
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SMPLY PRIVATE: FROM MASKS TO MESHES IN AC-
TION RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we introduce MASK2MESH (M2M), a novel privacy-preserving data
augmentation framework that effectively bridges the realism gap seen in synthetic-
based action recognition methods. Traditional privacy-enhancing techniques, such
as feature masking and synthetic data supplementation, tend to degrade data quality
and reduce model performance. In contrast, our method leverages the SMPL-X
model to replace real humans with detailed 3D meshes in video data, preserving the
subtle nuances of human movement and expressions that are crucial for accurate
action recognition. By augmenting real data with superimposed meshes, M2M
simplifies both pre-training and fine-tuning processes, without introducing the
overheads and biases typically associated with synthetic data. Empirical results
show that our approach achieves performance within 0.5% of models trained
on unmodified video data, proving that overlaying meshes leads to no significant
performance loss in action recognition tasks. This work presents a practical solution
for data anonymization without compromising accuracy, offering valuable insights
for more efficient and scalable video data processing techniques in computer vision
and action recognition.

1 INTRODUCTION

Action recognition, the process of classifying human activities based on video sequences, is crucial
for applications such as surveillance, human-computer interaction, and video analytics (Herath et al.,
2017). Traditional action recognition systems rely heavily on extensively annotated datasets to
achieve optimal performance. With advancements in deep learning and the emergence of vision
transformers (ViTs) (Dosovitskiy et al., 2021), pre-training models on large datasets has become
standard practice to enhance accuracy and generalization (Pham et al., 2022). However, these datasets
often include identifiable individuals, raising significant privacy and ethical concerns (Yoo & Choi,
2013).

Data sharing, particularly without obtaining explicit consent from individuals, necessitates robust
de-identification methods. Conventional anonymization techniques, such as blurring and pixelation,
often degrade data quality, thereby reducing its efficacy for action recognition tasks. Moreover, these
methods rely on heuristics and may not effectively balance privacy protection with data utility (Ren
et al., 2018). Ensuring individual privacy while sharing video data can significantly advance research
and development in action recognition and computer vision, where large datasets are imperative.
Privacy-preserving techniques that maintain data quality can enhance the accuracy and reliability
of machine learning models, facilitating more robust and fair applications. Nonetheless, these
methods do not fully address the realism gap introduced by synthetic methods, nor do they completely
safeguard privacy, as variable visuals like skin tone and gender can still be discerned (Zhong et al.,
2023; Dave et al., 2022; Li et al., 2022a).

Our research aims to address these challenges by demonstrating that using mesh bodies can effectively
remove biases and close the realism gap in action video recognition while preserving privacy. In
particular, we: (1) investigate whether meshes can preserve privacy while approximating real-world
data and reducing the realism gap; (2) explore the potential of using meshes to mitigate biases related
to background, scene-object interactions, race, and gender, examining whether they can serve as a
standardization technique for the human form.
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Figure 1: SMPLy Private in Action. Transforming human actions into privacy-preserving 3D
meshes: videos from the Kinetics dataset are preprocessed using masking, inpainting, and body mesh
recovery to replace humans with 3D mesh bodies. The M2M-augmented videos are then used for
pre-training and alignment, with their performance evaluated across various human action recognition
tasks, demonstrating the framework’s ability to maintain high fidelity and ensure ethical data usage.

To do so, we introduced a unified framework, SMPLy Private, that combines mesh-based pretraining
and supervised label-alignment stages to address privacy concerns and maximize action recognition
performance. Unlike prior methods, our approach integrates mesh representations into both pretrain-
ing and alignment, ensuring that privacy-preserving augmented features are fully leveraged across
training phases. Specifically:

* Pre-training: We use mesh-based augmented data for masked autoencoder (MAE) (He et al., 2021)
pre-training, focusing on reconstructing masked video features while incorporating human motion
dynamics.

* Alignment: The same mesh representations are used during the supervised alignment phase to
ensure consistency and maximize transferability to downstream tasks.

This dual-stage process, ensures that the benefits of privacy-preserving data extend seamlessly across
training phases, addressing the limitations of prior approaches that treat pre-training and alignment as
a slightly more disjoint processes.

Our approach is motivated by the premise that mesh bodies can replace humans in video data,
maintaining privacy. However, to illustrate our interest in exploring the impact of mesh bodies on
mitigating gender and race biases, consider an example. Video footage from the National Basketball
Association (NBA) in the 1980s-1990s, predominantly features African-American players. Training
models on these videos to predict contemporary players, who are more diverse, could introduce bias
by predominantly associating basketball with African-American individuals. This concern extends to
gender bias as well (Burns et al., 2019). Employing meshes could standardize player representation
across different demographics, thereby reducing biases and promoting ethical model development.

Our contributions are summarized as follows:
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(1) We introduce MASK2MESH (M2M), a framework that replaces real humans in video datasets
with detailed 3D meshes using the SMPL-X (Pavlakos et al., 2019) model, effectively preserving
privacy without compromising the integrity of action recognition. Our method outperforms existing
privacy-preserving benchmarks and rivals non-privacy-preserving methods, closing the realism gap.

(2) By strategically modifying the k-means clustering algorithm (Lloyd, 1982), we introduce K-
NEXUS, a dataset sampling strategy designed to eliminate action class bias. This enhancement
significantly improves the performance of M2M.

(3) Our targeted study on gender representation in 3D meshes reveals that gender-neutral meshes
improve average performance in action recognition tasks within gender-biased classes, suggesting
that neutral representations can effectively mitigate gender biases while maintaining privacy and
ensuring fairness in automated video analysis.

(4) We demonstrate that models fine-tuned on M2M-augmented data learn representations quicker
due to consistent mesh depictions, offering a new perspective on bridging the realism gap and serving
as a standardization technique for ethical model development across diverse demographic groups.

2 RELATED WORKS

Preservation of Privacy in Action Recognition. Anonymization techniques, such as blurring, down-
sampling, adversarial augmentations, masking faces and other identifiable features, are commonly
adapted strategies to maintain human confidentiality (Dai et al., 2015; Butler et al., 2015; Piergiovanni
& Ryoo, 2020; Zhang et al., 2021; Dave et al., 2022; Wu et al., 2020; Pittaluga et al., 2019) but can
be left susceptible to revealing an individual’s identity based on characteristics such as color and size
(Yang et al., 2022; Oh et al., 2016). We eliminate the human form and replace it with 3D meshes,
thus curating training data that does not have explicitly identifiable forms or features of the original
human.

