since it has come too far to
return, it sets out to find a new forest.

Figure 1: The agent leaves plains
to reach forest because forest is
a more relevant sub-environment
than plains to find the trees.

Deep learning agents are rapidly proliferating in the broader
world, steered by advancements in artificial intelligence. In
recent studies, large-scale deep learning models have allowed
agents to explore a wider world beyond laboratory settings, en-
compassing diverse regional characteristics (Shah et al., 2023;
Sridhar et al., 2024). Figure 1 illustrates the scenario described
in the above quote. In this scenario, where the environment
consists of multiple sub-environments, each with unique ob-
jects and characteristics, the empirical recognition of these
sub-environments plays a key role in performing tasks effec-
tively. Through sub-environment recognition, the agents can
1) retrieve appropriate sub-environments for a given query, 2)
measure changes in circumstances over time and space, and 3)
infer similarities among them.

We define sub-environment recognition as an inductive process that interprets a given environment
based on the distribution of task-related objects. Previous methods of environment recognition (Bar-
ros et al., 2021), such as visual place recognition (Larsson et al., 2019), focus primarily on inferring
the agent’s location from the visual features of given observations. These methodologies have en-
abled sophisticated navigation, but there are challenges in making composite and generalized infer-
ences at the sub-environment level to solve the task. In this context, we claim that sub-environment
recognition can be achieved through Bayesian inference utilizing the empirical distribution of the
task-aware representations of observed objects. Figure 2 shows the inference process with sub-
environment recognition. When the 1) query is given as observations, the agent 2) retrieves related

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Episodic Memory

Retrieval

Inference

1

2

3

Query

OBSER FrameworkSub-Environments

Action4

1 Percept

Task

“Find Cactus”

Retrieve memory with query

Find similar biome with

retrieved memory

Reach to Desert

OBSER

Inference

Figure 2: Illustration of the OBSER framework. Upon receiving a query in the form of obser-
vations, the agent retrieves related memories from episodic memory and infers the result through
sub-environment recognition.

memories from the episodic memory, 3) infers the most appropriate result, and 4) solves the task.
Sub-environment recognition is essential for each process to quantify the relationships between ob-
jects and environments.

Sub-environment recognition is achieved by inference of three fundamental relationships: object-
object, object-environment, and environment-environment relationships. The object-object rela-
tionship can be inferred by using similarity that reflects task-relevant information about the object.
Metric learning (Khosla et al., 2020; Chen et al., 2021; 2020a; Oquab et al., 2023) is a method that
directly optimizes object-object relationships and is known for its robustness in dealing with unstruc-
tured data in real-world problems (Cao et al., 2019; Liu et al., 2021; Choi et al., 2024). Therefore,
we apply the metric learning model as a feature extractor for sub-environment recognition.

Then how can object-environment and environment-environment relationships be calculated using
a metric learning model trained only on object-object relationships? To address the issue, we re-
formulate object similarity using a Bayesian framework to compute the kernel density of empirical
distributions within sub-environments. We validate the proposed measures by introducing the (ϵ, δ)
statistically separable (EDS) function, which represents separability and concentration of represen-
tations, and we theoretically show that when the model satisfies high concentration and separability,
the proposed measures can effectively approximate the exact values with explicit class information.

In this paper, we propose an Object-Based Sub-Environment Recognition (OBSER) framework that
measures three fundamental relationships with given queries. To validate the OBSER framework,
we first validate the proposed measures with the (ϵ, δ) values of metric learning and self-supervised
learning models in the artificially generated environment using ImageNet dataset (Deng et al., 2009).
And we apply the OBSER framework to the Minecraft environment, which is widely used for testbed
towards realistic environments (Baker et al., 2022; Qin et al., 2024; Li et al., 2024; Chen et al.,
2024), to demonstrate the effectiveness of the proposed framework. We build a dataset with various
object observations from different angles from multiple biomes for training baseline models and
evaluate the models with the designed miniature environment. We also validate the framework in
Replica (Straub et al., 2019) environments by solving the object retrieval task with chained sub-
environment recognition.

Our contributions in this paper are summarized as follows:

• Object-Based Sub-Environment Recognition (OBSER) framework. We propose the
OBSER framework, which can infer three fundamental relationships using an episodic
memory: object-object, object-environment, and environment-environment relationship.
We present Bayesian metrics for each relationship and demonstrate their effective approxi-
mation with multiple sub-environments.

• (ϵ, δ) statistically separable (EDS) function. We introduce the EDS function Fϵ,δ that
measures the separability and concentration of representations extracted from a metric
learning model. We prove that high δ and low ϵ guarantee that the measures of the OBSER
framework converge to the exact value with class information.

• Validation with multiple sub-environments. We demonstrate the OBSER framework in
the Minecraft and Replica environment, which contain different sub-environments. The
proposed framework succesfully infers object retrieval tasks without supervisions via sub-
environment recognition with given queries.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Environment recognition Environment recognition is essential for embodied agents to success-
fully perform tasks such as navigation (Feriol et al., 2020). Previous research has primarily focused
on understanding environments by analyzing the semantic distance between current and target ob-
servations (Yokoyama et al., 2023; Shah et al., 2023; Sridhar et al., 2024) or by generating scene and
environment graphs (Wang et al., 2023) based on trained models. In contrast, we propose a novel
approach that defines environmental relationships through the empirical distribution of occurring
objects, providing a new method for understanding environments.

Metric learning Metric learning (Sohn, 2016; Liu et al., 2017; Khosla et al., 2020) is a method
that optimizes the metric between objects on latent space to reflect the object-object relationships.
Self-supervised learning (SSL) is introduced to replace an oracle data provider in metric learning,
which selects the positive sample, to data augmentation. We use SupCon (Khosla et al., 2020) as
metric learning model and MoCo variants (Chen et al., 2020b; 2021), SimCLR (Chen et al., 2020a),
and DINO (Caron et al., 2021; Oquab et al., 2023) as SSL models to evaluate the proposed measures.

Kernel method Kernel density estimation is a non-parametric method for estimating the measures
such as probabilistic density function (Zhang et al., 2018; Ghosh et al., 2006) and Kullback-Liebler
divergence (Ahuja, 2019; Ghimire et al., 2021). We utilize the object similarity as a kernel to ap-
proximate the distribution of sub-environments. We also validate the precision of the measures with
EDS function, which computes the kernel density accumulated with class-wise distribution.

3 DEFINITION OF SUB-ENVIRONMENT RECOGNITION

3.1 SUB-ENVIRONMENT AS AN OBJECT DISTRIBUTION

In this section, we introduce the concept of an environment consisting of multiple sub-environments,
along with measures for Bayesian inference. Suppose that an object x is defined in a domain x ∈ X ,
which is a Borel set. A latent class c ∈ C indicates the degree of generalization required to solve
the task T (Arora et al., 2019; Ash et al., 2021; Awasthi et al., 2022). With latent classes, X is
partitioned into Xc, which satisfies X =

⋃
c∈C Xc,Xc ∩ Xc′ = ∅. Consequently, this allows us to

consider sub-environments as a mixture of probability distributions, such as x ∼ µ and x ∼ ν, with
class distributions and class-wise object distributions Dc(x) := p(x|c):

µ :=
∑
c∈C

ρ(µ)c · Dc, ν :=
∑
c∈C

ρ(ν)c · Dc,

∀c′ ̸= c ∈ C,∀x ∈ Xc, Dc(x)Dc′(x) = 0.

Since there are differences in the occurrence of certain objects between sub-environments, we define
ρ
(µ)
c := p(c;µ) as the existence probability of the object with latent class c, or the marginal class

distribution of a sub-environment µ. We also assume that sub-environments share the same class-
wise data distribution Dc(x) := p(x|c) to focus primarily on the existence probability. Throughout
the paper, an environment E is defined as a set of sub-environments µs associated with the regions
Rs: E := {(µs,Rs)}Si=1.

3.2 SUB-ENVIRONMENT RECOGNITION

General metric learning models focus on learning the relationships between objects for a given
task. Sub-environment recognition, in relation to these models, is a methodology for computing
the relationships between objects and environments, or between environments, given a task-aware
mapping function F . With a function F : X → Z , which maps the data onto latent space Z , we
define three measures for each sub-environment recognition:

i) Object Similarity (obj. − obj.): p(c = c′|x, x′;F)

ii) Object Existence Probability (obj. − env.): ρ̂
(µ)
c|x := p(c|x ∈ Xc;µ,F)

iii) KL Divergence (env. − env.): D̂KL(µ||ν;F).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The object-object relationship is used to retrieve the most appropriate object that shares the same la-
tent class with the given query object. With the object-environment relationship, an agent can reach
a sub-environment that contains queried objects with the highest probability. The environment-
environment relationship allows an agent to measure the changes in the environment and infer
the similarity between sub-environments. An agent can understand the environment through sub-
environment recognition and perform effective inference and exploration. This means that accu-
rately approximating the measures of sub-environment recognition is essential for improving the
inference accuracy.

3.3 KERNEL DENSITY ESTIMATION

To describe a metric between the representations of two objects x and x′ for probabilistic inference,
we define a kernel KZ(x, x

′;F) as the belief of sharing the same latent class. With a metric function
dZ : Z × Z → R+

0 and a kernel function h : R+
0 → [0, 1], KZ(x, x

′;F) is defined as:

x, x′ ∈ X , KZ(x, x
′;F) = p(c = c′|x, x′;F) := h(dZ(F(x),F(x′))). (1)

With the kernel function, we can compute the kernel density of x by accumulating the kernel with
respect to the given distribution µ.

Ex′∼µ [KZ(x, x
′;F)] = Ex′∼µ [h(dZ(F(x),F(x′)))] (2)

Kernel density implies the expected relationship between queried data x and distribution µ. To apply
kernel-based methods for measurements, the alignment of representations extracted with the feature
extractor is important. In this context, we introduce (ϵ, δ) statistically separable function Fϵ,δ , which
represents the property of the feature extractor with kernel densities.

