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Fig. 1. Relationships between the development of text watermarking techniques and LLMs.

1 INTRODUCTION

Text watermarking involves embedding unique, imperceptible identifiers (watermarks) into textual
content. These watermarks are designed to be robust yet inconspicuous, ensuring that the integrity
and ownership of the content are preserved without affecting its readability or meaning. Historically,
text watermarking has played a crucial role in various domains, from copyright protection and
document authentication to preventing plagiarism and unauthorized content distribution [41]. With
the advancement of Large Language Models (LLMs), both the techniques and application scenarios
of text watermarking have seen significant development. As shown in Figure 1(a), this primarily
includes the construction of enhanced text watermarking algorithms using LLMs, the application
of existing text watermarking algorithms to LLMs, and the exploration of LLM watermarking that
directly embeds watermarks during text generation. The flourishing development of LLMs has
propelled a thriving research landscape within the realm of text watermarking, as depicted in
Figure 1(b). Especially with the advent of ChatGPT, text watermarking has notably surged into a
research fervor. Specifically, this paper surveys the interplay between LLMs and text watermarking.

1.1 Why is Text Watermarking Beneficial for LLMs?

In recent years, LLMs have made significant progress in the field of natural language processing. As
the parameter count of these LLMs continues to increase, their ability to understand and generate
language has also substantially improved. Notable examples include GPT [80], BART [50], T5
[82], OPT [120], LaMDA [97], LLaMA [100], and GPT-4 [71]. These LLMs have achieved excellent
performance in a variety of downstream tasks, including machine translation [16, 31, 31, 128],
dialogue systems [36, 64, 90, 97], code generation [69, 70, 103, 111], and other tasks [51, 52, 96, 121]. A
recent work even suggests that GPT-4 is an early (yet still incomplete) version of an artificial general
intelligence (AGI) system [10]. However, the utilization of LLMs introduces several challenges:

e Misuse of LLMs: LLMs can be exploited by malicious users to create misinformation [13] or
harmful content [76] and spread on the internet.

o Intellectual Property Concerns: Powerful LLMs are vulnerable to model extraction attacks,
where attackers extract large amounts of data to train new LLMs [7].
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Adding watermarks to LLM-generated text effectively alleviates these issues. Watermarks enable
tracking and detection of LLM-generated text, helping to control potential misuse. Training new
LLMs with watermarked text can embed these watermarks, mitigating model extraction attacks.

1.2 Why are LLMs Beneficial for Text Watermarking?

A key challenge in text watermarking is to embed watermarks without distorting the original text’s
meaning or readability. Traditional methods often fail to modify text without altering its semantics
[4, 63, 98]. The necessity for algorithms to comprehend and control text semantics contributes to
this difficulty. However, LLMs significantly alter this landscape. Due to their advanced grasp of
language semantics and context, they facilitate sophisticated watermarking approaches that embed
watermarks with minimal impact on the text’s inherent meaning [2, 119]. This integration results
in more effective and subtle watermarking techniques, preserving the text’s original intent while
embedding essential watermark features.

1.3 Why a Survey for Text Watermarking in the Era of LLMs?

Text watermarking technology and LLMs can effectively enhance each other. The interconnection
of these two technologies includes the following aspects:

e Watermarking LLM-Generated Text: Text generated by LLMs can be watermarked using
text watermarking algorithms [9, 68, 79, 85, 114, 115, 117].

¢ Embedding Watermarks via LLMs: LLMs themselves can be utilized to embed watermarks
in texts [2, 119].

e Direct Integration in Text Generation: Watermark algorithms can be directly incorporated
during the text generation process of LLMs [42, 56, 57, 84, 110, 124].

However, comprehensive studies exploring text watermarking in the era of LLMs are lacking.
Existing surveys predominantly focus on watermarking techniques developed before the advent
of LLMs [3, 41]. In this study, we present the first comprehensive survey of text watermarking
algorithms in the context of large language models.

This survey is structured as follows: Section 2 introduces text watermarking definitions
and key algorithm properties. Section 3 and Section 4 address two primary text watermarking
categories: for existing text and for LLM-generated text. Section 5 discusses evaluation metrics
for these algorithms, including detectability, quality impact and robustness under watermark
attacks. Section 6 explores application scenarios, namely copyright protection and Al-generated
text detection. Section 7 examines ongoing challenges and potential future research avenues in text
watermarking. The survey concludes in Section 8.

2 PRELIMINARIES OF TEXT WATERMARKING

To facilitate the introduction of various text watermarking algorithms as well as its evaluation
methods in subsequent sections, this section presents the definition of text watermarking algorithms
and outlines the characteristics that an excellent text watermarking algorithm should possess. The
taxonomy of text watermarking algorithms is also introduced in this section.

2.1 Text Watermarking Algorithms

A text watermarking algorithm typically comprises two components: a watermark generator A,
and a watermark detector 9. The watermark generator A takes a text x and a watermark message
w as inputs and outputs a watermarked text t, expressed as A(x, w) = t.

This watermarked text t is either in a different form but semantically equivalent to the original
text x (§3) or a newly generated text in response to x (§4), particularly in contexts like prompts for
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Fig. 2. This figure offers a overview of text watermarking techniques. It categorizes watermarking into two
main types: for Existing Text and for LLMs.

LLMs. The watermark message, denoted as w, can be a zero-bit watermark, signifying merely its
presence or absence, or a multi-bit watermark, embedding detailed, customized information. The
phrase "watermark payload" denote the information volume conveyed by w.

For the watermark detector D, its input is any text t, and its output is its predicted watermark
message for the text, denoted as D(t) = w. If the output is None, it implies that the text contains
no watermark information.

2.2 Connection with Related Concepts

To further clarify the scope of text watermarking discussed in this work, this section distinguishes
the mentioned text watermarking from other related concepts.

e Steganography: Both steganography [87] and text watermarking are important methods of
information hiding. While similar, steganography typically requires higher capacity for hidden
information, whereas watermarking prioritizes robustness to further text modifications.

e LLM Watermarking: The concept of LLM watermarking includes all forms of watermarking
added to LLMs, such as their parameters [102], output embeddings [75], and text [42]. This work
focuses solely on watermarking applied to the output text of LLMs.

2.3 Key Characteristics of Text Watermarking Algorithms

To further enhance understanding of the text watermarking concept, this section introduces two
key characteristics: low impact on text quality and robustness to watermark removal attacks.
Low Impact on Text Quality. The quality of text should not substantially decrease after adding
a watermark. Let A(x, 0) represent the text generated without a watermark. When x is the target
text (§3), the output remains x. For a prompt given to a LLM (§4), it denotes the LLM’s output
without a watermark. An effective watermarking algorithm ensures minimal impact on text quality:

Yw;, R(A(x,0), A(x, w;)) <6, (1)

where R is a function evaluating text quality from multiple perspectives, as will be discussed in
Section 5.  represents a threshold. If the difference in the evaluated scores of two texts is less than
this threshold, they are considered to be of similar quality.
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Fig. 3. Taxonomy of text watermarking methods.

Robustness to watermark removal attack. For a text watermarking algorithm, it is crucial
that the watermarked text can still be detected after some modifications. We use an operation U to
denote the watermark removal operations, which will be detailed in Section 5. If a watermarking
algorithm is robust against watermark removal attacks, it should satisfy the following conditions:

Ywi, YVt = A(X, wi), P(D(U(t)) = wi) > b, @)

where f is a threshold. If the probability of correctly detecting a watermarked text after text
modification exceeds f, the algorithm is deemed sufficiently robust.

Additionally, there are other important characteristics of text watermarking algorithms which
will be discussed in detail in Section 5.

2.4 Taxonomy of Text Watermarking Algorithms

To facilitate the organization of different text watermarking algorithms in Section 3 and Section
4, this section provides an overview of our summarized taxonomy of text watermarking algo-
rithms. Figure 2 categorizes text watermarking methods into two primary types. The first type,
Watermarking for Existing Text, embeds watermarks by post-processing pre-existing texts, as
elaborated in Section 3. This technique typically utilizes semantically invariant transformations for
watermark integration. The second type, Watermarking for Large Language Models, involves
modifying LLMs, further detailed in Section 4. This method either embeds specific features during
LLM training, or alters the inference process, producing watermarked text from the input prompt.
Figure 3 presents a more detailed taxonomy of all text watermarking methods.

3 WATERMARKING FOR EXISTING TEXT

Watermarking for existing text involves modifying a generated text to produce a watermarked
text. Based on the granularity of modifications, these methods are primarily categorized into
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four types: format-based watermarking (§3.1), lexical-based watermarking (§3.2), syntactic-based
watermarking (§3.3) and generation-based watermarking (§3.4).