Body Mesh Recovery. Estimating 3D human body poses and shapes is a complex challenge addressed
by various methods. SMPL-X uses a unified 3D model trained on extensive 3D scans, providing
detailed and realistic representations. HybrIK-X (Li et al., 2023) effectively combines 3D keypoint
estimation with body mesh reconstruction by converting precise 3D joint locations into relative
body-part rotations. However, its application is limited to single individuals, which is not suitable
for videos featuring multiple people. In contrast, our approach utilizes OSX (Lin et al., 2023),
which excels in multi-human mesh recovery. OSX employs a unified encoder-decoder architecture
integrated with a component-aware transformer. This setup not only predicts body parameters but
also enhances segmentation, crucial for accurate face and hand estimation. By eliminating the need
for separate networks and manual post-processing, OSX provides more natural and plausible 3D
meshes. Given its simplicity and effectiveness in handling complex scenes with multiple individuals,
OSX is our chosen method for accurate human body mesh recovery for M2M.

Biases and Synthetic Data. Object-scene bias in video action recognition refers to the tendency
of models to rely on static objects or backgrounds rather than the dynamic actions themselves for
classification (Yun et al., 2020). To address this issue, various augmentation strategies such as loss
augmentation (Choi et al., 2019), action-scene swapping (Zou et al., 2022), and video compositing
(Gowda et al., 2022) are prevalent but not privacy-preserving. One method mitigates this bias by first
learning background information from real data and then temporal information from entirely synthetic
data rather than augmenting components of the actual video (Zhong et al., 2023). Although this
approach is privacy-preserving and focuses on learning background and actions, thereby addressing
object-scene bias, the use of synthetic videos still leaves a desire for the realism gap to be bridged
(Friedman et al., 2023). Instead, our approach returns to augmenting real videos by masking,
in-painting, and overlaying appropriate mesh bodies in place of the original human. The plain
“mannequin-like” mesh bodies remove any discriminatory bias, unlike the synthetic “video-game-like”
humans, which tend to have features such as hair color, gender, skin tone, etc.

Self-Supervised Pretraining in Action Recognition. The training scheme for action recognition
models is crucial to the performance on downstream tasks, given that most data in nature is unlabeled.
Self-supervised learning (SSL) has proven to be a powerful pretraining mechanism in such schemes
(Balestriero et al., 2023). Furthermore, the default choice of encoder has shifted from convolutional
neural networks (CNNs) like temporal segment networks (TSNs) (Wang et al., 2016) and inflated
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3D convolutional networks (I3Ds) (Carreira & Zisserman, 2018) to vision transformers (ViTs)
(Dosovitskiy et al., 2021), as they effectively process frames as patch sequences, enabling the capture
of long-range dependencies and patterns in videos. SSL is typically categorized into four paradigms:
deep metric learning (Chen et al., 2020; Dwibedi et al., 2021; Koohpayegani et al., 2020; Khosla et al.,
2020), self-distillation (Grill et al., 2020; Chen & He, 2021; Caron et al., 2021), canonical correlation
analysis (Bardes et al., 2021; Zbontar et al., 2021; Caron et al., 2020; Ermolov et al., 2021), and
masked image modeling (He et al., 2021; Xie et al., 2022; Chang et al., 2023). We chose the latter
paradigm, employing a masked autoencoder (MAE) training scheme, specifically using VideoMAE
(Wang et al., 2022), which typically incorporates the base vision transformer architecture (ViT-B)
and has previously achieved state-of-the-art performance on benchmarks like UCF101 (Soomro et al.,
2012) and Kinetics (Kay et al., 2017).

3 METHODS

3.1 TRANSITIONING FROM SYNTHETIC TO AUGMENTED

SMPLy Private marks a significant transition over current state-of-the-art approaches like SynAPT and
PPMA, which rely predominantly on fully synthetic data for privacy preservation (Kim et al., 2022;
Zhong et al., 2023). PPMA also follows a two-stage process: MAE pre-training on human-removed
data, then supervised alignment using synthetic and human-removed datasets. However, its reliance on
video game-like synthetic datasets (i.e, SURREACT, PHAV, ElderSim (Varol et al., 2021; De Souza
et al., 2017; Hwang et al., 2023)), which modify entire scenes and objects alongside subjects, limits
their ability to capture nuanced, real-world contextual features present in action recognition datasets
like Kinetics (Jordon et al., 2024; Hao et al., 2024), thereby hindering downstream transferability.
M2M overcomes this limitation by employing mesh-based augmentation to synthesize privacy-
preserving action data while retaining real-world scenes and objects. Instead of creating entirely
new environments, M2M overlays parametric human motion meshes over removed human subjects,
preserving contextual and environmental nuances while obfuscating identifiable human features.
This approach bridges the realism gap, yielding richer temporal and contextual representations
without compromising privacy. The core distinction lies in data treatment. While PPMA integrates
synthetic and human-obfuscated real data to enhance temporal and contextual understanding, its
dependency on synthetic datasets introduces domain shifts away from real-world distributions. In
contrast, M2M maintains real-world contexts by embedding privacy-preserving meshes, achieving
balanced representation. Furthermore, M2M extends alignment by integrating mesh representations
directly into pretraining, seamlessly incorporating temporal and contextual features for improved
downstream transferability.

3.2 DATASET CURATION: K-NEXUS

We use a subset of the Kinetics-400 (Kay et al., 2017) video dataset as our training dataset where we
select 150 classes amongst the 400 along with at most 1,000 videos per class. Previous works (Kim
et al., 2022; Zhong et al., 2023) have used manual or random splits to curate their custom dataset
(Kinetics-150), however, we consider the action class bias in the Kinetics dataset (e.g., actions like
playing violin and playing guitar are visually closer than playing volleyball). To obtain discrete
classes and reduce the bias, we uniquely deploy a k-means clustering algorithm (Lloyd, 1982) to
obtain the final set of classes. Our approach aims to assemble a K-class dataset D∗ of minimal bias
from an existing dataset D with C classes. The class labels of D are denoted by L = {l1, l2, . . . , lC},
where li represents the i-th class of D. Our objective is to find a subset L∗ = {l∗1, . . . , l∗K} such that:
l∗i ∈ L, l∗i ̸= l∗j for i ̸= j, and D∗ has minimal bias. Specifically, we perform the following steps for
label sampling:

(1) Encoding action image-label pairs. Let V be the set of all videos and L, previously defined,
be the set of all class labels. Vlj ⊆ V is then the set of all videos with class label lj ∈ L. For each
video vi ∈ Vlj , we sample a random frame Ivi from vi’s mid-quartile range. We then construct
a set of tuples Θ = {θvi,lj | vi ∈ V, lj ∈ L} where θvi,lj = (Ivi , lj). An embedding function
is then defined as f : θ → Rd, which maps the tuple θ to a d-dimensional embedding space
using a LLaVA image-text encoder (Liu et al., 2023) to accommodate both the image and its
corresponding text label. The embedding of a tuple θvi,lj is given by: evi,lj = f(θvi,lj ). To compute
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the average embedding for class lj , we aggregate the embeddings for the frame-label pairs from
all videos in Vlj : Elj = {evi,lj | vi ∈ Vlj}. Then, the average embedding ēlj for class lj is given
by: ēlj = 1

|Vlj
|
∑

e∈Elj
e. The set of average embeddings for all class labels is then given by:

Ē = {ēlj | lj ∈ L}.