4 (ϵ, δ) STATISTICALLY SEPARABLE (EDS) FUNCTION Fϵ,δ

Z

Fϵ,δ
δ

ϵ

δϵ

Figure 3: EDS function.

In this section, we define the (ϵ, δ) statistically separable function which
determines two essential properties of the feature extractor: ϵ for separa-
bility and δ for concentration. Figure 3 shows the visual concept of two
properties in the embedding space. Separability indicates that the metric
between data from different latent classes should be larger. On the other
hand, concentration indicates that the metric between data from the same
latent class should be relatively small.

4.1 (ϵ, δ) STATISTICALLY SEPARABLE (EDS) FUNCTION Fϵ,δ

First, we introduce the (ϵ, δ) statistically separable (EDS) function. For all objects, x with latent
class c ∈ C, delta (δ) and epsilon (ϵ) are defined with the kernel densities with the distribution Dc

with the same class, and the distributions Dc′ with different classes, respectively.
Definition 1 ((ϵ, δ) statistically separable function). A function Fϵ,δ is (ϵ, δ) statistically separable
if it satisfies the following in µ-almost everywhere with ∃ϵ, δ, 0 ≤ ϵ ≤ δ ≤ 1:

∀c ∈ C, x ∈ Xc, δ ≤Ex′∼Dc
[KZ(x, x

′;Fϵ,δ)] ≤ 1, (3)

∀c′ ̸= c, δϵ ≤Ex′∼Dc′ [KZ(x, x
′;Fϵ,δ)] ≤ ϵ. (4)

Intuitively, by definition, note that smaller ϵ and larger δ imply that the feature extractor is more
robust in downstream tasks. In other words, with the optimal EDS function, which has δ = 1 and
ϵ = 0, the latent class c of the data x is directly derived, and the joint distribution p(c, x;µ,Fϵ,δ)
becomes equivalent to the ground-truth joint distribution p(c, x;µ). By analyzing the optimization
process of the EDS function, we can understand the dynamics of the EDS function.

4.2 OPTIMIZATION OF THE EDS FUNCTION

We define the optimization of the EDS function as fitting the estimated joint distribution
p(c, x;µ,Fϵ,δ) to the ground-truth joint distribution p(c, x;µ) inspired by the idea of Choi et al.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Data distribution (b) Representation (c) (ϵ, δ) function (d) Loss function

Figure 4: Visualization of the optimization of the EDS function with Moons dataset.

(2024). Thus, we formulate the optimization problem of the EDS function as minimizing the KL
divergence between p(c, x;µ,Fϵ,δ) and p(c, x;µ). By tightening the bound of KL divergence, the
EDS function is optimized in terms of both separability and concentration properties.
Theorem 1 (Optimization of Fϵ,δ via generalized metric learning). For an EDS function Fϵ,δ , let
∃k ≥ 1, δ = k · ϵ. The upperbound of DKL(p(c, x;µ)||p(c, x;µ,Fϵ,δ)) is derived as:

0 ≤ DKL(p(c, x;µ)||p(c, x;µ,Fϵ,δ)) ≤ log

(
1 +

|C| − 1

k

)
:= ∆H, (5)

and if ∆H → +0, then k → ∞.

Sketch of Proof. We first rederive the KL divergence DKL(p(c, x;µ)||p(c, x;µ,Fϵ,δ)), introduced in
Choi et al. (2024), with kernel densities. The KL divergence is then rewrited as Equation 6:

DKL(p(c, x;µ)||p(c, x;µ,Fϵ,δ)) = Ex∼µ

[
− log

Ex′∼D+ [KZ(x, x
′;Fϵ,δ)]

Ex′∼µ [KZ(x, x′;Fϵ,δ)]

]
+H(C;µ). (6)

We find the upper bound of Equation 6 by applying Definition 1 and apply the condition δ = kϵ.
Then, k is defined with ∆H, and we show ∆H → 0, k → ∞.

Note that the optimization with Equation 6 becomes equivalent to InfoNCE (Oord et al., 2018) by
setting the kernel KZ(x, x

′;Fϵ,δ) as follows:

KZ(x, x
′;Fϵ,δ) = exp{(Fϵ,δ(x)

⊤Fϵ,δ(x
′)− 1)/τ}, KZ(x, x

′;Fϵ,δ) ∈ [exp(−2/τ), 1], (7)

with a temperature parameter τ . Figure 4 shows the visualization of the optimization of Fϵ,δ with
the Moons dataset. After the optimization, the trained feature extractor successfully maps the data
onto a 2-dimensional sphere. During the optimization, ϵ converges to 0 while δ converges to 1 as the
training loss is minimized. This implies that the ϵ and δ values accurately represent the robustness
of arbitrary feature extractors.

5 OBJECT-BASED SUB-ENVIRONMENT RECOGNITION (OBSER)

In the previous section, we discussed that the EDS function can indicate the orientation of repre-
sentations. In this section, each recognition concept is reinterpreted through the lens of the EDS
function, and each measure is estimated using an empirical distribution of observations. Further-
more, it is shown both theoretically and practically that the optimized EDS function, with its high
concentration and separability, guarantees the accuracy of the estimated measures.

We validate the proposed measures with metric learning or SSL models using the ImageNet dataset.
To employ a hypersphere space as an embedding space instead of Euclidean space, we set the kernel
KZ(x, x

′;Fϵ,δ) as same as Equation 7. Pre-trained weights for each model are used for reproducibil-
ity. More details on the evaluation can be found in Appendix B.2.

5.1 OBJECT-OBJECT RECOGNITION: OBJECT SIMILARITY

Object-object recognition is a fundamental and the most important recognition concept for achieving
other sub-environment recognition. With the query object xq and candidate objects {x1, · · · , xK},

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: EDS values of pretrained metric learning and SSL models with ImageNet classification ac-
curacies. To verify the reported performance of the pretrained models, the linear probing accuracy is
additionally presented. (*: normalized backbone features are utilized instead of embedding vector.)

Model
Architecture EDS (τ = 1.0) EDS (τ = 0.5) EDS (τ = 0.1) Linear Mean KNN

backbone dim del eps del eps del eps 1 1 3 5 3 5 7

MoCo-v2 ResNet-50 128 0.450 0.390 0.219 0.154 0.025 0.001 71.1 46.68 67.62 74.92 47.03 48.90 49.55

MoCo-v3
ViT-S 256 0.442 0.391 0.208 0.155 0.023 0.000 73.2 58.35 74.31 79.07 57.00 58.47 59.05
ViT-B 256 0.462 0.389 0.230 0.153 0.026 0.000 76.7 62.15 78.79 83.27 60.90 62.35 62.77

SimCLR ResNet-50 128 0.427 0.401 0.194 0.163 0.021 0.000 67.8 46.55 65.76 72.69 43.63 45.73 46.86

DINO-v1 (*)
ViT-S 384 0.502 0.408 0.264 0.168 0.024 0.000 79.7 71.13 86.43 90.36 73.08 74.05 74.41
ViT-B 768 0.500 0.410 0.260 0.169 0.023 0.000 80.1 70.15 86.38 90.56 71.62 72.66 72.87

DINO-v2 (*)
ViT-S 384 0.473 0.391 0.235 0.154 0.022 0.000 81.1 71.23 87.33 91.44 73.86 74.85 75.13
ViT-B 768 0.475 0.384 0.238 0.148 0.023 0.000 84.5 76.63 91.08 94.16 78.15 78.95 79.20

SupCon ResNet-50 128 0.681 0.478 0.477 0.232 0.074 0.002 74.1 79.08 90.69 93.18 78.19 78.65 78.81

conventional evaluation metrics for the classification task orginated from the following formula:

xtarget := argmax
xk∈{x1,·,xK}

KZ(xq, xk;Fϵ,δ).

We choose the mean classifier to show the influence of separability and the KNN classifier for
concentration. Table 1 shows EDS values and classification accuracies of various metric and self-
supervised learning (SSL) models with the ImageNet dataset. SupCon, a metric learning model,
shows better mean classifier accuracy and KNN accuracy than other SSL models. DINO-v2 shows
the most competitive performance among SSL models and the best linear probing accuracy. Consid-
ering the EDS values, we can say that a larger gap between δ and ϵ is important for the downstream
task performance, and models with larger embedding space can perform better when the models
have similar EDS values.

5.2 OBJECT-ENVIRONMENT RECOGNITION: OBJECT EXISTENCE PROBABILITY

Object-environment recognition is about retrieving the most appropriate sub-environment µ with a
given query object. Given a query xq , it is logical to define the most appropriate sub-environment
as the one with the highest existence probability of association with xq . With optimized Fϵ,δ ,
we can estimate the existence probability of association with the kernel density. With samples
{X(µ)

1 , · · · , X(µ)
N } ∼ µ and query x, ∃c ∈ C, x ∈ Xc, the estimated object existence probability

ρ̂
(µ)
c|x can be computed as ρ̂(µ)c|x := Ex′∼µ [KZ(x, x

′;Fϵ,δ)].

Depending on the δ value of the EDS function, there is a probability that the representation for
query x may be distant from the actual concept of the objects. Therefore, instead of using a single
query, we utilize multiple queries Q = {x1, · · · , xk} for the corresponding object. In this case,
the geodesic mean representation r̄ ≃ log

∑
q exp(−1/2 · d2Z(Fϵ,δ(xq), r̄)) is used to compute the

kernel density. By introducing an artificial query x̄ which satisfies Fϵ,δ(x̄) = r̄, the estimated object
existence probability is rewritten as ρ̂(µ)c|x̄ .