3.1 Format-based Watermarking

Format-based watermarking, inspired by image watermarking [6], changes the text format rather
than its content to embed watermarks. For example, Brassil et al. [9] introduced line-shift and
word-shift coding by adjusting text lines and words vertically and horizontally. The detection
process identifies shifts by measuring distances between text line profiles or word column profiles.
However, this method is limited to image-formatted text and does not embed a watermark in the
text string.

To address this, Unicode codepoint insertion/replacement methods have emerged. Por et al.
[79] developed UniSpach, which inserts Unicode space characters in various text spacings. Rizzo
et al. [85] introduced a unicode homoglyph substitution method, using visually similar but differ-
ently coded text symbols (e.g., U+0043 and U+216d for ’C’, U+004c and U+216¢ for ’L’). Recently,
EasyMark [89], a family of simple watermarks, was proposed. It includes WhiteMark, which replaces
a whitespace (U+0020) with another whitespace codepoint (e.g., U+2004); VariantMark, which uses
Unicode variation selectors for CJK texts; and PrintMark, which embeds watermark messages in
printed texts using ligatures or slightly different whitespace lengths. The detection process involves
searching for specific inserted codepoints.

Though format-based watermarking methods can embed substantial payloads without changing
textual content, their format modifications can be noticeable. Por et al. [79] noted the DASH attack’s
ability to highlight these changes. Thus, these methods are vulnerable to removal through canoni-
calization [8], such as resetting line spacing and replacing specific codepoints. Additionally, these
detectable formats may be exploited for watermark forgery, reducing detection efficacy.

3.2 Lexical-based Watermarking

Format-based watermarking approaches, which only modify text’s superficial format, are prone
to be spotted, making them easily removable through reformatting. This highlights the need for
investigating deeper watermark embedding methods in text. A number of studies have adopted word-
level modifications, where selected words are replaced with their synonyms without altering the
sentence’s syntactic structure [68, 99, 114, 115, 117]. These are known as lexical-based watermarking
approaches. Topkara et al. [99] introduced a synonym substitution method, employing WordNet
[21] as the synonym source. The watermark detection replicates the embedding process, applying
inverse rules for message extraction. Munyer and Zhong [68] enhanced semantic modeling by using
a pretrained Word2Vec model, converting selected words into vectors and identifying n-nearest
vectors as replacement candidates. They employed a binary classifier with a pretrained BERT model
and transformer blocks for watermark detection.

The aforementioned watermarking methods relying on context-independent synonym substitu-
tion (WordNet & Word2Vec) often neglect the context of target words, potentially compromising
sentence semantics and text quality. To address this, context-aware lexical substitution has been
incorporated into text watermarking. Yang et al. [115] introduced a BERT-based infill model for gen-
erating contextually appropriate lexical substitutions. The watermark detection algorithm parallels
the generation process, identifying watermark-bearing words, generating substitutes, and applying
inverse rules for message extraction. Yang et al. [114] streamlined watermark detection by encoding
each word with a random binary value and substituting bit-0 words with context-based synonyms
representing bit-1. As non-watermarked text adheres to a Bernoulli distribution, altered during wa-
termarking, statistical tests can effectively detect watermarks. Yoo et al. [117] enhanced robustness
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Fig. 4. Taxonomy of watermarking for existing text.

against removal attacks by fine-tuning a BERT-based infill model with keyword-preserving and
syntactically invariant corruptions, achieving superior robustness compared to earlier methods.

3.3 Syntactic-based Watermarking

The lexical-based methods aim to embed watermarks by substituting specific words, maintaining
the sentence’s syntax. Yet, these approaches, relying exclusively on lexical substitution, might not be
robust against straightforward watermark removal tactics like random synonym replacement. Con-
sequently, several studies have explored embedding watermarks in a manner that resists removal,
notably by modifying the text’s syntax structure. These methods are known as syntactic-based wa-
termarking approaches. Atallah et al. [4] introduced three typical syntax transformations—Adjunct
Movement, Clefting and Passivization-to embed watermark messages.

Each transformation type is assigned a unique message bit: Adjunct Movement to 0, Clefting to 1,
and Passivization to 2. In watermark detection, both original and altered texts are converted into
syntax trees, and their structures are compared for message extraction. Expanding this concept,
Topkara et al. [98] introduced additional syntax transformations: Activization and Topicalization.
Moreover, research extends beyond English, with Meral et al. [63] analyzing 20 morphosyntactic
tools in Turkish, highlighting that languages with significant suffixation and agglutination, such as
Turkish, are well-suited for syntactic watermarking.

While syntactic-based watermarking effectively embeds watermarks in a concealed manner, it
heavily depends on a language’s grammatical rules, often requiring language-specific customization.
Frequent syntactic changes in some texts may also alter their original style and fluency.

3.4 Generation-based Watermarking

The aforementioned methods have made significant strides in text watermarking. However, they
often rely on specific rules that can lead to unnatural modifications, potentially degrading text
quality. If these clues are detected by human attackers, they might design watermark removal
attacks or attempt to forge watermarks. A groundbreaking advancement would be generating
watermarked text directly from the original text and the watermark message, a technique gradually
becoming feasible with the development of pretrained language models.

One approach involves designing neural networks trained to take the original text and the
watermark message as inputs and output the watermarked text. Abdelnabi and Fritz [2] developed
AWT, an end-to-end watermarking scheme using a transformer encoder to encode sentences and
merge sentence and message embeddings. This composite is processed by a transformer decoder

Publication date: August 2024.



8 Liu, et al.

to generate watermarked text. For detection, the text undergoes transformer encoder layers to
retrieve the secret message. Extending AWT, Zhang et al. [119] addressed disparities between dense
watermarked text distributions and sparse one-hot watermark encodings with REMARK-LLM. This
method uses a pretrained LLM for watermark insertion and introduces a reparameterization step
using Gumbel-Softmax [38] to yield sparser token distributions. A transformer-based decoder
extracts messages from these embeddings. REMARK-LLM can embed double the signatures of AWT
while maintaining detection efficacy, enhancing watermark payload capacity.

With LLMs’ increasing capabilities in following instructions and generating high-quality text,
they are becoming viable alternatives to self-designed neural networks for embedding watermarks.
Lau et al. [48] introduced WATERFALL, which uses a watermarked LLM to paraphrase the origi-
nal text, embedding a watermark while preserving semantic content. This approach combines
vocabulary permutation with a novel orthogonal watermarking perturbation method to achieve
high detectability and robustness. The powerful paraphrasing capabilities of LLMs enhance the
naturalness of the generated text, resulting in smoother and more fluent watermarked content.

4 WATERMARKING FOR LLMS

While we’ve explored watermarking for existing text (§3), the rise of LLM-generated content calls
for watermarking techniques during the generation process. Watermarking during text generation
often yields more natural text, akin to generation-based methods (§3.4). This approach allows LLMs
to generate watermarked text directly, which can be defined as:

A(x,w) = M,,(x) =t, 3)

where w is the watermark message, x is the prompt, and M,, is a LLM with an embedded watermark.
For simplicity, we assume the watermarked text is directly generated by this LLM.

To provide a better understanding of how to add a watermark to a LLM, we first provide an
overview of the process used for generating text with an LLM. Specifically, this involves three steps,
LLM training, logits generation and token sampling:

e Step1: LLM Training. This step involves training a LLM, M, with a dataset D. Training objectives
vary based on the application, with next token prediction being the most common [81].

e Step2: Logits Generation. With the trained LLM M, given a prompt x and a sequence of prior
tokens t%(=1 | the LLM predicts the next token t()’s probability distribution in the vocabulary
V, expressed as logits 1():

19 = M(x, %Dy, 4

e Step3: Token Sampling. The next token t() is selected from 19, using methods like nucleus
sampling [32], greedy decoding, or beam search. The sampling process is denoted as:

t) = S(softmax(11)). (5)

Through these steps, LLM M generates a token t(). For multiple tokens, logits generation and
token sampling are iteratively repeated.

In aligning with the three critical phases of text generation using LLMs, watermarking techniques
for LLMs are similarly categorized into three distinct types. These are: watermarking during
LLM training, during logits generation, and during token sampling. Detailed discussions of these
watermarking methods are presented in Section 4.3, 4.1, and 4.2, respectively.

4.1 Watermarking during Logits Generation

Watermarking during logits generation refers to the insertion of a watermark message w into the
logits generated by LLMs. This technique, which does not require modifying the LLM parameters,
is more versatile and cost-effective than training time watermarking methods.
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In this context, the watermarking algorithm A alters the logits from the LLM to incorporate the

watermark message w. The modified logits 1) can be computed as follows:
10 = AM(x, 20D, w) = M, (x, 20D, 6)

where 1)) is assumed to be produced by a watermarked LLM M,,.