(2) K-means clustering. We then apply a modified k-means clustering algorithm (see Appendix B.1),
that minimizes dataset bias instead of the within-cluster sum of squares, to partition the embeddings
in Ē into K clusters. Let κ(Ē,K) denote the modified clustering operation, resulting in cluster
assignments Ω = {ω1, ω2, . . . , ωC}, where each ωi ∈ {1, 2, . . . ,K}.

(3) Selecting representative labels. For each cluster k ∈ {1, 2, . . . ,K}, we identify the labels that
belong to cluster k. Let Lk = {li | ωi = k} be the set of labels in cluster k. From each cluster k,
we select the representative label l∗k with the highest number of video samples within the cluster:
l∗k = argmaxli∈Lk

|Vli | where Vli is the set of all videos with class label li and |Vli | denotes the
number of videos in Vli . The final set of labels L∗ is then given by: L∗ = {l∗k | k ∈ {1, 2, . . . ,K}}.
Thereby obtaining D∗ (Kinetics-150). Our method, termed k-Means Neural Embeddings eXploited
for Unified Sampling (K-NEXUS), groups similar actions together and selects representative labels to
reduce action class bias in Kinetics1. By doing so, K-NEXUS ensures a more balanced set of labels
and minimizes representation bias across different action categories.

3.3 MASK2MESH AUGMENTATION

Our proposed M2M augmentation framework is designed to achieve privacy-preserving video data
by replacing real humans in videos with 3D mesh representations while preserving essential motion
details. The framework consists of two main modules: (1) the masking and inpainting module; (2)
the body mesh recovery module. We leverage the Kinetics-150 dataset curated in the aforementioned
Section 3.2, resizing all video clips to 432× 240 to standardize the input data. The first step in our
framework involves detecting and removing human figures from the video frames. This process is
divided into two sub-tasks: human detection and in-painting. We utilize the Segment Anything Model
(SAM) (Kirillov et al., 2023), to generate masks for human figures in each video frame. The generated
masks are passed on to the subsequent inpainting module, which involves filling the regions occupied
by human figures with plausible background content. We employ E2FGVI (Li et al., 2022b), an
optical flow-based inpainting method. E2FGVI leverages temporal coherence and spatial context to
generate high-quality inpainted frames, effectively removing humans while maintaining the integrity
of the background.

After removing humans from the video frames, we focus on reconstructing human motion using 3D
mesh models. The body mesh recovery module processes the resized videos to extract detailed 3D
meshes of the human figures. We use the SMPL-X model for its comprehensive representation of the
body, hands, and facial expressions, and the OSX algorithm for mesh recovery due to its multi-human
support. The 3D meshes are then superimposed onto the inpainted frames, replacing real humans
while retaining essential motion cues for accurate action recognition and anonymization. We also
address occlusion challenges (Appendix B.2: Figure 7) involving peripheral objects in the scene. The
augmentation framework (Figure 2) preserves objects typically occluded (on-body and peripheral) by
the recovered mesh while maintaining privacy, handling erroneous occlusions and object integrity in
pose estimation as follows:

(1) Segment the input image to obtain masks for all objects, including the human subject.

(2) Use the human mask to inpaint and remove the subject, creating a clean background.

(3) Do mesh recovery on the original image and overlay the mesh onto the inpainted background.

(4) Extract objects from the original image using their masks and overlay the composite image.

1We compute the relative entropy (Guo et al., 2016) between adjacent frames and select a frame from a
subset with the least change in entropy. However, Kinetics consists of short videos showcasing a single action
class, resulting in minimal entropy change between adjacent frames. Hence, selecting a random frame (from the
mid-quartile range) per video is justified. The performance difference between the two methods was < 0.1%.
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Inpaint Humans

Body Mesh Recovery

Object Masks

Original Video

Human Masks

M2M Augmented Video Occlusion-Aware M2M

Extract Objects

Figure 2: MASK2MESH (M2M) Augmentation. A visual representation of transforming real human
actions into 3D mesh models across various activities for enhanced privacy and bias mitigation in
action recognition. The figure details the flow from the initial video data of the Kinetics dataset,
through masking, inpainting, and body mesh recovery to the final stage of mesh superimposition.

3.4 TRAINING PROCEDURE

Pre-training is vital in video action recognition, enabling models to learn generalized spatial and
temporal features from large, diverse datasets. This foundation enhances the model’s ability to
recognize complex actions with less labeled data and improves performance and efficiency in
downstream tasks (Schiappa et al., 2023). Our training procedure consists of two stages: (1) self-
supervised pre-training utilizing VideoMAE; (2) supervised pre-training to ensure label alignment.

Step 1: Video Masked Autoencoder for Self-Supervised Pre-training. We employ the traditional
training methodology for MAEs (He et al., 2021) tailored explicitly for video data. This entails a
configuration consisting of an encoder and a decoder, in which the model acquires the ability to
approximate masked pixel values within video frames. During this stage, the encoder and decoder
undergo joint training. Once the model is sufficiently trained, the decoder is removed, leaving only
the encoder.

Step 2: Supervised Pre-training for Alignment of Labels. The pre-trained VideoMAE encoder is
then augmented with a linear classification head. The encoder and the linear classifier are trained in
tandem, using the action labels for supervision.

Putting it All Together. M2M serves as the basis of our data preparation process across both the
pretraining and alignment phases. During pretraining, M2M-augmented videos replace the original
dataset, ensuring privacy-preserving inputs to the VideoMAE framework. This augmentation involves
detecting human subjects, masking them, inpainting the occluded regions, and superimposing meshes.
The resulting anonymized dataset allows VideoMAE to learn spatiotemporal representations in a
self-supervised manner. During alignment, the same M2M pipeline is employed to prepare training
data, ensuring the VideoMAE encoder aligns with action recognition labels. This two-step process
ensures that the M2M augmentation is central to both stages of training, as summarized in Table 1.