Definition 2 (Existence probability estimation). With samples {X(µ)
1 , · · · , X(µ)

N } ∼ µ and query
Q = {x1, · · · , xk}, ∃c ∈ C,∀q ∈ {1, · · · , k}, xq ∈ Xc, suppose that there exists x̄ which satisfies
Fϵ,δ(x̄) = r̄, r̄ ≃ log

∑
q exp(−1/2 · d2Z(Fϵ,δ(xq), r̄)). The estimated object existence probability

ρ̂
(µ)
c|x̄ can be computed as:

ρ̂
(µ)
c|x̄ := Ex′∼µ [KZ(x̄, x

′;Fϵ,δ)] ≃
1

N

N∑
i=1

KZ(x̄, X
(µ)
i ;Fϵ,δ). (8)

Figure 5 shows the estimated object existence probability with artificially generated subsets of Im-
ageNet. A Zipf distribution (Manning, 1999; Joseph et al., 2021), a long-tailed distribution, with
ρ
(µ)
c ∝ 1/c−α, α = 0.5 is used to demonstrate the real-world environment. At low temperatures,

SSL models with relatively low δ tend to underestimate probabilities, while at high temperatures,
due to the high ϵ values, all models tend to overestimate probabilities. To address this issue, we

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Mean classifier (τ = 0.2) (b) Direct estimation (τ = 0.25) (c) Direct estimation (τ = 0.5)

Figure 5: Visualization of object existence probability estimation. Direct estimation leads to under-
estimation (τ = 0.25) or overestimation (τ = 0.5). To solve the problem, we use geodesic mean
vector r̄ as a mean classifier with an adaptive threshold. (Mean values with 5 different seeds.)

use the mean vector of the query r̄ as a classifier, quantifying the kernel value with a threshold
proportional to the kernel density with r̄. By the quantization, the precision of the estimation is
dramatically improved. Appendix C.2 shows more analyses for this experiment.

5.3 ENVIRONMENT-ENVIRONMENT RECOGNITION: KL DIVERGENCE

To define the difference between two sub-environments, we can utilize a metric between distribu-
tions from each sub-environment. The Kullback-Leibler (KL) divergence is one of the most com-
mon measures between two distributions µ and ν. Under the assumption of the data distribution in
Section 3, the KL divergence between µ and ν is derived with the corresponding class distributions:

DKL(µ||ν) := DKL(p(c, x;µ)||p(c, x; ν)) =
∑
c∈C

ρ(µ)c · log ρ
(µ)
c

ρ
(ν)
c

. (9)

Since the agent cannot access all the class information of each observation without supervision, we
use kernel density estimation to approximate the KL divergence, denoted as D̂KL(µ||ν;Fϵ,δ).

Definition 3 (KL divergence estimation). With given samples {X(µ)
1 , · · · , X(µ)

N } ∼ µ and
{X(ν)

1 , · · · , X(ν)
M } ∼ ν, approximated KL divergence D̂KL(µ||ν;Fϵ,δ) can be computed as:

D̂KL(µ||ν;Fϵ,δ) := Ex∼µ

[
log

Ex′∼µ [KZ(x, x
′;Fϵ,δ)]

Ex′∼ν [KZ(x, x′;Fϵ,δ)]

]

≃ 1

N

N∑
i=1

log
N∑
j=1

KZ(X
(µ)
i , X

(µ)
j ;Fϵ,δ)− log

M∑
j=1

KZ(X
(µ)
i , X

(ν)
j ;Fϵ,δ) + log

M

N

 .

(10)

To validate the proposed measure in Definition 3, we show that the divergence D̂KL(µ||ν;F) con-
verges to DKL(µ||ν) with the optimized EDS function.
Theorem 2 (KL divergence with Fϵ,δ). For an EDS function Fϵ,δ , the proposed measure in Defini-
tion 3 has the bound of:∣∣∣∣∣D̂KL(µ||ν;Fϵ,δ)−

∑
c∈C

ρ(µ)c · log

(
ρ
(µ)
c + (1− ρ

(µ)
c) · ϵ

ρ
(ν)
c + (1− ρ

(ν)
c) · ϵ

)∣∣∣∣∣ ≤ − log δ, (11)

in (µ, ν)-almost everywhere. With optimized Fϵ,δ , such that δ → 1, ϵ → 0, D̂KL(µ||ν;Fϵ,δ) con-
verges to DKL(µ||ν).

With Theorem 2, we find that the approximated KL divergence converges to the exact value when
ϵ → 0 and δ → 1 are satisfied. In other words, by optimizing Fϵ,δ via Theorem 1 in a compact
space, the error bound becomes tighter, and eventually the measure is squeezed to DKL(µ||ν).
In terms of the kernel density estimation, a large ϵ causes the oversmoothing effect, which makes
the KL divergence converge to 0. On the other hand, a small δ causes the fragmentation effect on

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) KLD difference (exact) (b) Uniformity (c) KLD difference (simplex-ETF)

Figure 6: Visualization of KL divergence estimation. Kernel density estimation via Definition 3
can cause fragmentation with small τ , and oversmoothing with large τ . Empirically, we show that
measures with τ near 0.12 have the best precision. (Mean values with 5 different seeds.)

clusters, which makes the overestimation of the KL divergence. To solve this trade-off, we claim
that the temperature τ plays a role by adjusting the amount of effect caused by both values.

Figure 6 shows the quantitative results with a scenario generated with the ImageNet dataset. We
add a plot of the ideal condition, denoted as simplex-ETF (Equiangular Tight Frame), which has
been known as the optimal alignment of representations in both supervised learning and met-
ric learning (Papyan et al., 2020; Awasthi et al., 2022; Li et al., 2022). In this case, we set
ϵ = exp(−|C|/((|C| − 1) · τ)) and δ = 1 for simplex-ETF. Figure 6-(a) shows the difference
between the approximated and exact values at different temperatures. All measures become smaller
with larger ϵ, which supports the oversmoothing effect. In Figure 6-(b), we plot the uniformity
measures (Wang & Isola, 2020; Tian et al., 2021; Fang et al., 2024) of the models to show the frag-
mentation effect in smaller δ. In the self-supervised learning models, the uniformity values begin to
explode at small τ below 0.2, and this can explain the overestimation of the KL divergence of these
models in small temperatures. We have also empirically found that the τ near 0.12 performs best in
this scenario. Please see Appendix C.2 for more experiments with different scenarios.

6 VALIDATION OF OBSER FRAMEWORK IN MULTIPLE SUB-ENVIRONMENTS

6.1 OPEN-WORLD ENVIRONMENT (MINECRAFT)

Minecraft environment Minecraft, an open-world sandbox game, is often used as an intermediate
environment to reach the realistic environments (Baker et al., 2022; Qin et al., 2024; Li et al., 2024;
Chen et al., 2024). In Minecraft, there are various sub-environments from nature, the biomes, which
have unique objects in each of them. We first choose 10 different biomes and gather ego-centric
observations of occurring objects in each biome to build a dataset for training. To train each model,
we utilize a dataset of object observations with about 26k observations from 25 object classes. Refer
to Appendix B.3 for more details of the dataset.

Model description SimCLR (Chen et al., 2020a), MoCo-v2 (Chen et al., 2020b), and Sup-
Con (Khosla et al., 2020) models are used for this experiment. Since the classification task of
Minecraft is relatively easier than that of ImageNet, we use ResNet50 (He et al., 2016) as the back-
bone. The dimension of the embedding space is set to 128, and the temperature τ is set to 0.2. Each
model is trained for 10 epochs as a warm-up. We then train SupCon and SimCLR for 20 epochs and
MoCo for 100 epochs due to the slow learning at the beginning of the training.

Unlike conventional vision datasets, we can gather observations of the same object from multiple
directions. Thus, the directions of the observations can be used as an additional inductive bias (Pan-
tazis & Salvaris, 2022; Scherr et al., 2022). To train the model, different observations of the same
object are chosen as positive samples in both metric learning and SSL algorithms. Additional details
about the model training can be found in Appendix B.4.

Miniature environment and episodic memory For evaluation, we have also designed a smaller
version of the generated world, a Miniature environment, which contains all biomes used for train-
ing. Figure 7-(a) shows the landscape of the Miniature environment. We gather random observations

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: EDS values of metric learning and SSL models with classification accuracies (Minecraft).

Model
EDS (τ = 1.0) EDS (τ = 0.5) EDS (τ = 0.1) Mean KNN

del eps del eps del eps 1 3 5 3 5 7

MoCoV2 0.768 0.395 0.648 0.163 0.376 0.005 74.74 82.77 84.10 94.08 94.04 94.04
SimCLR 0.706 0.396 0.555 0.162 0.267 0.003 76.95 83.61 84.36 95.57 95.30 95.46
SupCon 0.893 0.365 0.850 0.136 0.782 0.005 86.49 86.56 86.67 96.83 96.83 96.83

(a) Miniature environment (b) Example episodic memory

Figure 7: Visualization of Miniature Environment. The Miniature environment consists of 10 differ-
ent biomes: snowy taiga, taiga, forest, snowy plains, plains, swamp, savanna,
dark forest, desert and jungle, arranged from top-left to bottom-right.

Figure 8: Heatmaps of existent probability with Miniature environment. When observations of
flower from forest are given, SSL models consider the ambient background information of the
sub-environment, while the metric learning model focuses on the class information.

from each biome in the map to form episodic memory for evaluating the proposed measures. Figure
7-(b) shows the example episodic memory. For more information on the map and episodic memory,
please refer to Appendix B.4.

Object-Object recognition We first measure the classification accuracies of each trained model.
In Table 2, SupCon performs better than SSL models with the classification task. It also consistently
supports our claim regarding the EDS values of the mapping function and task performance.