Kirchenbauer et al. [42] introduced the first LLM watermarking technique based on logits
modification, termed KGW. This method partitions the vocabulary into a red list (R) and a green
list (G) at each token position, using a hash function that depends on the preceding token. For the
i*h token generation by M,,, a bias § is applied to the logits of tokens in G. The adjusted logit value,

l](.i), for a token v; at position i is calculated as follows:

M@t []1+8, 0;€G
M(x, to‘(i_l))[j], vj €R

This algorithm biases towards green tokens, leading to a higher proportion in watermarked texts.
The detector categorizes each token as red or green using the hash function and calculates the
green token ratio with the z-metric, defined as:

z=(Isle =yD)/NTy(1 =y) t)

where T is the length of the text, y is the ratio of the green list. A text exceeding a certain green
token threshold is deemed watermarked.

KGW’s detection method showed low false positive (< 3 X 1073%) and false negative (< 1%) rates
in tests. Yet, real-world application challenges necessitate further optimization and design. The

17 = My (x, 7071 = { (7

following outlines five optimization objectives, along with the improvements and explorations in
watermark algorithms under each objective. The taxonomy of this section is depicted in Figure 6.

4.1.1 Enhancing Watermark Detectability. Although KGW reported high detection performance, it
showed weaknesses under more rigorous detection conditions, necessitating targeted optimization
of z-score computation.

One critical issue is the discrepancy between theoretical and actual false positive rates (FPRs)
when the theoretical FPR is extremely low (e.g., below 107°). This occurs because KGW assumes
the z-score follows a Gaussian distribution, but this is only valid when the token length approaches
infinity, and is therefore often inaccurate in practice. To resolve this, Fernandez et al. [22] developed
a non-asymptotic statistical test that adopts the accurate binomial distribution and corrects z-score
calculations accordingly, aligning theoretical and actual FPRs in low-FPR scenarios.

Another challenge with KGW is its performance in low-entropy scenarios, such as code gen-
eration and machine translation. In these cases, logits vectors often display uneven distributions,
reducing the impact of bias on green tokens and lowering watermark detection sensitivity. The
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Fig. 6. Taxonomy of watermarking during logits generation. The root node represents the fundamental
watermarking scheme KGW [42], followed by branches illustrating five optimizing objectives.

EWD [60] method addresses this by assigning weights to tokens based on their entropy during
detection, enhancing sensitivity by emphasizing high-entropy tokens in z-score calculations.

Additionally, KGW struggles when watermarked text is mixed with extensive non-watermarked
text, diluting watermark strength and affecting z-score calculations. To mitigate this, the WinMax
[43] sliding window-based method calculates z-scores across different window sizes within the
text and selects the maximum z-score as the final value, improving detection accuracy.

4.1.2 Mitigating Impact on Text Quality. Watermarking can impact text quality by introducing
unnatural word choices or patterns that degrade readability, coherence and text utility. An opti-
mization perspective to mitigate this impact is to ensure that the text distribution of watermarked
content remains consistent with the original output distribution of the LLM. Specifically, this means
that the expected watermarked logits equal the original LLM’s logits:

E [My(x t"07)] = M(x t707), ©)
where each key k represents a unique red-green list split. This ensures that, in expectation, the
watermark does not negatively affect text quality.

Hu et al. [35] noted that the KGW algorithm [42] introduces bias in its logits modification,
altering the text distribution. The bias in KGW arises from applying a uniform 8 to green list tokens,
which disproportionately affects low-probability tokens, leading to overall bias. To counter this,
Hu et al. [35] introduced two unbiased reweighting methods: §-reweight, which samples a one-hot
distribution from the original logits, and y-reweight, which halves the probability distribution range,
thereby doubling the probabilities of the remaining tokens. Similarly, Wu et al. [110] proposed the
a-reweight method, which discards tokens with probabilities below « and adjusts the rest. These
methods are theoretically unbiased, preserving the original text distribution and, consequently,
maintaining text quality.

The aforementioned optimization approach is relatively theoretical. A more practical perspective
focuses on mitigating the impact on text utility. One class of methods selectively applies watermarks
to tokens, avoiding positions where suitable tokens are sparse. Entropy has been proposed as a
criterion for watermark application, bypassing low-entropy positions [49, 59, 105]. Wouters [107]
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goes further by considering not only entropy but also the probability distribution of the red
and green lists, refraining from watermarking when the probability of red tokens is too high.
Another class of method is to maintain text utility by reducing the likelihood of suitable words
being banned. For example, Liang et al. [54] proposes using mutual exclusion rules for red-green
partitioning, aiming to evenly distribute semantically similar words between the red and green lists.
This approach aims to prevent situations where all appropriate words are allocated to the red list.
Moreover, Fu et al. [23] suggests employing semantic-aware watermarking, which involves adding
words with higher relevance to the context into the green list, thus increasing the likelihood of
appropriate tokens being selected. Furthermore, Guan et al. [27] suggests adding an extra bias to
suitable tokens, reducing the probability of their exclusion.

4.1.3  Expanding Watermark Capacity. The KGW watermark algorithm [42] can only verify water-
mark presence, classifying it as a zero-bit watermark. Yet, many applications require watermarks
to convey additional information like copyright details, timestamps, or identifiers, leading to the
need for multi-bit watermarks capable of extracting meaningful data.

One possible solution is to employ fine-grained vocabulary partitioning, expanding from a
binary red-green partition to a multi-color partition [22]. To encode b bits of information, the
vocabulary needs to be divided into 2% groups, with different watermark information reflecting
preferences for tokens from different groups. Another solution is to use fine-grained watermark
payload allocation [105], dividing the text into multiple chunks, with each chunk encoding a portion
of the bit information. However, if either of these approaches is too fine-grained in its partitioning,
the encoding strength may be insufficient, leading to reduced watermark extraction accuracy. To
mitigate this issue, Yoo et al. [118] attempts to combine these two methods, ensuring an adequate
watermark capacity while avoiding overly fine-grained partitioning of any kind, and aims to find
an optimal balance of granularity through experimentation.

4.1.4 Improving Robustness Against Removing Attacks. As discussed in Section 2, an effective
watermarking algorithm must be robust against removal attacks, ensuring the watermark remains
detectable. These attacks usually modify the text without altering its semantic content. While
the KGW algorithm [42] exhibited some robustness in their experiments, there is still room for
improvement.

One optimization approach is to adopt more robust vocabulary partition schemes. The original
KGW [42] algorithm utilizes all token information within the preceding context window to map to
a hash value for red-green partitioning. Kirchenbauer et al. [43] further elaborated on more robust
partition strategies, such as using only the samllest token id in the preceding context window for
hashing, which is more resilient to text editing. Additionally, Zhao et al. [124] proved that a fixed
global split of red and green lists offers greater resistance to removal attacks.

As watermark removal attacks usually preserve the semantic content of the text, several studies
have developed methods to integrate semantic information into the design of watermarking algo-
rithms. For example, Liu et al. [57] trained a watermarked LLM that directly converts text semantics
into red-green partitions, ensuring that similar text semantics result in similar partition outcomes,
thereby achieving robustness. He et al. [30] improves the watermark LLM by adding constraints
that ensure semantically similar tokens fall into the same color list, thereby further enhancing
robustness. Ren et al. [84] converted semantic embeddings into semantic values through weighted
embedding pooling followed by discretizing using NE-Ring, and then divided the vocabulary into
red-list and green-list based on these semantic values.

4.1.5 Achieving Publicly Verifiable Watermarks. Achieving publicly verifiable watermarks is signif-
icant as it allows anyone to authenticate the origin and integrity of the content without requiring
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Fig. 7. Taxonomy of watermarking during token sampling.

access to a secret key. This reduces service overhead in private detection scenarios (where the
detector is placed behind an API) and its transparency also enhances trust and accountability. Most
previous watermarking algorithms cannot achieve public verifiability because their watermark
generation details are involved in detection (e.g., the hash key in KGW). As a result, exposing the
detector also means exposing the generator, making the watermark vulnerable to targeted removal
or forgery.

To achieve publicly verifiable watermarks, Fairoze et al. [19] have utilized digital signature
technology from the field of cryptography. This approach involves generating watermarks using a
private key and verifying them with a public key. However, verification via a public key relies on
features extracted from the text, which can still be exploited to some extent to forge watermarks.
Further advancing this field, Liu et al. [56] proposed the use of different neural networks for
watermark generation and detection. Due to the black-box nature of neural networks, the details of
watermark generation are not exposed, which could defend against watermark forgeries in public
detection scenarios.