3.5 DOWNSTREAM EVALUATION

The evaluation of our SMPLy Private models is conducted on six distinct action-recognition tasks.
The UCF101 dataset (Soomro et al., 2012) comprises 13,320 YouTube videos spanning 101 action
classes, showcasing notable diversity in activities performed and camera movement. The HMDB51
(Kuehne et al., 2011) dataset consists of 6,849 movie clips, categorized into 51 distinct action classes.
The Diving48 dataset (Li et al., 2018) is a highly specialized data collection designed for competition
diving. It consists of 18,000 video clips that cover 48 different categories. This dataset aims to
evaluate our models’ ability to handle the challenges posed by the identical background and object
properties commonly found in competitive diving scenarios. Ikea Furniture (Han et al., 2017; Toyer
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et al., 2017) Assembly provides a collection of 111 movies with 14 actors demonstrating assembling
and disassembling furniture. These videos are filmed using the same camera and scenario settings,
ensuring consistency. The videos are categorized into 12 different action categories. The UAV-Human
dataset (Li et al., 2021) comprises 22,476 films recorded by unmanned aerial vehicles, such as drones,
featuring 155 distinct action categories and 119 individuals. Note that from UCF101 to UAV-Human,
the scene-object bias generally decreases.

4 EXPERIMENTS

For technical specifications and training information related to our experiments, see Appendix A.
Note: SMPLy Private refers to our complete end-to-end pipeline, encompassing segmentation, mesh
recovery, inpainting, VideoMAE pre-training, alignment, and downstream evaluation. M2M denotes
the data augmentation method used to generate the meshed dataset (M2M Kinetics).

4.1 MASK2MESH PERFORMANCE

Table 1: M2M Performance Evaluation. Top-1 downstream task accuracy for linear probing
(LP) and finetuning (FT) is reported. The mean FT and LP accuracy over all downstream tasks
across datasets is represented in the final column. The results show that our SMPLy Private model
outperforms, on average, prior benchmarks by at least 0.7% in FT and 0.1% in LP. If K-NEXUS is
used (in teal), the improvement increases to at least 2.8% in FT and 1.4% in LP due to enhanced
feature learning from class discretization. SMPLy Private rivals the VideoMAE trained with real
human data (baseline in violet), reducing the realism gap by 0.5% in FT and 0.2% in LP. With
K-NEXUS, SMPLy Private surpasses this baseline. All other scores are from (Kim et al., 2022; Zhong
et al., 2023). Our choice of alignment was selected based on results from Table 4.

Pre-trained Model Privacy Step 1: MAE Step 2: Align
UCF101 HMDB51 Diving48 IkeaFA UAV-Human Mean

FT LP FT LP FT LP FT LP FT LP FT LP

VideoMAE-Align w/ Real ✗ Kinetics Kinetics 93.4 91.5 73.5 69.8 66.3 19.9 72.2 58.4 34.8 13.8 68.0 50.7

TimeSformer w/ Kinetics ✗ - Kinetics 92.1 89.4 59.5 55.4 46.4 17 61.9 47.7 23.3 8.4 56.6 43.6

TimeSformer w/ Synthetic ✗ - Synthetic 89 82.1 54.4 49.2 44.9 19.2 63.6 45.5 25 13.8 55.4 42.0

TSN w/ RN50 ✓ - Synthetic 83.4 28 54.4 20.9 63.5 10.9 42.7 36 35.6 5.7 55.9 20.3

I3D w/ RN50 ✓ - Synthetic 82.1 27.6 55.7 22.6 55.0 10.1 42.7 33.2 35.1 5.8 54.2 19.9

OmniMAE-Align w/ Synthetic ✓ Synthetic Synthetic 80 26.4 53.3 22.2 57.3 10 41.5 35.7 31.8 5.5 52.8 20.0

PPMA ✓ No Human Kinetics No Human Kinetics + Synthetic 92.5 88.4 71.2 64.9 64.0 21.9 67.9 57.7 38.5 19.3 66.8 50.4

SMPLy Priv. (Ours) ✓ M2M Kinetics M2M Kinetics 93.2 90.9 72.6 69.2 66.0 19.7 71.3 58.2 34.6 14.3 67.5 50.5

SMPLy Priv. w/ K-NEXUS (Ours) ✓ M2M Kinetics M2M Kinetics 94.2 91.6 74.3 70.8 69.0 21.6 72.9 59.5 36.4 15.3 69.6 51.8

Table 1 shows the average downstream performance on various classification tasks2 with multiple pre-
trained models, including our proposed SMPLy Private3 and SMPLy Private with K-NEXUS. Models
pre-trained on conventional large-scale real video data with humans typically have a performance
edge over models trained with synthetic data due to a realism gap. We establish such a baseline
by pre-training and then aligning VideoMAE with Kinetics-150 (first row in violet). Other privacy-
preserving baselines present a significant realism gap (non-bolded and non-colored). However, with
SMPLy Private and the use of our M2M-augmented dataset (M2M Kinetics), the average downstream
performance gap from the human baseline is reduced to 0.5% with FT and 0.2% with LP.

The performance gap is attributed to SMPLy Private performing slightly worse than the human
baseline on tasks with high scene-object bias, such as UCF101 and HMDB51. This is likely because
the inclusion of humans in the Kinetics videos helps the model better learn both scene-object cues and
action features. Compared to the performance of “OmniMAE-Align w/ Synthetic,” SMPLy Private
narrows the realism gap as it achieves a level of performance comparable to the “VideoMAE-Align
w/ Real" baseline. Both “TSN with RN50” and “PPMA” utilize synthetic data for model training,
yet they fall short of “VideoMAE-Align with Real” in downstream performance. With K-NEXUS,

2For fine-grained classification results, refer to Appendix C.
3Without K-NEXUS we use the Kinetics-150 classes as outlined by Zhong et al. (2023).
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SMPLy Private further improves over “VideoMAE-Align w/ Synthetic” by 1.6% with FT and 1.1%
with LP.

While Table 1 also demonstrates the impact of M2M across diverse downstream tasks, highlighting
its integration into both pretraining and alignment stages, our approach outperforms PPMA in general.
This showcases SMPLy Private’s ability to reduce the performance gap with real-human pretraining.
The results underscore M2M’s contributions in bridging the realism gap, as evidenced by the improved
accuracy in high scene-object bias tasks such as UCF101 and HMDB51. This improvement stems
directly from the M2M augmentation, which provides a more robust representation of human actions
during both MAE pretraining and supervised alignment. By contrast, “PPMA” relies on synthetic data
and human-removed videos independently, limiting its ability to fully capture temporal dynamics.