Object-Environment recognition We validate that each model can estimate the object existence
probability with the given query objects. Figure 8 shows a heatmap of the existence probability of
flower for each grid. Note that the query only contains observations of flower in forest.
Self-supervised learning models only focus on forest with a high existence probability, unlike
SupCon, which estimates the existence probability of flower in each biome.

Environment-Environment recognition To validate environment-environment recognition, we
perform a task to retrieve similar grids by measuring KL divergence using the observations from
each grid. Figure 9 shows the results of retrieving the Top-4 grids for four queries with different
biomes: forest, desert, plains, and jungle. We have observed that all models prioritize
retrieving grids with the same biome.

6.2 CHAINED INFERENCES IN PHOTOREALISTIC ENVIRONMENT (REPLICA)

To show the proposed framework can be efficiently applied to photorealistic environments, we utilize
the Replica environment (Straub et al., 2019), a 3D indoor environment. We first gather random

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 9: Environment-environment retrieval task with Miniature environment. With the queries of
observations from 4 different biomes, forest, desert, plains and jungle, both SSL models
and the metric learning model successfully retrieve the similar sub-environments.

Table 3: Success rate of object retrieval task with Replica environment. We have queried 10 different
objects and marked it as success if the correct object is among the Top-5 retrieved objects.

SupCon SimCLR MoCo-v2 MoCo-v3-B DINO-v1-B DINO-v2-B
Seen (obj-obj, 48 rooms) 10/10 10/10 10/10 10/10 10/10 8/10

Seen (Top-1 room) 9/10 5/10 7/10 8/10 10/10 9/10
Seen (Top-3 rooms) 9/10 6/10 8/10 9/10 10/10 8/10

Unseen (obj-obj, 35 rooms) 9/10 10/10 10/10 9/10 9/10 8/10
Unseen (Top-1 room) 3/10 3/10 7/10 7/10 5/10 8/10
Unseen (Top-3 rooms) 6/10 6/10 6/10 9/10 6/10 8/10

observations from each room and extract object-wise observations with ground-truth segmentations.
With observations as episodic memory, we apply the OBSER framework for the object retrieval
task with three-step inferences: i) retrieval on memory with a given query, ii) retrieval of similar
sub-environment with the memory, and iii) retrieval of similar objects in the room.

We have conducted experiments in two settings: seen setting, where the environment and episodic
memory are the same, and unseen setting, where the environment and episodic memory are ex-
clusive. During sub-environment retrieval in step ii), we have retrieved top-1 and top-3 rooms.
Additionally, we have performed an ablation experiment, denoted as obj-obj, without environmental
inference by retrieving the object directly from all rooms. Table 3 shows the success rate of the ob-
ject retrieval task. We demonstrate that exploring only a small number of relevant rooms is sufficient
to achieve competitive performance through sub-environment recognition. In addition, it is observed
that SSL models are more robust than metric learning models when the data is less structured. More
details and results are shown in Appendix D.

7 CONCLUSION

In this paper, we propose a novel empirical method for sub-environment recognition. The fun-
damental relationships for sub-environment recognition, object-object, object-environment, and
environment-environment relationships can be measured with metric learning models via kernel
density estimation. The proposed measures successfully estimate the exact values in both open-
world and photorealistic environments, and their applicability is qualitatively demonstrated. Using
the OBSER framework, we claim that the agent can perform more composite inferences by chaining
inferences with the proposed measures.

Our main contribution to this work is extending the use of metric learning to measure environmental
relationships. Therefore, experiments have been conducted under the assumption that data acqui-
sition for object observation is feasible. We believe that by integrating the proposed method with
modules of embodied agents, such as object recognition (Kirillov et al., 2023) or navigation, the
agent can perform robust and effective long-horizon inference at the level of sub-environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kartik Ahuja. Estimating kullback-leibler divergence using kernel machines. In 2019 53rd Asilomar
Conference on Signals, Systems, and Computers, pp. 690–696. IEEE, 2019.

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saun-
shi. A theoretical analysis of contrastive unsupervised representation learning. arXiv preprint
arXiv:1902.09229, 2019.

Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Dipendra Misra. Investigating the role of
negatives in contrastive representation learning. arXiv preprint arXiv:2106.09943, 2021.

Pranjal Awasthi, Nishanth Dikkala, and Pritish Kamath. Do more negative samples necessarily hurt
in contrastive learning? In International conference on machine learning, pp. 1101–1116. PMLR,
2022.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639–24654,
2022.

Tiago Barros, Ricardo Pereira, Luı́s Garrote, Cristiano Premebida, and Urbano J. Nunes. Place
recognition survey: An update on deep learning approaches. CoRR, abs/2106.10458, 2021. URL
https://arxiv.org/abs/2106.10458.

Andreas Buja, Deborah F Swayne, Michael L Littman, Nathaniel Dean, Heike Hofmann, and Lisha
Chen. Data visualization with multidimensional scaling. Journal of computational and graphical
statistics, 17(2):444–472, 2008.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. Advances in neural information processing
systems, 32, 2019.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Boyuan Chen, Diego Marti Monso, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitz-
mann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. arXiv preprint
arXiv:2407.01392, 2024.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020a.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297, 2020b.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vision
transformers. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9640–9649, 2021.

Won-Seok Choi, Hyundo Lee, Dong-Sig Han, Junseok Park, Heeyeon Koo, and Byoung-Tak Zhang.
Duel: Duplicate elimination on active memory for self-supervised class-imbalanced learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 11579–11587,
2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Xianghong Fang, Jian Li, Qiang Sun, and Benyou Wang. Rethinking the uniformity metric in self-
supervised learning. arXiv preprint arXiv:2403.00642, 2024.

11

https://arxiv.org/abs/2106.10458

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Florent Feriol, Damien Vivet, and Yoko Watanabe. A review of environmental context detection for
navigation based on multiple sensors. Sensors, 20(16), 2020. ISSN 1424-8220. doi: 10.3390/
s20164532. URL https://www.mdpi.com/1424-8220/20/16/4532.

Sandesh Ghimire, Aria Masoomi, and Jennifer Dy. Reliable estimation of kl divergence using a
discriminator in reproducing kernel hilbert space. Advances in Neural Information Processing
Systems, 34:10221–10233, 2021.

Anil K Ghosh, Probal Chaudhuri, and Debasis Sengupta. Classification using kernel density esti-
mates: Multiscale analysis and visualization. Technometrics, 48(1):120–132, 2006.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

KJ Joseph, Salman Khan, Fahad Shahbaz Khan, and Vineeth N Balasubramanian. Towards open
world object detection. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 5830–5840, 2021.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673, 2020.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Måns Larsson, Erik Stenborg, Carl Toft, Lars Hammarstrand, Torsten Sattler, and Fredrik Kahl.
Fine-grained segmentation networks: Self-supervised segmentation for improved long-term vi-
sual localization. CoRR, abs/1908.06387, 2019. URL http://arxiv.org/abs/1908.
06387.

Hao Li, Xue Yang, Zhaokai Wang, Xizhou Zhu, Jie Zhou, Yu Qiao, Xiaogang Wang, Hongsheng Li,
Lewei Lu, and Jifeng Dai. Auto mc-reward: Automated dense reward design with large language
models for minecraft. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16426–16435, 2024.

Xiao Li, Sheng Liu, Jinxin Zhou, Xinyu Lu, Carlos Fernandez-Granda, Zhihui Zhu, and Qing Qu.
Principled and efficient transfer learning of deep models via neural collapse. arXiv preprint
arXiv:2212.12206, 2022.

Hong Liu, Jeff Z HaoChen, Adrien Gaidon, and Tengyu Ma. Self-supervised learning is more robust
to dataset imbalance. arXiv preprint arXiv:2110.05025, 2021.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 212–220, 2017.

Christopher D Manning. Foundations of statistical natural language processing. The MIT Press,
1999.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Omiros Pantazis and Mathew Salvaris. Matching multiple perspectives for efficient representation
learning. In European Conference on Computer Vision, pp. 686–698. Springer, 2022.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020.

12

https://www.mdpi.com/1424-8220/20/16/4532
http://arxiv.org/abs/1908.06387
http://arxiv.org/abs/1908.06387

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yiran Qin, Enshen Zhou, Qichang Liu, Zhenfei Yin, Lu Sheng, Ruimao Zhang, Yu Qiao, and Jing
Shao. Mp5: A multi-modal open-ended embodied system in minecraft via active perception. In
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16307–
16316. IEEE, 2024.

Franz Scherr, Qinghai Guo, and Timoleon Moraitis. Self-supervised learning through efference
copies. Advances in Neural Information Processing Systems, 35:4543–4557, 2022.

Dhruv Shah, Ajay Sridhar, Nitish Dashora, Kyle Stachowicz, Kevin Black, Noriaki Hirose, and
Sergey Levine. Vint: A foundation model for visual navigation. arXiv preprint arXiv:2306.14846,
2023.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. Advances in
neural information processing systems, 29, 2016.

Ajay Sridhar, Dhruv Shah, Catherine Glossop, and Sergey Levine. Nomad: Goal masked diffusion
policies for navigation and exploration. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 63–70. IEEE, 2024.

Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green, Jakob J Engel,
Raul Mur-Artal, Carl Ren, Shobhit Verma, et al. The replica dataset: A digital replica of indoor
spaces. arXiv preprint arXiv:1906.05797, 2019.

Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning dynamics
without contrastive pairs. In International Conference on Machine Learning, pp. 10268–10278.
PMLR, 2021.

Ting Wang, Zongkai Wu, Feiyu Yao, and Donglin Wang. Graph based environment representation
for vision-and-language navigation in continuous environments, 2023. URL https://arxiv.
org/abs/2301.04352.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International conference on machine learning, pp.
9929–9939. PMLR, 2020.