4.2 Watermarking during Token Sampling

The previous section primarily focused on incorporating watermarks during the logits generation
phase for LLMs. In this section, we will introduce a technique of watermarking during token
sampling, which does not alter the logits but utilize watermark message to guide the sampling
process. Based on the granularity of guiding, this technique can be divided into two main approaches
(as depicted in Figure 7): token-level sampling watermarking (§4.2.1), which embeds watermarks
during each token’s sampling, and sentence-level sampling watermarking (§4.2.2), which uses
watermark message to guide the sampling of entire sentences.

4.2.1 Token-level Sampling Watermarking. The principle of incorporating watermarks during
the token sampling phase is derived from the randomness inherent in token sampling. In this
scenario, watermarks can be introduced using a fixed random seed, where a pseudo-random number
generator produces a sequence of pseudo-random numbers to guide the sampling of each token.
For watermark detection, it is only necessary to assess the alignment between the text tokens and
the pseudo-random numbers, specifically evaluating whether the choice of each token in the text
matches with the corresponding value in the random number sequence.

For instance, Christ et al. [15] proposed a watermarking algorithm designed for a toy LLM with
a vocabulary consisting of only the digits 0 and 1, with the pseudo-random numbers represented
as a series of values u € [0,1]. If the predicted probability for a certain position exceeds the
corresponding pseudo-random number, then 1 is sampled at that position, otherwise 0. In the
detection of watermarks, it can be determined whether the values of the pseudo-random numbers
corresponding to the positions with 1 in the binary tokens are significantly higher than those with 0.
Around the same time, Aaronson and Kirchner [1] proposed a watermarking algorithm based on a
similar idea, but suitable for real LLMs. In this case, the LLM (with a vocabulary size of |V|) outputs
a probability vector p; = (pi1, ..., pijv|) at position i, and the pseudo-random sequence at position i
is also transformed from a single number (0 or 1) into a pseudo-random vector r; = (7i1, ..., 'ijv|)-

During sampling, exp-minimum sampling is applied to choose the token j that maximizes rl.1 j/p v,
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Fig. 8. Taxonomy of watermarking during LLM training.

To check a watermark, the alignment between the text and the pseudo-random vector sequence is
assessed to see if it exceeds a threshold.

However, these methods still faces two challenges: 1) the detection algorithm is not robust enough
against watermark removal attacks, which involves certain text modifications, and 2) due to the
fixed nature of pseudo-random numbers, the LLM with watermark will generate the same text for
the same prompt each time, thereby losing the inherent randomness in text generation by LLM. To
address these issues, Kuditipudi et al. [45] proposed the use of a pseudo-random number sequence
significantly longer than the text, randomly selecting a starting position from the sequence for
each watermark insertion to introduce randomness. Additionally, during watermark detection,
they incorporate a soft notion of edit distance (i.e., Levenshtein distance) into the computation of
the alignment between text and the pseudo-random number sequence. This approach significantly
enhances the robustness of the watermarking algorithm against watermark removal attacks.

4.2.2  Sentence-level Sampling Watermarking. Token-level sampling watermarking algorithms may
not be robust to token-level text edits. However, since such edits often don’t significantly change
sentence semantics, some methods leverage sentence-level sampling watermarking to achieve
better robustness.

Building on this idea, SemStamp [33] partitions the semantic embedding space into a water-
marked region and a non-watermarked region. The algorithm performs sentence-level rejection
sampling until the sampled sentence falls within the watermarked region. SemStamp employs
Locality-Sensitive Hashing to randomly partition these regions, which can result in semantically
similar sentences being placed into different regions, thereby diminishing the robustness of the
watermarking algorithm. To address this issue, k-SemStamp [34] utilizes k-means clustering to
divide the semantic space into k regions, ensuring that semantically similar sentences are grouped
into the same region. Each region is then designated as either a watermarked region or a non-
watermarked region. This approach ensures that a sentence remains within the same region even
after semantic-preserving modifications, thereby enhancing robustness against semantic-invariant
text editing attacks.

Current research in sampling-based watermarking is limited, indicating room for advancement.
The effectiveness and robustness of these methods warrant further exploration through experiments
and real-world applications.

4.3 Watermarking during LLM Training

Although adding watermarks during the logits generation (§4.1) and token sampling (§4.2) stages
can be effective during inference, they are not suitable for open-source LLMs. This is because
watermarking code added after the logits output can be easily removed. Therefore, for open-source
LLMs, watermarks must be embedded into the LLM’s parameters during training. As shown in
Figure 8, training-time watermarking can be categorized into trigger-based watermarks, which are
effective only for specific inputs, and global watermarks, which are intended to work for all inputs.

4.3.1 Trigger-based Watermarking. Trigger-based Watermarking is a type of backdoor watermark-
ing that introduces specific triggers into an LLM. When these triggers appear in the input, the LLM
exhibits specific behaviors (specific formats or outputs). Such watermarks can be added by dataset
providers to protect dataset copyright, or by LLM providers to protect LLM copyright.
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Sun et al. [92] proposed CoProtector for the code generation task, using word-level or sentence-
level modifications in the code as triggers to generate corrupting code, which typically has incorrect
functionality. Further, Sun et al. [91] proposed CodeMark, which uses semantically invariant code
transformations as triggers, ensuring the correct functionality of the code while embedding a
trigger-based watermark with minimal impact on LLM performance.

In the context of protecting LLM copyright, Xu et al. [112] proposed the Hufu watermark. This
watermark does not rely on specific input triggers but uses a particular input format as a trigger. It
leverages the permutation equivariance property of transformers, training the LLM to recognize a
specific permutation as a watermark.

4.3.2  Global Watermarking. Although trigger-based text watermarking is effective in many cases,
it only works when specific triggers are present and cannot work for all inputs.

Global watermarks can add detectable markers to all content generated by LLMs, enabling content
tracking. Gu et al. [26] explored the learnability of watermarks, investigating whether LLMs can
directly learn to generate watermarked text. They proposed two learning methods: sampling-based
watermark distillation and logit-based watermark distillation. These methods offer the possibility
of transforming inference-time watermarking into inherent LLM parameters. Xu et al. [113] further
proposed using reinforcement learning to optimize LLM watermarks. They used reinforcement
learning techniques to optimize LLMs based on feedback from watermark detectors, embedding
watermarks into the LLM. Experimental results show that this method achieves near-perfect
watermark detection and strong resistance to interference, significantly improving watermark
effectiveness and robustness. However, due to the black-box nature of LLMs, this watermark training
method may be less stable on out-of-distribution data compared to inference-time watermarks.

5 EVALUATION METRICS FOR TEXT WATERMARKING

In Sections 3 and 4, we provided a comprehensive overview of existing text watermarking techniques.
A thorough evaluation of text watermarking algorithms is crucial. As illustrated in Figure 9,
this section details the evaluation metrics from multiple perspectives: (1) the detectability of
watermarking algorithms (§5.1), (2) the impact of watermarking on the quality of targeted texts (§5.2)
and LLMs (§5.3 and §5.4), and (3) the robustness of watermarking algorithms against untargeted
(§5.5) and targeted watermark attacks (§5.6). In addition, we enumerate representative evaluation
benchmarks and tools (§5.7).

5.1 Detectability

For text watermarking algorithms, the basic requirement is that the watermarked text can be de-
tected. In this section, we will summarize how watermarking algorithms measure their detectability.
We will introduce the detection metrics for zero-shot and multi-bit watermarking algorithms, as
well as the watermark size, which indicates how long the text needs to be for detection.

5.1.1 Zero-bit Watermark. In zero-bit watermarking, the goal is to detect the presence of a wa-
termark. Current watermark algorithms typically provide a detector that uses hypothesis testing
to generate a z-score or p-value [42, 45, 56], along with a threshold to distinguish whether a text
contains a watermark. For testing, a dataset with an equal number of watermarked and human texts
is usually constructed. The detector is then used to evaluate this dataset, calculating the F1 score
and corresponding false positive and false negative rates. The false positive rate, which indicates
the probability of misclassifying human text as watermarked, is particularly important as it can
have more severe consequences than false negatives.

The challenge with this detection method lies in selecting an appropriate threshold, as different
methods may have different threshold selection approaches. For example, some studies [42, 56, 57,
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Fig. 9. Taxonomy of Evaluation Metrics for Text Watermarking.

124] report F1 scores at fixed false positive rates of 1% and 10%, while others [57] show the best F1
scores across all thresholds to facilitate a fairer comparison of algorithm performance.