Overall, SMPLy Private with K-NEXUS, which uses M2M Kinetics in both pre-training and alignment
steps, achieves the best performance among privacy-preserving models, reducing the performance
gap with the human-baseline model to minimal levels and even surpassing it. This shows the
effectiveness of our approach in achieving high performance through pre-trained representations for
privacy-preserving action recognition without the need for synthetic data.

4.2 AUGMENTATION STRATEGIES

The SMPL-X model provides a more holistic representation of the person’s body than most segmen-
tation strategies. This is due to the inherent property of SMPL-X to fit an entire human mesh to
the bodies visible in the videos while preserving structural components. The segmentation methods
are only responsible for laying a monocolored film outlining a person without any structural consid-
erations. Unlike using only segmentation, the preservation of fine-grained details in the structure
ensures that hand and finger movements remain distinct and traceable, even when they are close
to or overlapping with the body (Appendix B.2: Figure 5). The depth information provided by
the 3D nature of the mesh allows for a better understanding of spatial relationships between body
parts, enhancing the overall representation. Hence, the ≈ 4% improvement from solely using SAM
segmentation as seen in Table 2. We incorporate the E2FGVI inpainting technique to remove humans

Table 2: Analysis of Methods. This table compares the impact of different combinations of methods
(Row 1: SAM segmentation, Row 2: OSX mesh recovery, Row 3: E2FGVI inpainting) on privacy
and downstream accuracy across various datasets.

Segmentation Mesh Recovery Inpainting Privacy
Downstream Accuracy (LP Only)

UCF101 HMDB51 Diving48 IkeaFA UAV-Human Mean

✓ ✗ ✗ ✓ 86.6 61.4 18.9 53.9 13.0 46.8

✗ ✓ ✗ ✗ 91.1 69.4 20.0 58.3 14.6 50.7

✓ ✓ ✓ ✓ 90.9 69.2 19.7 58.2 14.3 50.5

from video streams. While direct application of mesh recovery to videos is feasible, integrating an
inpainting step markedly improves the privacy-preserving capabilities of our framework. Absent
this inpainting process, residual demographic information can still be discerned, compromising
both the privacy and the unbiased nature of our framework (Appendix B.2: Figure 6). Although
omitting inpainting yields a higher performance (by only 0.2%), applying inpainting ensures that
our pipeline remains fully privacy-preserving. We hypothesize that the observed higher performance
may stem from the retention of features, which, although insufficiently masked, provide additional
discriminative features that aid the learning process of the model. This highlights a trade-off between
performance and privacy – yet in this case, the privacy gains significantly outweigh the minuscule
performance gains. As an aside, note that in a resource-constrained setting, OpenCV’s implementa-
tion of Navier-Stokes inpainting (Bertalmio et al., 2001; Itseez, 2015) can be used. As inpainting is
an intermediate step, any performance loss would be minimal.
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Table 3: Gender-Action Bias Analysis. We show the performance on gender-biased tasks using real
human data vs. 3D meshes. Neutral meshes achieve the highest average accuracy, demonstrating
effective mitigation of gender-action bias.

Method Women in Men-Biased (FT) Men in Women-Biased (FT) Mean

VideoMAE w/ real humans 81.4 78.8 80.1

SMPLy Private w/ male meshes 82.3 83.3 82.8

SMPLy Private w/ female meshes 83.4 82.5 82.9

SMPLy Private w/ neutral meshes 83.2 83.1 83.1

4.3 TO GENDER OR NOT TO GENDER?

In this section, we analyze the impact of using 3D meshes on gender-action bias in action recognition
tasks4. Specifically, we compare the performance of a model trained on real human data from
Kinetics-150. with those trained on our augmented meshed data (M2M Kinetics). We conduct
experiments on a specifically curated split of the Kinetics dataset in which women perform male-
dominated tasks and men perform female-dominated tasks. The results are summarized in Table
3. Training on real human data revealed significant gender-action bias, with lower performance
on “men in women-biased” tasks compared to “women in men-biased” tasks. In contrast, models
trained on 3D meshes showed improved performance. Male meshes increased accuracy for “men
in women-biased” tasks, while female meshes for “women in men-biased” tasks. Neutral meshes
performed consistently well across both subsets. Overall, using 3D meshes outperformed the real
human data approach, with higher average scores across all mesh-based methods. This indicates that
3D meshes help mitigate gender-action bias by offering a gender-agnostic representation.

4.4 THE TORTOISE & THE HARE

Figure 3: Representation Learning Efficiency Comparison. In the initial stages of training, the
model trained with M2M Kinetics (teal in Table 1) demonstrates faster representation learning
compared to the model trained on Kinetics (violet in Table 1), which catches up in the later stages.

Figure 3 demonstrates that our model, fine-tuned from each pre-training checkpoint on M2M-
augmented data, learns representations quicker in earlier stages because humans are consistently
depicted as meshes. This consistency allows the model to isolate and understand the actions performed
by the meshes, whereas, in real data, the varied depictions of humans make representation learning
more challenging. It is observed that our model learns representations faster for longer with higher
scene-object bias as indicated by the descending size of the shaded areas from UCF101 to UAV-
Human (left to right). This showcases another perspective on further closing the realism gap; however,

4See Appendix D for more details on this experiment. We used neutral meshes in all our main experiments.
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the “tortoise” (VideoMAE trained on real human data) eventually catches and overtakes the “hare”
(SMPLy Private), typically in the latter stages of training.

4.5 IN THE ALIGNMENT ARENA: HUMAN VS. MESH

Table 4: Alignment Study for Humans and Meshes. We present a comparative analysis of various
alignment strategies following the pre-training of our model on the M2M Kinetics dataset. The
alignment datasets under examination include the original Kinetics, Kinetics with humans removed,
and M2M Kinetics. Our findings indicate that the M2M Kinetics dataset exhibits the smallest absolute
difference, |∆|, from the Kinetics baseline (in violet), thereby further reducing the realism gap.