Naoki Yokoyama, Sehoon Ha, Dhruv Batra, Jiuguang Wang, and Bernadette Bucher. Vlfm: Vision-
language frontier maps for zero-shot semantic navigation, 2023. URL https://arxiv.org/
abs/2312.03275.

Wenyu Zhang, Zhenjiang Zhang, Han-Chieh Chao, and Fan-Hsun Tseng. Kernel mixture model for
probability density estimation in bayesian classifiers. Data Mining and Knowledge Discovery,
32:675–707, 2018.

13

https://arxiv.org/abs/2301.04352
https://arxiv.org/abs/2301.04352
https://arxiv.org/abs/2312.03275
https://arxiv.org/abs/2312.03275

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A THEORETICAL DETAILS AND PROOFS

A.1 ADDITIONAL DEFINITIONS

A.1.1 MEMBERSHIP FUNCTION

A membership function Ic(x;µ,F) := p(c|x;F) with a mapping function F : X → Z is defined
as follows:

Ic(x;µ,F) := p(c|x;µ,F),
∑
c∈C

Ic(x;µ,F) = 1.

By this definition, when the function F is optimal, the membership function works as an indicator
function which does not depend on data distributions.

I∗c (x) = I∗c (x;µ) = I∗c (x; ν) =

{
1 x ∈ Xc

0 O.W.
(12)

With Definition 12 and the definition of the sub-environment, the following equation is satisfied with
every function f .

Ex′∼µ [f(·) · I∗c (x′)] = ρ(µ)c · Ex′∼Dc
[f(·)] (13)

A.1.2 MESSAGE PASSING

With a kernel KZ(x, x
′;F) : X × X → [0, 1] defined in Equation 1, a membership function

Ic(x;µ,F) with a data x can be derived via kernel density estimation:

Ic(x;µ,F) =
1

Z
· Ex′∼µ [KZ(x, x

′;F)I∗c (x
′)] , (14)

Z =
∑
c∈C

Ex′∼µ [KZ(x, x
′;F)I∗c (x

′)] = Ex′∼µ [KZ(x, x
′;F)] . (15)

∴ Ic(x;µ,F) =
Ex′∼µ [KZ(x, x

′;F) · I∗c (x′)]

Exk∼µ [d(x, xk;F)]

= ρ(µ)c · Ex′∼Dc
[KZ(x, x

′;F)]

Ex′∼µ [KZ(x, x′;F)]

=
ρ
(µ)
c · Ex′∼Dc [KZ(x, x

′;F)]

Ex′∼µ [KZ(x, x′;F)]

=
ρ
(µ)
c · Ex′∼Dc

[KZ(x, x
′;F)]∑

c′∈C ρ
(µ)
c′ · Ex′∼Dc′ [KZ(x, x′;F)]

.

(16)

A.2 KL DIVERGENCE BETWEEN p(c, x;µ) AND p(c, x;µ,F)

Lemma 1 (KL divergence between p(c, x;µ) and p(c, x;µ,F)). Rederived form of Proposition 1
in Choi et al. (2024)

DKL(p(c, x;µ)||p(c, x;µ,F)) = Ex∼µ

[
− log

Ex′∼D+ [KZ(x, x
′;F)]

Ex′∼µ [KZ(x, x′;F)]

]
+H(C;µ). (17)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof.

DKL(p(c, x;µ)||p(c, x;µ,F)) (18)

=
∑
c∈C

∫
−p(c, x;µ) log

p(c, x;µ,F)

p(c, x;µ)
dx (19)

=
∑
c∈C

∫
−I∗c (x) log

Ic(x;µ,F)

I∗c (x)
dµ(x) (20)

=
∑
c∈C

Ex∼µ

[
−I∗c (x) log

Ic(x;µ,F)

I∗c (x)

]
(21)

=
∑
c∈C

Ex∼µ [−I∗c (x) log Ic(x;µ,F)] · · · (Cross Entropy) (22)

=
∑
c∈C

ρ(µ)c · Ex∼Dc
[− log Ic(x;µ,F)] (23)

By using Message Passing in Equation 16,

∑
c∈C

ρ(µ)c · Ex∼Dc [− log Ic(x;µ,F)] (24)

=
∑
c∈C

ρ(µ)c · Ex∼Dc

[
− log(ρ(µ)c · Ex′∼Dc

[KZ(x, x
′;F)]

Ex′∼µ [KZ(x, x′;F)]
)

]
(25)

=
∑
c∈C

ρ(µ)c · Ex∼Dc

[
− log ρ(µ)c − log

Ex′∼Dc [KZ(x, x
′;F)]

Ex′∼µ [KZ(x, x′;F)]

]
(26)

=
∑
c∈C

ρ(µ)c · Ex∼Dc

[
− log

Ex′∼Dc
[KZ(x, x

′;F)]

Ex′∼µ [KZ(x, x′;F)]

]
+H(C;µ) (27)

= Ex∼µ

[
− log

Ex′∼D+
[KZ(x, x

′;F)]

Ex′∼µ [KZ(x, x′;F)]

]
+H(C;µ) (28)

∴ DKL(p(c, x;µ)||p(c, x;µ,F)) = Ex∼µ

[
− log

Ex′∼D+ [KZ(x, x
′;F)]

Ex′∼µ [KZ(x, x′;F)]

]
+H(C;µ) (29)

∵ DKL(·||·) ≥ 0,

Ex∼µ

[
− log

Ex′∼D+
[KZ(x, x

′;F)]

Ex′∼µ [KZ(x, x′;F)]

]
≥ −H(C;µ). (30)

The equality is satisfied with p(c, x;µ) = p(c, x;µ,F).

A.3 OPTIMIZATION OF (ϵ, δ) STATISTICALLY SEPARABLE (EDS) FUNCTION Fϵ,δ

Theorem 1 (Optimization of Fϵ,δ via generalized metric learning). For an EDS function Fϵ,δ , let
∃k ≥ 1, δ = k · ϵ. The upperbound of DKL(p(c, x;µ)||p(c, x;µ,Fϵ,δ)) is derived as:

0 ≤ DKL(p(c, x;µ)||p(c, x;µ,Fϵ,δ)) ≤ log

(
1 +

|C| − 1

k

)
:= ∆H, (31)

and if ∆H → +0, then k → ∞.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. With Lemma 1,∑
c∈C

ρ(µ)c · Ex∼Dc
[− log Ic(x;µ,Fϵ,δ)] (32)

= Ex∼µ

[
− log

Ex′∼D+ [KZ(x, x
′;Fϵ,δ)]

Ex′∼µ [KZ(x, x′;Fϵ,δ)]

]
+H(C;µ) (33)

=
∑
c∈C

ρ(µ)c · (Ex∼Dc
[− logEx′∼Dc

[KZ(x, x
′;Fϵ,δ)]] + Ex∼Dc

[logEx′∼µ [KZ(x, x
′;Fϵ,δ)]]) +H(C;µ)

(34)

≤
∑
c∈C

ρ(µ)c · (− log δ + log(ρ(µ)c · δ + ϵ · (1− ρ(µ)c)) +H(C;µ) (35)

=
∑
c∈C

ρ(µ)c · log(1 + ϵ · (1− ρ
(µ)
c)

δ · ρ(µ)c

) (36)

≤ log(1 +
ϵ · (|C| − 1)

δ
) = log(1 +

(|C| − 1)

k
) := ∆H. (37)

By rewriting k in terms of ∆H, we can get k = |C|−1
exp(∆H)−1 . Thus, if ∆H → +0 then k → ∞.

A.4 OBJECT EXISTENCE PROBABILITY ESTIMATION WITH EDS FUNCTION

Lemma 2 (Object existence probability with EDS function). For an EDS function Fϵ,δ , the proposed
measure has the bound of:

ρ̂
(µ)
c|x := Ex′∼µ [KZ(x, x

′;Fϵ,δ)] , δ ≤
ρ̂
(µ)
c|x

ρ
(µ)
c + ϵ · (1− ρ

(µ)
c)

≤ 1. (38)

Proof. By the definition of the EDS function,

δ · (ρ(µ)c + ϵ · (1− ρ(µ)c)) ≤ ρ̂
(µ)
c|x ≤ ρ(µ)c + ϵ · (1− ρ(µ)c) (39)

∴ δ ≤
ρ̂
(µ)
c|x

ρ
(µ)
c + ϵ · (1− ρ

(µ)
c)

≤ 1. (40)

In the case of δ → 1, ϵ → 0, ρ̂(µ)c|x → ρ
(µ)
c .

A.5 KL DIVERGENCE BTW TWO DISTRIBUTIONS

By the definition of sub-environment, KL divergence between the distributions µ and ν of sub-
environments is computed as:

DKL(µ||ν) = Ex∼µ

[
log

µ

ν

]
=
∑
c∈C

ρ(µ)c · Ex∼Dc

[
log

∑
c′ ρ

(µ)
c′ Dc′(x)∑

c′ ρ
(ν)
c′ Dc′(x)

]

=
∑
c∈C

ρ(µ)c · Ex∼Dc

[
log

∑
c′ ρ

(µ)
c′ Dc′(x)Dc(x)∑

c′ ρ
(ν)
c′ Dc′(x)Dc(x)

]
.

Because ∀c′ ̸= c,Dc′(x) · Dc(x) = 0,

=
∑
c∈C

ρ(µ)c · log ρ
(µ)
c

ρ
(ν)
c

. (41)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

However, since we assume that the latent class c is not directly accessible, we need an nonparametric
method to approximate DKL(p(c, x;µ,F)||p(c, x; ν,F)). First we define the pseudo-divergence
Dµ(p(c, x;µ,F)||p(c, x; ν,F)):

Dµ(p(c, x;µ,F)||p(c, x; ν,F)) :=
∑
c∈C

(
ρ(µ)c · Ex∼Dc

[
log

p(c, x;µ,F)

p(c, x; ν,F)

])
. (42)

By rewriting the pseudo-divergence, we obtain the kernel density based KL divergence
D̂KL(µ||ν;F) without using the latent class.