5.1.2  Multi-bit Watermark. In multi-bit watermarking methods [2, 85, 105, 115, 117, 118], the
watermark detection algorithm must not only detect the presence of a watermark but also extract
specific information. For example, a watermarked text might encode specific data like "This text
is generated by GPT-4 on June 6 by the Administrator” [105]. Common detection metrics include
bit error rate (BER) [117] and bit accuracy [2, 118]. For a watermark message w encoded as n bits,
represented as w = byb,...b,, where each b; is binary, BER refers to the probability of incorrectly
predicted bits, while bit accuracy refers to the proportion of correctly predicted bits.

Additionally, the bit capacity or payload of a watermark algorithm is a key evaluation metric,
typically referred to as Bits Per Watermark [115, 117] or code rate [85, 105]. Payload is calculated
by dividing the total number of bits of the watermark information by the number of tokens.

5.1.3 Watermark Size. Generally, for a text watermarking algorithm, the longer the text, the easier
it is for the watermark to be detected because longer texts provide more modification space. Thus,
determining how long a text needs to be for the watermark to be reliably detected becomes a
crucial metric, known as the watermark size. Piet et al. [78] studied the watermark size of current
mainstream watermarking algorithms, exploring the minimum length required to achieve a 2%
false positive rate. The study found that among the KGW [42], Aar [1], and KTH [45] algorithms,
KGW requires the shortest detection length, indicating that KGW has the best watermark size.
Currently, there is still limited research on watermark size, and future work is recommended to
include watermark size as an evaluation metric.

Typically, for a text watermarking algorithm, high detectability is a relatively low requirement.
More importantly, these algorithms should have minimal impact on text quality and high robustness
against various attacks. In the following two sections, we will separately introduce how to evaluate
the quality of watermarked texts (§5.2) and the quality assessment of watermarked LLMs (§5.3).

Publication date: August 2024.



16 Liu, et al.

Table 1. The quality evaluation metrics for different text watermarking algorithms regarding their impact on
text or LLM quality. w. Ext. LLM indicates whether external LLMs are used, Diverse Eval indicates whether
text diversity is evaluated, Time Cmplx. indicates the time complexity of the evaluation, Eval Type indicates
whether the evaluation scores single texts (Single) or compares pairs of texts (Comp.), Tested Algorithms
lists the algorithms tested on each metric, and Quality Preserve refers to algorithms that demonstrate the
preservation of text quality under the corresponding metric, based on the analysis provided in the respective
studies conducting the tests.

Evaluation Task Metric w. Ext. Diversity Time Eval Tested Quality
LLM? Eval? Cmplx. Type Algorithms Preserve

Quality Evaluation for Watermarked Text

[2, 68, 114, 115, 117,

\ Semantic Score v X M.  Comp. [2, 68, 114, 115, 117, 119] 119]
T Meteor Score X X M.  Comp. [2, 114] [2]
T Entailment Score v X M.  Comp. [115, 117] [115,117]
T BLEU Score X X L. Comp. [89, 98, 119] [89, 98, 119]
T Perplexity v X M.  Single [89] [89]
T Human Evaluation X X H.  Single [2,117] [2,117]

Quality Evaluation for Watermarked LLM

33,34, 42, 47, 54, 56,
[26, 33, 34, 42, 54, 56, 57, 59, (33,

PPL v/ X M.  Single 57, 60, 84, 105, 107,
60, 84, 105, 107, 118, 124] 118, 124]
P-SP v X M.  Comp. [118] [118]
Text Completion GPT4-Score v X M.  Single [19] [19]
Seq-Rep-N X v L. Single [26] [26]
Log Div. X v L. Single [43] [43]
Ent-3 X v L. Single [33, 34] [33,34]
Sem-Ent v v M.  Single [33,34] [33,34]
Pass@k X X L. Single [22, 49, 60] [22, 49, 60]
Code Generation CodeBlue X X L. Comp. [27] [27]
Edit Sim X X L. Comp. [42, 43, 124] -
. BLEU X X L. Comp. [35, 56, 110] [35, 56, 110]
?Zﬂ:‘l‘;on BERTScore v X M.  Comp. [35, 110] [35, 110]
r ! PPL v X M.  Single [35, 110] [35, 110]
Text BLEU X X L. Comp. [30, 35, 42, 43, 110, 124] [35, 110]
sex ati BERTScore v X M.  Comp. [35, 110] [35, 110]
ummarization PPL v X M.  Single [35, 110] [35, 110]
ROUGE X X L. Comp. [42, 43, 124] -
Question Exact Match X X L. Comp. [22] [22]
Answering GPT-Truth v X M.  Single [54] [54]
GPT-Info v X M.  Single [54] [54]
Math Reasoning Accuracy X X L. Comp. [22, 54] [22, 54]
Knowledge Probing F1 Score X X L. Comp. [42, 43, 124] -
Instruction Following  GPT4-Judge v X M.  Comp. [42, 43, 124] -

5.2 Quality Impact of Watermarked Text

The quality evaluation of watermarked text primarily targets the series of algorithms for water-
marking existing text (§3). In these algorithms, the input is a non-watermarked text, and the output
is the modified watermarked text. Therefore, the key to evaluating the quality of watermarked text
is comparing the quality differences between the watermarked text and the original text. There are
two evaluation methods: one uses comparative metrics such as semantic score and BLEU score
[2, 68, 114, 115, 117, 119]; the other involves scoring the original text and the watermarked text
separately and then comparing the scores [89].

5.2.1 Comparative evaluation metrics. For comparative evaluation metrics, the main purpose is
to assess the similarity between watermarked text and the original text. Based on the method
of evaluating similarity, these metrics can be divided into two categories: surface feature-based
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metrics, such as Meteor Score [5] and BLEU Score[73], and semantic feature-based metrics, such as
Semantic Score and Entailment Score.

Meteor score and BLEU score are important evaluation metrics in the field of machine translation,
and when applied to text watermarking, the original text can be used as the reference text. BLEU
focuses on the n-gram overlap between the target (watermarked) text and the reference text,
providing a composite score by calculating precision and length penalty. However, BLEU’s limitation
is its overemphasis on exact matches and sensitivity to word order and slight morphological changes,
which may not fully capture semantic equivalence. In contrast, the Meteor Score offers further
improvements. Besides exact matches, Meteor Score also considers morphological changes (e.g.,
verb tenses, noun plurals) and synonym matches. It evaluates the similarity between the target text
and the reference text more flexibly through word alignment. Nonetheless, both Meteor Score and
BLEU Score primarily assess the similarity of texts at the surface level.

Although Meteor Score and BLEU Score effectively evaluate surface-level similarity, in some
cases, evaluating surface similarity alone is insufficient; semantic impact must also be considered.
Therefore, some works introduce the semantic score [2, 68, 114, 115, 117, 119]. A common method
for evaluating semantic scores is to calculate semantic embeddings using LLMs and then compare
these embeddings using cosine similarity. This process can be represented by the following formula:

MW,,) - M(W,,)
MW [ X IMW)]]

Rse(Wyy, W,y) = (10
where W,, and W,, represent the non-watermarked text and the watermarked text, respectively. The
model M is typically a large language model optimized for text similarity. For example, Munyer
and Zhong [68] used the Universal Sentence Encoder [11], while Abdelnabi and Fritz [2], Yang et al.
[115], Yoo et al. [117] used Sentence-BERT [83], and Yang et al. [114] used all-MiniLM-L6-v2.

Additionally, to determine more fine-grained relationships between the original and modified
watermarked texts, some works utilize LLMs pre-trained on Natural Language Inference (NLI)
[115, 117] tasks to judge the relationship between two sentences. For example, Yoo et al. [117] used
RoBERTa-Large-NLI [83] to more accurately understand and infer complex semantic relationships
between texts (Entailment Score, ES). This Entailment score not only focuses on the overall similarity
between two texts but also identifies subtle semantic differences.

5.2.2 Single Text evaluation metrics. Unlike comparative evaluation metrics such as BLEU Score,
single text evaluation metrics focus on separately scoring the quality of the original text and
the watermarked text, and then comparing these scores. Currently, the quality evaluation of
watermarked text mainly uses Perplexity (PPL) or direct human evaluation.

PPL is defined as the exponentiated average negative log-likelihood of a sequence. Specifically,
given a text W = {wy, ..., wy }, PPL can be computed using a LLMM:

N
1
Rep (W) = exp [~ > log M(wilwy,....,wia) |. (11)

i=1

PPL is an important metric for evaluating text coherence and fluency. Generally, lower PPL indicates
higher text quality. For more accurate evaluation, larger LLMs are typically used to calculate PPL,
such as GPT-2 [114], GPT-3 [124], OPT-2.7B [42, 105], and LLaMA-13B [56, 57].