Step 1: MAE Step 2: Align Privacy
UCF101 HMDB51 Diving48 IkeaFA UAV-Human Mean |∆| from “real”

FT LP FT LP FT LP FT LP FT LP FT LP FT LP

No Human Kinetics Synthetic ✓ 91.4 81.9 71.5 62.0 65.3 21.8 67.3 57.7 38.3 20.8 66.7 46.0 1.1 4.7

M2M Kinetics

No Human Kinetics ✓ 91.5 87.3 68.5 61.2 63.4 18.4 69.9 51.5 32.3 12.2 65.1 46.1 2.7 4.6

Kinetics ✗ 93.7 92.1 73.1 69.4 66.2 19.7 71.5 58.4 34.3 13.8 67.8 50.7 0.0 0.0

M2M Kinetics ✓ 93.2 90.9 72.6 69.2 66.0 19.7 71.3 58.2 34.6 14.3 67.5 50.5 0.3 0.2

In Table 4, we examine the effects of various alignment techniques following pre-training with the
M2M Kinetics dataset. Our findings indicate that when the dataset is exposed only to backgrounds (the
no-human scenario, involving only inpainting without mesh recovery), performance is significantly
lower compared to when actual humans are shown to the model. This approach notably falls short of
the Kinetics baseline (in violet) when the model is exposed to real humans during the alignment phase.
However, when our pre-trained model is exposed to the M2M Kinetics dataset (with both inpainting
and mesh recovery), we approximate the performance when compared to the Kinetics baseline (|∆|
is 0.3% and 0.2% for FT and LP respectively). This demonstrates that the mesh recovery technique
in videos is effective in understanding real human actions, thus bridging the realism gap.

5 CONCLUSION

This study presents M2M, a framework that replaces humans in videos with detailed 3D SMPL-X
meshes, ensuring privacy while maintaining action recognition accuracy. By augmenting real data,
M2M avoids synthetic biases Kim et al. (2022). Models trained on M2M-augmented data outperform
privacy-preserving benchmarks and rival non-privacy-preserving ones. A gender representation
analysis shows gender-neutral meshes improve performance in biased classes. Additionally, M2M-
augmented data accelerates representation learning, bridging the realism gap and standardizing action
recognition datasets.

Limitations & Future Work. We perform image-instance segmentation without considering tempo-
ral relationships between frames. However, given that our data is video-based, an optimal approach
would involve video-instance segmentation. This would likely yield more accurate masks and im-
proved performance, mitigating issues such as transient mesh disappearances. Lastly, our present
method focuses on body mesh recovery for individual video frames, whereas this process could be
extended to entire videos to incorporate temporal relations. Most contemporary approaches to body
mesh recovery leverage 3D pose estimation from videos, a complex problem (Needham et al., 2021).
Accurately recovering 3D meshes in videos is challenging but could significantly reduce glitches
and enhance performance. We can better capture and use temporal information by replacing frame-
by-frame processing with video-level analysis. Lastly, we acknowledge the potential of the MANO
model (Romero et al., 2017), which is tailored for hand-specific tasks in egocentric datasets such
as Something-Something (Goyal et al., 2017) and EPIC-KITCHENS (Damen et al., 2018). These
datasets primarily involve hand and wrist actions, presenting opportunities for further exploration.

Ethical Implications. By replacing real individuals in video footage with 3D meshes, M2M addresses
privacy concerns and aligns with regulations like GDPR (Union, 2016) and ADPPA (Congress, 2022).
It mitigates risks of identity theft and privacy invasion, while reducing biases related to race and
gender. However, its capability to generate highly realistic video data could also be repurposed for
more invasive surveillance systems, enhancing monitoring capabilities in workplaces or public areas
and infringing on individual privacy and autonomy.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein, Flo-
rian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, Avi Schwarzschild, Andrew Gordon
Wilson, Jonas Geiping, Quentin Garrido, Pierre Fernandez, Amir Bar, Hamed Pirsiavash, Yann
LeCun, and Micah Goldblum. A cookbook of self-supervised learning, 2023.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

M. Bertalmio, A.L. Bertozzi, and G. Sapiro. Navier-stokes, fluid dynamics, and image and video
inpainting. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. CVPR 2001, volume 1, pp. I–I, 2001. doi: 10.1109/CVPR.2001.990497.

Kaylee Burns, Lisa Anne Hendricks, Kate Saenko, Trevor Darrell, and Anna Rohrbach. Women also
snowboard: Overcoming bias in captioning models, 2019.

Daniel J Butler, Justin Huang, Franziska Roesner, and Maya Cakmak. The privacy-utility tradeoff
for remotely teleoperated robots. In Proceedings of the tenth annual ACM/IEEE international
conference on human-robot interaction, pp. 27–34, 2015.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural
Information Processing Systems (NeurIPS), 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Herve Jegou, Piotr Bojanowski, Armand Joulin,
Matthijs Douze, Matthieu Cord, and Ivan Laptev. Emerging properties in self-supervised vision
transformers. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
2021.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset, 2018.

Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang,
Kevin Murphy, William T. Freeman, Michael Rubinstein, Yuanzhen Li, and Dilip Krishnan. Muse:
Text-to-image generation via masked generative transformers, 2023.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In Proceedings of the 37th International Conference
on Machine Learning (ICML), 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Jinwoo Choi, Chen Gao, Joseph C. E. Messou, and Jia-Bin Huang. Why can’t i dance in the mall?
learning to mitigate scene bias in action recognition, 2019.

United States Congress. American data privacy and protection act, 2022. URL https://www.
congress.gov/bill/117th-congress/house-bill/8152/text.

Ji Dai, Behrouz Saghafi, Jonathan Wu, Janusz Konrad, and Prakash Ishwar. Towards privacy-
preserving recognition of human activities. In 2015 IEEE International Conference on Image
Processing (ICIP), pp. 4238–4242. IEEE, 2015.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos
Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray. Scaling
egocentric vision: The epic-kitchens dataset, 2018. URL https://arxiv.org/abs/1804.
02748.

Ishan Rajendrakumar Dave, Chen Chen, and Mubarak Shah. Spact: Self-supervised privacy preserva-
tion for action recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 20164–20173, 2022.

11

https://www.congress.gov/bill/117th-congress/house-bill/8152/text
https://www.congress.gov/bill/117th-congress/house-bill/8152/text
https://arxiv.org/abs/1804.02748
https://arxiv.org/abs/1804.02748


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

CR De Souza, A Gaidon, Y Cabon, and AM Lopez Pena. Procedural generation of videos to train
deep action recognition networks. In CVPR, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

Debidatta Dwibedi, Pavel Tokmakov, Ishan Misra, and Martial Hebert. Little help, big help: Simple
unsupervised object detection. arXiv preprint arXiv:2102.09084, 2021.

Aleksandr Ermolov, Xiangyi Kong, Mikhail Petrov, and Cristian Sminchisescu. Whitening for
self-supervised representation learning. arXiv preprint arXiv:2007.06346, 2021.

Eli Friedman, Assaf Lehr, Alexey Gruzdev, Vladimir Loginov, Max Kogan, Moran Rubin, and Orly
Zvitia. Knowing the distance: Understanding the gap between synthetic and real data for face
parsing, 2023.