Lemma 3 (Property of pseudo KL divergence).

Dµ(p(c, x;µ,F)||p(c, x; ν,F)) = −Ex∼µ

[
log

Ex′∼µ [KZ(x, x
′;F)]

Ex′∼ν [KZ(x, x′;F)]

]
︸ ︷︷ ︸

D̂KL(µ||ν;F)

+2 ·DKL(µ||ν) (43)

Proof.

Dµ(p(c, x;µ,F)||p(c, x; ν,F)) :=
∑
c∈C

(
ρ(µ)c · Ex∼Dc

[
log

p(c, x;µ,F)

p(c, x; ν,F)

])
(44)

= DKL(p(c, x;µ)||p(c, x; ν,F))−DKL(p(c, x;µ)||p(c, x;µ,F)) (45)

i) DKL(p(c, x;µ)||p(c, x; ν,F))

DKL(p(c, x;µ)||p(c, x; ν,F)) (46)

By utilizing the same method as in Lemma 1,

=
∑
c∈C

ρ(µ)c · Ex∼Dc
[− log Ic(x; ν,F)] +DKL(µ||ν) (47)

=
∑
c∈C

ρ(µ)c · Ex∼Dc

[
− log ρ(ν)c − log

Ex′∼Dc
[KZ(x, x

′;F)]

Ex′∼ν [KZ(x, x′;F)]

]
+DKL(µ||ν) (48)

= Ex∼µ

[
− log

Ex′∼D+
[KZ(x, x

′;F)]

Ex′∼ν [KZ(x, x′;F)]

]
+DKL(µ||ν) + CE(µ||ν) (49)

ii) DKL(p(c, x;µ)||p(c, x;µ,F)) (Lemma 1)

DKL(p(c, x;µ)||p(c, x;µ,F)) = Ex∼µ

[
− log

Ex′∼D+
[KZ(x, x

′;F)]

Ex′∼µ [KZ(x, x′;F)]

]
+H(C;µ) (50)

Putting together,
∴ Dµ(p(c, x;µ,F)||p(c, x; ν,F)) (51)

= Ex∼µ

[
− log

Ex′∼D+
[KZ(x, x

′;F)]

Ex′∼ν [KZ(x, x′;F)]

]
+DKL(µ||ν) + CE(µ||ν)

− Ex∼µ

[
− log

Ex′∼D+ [KZ(x, x
′;F)]

Ex′∼µ [KZ(x, x′;F)]

]
−H(C;µ)

(52)

= 2 ·DKL(µ||ν)− D̂KL(µ||ν;F). (53)

Intuitively, when F → F∗ with p(c, x;µ) = p(c, x;µ,F∗), then Dµ(p(c, x;µ,F)||p(c, x; ν,F)) →
DKL(µ||ν) is satisfied. Therefore, we can suppose D̂KL(µ||ν;F) → DKL(µ||ν) when F → F∗.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.6 APPROXIMATION ON KL DIVERGENCE WITH EDS FUNCTION

Theorem 2 (KL divergence with Fϵ,δ). For an EDS function Fϵ,δ , the proposed measure in Defini-
tion 3 has the bound of:∣∣∣∣∣D̂KL(µ||ν;Fϵ,δ)−

∑
c∈C

ρ(µ)c · log

(
ρ
(µ)
c + (1− ρ

(µ)
c) · ϵ

ρ
(ν)
c + (1− ρ

(ν)
c) · ϵ

)∣∣∣∣∣ ≤ − log δ, (54)

in (µ, ν)-almost everywhere. With optimized Fϵ,δ , such that δ → 1, ϵ → 0, D̂KL(µ||ν;Fϵ,δ) con-
verges to DKL(µ||ν).

Proof.

Ex∼µ

[
log

Ex′∼µ [KZ(x, x
′;Fϵ,δ)]

Ex′∼ν [KZ(x, x′;Fϵ,δ)]

]
(55)

=
∑
c∈C

ρ(µ)c ·

(
Ex∼Dc

[
log

∑
c′∈C ρ

(µ)
c′ · Ex′∼Dc′ [KZ(x, x

′;Fϵ,δ)]∑
c′∈C ρ

(ν)
c′ · Ex′∼Dc′ [KZ(x, x′;Fϵ,δ)]

])
(56)

≤
∑
c∈C

ρ(µ)c · log

(
Ex∼Dc

[∑
c′∈C ρ

(µ)
c′ · Ex′∼Dc′ [KZ(x, x

′;Fϵ,δ)]∑
c′∈C ρ

(ν)
c′ · Ex′∼Dc′ [KZ(x, x′;Fϵ,δ)]

])
(57)

≤
∑
c∈C

ρ(µ)c · log

(
ρ
(µ)
c + (1− ρ

(µ)
c) · ϵ

ρ
(ν)
c + (1− ρ

(ν)
c) · ϵ

)
− log δ. (58)

(59)

In a same way,

Ex∼µ

[
log

Ex′∼µ [KZ(x, x
′;Fϵ,δ)]

Ex′∼ν [KZ(x, x′;Fϵ,δ)]

]
(60)

= −
∑
c∈C

ρ(µ)c ·

(
Ex∼Dc

[
log

∑
c′∈C ρ

(ν)
c′ · Ex′∼Dc′ [KZ(x, x

′;Fϵ,δ)]∑
c′∈C ρ

(µ)
c′ · Ex′∼Dc′ [KZ(x, x′;Fϵ,δ)]

])
(61)

≥ −
∑
c∈C

ρ(µ)c · log

(
Ex∼Dc

[∑
c′∈C ρ

(ν)
c′ · Ex′∼Dc′ [KZ(x, x

′;Fϵ,δ)]∑
c′∈C ρ

(µ)
c′ · Ex′∼Dc′ [KZ(x, x′;Fϵ,δ)]

])
(62)

≥ −
∑
c∈C

ρ(µ)c · log

(
ρ
(ν)
c + (1− ρ

(ν)
c) · ϵ

ρ
(µ)
c + (1− ρ

(µ)
c) · ϵ

)
+ log δ (63)

≥
∑
c∈C

ρ(µ)c · log

(
ρ
(µ)
c + (1− ρ

(µ)
c) · ϵ

ρ
(ν)
c + (1− ρ

(ν)
c) · ϵ

)
+ log δ. (64)

Note that when δ → 1 and ϵ → 0, the measure D̂KL(µ||ν;Fϵ,δ) converges to DKL(µ||ν).

B EXPERIMENT DETAILS

B.1 TOY PROBLEM

We first validate the EDS function and its behavior during the optimization with several elementary
environments: Moons and XOR datasets. We choose the hypersphere as the embedding space. A
shallow MLP structure is chosen as the feature extractor for both experiments: the number of nodes
for each layer is selected as (2,8,4,2), respectively. The feature extractor is trained with a balanced
set in 30 epochs. With the trained representations, we measure ϵ and δ, and show that the proposed
approximated measures are accurate with an optimized EDS function.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.2 IMAGENET DATASET

For the ImageNet dataset, we evaluate several self-supervised learning models using various metrics.
We use MoCo-v2 Chen et al. (2020b), MoCo-v3 Chen et al. (2021), SimCLR-v1 Chen et al. (2020a),
and SupCon Khosla et al. (2020) by utilizing L2-normalized projection head features. However, for
DINO (v1 Caron et al. (2021), v2 Oquab et al. (2023)), we use L2-normalized backbone features
rather than projection features because the origin papers employed normalized backbone features to
measure KNN accuracy. We utilize pre-trained weights which are trained with ImageNet dataset for
both the backbone and projection head of each model. The reported Top-1 linear probing accuracy
is sourced directly from the respective papers or GitHub repos.

For augmentation set used for evaluation, we apply the most basic augmentations: (1) resizing
to 256 × 256, (2) center cropping to 224 × 224, and (3) normalizing with mean and standard
deviation of ImageNet dataset. We omit normalization for experiments with SimCLR since the
original implementation did not use normalization.

B.3 MINECRAFT DATASET

In this paper, we construct a Minecraft dataset containing 26,000 images and the corresponding
labels. We gather ego-centric observations of objects to train or fine-tune models. To build the
dataset, we first choose typical biomes that can represent all objects in the overworld in Minecraft.
The dataset is derived from two environments: an open-world environment and a miniature environ-
ment.

B.3.1 OPEN-WORLD MULTI-ANGLED DATA COLLECTION

For the open-world multi-angled data collection, we use the Minecraft’s default world generation
settings to generate a world environment where the agent collects the dataset. In such an environ-
ment, the agents can easily get stuck due to composite terrains and the arrangement of objects. This
reduces the efficiency of data acquisition. Therefore, we manually locate 100 objects per biome in
the world using a fixed seed, rather than relying on fully automatic methods such as the random
walk algorithm. For each object, we gather 30 observations by rotating around the object’s posi-
tion. Figure 11 shows examples of the observations collected. We split 10% of each observation to
build the test set. Note that we do not split the dataset by object because object frequencies follow
a long-tailed distribution, and object-based splitting could introduce further distortions in the data
distribution. We choose two levels of hierarchical concepts to conduct experiments with different
levels of abstraction. Table 4 shows the proportion of hierarchical concepts of the proposed dataset.

B.3.2 MINIATURE ENVIRONMENT MULTI-ANGLED DATA COLLECTION

We also collected data from our miniature environment, which consists of 4 × 5 grids of 48 × 48
blocks with the same biome. The kind of 10 biomes in the dataset is the same as the ones in the
open-world multi-angled data collection and in the table 4. To collect the data in the miniature
environment, we used the same algorithm as used in open-world environment.