Although PPL can conveniently evaluate text quality using LLMs, due to the inherent flaws
of PPL (such as misrating some repetitive texts) and the accuracy of LLM outputs, many works
further employ human scoring for text evaluation [2, 117]. It should be noted that although human
scoring is generally considered more accurate, human annotators are also prone to annotation
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errors. Typically, multiple human annotators are required to score the same data. However, due to
high annotation costs, human scoring is challenging for large-scale evaluation.

5.3 Output Performance Evaluation for Watermarked LLM

In the previous section (§5.2), we discussed how to evaluate the quality of watermarked text, which
mainly pertains to watermarking for existing text (§3). For the more prevalent watermarking for
existing LLM (§4) in the era of LLMs, it is usually necessary to evaluate the capabilities of the
watermarked LLM. This typically involves evaluation on a series of downstream tasks, such as Text
Completion [26, 33, 34, 42, 54, 56, 57, 59, 60, 84, 105, 107, 118, 124], Code Generation [22, 49, 60], and
Machine Translation [35, 56, 57, 110]. In this section, we will detail the various specific downstream
tasks and the evaluation metrics used for these tasks.

5.3.1 Text Completion. Since most LLMs are trained using the next word prediction paradigm,
text completion is a capability that all LLMs possess. Therefore, the most common task for testing
LLM capabilities is text completion. The specific approach is to provide the LLM with a text prefix
as a prompt, have the LLM generate the subsequent text, and then evaluate the quality of the
generated text. Currently, the evaluation of the quality of generated text typically leverages other
LLMs, including PPL [26, 33, 34, 42, 54, 56, 57, 59, 60, 84, 105, 107, 118, 124]based on the likelihood
generated by LLMs, the P-SP [43, 118] based on text similarity, and GPT-4-score [19], which uses
the more powerful GPT-4 to directly score the text.

The calculation method for the PPL metric here is the same as the eq 11 mentioned in §5.2.2.
Generally, when testing PPL, larger LLMs than the current LLM are used for evaluation, with
common LLMs including LLaMA-13B [57], LLaMA-70B [56], and GPT-3 [124]. Due to the general
applicability and simplicity of PPL, calculating the PPL metric after the LLM performs a text
completion task is currently the most widely adopted evaluation method.

P-SP is more similar to a semantic score, used to evaluate the semantic similarity between
two texts. Yoo et al. [118] used P-SP [106] to evaluate the semantic similarity between original
human-written texts and watermarked texts generated by LLMs through the text completion task
using these texts’ prefixes. However, since the same text prefix can generate texts with different
semantics, this evaluation has not been widely adopted.

Since the PPL and P-SP can only evaluate text quality from certain perspectives, where PPL
focuses on text coherence and P-SP on semantic similarity with the original text. Fairoze et al. [19]
adopted GPT-4 [71] to assess the quality of text generated in the text completion task. Specifically,
they designed a scoring prompt for GPT-4, enabling it to output an evaluation of text quality.

5.3.2 Code Generation. Text completion is typically used in high-entropy scenarios and is less
sensitive to changes in LLM capabilities. In contrast, low-entropy tasks like code generation are
more sensitive to changes in LLM capabilities when adding watermarking, as even a small error in
code can lead to failure or incorrect execution. For code generation, there are usually two evaluation
methods: one is based on surface form matching, such as CodeBlue [27] and Edit Sim [101], and
the other is based on actual execution accuracy, such as Pass@k [22, 49, 60].

CodeBLEU [27] is a metric specifically designed for evaluating the performance of code generation
tasks. It extends the classic BLEU metric by incorporating the unique characteristics of code to better
reflect the quality of code generation. CodeBLEU considers not only the lexical match between
the generated code and the reference code but also the syntactic and semantic match. Overall,
CodeBLEU is a metric based on the n-gram matching degree between the reference code and the
generated watermarked code. Edit Sim [101], calculates the edit distance between two pieces of
code. Both CodeBLEU and Edit Sim focus only on the surface matching degree. However, code
with the same execution result can be written in different ways. Therefore, a more commonly
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used metric is Pass@k [22, 49, 60], which selects the top k most probable code generated by the
watermarked LLM and determines the probability that one of them executes correctly.

5.3.3 Other Tasks. In addition to testing in high-entropy and low-entropy environments (text
completion and code generation), many works have evaluated the capabilities of watermarked
LLMs on other typical tasks. These tasks include Question Answering [22, 30, 54, 101], Machine
Translation [35, 56, 57, 110], Text Summarization [30, 35, 101, 110], Math Reasoning [22, 54],
Knowledge Probing [101], and Instruction Following [101].

The Question Answering task covers a wide range. For settings like TriviaQA [39], which
normally requires short answers, the exact match is used for evaluation. For settings like ELI5 [20],
which require longer outputs, the Rouge is generally used. The ROUGE is similar to the BLEU, as it
evaluates the similarity between the reference text and the target text (watermarked text) through
n-gram similarity. For some special scenarios, such as TruthfulQA [55], which is used to evaluate
the truthfulness and accuracy of LLMs, the GPT-Truth [54] and GPT-Info [54] metrics generated by
GPT-4 can be used for evaluation.

Similarly, Machine Translation and Text Summarization tasks are often used to evaluate the
capabilities of watermarked LLMs. This is typically done by adding watermarks to LLMs fine-tuned
specifically for these tasks (e.g., NLLB-200 [16]). Both tasks compare the watermarked text and
reference text in terms of n-gram similarity (BLEU for Machine Translation, ROUGE for Text
Summarization), semantic similarity (BERT-Score), and the PPL value of the watermarked text.

Additionally, some works evaluate the capabilities of watermarked LLMs by testing their perfor-
mance on other tasks. For example, the Math Reasoning [22, 54] is used to evaluate the reasoning
ability of LLMs, typically using the accuracy metric to determine if the LLM answered correctly.
The Knowledge Probing [101], evaluates the knowledge capability of LLMs, usually through the F1
score as the metric. Moreover, the instruction following capability [101] of LLMs is often evaluated
using GPT-Judge to compare the original LLM and the watermarked LLM in following instructions,
typically assessed by win-rate metric.

5.4 Output Diversity Evaluation for Watermarked LLM

In the previous section, we primarily discussed how to evaluate the output performance of wa-
termarked LLMs. However, another important aspect of evaluating LLM quality is evaluating the
diversity of LLM outputs. Since watermarking algorithms typically prefer certain output content,
watermarked LLMs often suffer from reduced output diversity, making its evaluation a significant
topic. Current work mainly focuses on evaluating the output of the Text Completion task, including
metrics such as Seq-Rep-N [26], Log Diversity [43], Ent-3 [33, 34], and Sem-Ent [33, 34].

5.4.1 Seq-Rep-N. Seq-Rep-N is typically used to calculate the repetition of n-grams in a sentence.

It can be obtained by calculating the ratio of the number of unique n-grams to the total number of
Number of unique 3-grams [2 6]
Total number of 3-grams

analyzed using the Seq-Rep-3 metric and found that the Aar [1] has significantly higher repetition
compared to KGW [42] and KTH [45]. Additionally, as the required window size increases, the
repetition decreases, but this sacrifices some robustness to modifications.

n-grams in a sentence. Specifically, the following formula can be used: 1 -

5.4.2 Log Diversity. Furthermore, Kirchenbauer et al. [43] proposed the log diversity metric. This
metric calculates the negative logarithm multiplied by the proportion of unique n-grams from 1 to
N, rather than just the repetition ratio of a specific n-gram. The following formula can be used for

calculation: Rz = —log (1 -1, (1 - u,,)) , where u,, represents the ratio of the number of unique
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n-grams to the total number of n-grams in a given text sequence. Similarly, Kirchenbauer et al. [43]
also found that log diversity increases with the window size.

5.4.3 Ent-3. Ent-3 measures the entropy of the frequency distribution of 3-grams in the text. A
higher entropy value indicates greater lexical diversity. The following formula can be used for
calculation: H = — ) ; p; log p;, where p; is the probability of the ith 3-gram occurring. A higher
Ent-3 value indicates more diverse word choices in the generated text. Hou et al. [33] shows that
their algorithm can enhance robustness without reducing diversity.