Shreyank N Gowda, Marcus Rohrbach, Frank Keller, and Laura Sevilla-Lara. Learn2augment:
Learning to composite videos for data augmentation in action recognition, 2022.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzyńska, Susanne Westphal,
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APPENDIX

A TECHNICAL SPECIFICATIONS

General Details. All our model training is distributed over NVIDIA 8×A100-80GB (SXM). In
all experiments, we employ the ViT-B backbone and to uphold rigorous privacy preservation, we
develop conduct training without pre-trained weights from ImageNet. We pre-train VideoMAE for
200 epochs using a tube masking technique that masks 90% of image patches to enhance learned
video representations. After pre-training, we remove the VideoMAE decoder, retaining only the
encoder. For label alignment, we conduct supervised pre-training for 50 epochs using the same subset
of 150 Kinetics classes as SynAPT (Kim et al., 2022). For downstream evaluation, we fine-tune (FT)
the entire network or train a linear probe (LP) for 30 epochs. Both steps use video inputs as 4D
tensors (C, T,H,W ), with C = 3 (RGB channels), T = 16 frames, and spatial dimensions H and
W as the video input is resized to 224× 224 and normalized.

Table 5: Summary of Training Details.

General Specifications
GPU Configuration NVIDIA 8×A100-80GB (SXM)
Model Backbone ViT-B (12 encoder blocks, 768 emb. dim.; 4 decoder blocks, 384 emb. dim.)
Input Tensor Shape 3× 16× 224× 224
Normalization µ = [0.485, 0.456, 0.406], σ = [0.229, 0.224, 0.225]

Self-Supervised Pre-Training
Pre-training Method VideoMAE
Epochs 200 (10 warm-up)
Masking Strategy Tube, ratio = 0.9
Batch Size 128
Patch Size 2× 16× 16
Loss Function MSE
Optimizer AdamW
Learning Rate (Max) 0.0008
Learning Rate Scheduler Cosine

Supervised Label Alignment
Epochs 50 (6 warm-up)
Loss Function Cross-Entropy
Optimizer AdamW
Learning Rate (Max) 0.002

Downstream Evaluation
Adjustment Epochs (FT or LP) 30

Step 1. During self-supervised pre-training, we use mean squared error (MSE) pixel reconstruction
loss between the original and reconstructed frames. The batch size is 128, and patch sizes are
2 × 16 × 16. We use the AdamW optimizer (Loshchilov & Hutter, 2019) with a cosine learning
rate scheduler (Loshchilov & Hutter, 2017), a maximum learning rate of 0.0008, and a 10-epoch
warm-up.

Step 2. For supervised label alignment, we add a final linear head to the ViT-B model for supervised
training. The model shares an encoder with distinct linear classifiers for each dataset, using cross-
entropy loss to measure discrepancies between the predicted and actual action categories. We train
the model for 50 epochs with the AdamW optimizer and a cosine rate scheduler with a maximum
learning rate of 0.002 and a 6-epoch warm-up.
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B DATASET AND METHODOLOGY CONSIDERATIONS

B.1 MODIFIED CLUSTERING OPERATION AND DEFINITIONS

The K-NEXUS clustering operation, κ(Ē,K), aims to minimize the within-cluster bias and pairwise
similarity between class embeddings. The clustering operation seeks to minimize the following
objective, adapted from (Li et al., 2018), which incorporates both bias and pairwise similarity:

argmin
ω

K∑
k=1

 ∑
ēi,ēj∈ωk

i̸=j

F(ēi, ēj) +
∑
ē∈ωk

B(D, ē)


Here, B(D, ē) is the bias measurement for a dataset D using class embedding ē and is defined as:

B(D, ē) = ln(M(D, ē))− ln(Mchance)

where M(D, ē) represents the performance of the representation ē on dataset D, and Mchance is the
performance at the chance level, defined as:

Mchance = min
ē

M(D, ē)

Pairwise Similarity Calculation. For each class embedding ēi, we calculate the average pairwise
similarity with all other class embeddings ēj (where i ̸= j). Let F(ēi, ēj) represent the similarity
function (e.g., cosine similarity or entropy) between embeddings i and j. The average similarity for
class ci is defined as:

Mi =
1

C − 1

C∑
j=1
j ̸=i

F(ēi, ēj)

where C is the total number of classes. This value Mi represents how similar class ci is to all other
classes in the dataset.

Adjusted Bias Calculation. We adjust the bias Bi for class ci by comparing the pairwise similarity
Mi to a baseline chance value Mchance. The adjusted bias is given by:

Bi = ln (Mi)− ln (Mchance)

This bias Bi accounts for the relationships between class ci and other classes, and it is used to refine
the bias measurements in the clustering process.

Centroid Calculation. The centroid ēk of cluster ωk is defined as the mean of the bias measurements
of all points in ωk:

ēk =
1

|ωk|
∑
ē∈ωk

B(D, ē)

Clustering Steps. This involves the following iterative steps:

1. Assignment step. Assign each point ēi to the cluster with the nearest centroid based on
both the pairwise similarity and bias measurements:

ω
(t+1)
k =

ēi : B(D, ē
(t)
k ) +

∑
j ̸=i

F(ēi, ēj) ≤ B(D, ē
(t)
j ) +

∑
l ̸=j

F(ēj , ēl),∀j = 1, 2, . . . ,K
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2. Update step. Calculate the new centroids for each cluster:

ē
(t+1)
k =

1

|ω(t+1)
k |

∑
ēi∈ω

(t+1)
k

B(D, ēi)

Furthermore, the optimization problem to select a subset of classes from the original dataset, as laid
out in (Li et al., 2018), presents an exponential time complexity of O(2n). It is possible to converge
to a solution for the selection of a small number of classes. However, it lacks feasibility for our case
(K = 150 to obtain the Kinetics-150 dataset). Our K-NEXUS approach, converges while having the
time complexity of O(n · k · t), where n is the number of classes, k is the number of clusters, t is the
number of update steps. Thus, we are able to perform class sampling for larger values with a linear
time complexity.

(a) Example class clusters excluded by K-NEXUS.
The algorithm is designed to identify and exclude
categories with overlapping visual cues or semanti-
cally broad definitions. It systematically excludes
classes prone to ambiguity or high overlap within
the embedding space (e.g., "answering questions" vs.
"news anchoring" or "biking through snow" vs. "rid-
ing a mountain bike"). K-NEXUS considers these as
"fine-grained" categories. Otherwise, visually distinct
and contextually unique categories (e.g., "archery,"
"yoga") are retained.