B.3.3 MINIATURE SCENARIO COLLECTION

In the miniature scenario, the agent performs random exploration within the grid to collect visual
observations programmatically. For each grid, we teleport the agent to its center. The agent wanders
randomly through the grid to collect visual observations and save them as images. The agent is
prevented from going outside the grid by checking its distance from the grid’s center. If the agent
goes farther than 20 blocks from the center of the grid, we force the agent to look at the center of
the grid using the teleport command. To reduce the likelihood of the agent’s view capturing parts
of neighboring grids with different biomes, we have the agent look slightly downward following
a normal distribution, N (30, 52). In this setting, we also use Pareto distribution to determine the
distance it moves forward before turning around by degrees randomly following N (30, 12).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 10: Flowchart illustrating the Minecraft data collection process. A) A human manually col-
lects candidate coordinates for the dataset, with separate CSV files generated for each biome. With
10 different biomes, we gather coordinates of each biome with 10 distinct CSV files. Each CSV
file contains entries for the biome name, object type, object name, and the corresponding x, y, z
coordinates for each object within that biome. B) Using a customized Minecraft automation setup,
the agent collects the data with each CSV files. The agent is teleported to specified coordinates and
performs a 360-degree rotation around the point of interest, capturing images at 30 intervals of 12
degrees each. If the view of the camera is obstructed by being inside a non-air block, the corre-
sponding image is automatically discarded. This process is repeated across all biomes. Successfully
captured images are saved with the associated coordinates in the filename.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 4: Summary of statistical information for the Minecraft dataset. We focus on gathering unique
objects from each biome, and it draws some difference between gathered data and real distribution,
especially with villages. For evaluation, we use observations from the Miniature environment in-
stead of gathered dataset.

Biome Category Sub-category Frequency

forest
plant flower 0.09

tree oak 0.52
birch 0.39

dark
forest

plant

flower 0.02
big mushroom (brown) 0.12

big mushroom (red) 0.17
pumpkin 0.01

tree
oak 0.16

birch 0.12
dark oak 0.40

desert

plant
cactus 0.35

sugarcane 0.19
dead bush 0.20

tree azalea 0.05

village
building 0.08

decorative 0.08
farm 0.05

savanna

plant

flower 0.07
grass 0.20

pumpkin 0.05
melon 0.05

tree oak 0.09
acacia 0.27

village
building 0.20

decorative 0.06
farm 0.05

swamp
plant

flower 0.09
sugarcane 0.14
lily pad 0.11
grass 0.06

small mushroom (brown) 0.16
small mushroom (red) 0.01

pumpkin 0.02
dead bush 0.08

tree oak 0.31
structure building 0.02

Biome Category Sub-category Frequency

plains

plant
flower 0.26
grass 0.33

pumpkin 0.03
tree oak 0.21

village
building 0.12

decorative 0.02
farm 0.03

snowy
plains

plant
flower 0.16
grass 0.28

pumpkin 0.01
tree spruce 0.25

village
building 0.21

decorative 0.07
farm 0.02

taiga

plant

flower 0.04
fern 0.12

berry bush 0.12
pumpkin 0.03

small mushroom (brown) 0.04
tree spruce 0.42

village
building 0.16

decorative 0.04
farm 0.03

snowy
taiga

plant

flower 0.05
fern 0.23

berry bush 0.02
pumpkin 0.01

small mushroom (brown) 0.05
tree spruce 0.64

jungle
plant

flower 0.02
bamboo 0.21
melon 0.11

tree oak 0.11
jungle 0.55

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 11: Example observations with various objects from different biomes.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 12: Example observations from different biomes.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.4 MINECRAFT EXPERIMENT

For experiments in Minecraft environment, we choose SimCLR, MoCo, and SupCon with ResNet-
50 as a backbone. In this experiment, we utilize the projection layer of each model in the same way
as it was applied to the ImageNet data in the original works. We have used 1 NVIDIA RTX 3090
Ti to train each model. Table 5 shows the hyperparameters and details used to train each model. We
add RandomResizedCrop to the augmentation set to reflect the various distances between the
agent and the object. PyTorch-style pseudocode of the augmentation set is shown in Algorithm 1.

Table 5: Details of the hyperparameters and settings used to train each model.

Model Backbone Emb. Dim Emb. Type Batch size Epochs (Warmup / Train) Optimizer Learning rate Scheduler Temperature

SupCon ResNet-50 128 Projection 128 10 / 20 LARS 0.15 Cosine 0.2
SimCLR ResNet-50 128 Projection 128 10 / 20 LARS 0.15 Cosine 0.2
MoCo-v2 ResNet-50 128 Projection 128 10 / 100 SGD 0.03 Cosine 0.2

Algorithm 1 PyTorch-style code of the augmentation set for Minecraft experiments.
transform = Compose([

Resize(256),
RandomResizedCrop(size=224,scale=[0.5,1.0]),
RandomApply(

[ColorJitter(0.2,0.2,0.2,0.1)], p=0.8
),
RandomHorizontalFlip(),
ToTensor(),
Normalize(

mean=[0.3232, 0.3674, 0.2973],
std=[0.2615, 0.2647, 0.3390]

),
])

B.5 ALGORITHMS OF THE PROPOSED MEASURES

Algorithm 2 PyTorch-style pseudocode of existence probability estimation.
def existence estimation(query,mu,tau,type =’cosine’,multiplier=0.25):

if metric == ’cosine’:
mean = fisher rao mean(query)

else:
mean = query.mean(0,keepdim=True)

mean mu matrix = dist matrix(mu,mean,metric)
mean mu density = kernel(mean mu matrix,tau,metric).mean(-1)
mean query matrix = dist matrix(query,mean,metric)
tol = kernel(mean query matrix,tau,metric).mean() * multiplier
mean mu density = (mean mu kernel > tol).double()
return mean mu density.mean(0)

Algorithm 3 PyTorch-style pseudocode of KL divergence estimation.
def kldiv estimation(mu,nu,tau,metric=’cosine’):

mu mu matrix = dist matrix(mu,mu,metric)
mu nu matrix = dist matrix(mu,nu,metric)
mu mu log density = kernel(mu mu matrix,tau,metric).mean(-1).log()
mu nu log density = kernel(mu nu matrix,tau,metric).mean(-1).log()
return (mu mu log density-mu nu log density).mean()

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 6: Validation with toy datasets. (3 times, mean values are reported) S1: [0.5, 0.5] → [0.1, 0.9],
S2: [0.2, 0.8] → [0.8, 0.2]

Dataset Model ϵ (↓) δ (↑) log(δ/ϵ) D̂KL(S1) |∆DKL(S1)| D̂KL(S2) |∆DKL(S2)|

Moons
Norm 0.0005 0.0975 5.3098 0.4840 0.0268 0.8152 0.0166
EDS-e 0.0000 0.6174 8.8720 0.5080 0.0030 0.8330 0.0046
EDS-s 0.0011 0.9922 6.8669 0.5034 0.0075 0.8267 0.0051

XOR
Norm ∼ 0 0.2136 27.0365 0.5163 0.0030 0.8295 0.0029
EDS-e ∼ 0 0.6810 53.7363 0.5111 0.0039 0.8271 0.0046
EDS-s ∼ 0 0.9991 28.5699 0.5108 0.0000 0.8308 0.0000

(a) (ϵ, δ) values (Euclidean) (b) (ϵ, δ) values (Hypersphere)

Figure 13: Optimization of EDS functions in Euclidean and Hypersphere spaces. δ cannot reach to
1 because Euclidean space is not a compact space.

C ADDITIONAL RESULTS

C.1 VISUALIZATION OF TOY EXAMPLE

Ablation. the role of the compact space In this work, we use hypersphere which is a compact
space rather than Euclidean space. Note that optimizing the EDS function in Euclidean space, which
has no upper bound on the distance, does not guarantee the improvement of the concentration prop-
erty. Therefore, we claim that the embedding space should be compact to guarantee the convergence
of both ϵ and δ.
Lemma 4 (Optimization of Fϵ,δ in compact space). Let dZ : Z × Z → [0, dmax], hτ (t) :=
exp(−t/τ). ∃k ≤ kmax := exp(dmax/τ), δ = kϵ. By Theorem 1, without any additional restric-
tions of Z , ∆H → ∆Hmin, k → kmax.

δ → 1, ϵ → exp(−dmax/τ). (65)

Proof. Since the metric is bounded with [0, dmax], δ and ϵ also bounded to [exp(−dmax/τ), 1].
Thus, δ/ϵ = k ∈ [1, kmax] with δ ≥ ϵ. By Theorem 1, we can get:

DKL(p(c, x;µ)||p(c, x;µ,Fϵ,δ)) ≤ log

(
1 +

|C| − 1

k

)
:= ∆H. (66)

∴ ∃∆Hmin = log(1 + (|C| − 1)/kmax) ≤ ∆H, (67)
k → kmax, ∆H → ∆Hmin, δ → 1, ϵ → exp(−dmax/τ). (68)

Note that exp(−dmax/τ) ≃ 0 when τ is set sufficiently small. To illustrate the difference between
Euclidean space and hypersphere, we conduct toy experiments using two small datasets: Moons and
XOR. For each dataset, we train models in both Euclidean and hypersphere embedding spaces, then
compute the ϵ and δ values with a temperature of τ = 0.07. The results are shown in Table 6. In
Euclidean space, the metric between data points is unbounded, hindering the convergence of δ to
1. In contrast, on the hypersphere, δ converges to nearly 1, while log(k) remains smaller than 1 in

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Euclidean space. This convergence of δ also enhances the precision of KL divergence. These results
justify the use of the hypersphere as the embedding space for our experiments.