5.4.4 Sem-Ent. Semantic Entropy (Sem-Ent) measures diversity by performing clustering analysis
on the semantic representations of generated text and then calculating the entropy of the cluster
distribution. It uses the LLM to generate semantic representations of the text, followed by k-means
clustering analysis on all semantic representations, with a specified number of cluster centers k.
The entropy of the cluster distribution is then calculated based on the proportion of sentences in
each cluster: H = — }}; p; log p; where p; is the proportion of sentences in the i-th cluster. A higher
Sem-Ent value indicates greater semantic diversity. Sem-Ent focuses more on semantic diversity
rather than just surface-form diversity.

Notably, for clearer understanding, in Table 1 we outline evaluation metrics for quality impact
mentioned in §5.2, §5.3 and §5.4, along with their various characteristics and the algorithms
evaluated on each metric.

5.5 Untargeted Watermark Attacks

For a text watermarking algorithm, another important evaluation aspect is its robustness against
watermark attacks. Table 2 lists different types of watermark attacks. These attacks may either
unintentionally modify the watermarked text (untargeted) or attempt to crack the watermark
generation method to remove or forge the watermark (targeted). In this seciton, we focus on
untargeted watermark attacks, leaving targeted watermark attacks for the next section.

5.5.1 Threat Model. We first introduce the threat model for untargeted watermark attacks. We
assume that the user has obtained a watermarked text. The user may or may not know that the text
contains a watermark, but they do not know how the watermark was embedded. The user might
modify the watermarked text, possibly at the character, word, or sentence level, or they might insert
the watermarked text into a longer, non-watermarked human text. A robust text watermarking
algorithm should maintain detectability as much as possible after such modifications.

5.5.2  Character-level Attack. Merely modifying characters in the text without replacing words is a
basic strategy. Random character replacement is relatively easy to detect. An alternative strategy is
using visually similar Unicode characters (homoglyph attacks [24]), which are harder for humans
to notice but can be mitigated through normalization techniques [42]. Therefore, performing
normalization preprocessing before passing the text to the watermark detector is crucial.

Character-level attacks affect different types of watermark algorithms differently. For format-
based watermark algorithms, such as those using Unicode ID replacement to embed watermarks (e.g.,
EasyMark [89] using Unicode 0x0020 to replace 0x2004), homoglyph attacks can be a straightforward
and effective method to remove watermarks. For other watermark algorithms, the impact mainly lies
in the tokenizer; after character modification, the tokenizer may break down words into different
token lists. This change in tokenization results poses a challenge to the detection effectiveness of
many watermark algorithms. In summary, character-level attacks have minimal impact on text
quality but are relatively easy to detect and can be removed by other methods. Therefore, this is
not reliable for all scenarios.
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Table 2. The attack methods for different text watermarking algorithms. Perform Gran. indicates the granu-
larity of algorithm execution, Target Attack? indicates whether the attack involves breaking the watermark
algorithm details, Perform Stage indicates whether the attack is performed before or after watermark text
generation, Time Cmplx. indicates time complexity, Quality Impact indicates the impact on text quality,
Tested Methods lists the algorithms tested on each attack, and Robust Methods refers to algorithms that
show robustness under the corresponding attack, based on the analysis provided in the respective studies
conducting the tests.

Attack Method Perform  Target Perform Time Quality Tested Robust
Gran. Attack? Stage Cmplx. Impact Methods Methods
Homo. Attack [24] Char X Post-Gen Ik, It - -
. [1, 2, 15, 42, 45, 48, 68, [2, 42, 45, 48, 68, 110,
Word Insertion Word X Post-Gen L. H. 110, 117, 119] 117, 119]
A [1, 2, 15, 42, 45, 48, 68, [2, 42, 45, 48, 68, 110,
‘Word Deletion Word X Post-Gen L. H. 110, 114, 117, 119, 124] 114, 117, 119, 124]
[1,2,15, 26, 42, 43, 45, 48, [1, 2, 26, 42, 43, 45,
Word Replacement Word X Post-Gen L. M. 49, 54, 57, 68, 105, 110, 48, 49, 54, 57, 68, 110,
113, 114, 117, 119, 124] 113, 117, 119, 124]
Emoji Attack [42] Word X Pre-Gen M. M. = =
Back-translation [18] Doc X Post-Gen M. L. (35, 42, 45; ;lfi 57, 60, 84, [48, 57, 60, 84, 114]
CWRA [30] Doc. X Post-Gen M. IL, [30, 35, 42, 57] [30]
Syntax Transf. [93] Doc. X Post-Gen M. M. [42, 124] -
[1, 15, 33, 34, 42, 43, 45, [33, 34, 42, 43, 48, 56,
Paraphrasing Doc. X Post-Gen M. L. 48, 56, 57, 59, 84, 85, 105, 57,59, 84, 113, 119,
113, 114, 118, 119, 124] 124]
Watermark Doc. X Post-Gen M. L. [42, 57, 124] -
Collision [61]
Copy-Paste [43] Doc. X Post-Gen IL, IL, [43, 105, 118] [43, 118]
Spoofing Attack [86] — v Pre-Gen H. — [42, 56, 57, 59, 124] [56, 57, 59]
SCTS [108] — v Pre-Gen H. — [42, 43, 124] -
MIP [122] — v Pre-Gen H. — [42, 43, 124] -
Distillation [26] — v Pre-Gen H. — [1, 42, 45] -
WS [40] — v Pre-Gen H. — [42, 43, 124] -
LLM Fine-tuning [26] — X Pre-Gen H. — [26] -

5.5.3  Word-level Attack to Existing Text. Word-level attacks to existing text involve inserting,
deleting, or replacing words in pre-generated watermarked text [2, 42, 45, 114, 117, 124]. These
modifications are usually done at a fixed attack rate. Among all modification methods, synonym
replacement is commonly used to minimize semantic impact, preferring replacement words that
cause the least difference in sentence scoring (e.g., using BERT score [17]).

For watermarking existing text (§3), word deletion is the most effective way. A deletion rate
below 0.1 has minimal impact, but exceeding 0.3 can remove the watermark [114]. However, word
deletion also has the greatest impact on overall semantics, potentially removing critical information.
For watermarking LLMs (§4), some watermarking methods [42, 43, 57] depend on previous tokens
to determine the current token’s watermark status. Word-level attacks alter both the current and
preceding tokens, leading to the watermark’s removal.

Since word-level modifications cannot alter the text order, the modification space is limited.
Significant modifications are likely to disrupt sentence semantics. Although word-level attacks
perform well in some scenarios, due to obvious quality issues, these methods may not accurately
simulate real-world conditions.

5.5.4  Word-level Attack during Text Generation. Due to the inevitable impact of word-level attacks
on text quality, especially with extensive modifications, recent research has begun exploring word-
level attacks during text generation. These methods target watermarking algorithms for LLMs. A
notable example is the emoji attack [42], where the LLM generates emojis between each token,
which are then removed post-generation.
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For example, a user might request the LLM to insert "=" between each word, resulting in
sentences like "There = are = some = apples = here". If "apples” is watermarked and its detection
relies on the prefix (the emoji "2 "), removing the emojis changes the prefix from "apples” to
"some". For algorithms that rely on prefix generation for watermarking [42, 56], this attack would
completely remove the watermark.

However, the effectiveness of emoji attacks depends on the LLM’s ability to follow instructions.
Advanced LLMs like GPT-4 [71] and Claude can successfully execute emoji attacks, but less capable
models might produce illogical outputs. Additionally, this attack is ineffective against watermarking
methods that do not rely on previous tokens [45, 124].

5.5.5 Paraphrasing Attack. Word-level attacks modify individual words to change or remove text
watermarks, having limited impact. In contrast, document-level attacks involve more extensive
content and structure changes, with paraphrasing being the most common method.

Paraphrasing attacks offer significant modifications but are harder to implement than word-level
methods. Early techniques, like back-translation strategies [114], can introduce errors and semantic
drift. To enhance the quality of paraphrased text, specialized rewriting LLMs like Dipper [44] have
been created. With the rise of ChatGPT [71], many now use the gpt-3.5-Turbo for paraphrasing,
requiring just a simple prompt. Manual rewriting offers precise semantic retention and more natural
expression but is costly [43], especially for large texts.

Different watermarking algorithms respond variably to paraphrasing attacks. Format-based
watermarks [9, 79, 85, 89] are particularly vulnerable, as LLMs often replace homographs with
standard tokens. For LLM watermarking algorithms, token sequence dependency is crucial for
robustness. Detection methods that do not depend on token order are more resilient [124], while
sequence-dependent algorithms like KGW [42] are more robust when they rely less on previous
tokens. Converting token ID dependency to semantic dependency can also improve robustness
[57, 84]. Notably, stronger watermarks and longer watermarked texts generally provide greater
resistance to attacks. Notably, human writers are generally better at paraphrasing than LLMs [43],
though individual abilities vary significantly.