(b) Example class clusters included by K-NEXUS.
The algorithm is designed to identify and include cat-
egories with clearly separable visual cues or semantic
definitions. It systematically includes classes that are
easy to discretize within the embedding space (e.g.,
"yoga" vs. "archery" or "bowling" vs. "catching fish").
K-NEXUS considers these as "coarse-grained" cate-
gories. Otherwise, visually similar and contextually
related categories (e.g., "eating watermelon," "eating
ice cream") are discarded.

Figure 4: Examples of class clusters identified and processed by K-NEXUS.

In this work, we consider the K-NEXUS-selected classes as "coarse-grained" because they represent
distinct, well-separated actions that rely less on subtle pose variations or fine contextual cues. These
categories are designed to evaluate whether the our proposed framework can effectively learn high-
level action semantics without relying on scene or background context. In contrast, "fine-grained"
classes involve subtle distinctions, such as variations in hand positioning or object interactions, which
present challenges even for fully-supervised models trained on real videos. For this reason, we
classify the remaining 250 classes as "fine-grained." Our focus is not on hierarchical annotations or
subtle interclass differences across datasets, but rather on the model’s ability to handle categories
with varying reliance on pose-level distinctions versus scene or temporal context. K-NEXUS classes
are intentionally chosen to represent distinct, easily separable actions that primarily depend on human
pose, making them coarse-grained for privacy-preserving mesh analysis. See Appendix C for more.
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B.2 SMPLY FAILING

Figure 5: Only Segmentation Fails. The action of clapping is visually hidden when using only a
segmentation mask but efficiently maintained using 3D mesh recovery post masking and inpainting.

Figure 6: Only Mesh Recovery Fails. Employing only meshes exposes a significant chunk of the
woman’s face, leading to privacy leakage. SMPLy Private, which incorporates both inpainting and
3D meshes, preserves privacy.

Figure 7: Failure Cases. SMPL mesh augmentation without M2M suffers when human joints are
occluded. The pottery wheel, music stand, and drums are partially obscured by the superimposed
mesh, demonstrating the challenges in handling occlusions within the scene.
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Figure 8: MASK2MESH is occlusion aware. In our investigation, we had challenges related to
occlusions (Figure 7) using just SMPL meshes. To quantify this issue, we manually reviewed 20
randomly selected videos per class from Kinetics-150. Our findings indicated that occlusion-related
difficulties were present in 15.5% of the videos. In these cases, the occlusions involved informative
objects or backgrounds that contributed to learned features and supervisory signals. An additional
4.2% of cases also had occlusions; however, these did not involve the occlusion of significant objects
or scenes essential to the video’s labels (i.e., potentially irrelevant parts of the video were occluded,
not the major components). Upon using the M2M occlusion-aware augmentation framework (Figure
2), both occlusion rates fell to 1.6% and 0.6% respectively (with 100% interrater reliability).

C FINE-GRAINED VS. COARSE-GRAINED ACTION CLASSIFICATION

Table 6: Comparison of fine-grained and coarse-grained classification performance on Kinetics.
F-scores are reported as the average of mean cluster F-scores for fine-grained classification and
as a simple mean F-score for coarse-grained classification. Refer to the end of Appendix B.1 for
definitions on what is considered "fine-grained" and "coarse-grained" in this context.

Method Fine-grained Coarse-grained

SMPLy Private w/ K-NEXUS 53.3 ± 0.12 76.9

SMPLy Private 69.5 ± 0.08 75.7

We specifically investigated the performance of our approach on both fine-grained and coarse-grained
classification tasks. Given that K-NEXUS is designed to curate a set of classes that are coarse-
grained, it was crucial to examine how well our model generalizes across fine-grained action classes
within these broader categories. To this end, we clustered the Kinetics-400 classes into 150 coarse
groups using K-NEXUS and then evaluated the accuracy within these clusters, where the classes are
fine-grained. For the fine-tuning phase, we sampled 10% of these clusters (15 in total, filtering for
clusters with only one class) and separately fine-tuned our core model on these selected clusters. We
report the top-1 mean F-score to account for class imbalance, providing a more nuanced view of the
model’s performance.

We saw a noticeable performance drop in fine-grained classification when using K-NEXUS splits,
with the F-score (53.3). This drop highlights the inherent challenge of fine-grained classification under
the K-NEXUS framework. In contrast, when we repeated the experiments using a model pre-trained
on random splits (Zhong et al., 2023), the fine-grained classification achieved a significantly higher
F-score of 69.5. This suggests that while K-NEXUS is beneficial for coarse-grained classification
(F-score > 75), it will introduce limitations for fine-grained tasks. However, it is important to note
that for coarse-grained classification, the top-1 F-score on the Kinetics-400 test set for the 150 classes
was greater when using K-NEXUS splits compared to random splits. This finding underscores the
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strength of K-NEXUS in reducing class bias and enhancing generalization across diverse action
categories, albeit with some trade-offs in fine-grained classification scenarios.

D ELABORATION ON GENDER STUDY

D.1 DIFFERENCES BETWEEN MESH TYPES

The male, female, and neutral meshes differ primarily in their body shape and proportions, which are
modeled to reflect biological and anatomical differences between the genders. The male and female
meshes are gender-specific and trained on data tailored to their respective shapes, providing accurate
body proportions and capturing gender-specific features like broader shoulders for males or wider
hips for females. The neutral mesh is designed to be a compromise between male and female body
shapes, enabling its use when the gender is unknown or ambiguous.

D.2 HOW BIASED CLASSES WERE SELECTED

We chose women and male-biased classes based the default SMPL-X fitting method as it adapts to
the human form within the real data. For instance, if a female human is seen in the video frame, the
mesh overlayed will be of the female type. Upon manual inspection, during the process we undertook
in Figure 8, we looked at the flipped and neutral cases too just by changing the gender parameter of
the mesh for such mesh-fitted videos. Hence, this allowed us to easily categorize classes within the
context of “Women in Men-Biased" or “Men in Women-Biased".

21


	Introduction
	Related Works
	Methods
	Transitioning from Synthetic to Augmented
	Dataset Curation: K-Nexus
	Mask2Mesh Augmentation
	Training Procedure
	Downstream Evaluation

	Experiments
	Mask2Mesh Performance
	Augmentation Strategies
	To Gender or Not To Gender?
	The Tortoise & The Hare
	In the Alignment Arena: Human vs. Mesh

	Conclusion
	Technical Specifications
	Dataset and Methodology Considerations
	Modified Clustering Operation and Definitions
	SMPLy Failing

	Fine-grained vs. Coarse-grained Action Classification
	Elaboration on Gender Study
	Differences Between Mesh Types
	How Biased Classes were Selected