C.2 IMAGENET EXPERIMENT

C.2.1 EDS VALUES OF PRETRAINED MODELS

We first compute the ϵ and δ values of Fϵ,δ for each trained model. To reduce the influence of out-
liers, we removed approximately 5% of the data before aggregating the kernel density. Additionally,
we report the mean values of ϵ and δ across all classes, rather than the minimum or maximum values,
as the size of each class cluster can vary. Figure 14 visualizes the EDS values for each model with
different temperature settings of τ .

(a) SupCon (b) MoCo-v2 (c) SimCLR

(d) MoCo-v3 (ViT-S) (e) MoCo-v3 (ViT-B) (f) DINO-v1 (ViT-S)

(g) DINO-v1 (ViT-B) (h) DINO-v2 (ViT-S) (i) DINO-v2 (ViT-B)

Figure 14: Visualization of EDS values with different temperatures with ImageNet Dataset.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

C.2.2 EXISTENCE PROBABILITY ESTIMATION

We conduct additional experiments with different scenarios. Figure 15 shows the results with (a) a
uniform distribution and (b) a Zipf distribution with α = 0.7. In both cases, our method successfully
estimates the original distribution.

(a) Uniform distribution (b) A Zipf distribution (α = 0.7)

Figure 15: Visualization of object existence probability estimation with various scenarios. Mean
classifier used to enhance the estimation accuracy with temperature τ = 0.2 (Mean values are
reported with 5 different seeds.)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

C.2.3 KL DIVERGENCE ESTIMATION

For the KL divergence estimation experiment, we take the following steps to obtain the artificial data
distribution. First, we randomly select a certain number of classes and divide them into two groups.
Then, we sample the data according to the proportion of each group. At this point, the optimal
KL divergence is the KL divergence value corresponding to the group ratios. The KL divergence
estimate is then be computed using Algorithm 3. Table 7 describes the three scenarios in which the
experiment was conducted.

Table 7: Descriptions of scenarios in KL divergence experiments.

Number of classes µ ν Number of images Optimal KL div.
Scenario 1 10 (5/5) [0.4, 0.6] [0.6, 0.4] 1000 0.0811
Scenario 2 10 (5/5) [0.2, 0.8] [0.8, 0.2] 1000 0.8318
Scenario 3 40 (20/20) [0.2, 0.8] [0.8, 0.2] 4000 0.8318

(a) KLD difference (exact) (b) KLD difference (exact) (c) KLD difference (exact)

(d) KLD difference (simplex-ETF) (e) KLD difference (simplex-ETF) (f) KLD difference (simplex-ETF)

Figure 16: Visualization of KL divergence estimation with three different scenarios. (a)-(d) corre-
spond to Scenario 1, (b)-(e) to Scenario 2, and (c)-(f) to Scenario 3. The scenario setting is shown
in Table 7. (Mean values are reported with 5 different seeds.)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

C.3 MINECRAFT EXPERIMENT

C.3.1 EDS VALUES OF TRAINED MODELS

As the same method in Appendix C.2, we also visualize the ϵ and δ values of each trained model in
Figure 17. Due to the simpler task than ImageNet, each model has higher δ and lower ϵ than those
in ImageNet.

(a) EDS (SupCon) (b) EDS (MoCo) (c) EDS (SimCLR)

Figure 17: Visualization of EDS values with different temperatures with Minecraft Dataset.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

C.3.2 OBJECT-ENVIRONMENT RETRIEVAL TASK

The verification of the object-environment retrieval task is performed through the following process.
First, observations of objects within each grid of the Miniature environment are obtained. Then,
using 5 observations of the objects as a query, the existence probability is estimated for each model,
followed by the visualization of heatmaps of the estimated probabilities of each models. Figure 18
shows additional results with different queries.

(a) Query (Flower in Plains)

(b) Query (Cactus in Desert)

(c) Query (Sugar cane in Swamp)

Figure 18: Visualization of results with object-environment retrieval task in Miniature environment.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

C.4 DIFFERENCE BETWEEN METRIC LEARNING AND SSL IN OBSER

We visualize the pair-wise environmental relationship with the Jensen-Shannon divergence. Figure
19 shows the MDS visualization (Buja et al., 2008) of biomes in the Miniature environment with
each model. The SSL models tend to keep the metrics of sub-environments farther apart, as they
consider ambient biases beyond object distribution within each sub-environment. In contrast, the
metric learning model better captures differences in object distribution but struggles to incorporate
less task-relevant information.

We have observed that both SSL and metric learning models demonstrate the capability of making
sufficiently accurate inferences for each recognition task in OBSER. We have also observed distinct
differences between these paradigms. SSL models tend to integrate environmental information that
is not directly relevant to the task, while metric learning models focus on task-specific information
for more accurate inference. We claim that SSL and metric learning models each offer unique
advantages in terms of generalization and accuracy. Therefore, applying the appropriate model based
on the given situation of the problem is crucial for achieving effective sub-environment recognition
in agents.

Figure 19: MDS visualization of biomes in Miniature environment. Jensen-Shannon divergence
(JSD) is used as the measure between sub-environments. In SSL models, metrics are similarly
distant across biomes, while in SupCon, distinct metrics reflect the latent class distribution of objects.

D CHAINED INFERENCE OF OBSER FRAMEWORK IN PHOTOREALISTIC
ENVIRONMENT (REPLICA)

D.1 PROBLEM DEFINITION

In this section, we discuss the application of OBSER framework for navigation tasks. Suppose that
a navigation task is defined as locating to the position pqA of a given object xq in a given environment
E := {(µs,Rs)}Ss=1. Then an agent should infer i) the most probable sub-environment in episodic
memory, ii) locate the most similar sub-environment with given memory and iii) find the object in
such sub-environment.

Let an episodic memory M := {(µ̂m, R̂m)}Mm=1 be a set of observations µ̂m := {xmo}Oo=1 and its
locations R̂m := {pmo}Oo=1. Depending on assumptions of the tasks, the location may be unknown
or useless (unseen). With a given query xq , the most probable sub-environment in episodic memory
can be inferred with object existence probability (object-environment):

i) m∗ = argmax
m∈{1,··· ,M}

Ex′∼µ̂m
[KZ(xq, x

′;F)] .

With a reachable region NR(pA; E) := {s|Rs ⊆ reachable(pA, E), s ∈ {1, · · · , S}} with the
location of agent pA, an agent can retrieve the most similar sub-environment which minimizes the
KL divergence (environment-environment) with given memory (µ̂m∗ , ·).

ii) s∗ = argmin
s∈NR(pA;E)

D̂KL(µ̂m∗ ||µs;F).

After the agent reaches to Rs∗ , it explores the region Rs∗ to find a target position which has the
same object with given query xq (object-object):

iii) pqA = argmax
pA∈Rs∗

KZ(xpA , xq;F),

with observation xq
pA

in position pqA.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

D.2 REPLICA ENVIRONMENT

We conduct experiments with Replica environment. We choose Replica environment since it is an
high-quality indoor environment. By following the three consecutive step inferences, each models
should retrieve appropriate object with the given queries. Figure 20 shows the overview of the
procedure of the chained inferences.

Figure 20: Visualization of the object retrieval task with the OBSER framework via three-step
chained inference. A) An episodic memory is formed with object observations extracted from the
scene observations of each sub-environment. B) When given a query, the agent first retrieves the
most probable sub-environment from its episodic memory. C) With the retrieved memory, the agent
finds the most similar sub-environment, D) and finds the most similar object in the sub-environment.

To focus on evaluation of the proposed framework, we utilize the gathered observations as both
episodic memory and environment. We collect 960 random scenes from 48 rooms and extract object
observations from each scene. We conduct experiments with two conditions: seen condition M = E
and unseen condition (

⋃
s R̂s) ∩ (

⋃
m R̂m) = ∅. In unseen condition, we set the episodic memory

only rooms with apartment 0 (consists of 13 rooms) and the environment with others. With 10
different objects as a query, we compute the accuracy of the inference for each model.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

E REPRODUCIBILITY STATEMENT

To validate the proposed method with the ImageNet dataset, we use pretrained weights, which are
provided publicly via GitHub. We also specify the seeds which are used for repeated experiments
in the source code. For the Minecraft environment, we plan to upload the dataset, codes for data
acquisition, and the Miniature map. The trained weights used for the experiments will also be
uploaded.

33

	Introduction
	Related Work
	Definition of sub-environment recognition
	Sub-environment as an object distribution
	Sub-environment recognition
	Kernel density estimation

	(ε,δ) Statistically Separable (EDS) function
	(ε,δ) Statistically Separable (EDS) function
	Optimization of the EDS function

	Object-Based Sub-Environment Recognition (OBSER)
	Object-object recognition: Object similarity
	Object-environment recognition: Object existence probability
	Environment-environment recognition: KL Divergence

	Validation of OBSER framework in multiple sub-environments
	Open-world environment (Minecraft)
	Chained inferences in photorealistic environment (Replica)

	Conclusion
	Theoretical Details and Proofs
	Additional Definitions
	Membership function
	Message Passing

	KL divergence between p(c,x;μ) and p(c,x;μ,F)
	Optimization of (ε,δ) Statistically Separable (EDS) function
	Object existence probability estimation with EDS function
	KL divergence btw two distributions
	Approximation on KL divergence with EDS function

	Experiment Details
	Toy problem
	ImageNet dataset
	Minecraft dataset
	Open-world multi-angled data collection
	Miniature environment multi-angled data collection
	Miniature scenario collection

	Minecraft experiment
	Algorithms of the proposed measures

	Additional Results
	Visualization of toy example
	ImageNet experiment
	EDS values of pretrained models
	Existence probability estimation
	KL divergence estimation

	Minecraft experiment
	EDS values of trained models
	Object-environment retrieval task

	Difference between metric learning and SSL in OBSER

	Chained Inference of OBSER Framework in Photorealistic Environment (Replica)
	Problem definition
	Replica environment

	Reproducibility Statement