5.5.6 Copy Paste Attack. Unlike paraphrasing attacks, which aim to modify the watermarked
text, copy-paste attacks [43] do not modify the current document but insert watermarked text
into a substantial amount of human text. This type of attack weakens the watermark detector’s
effectiveness by reducing the proportion of watermarked text. Current work [43] shows when
watermarked text accounts for only 10% of the total text, the attack effect usually surpasses most
paraphrasing attacks. If the proportion increases to 25%, is is comparable to some paraphrasing
attacks. Increasing text length can improve watermark detection reliability, especially in the context
of copy-paste attacks.

Some watermark detection methods can identify copy-paste attacks. For example, Kirchenbauer
et al. [43] mentions a window test that calculates the watermark level of a specific text area instead
of the entire text. This method is specifically designed to effectively detect watermarked text
inserted into existing text, making it suitable for countering copy-paste attacks.

5.5.7 Other Document-Level Attacks. In addition to paraphrasing and copy-paste attacks, there
are other document-level untargeted attack methods like watermark collision [61], cross-lingual
watermark removal attacks (CWRA) [30], and syntax transformation [93].

Watermark collision [61] examines if rewritten text can be detected with a watermark when the
paraphraser LLM itself carries another watermark. Experiments show varying sensitivities among
watermarking algorithms to collisions, but high-intensity collisions can erase all initial watermarks
[42, 57, 124], leaving only the paraphraser’s watermark. This indicates that watermark collision
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is a powerful attack method. Cross-lingual watermark removal attack (CWRA) [30] investigates
whether watermarks remain when watermarked text is translated into another language. Current
watermarking algorithms are not robust against such attacks. He et al. [30] developed the X-SIR
algorithm, which shows some robustness against CWRA attacks. Syntax transformation [93] targets
code by making syntactic transformations without changing functionality to erase watermarks.
Current watermarks struggle to remain robust under these attacks.

5.5.8 Fine-tuning Attacks. Fine-tuning attacks mainly target training-time watermarks (§4.3).
When text watermark features are hidden in the LLM’s parameters, subsequent fine-tuning can
likely remove these features. Gu et al. [26] found that for global training-time watermarks, even
minimal fine-tuning can remove the watermark features. Enhancing the robustness of training-time
watermarks against subsequent fine-tuning remains a crucial research direction.

5.6 Targeted Watermark Attacks

Untargeted attacks are modifications or other forms of attacks without any knowledge of the
watermark generation and detection methods. In contrast, targeted attacks occur when a malicious
user attempts to crack the watermark generation method. Once the user has cracked the watermark
generation method, they can easily remove existing watermarks [42] or forge new ones.

5.6.1 Threat Model. In targeted watermark attacks, the malicious user knows that an LLM contains
a watermark. They may or may not know the specific type of watermark algorithm. Additionally,
the malicious user has collected a large amount of watermarked text and may or may not have
access to the watermark detector. The goal of the malicious user is to infer the watermark generation
method. A robust watermark algorithm should be difficult to crack.

5.6.2 Targeted Watermark Attack for KGW. Most current targeted watermark attacks focus on spe-
cific algorithms [40, 86, 108, 122]. These attacks understand the general approach of the watermark
algorithm but lack specific details, such as the exact division of red-green word lists in the KGW
algorithm [42]. The goal is to infer this division.

Spoofing attacks [86] statistically analyze word frequencies under a fixed prefix in watermarked
text compared to normal text. High-frequency words are considered "green," while low-frequency
words are "red." This method is effective for the KGW algorithm with a window size of 1 and for
unigram watermarks [124]. However, it struggles with larger window sizes.

Watermark Stealing (WS) [40] reverses watermarking rules by querying the watermark model’s
APL It splits watermarked and non-watermarked texts into small segments and analyzes their
occurrence probabilities. Words appearing more frequently in watermarked texts are considered
"green." WS achieves a spoofing attack success rate of over 80% and can extract more complex
watermarking algorithms [43].

Self Color Testing-based Substitution (SCTS) [108] obtains color information through specific
prompt generation. For instance, prompting the LLM to generate a string containing A and B, and
noting which appears more frequently, determines green words. While it can identify some words,
determining the entire red-green list is complex.

Mixed Integer Programming (MIP) [122] targets advanced watermarking schemes by stealing the
green list and guiding optimization through systematic constraints. This method is more efficient
than frequency-based methods. However, increasing the diversity and complexity of the green list
can still hinder attackers from accurately identifying and replacing green markers.

5.6.3 Watermark Distillation. The previously introduced algorithms can only crack the red-green
word list of the KGW watermark algorithm [42] and cannot be used for other types of watermarks.
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Gu et al. [26] studied the learnability of watermarks, i.e., whether an LLM can learn the watermarks
by training directly on a large amount of watermarked text, thereby simulating the watermark.
They used methods of direct sampling-based learning and further distillation using logits. The
experiment shows that, given sufficient training data, most current watermark algorithms can be
learned, including KGW [42], Aar [1], and KTH [45] algorithms. However, this is limited to cases
where the window size is relatively small. When the window size is sufficiently large (i.e., the
watermark algorithm is sufficiently complex), these algorithms are still difficult to learn.

Notably, for clearer understanding, in Table 2 we outline all the watermark attacks mentioned in
§5.5 and §5.6, along with their various characteristics and the algorithms evaluated on each attack.

5.7 Benchmarks and Tools

To facilitate the unified implementation and evaluation of text watermarks, some benchmarks and
toolkits have been introduced, with WaterBench [101], WaterJudge [67], Mark My Words[78] and
MarkLLM [72] being notable examples.

WaterBench [101] is a comprehensive benchmark designed to evaluate the detectability of
watermarks in LLMs and their impact on LLM capabilities. It sets a fixed watermark strength (e.g.,
0.95) for each algorithm to ensure consistency. WaterBench includes nine tasks in five categories,
covering different input and output lengths. The benchmark shows that most watermarks perform
well in detection, especially in long-output tasks, but have poorer performance in short-output
tasks. All watermarks reduce generation quality to some extent, particularly in open-ended tasks.

WaterJudge [67], while focusing on similar evaluation aspects, places greater emphasis on
evaluating the trade-off between watermark detectability and output quality. It uses the F1 score
to measure detection performance and introduces an LLM-based evaluation approach to assess
quality impact. This approach measures the average probability of an LLM preferring watermarked
text over unwatermarked text in specific NLG tasks. WaterJudge compares different watermarking
schemes by plotting them on a detectability-quality impact graph, providing a visual representation
of this trade-off.

Mark My Words [78] evaluates watermarking schemes with a focus on watermark size and
robustness under attacks. It defines watermark size as the number of tokens needed to detect the
watermark at a 2% false positive rate. It also measures robustness against eight simple attacks
designed to remove the watermark while preserving semantic similarity.

In addition to these benchmarks, more comprehensive toolkits have emerged. MarkLLM [72] is
an open-source toolkit for LLM watermarking that provides a unified framework for implementing
most existing LLM watermarking algorithms [1, 30, 42, 45, 49, 56, 57, 60, 124], ensuring ease of
access through user-friendly interfaces. It also offers a comprehensive suite of evaluation tools
covering detectability, quality, and robustness, as well as mechanism visualization to help the public
better understand LLM watermarking technology.

6 APPLICATION FOR TEXT WATERMARKING

In preceding sections, we outlined the implementation methods of text watermarking technologies
in the era of LLMs and detailed how to thoroughly evaluate these methods. As illustrated in Figure
10, this section delves into their real-world applications, focusing on two areas: copyright protection
(§6.1) and Al-generated text detection (§6.2).

6.1 Copyright Protection

6.1.1 Text Copyright. Text copyright refers to the legal protection of original written content,
ensuring creators have exclusive rights. Text watermarking technology helps safeguard copyright
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Fig. 10. Application for Text Watermarking.

by detecting watermarks to identify the source of the text. The most common technology used for
this purpose is format-based watermarking algorithms (§3.1), which do not alter the text content,
an important factor for many creators.

For instance, Taleby Ahvanooey et al. [94] uses layout attributes like word spacing and formatting
elements such as text color and font for watermark insertion. Mir [65] introduced an invisible
digital watermark for web content, using encrypted rules embedded in HTML. Additionally, tailored
approaches are sometimes needed; Igbal et al. [37] embedded watermarks in MS-Word documents
using features like variables and bookmarks.

While current methods rely on format-based watermarking, the rise of LLMs suggests that
integrating watermark algorithms with these models could be a promising direction for future
research and applications in text copyright protection.

6.1.2  Dataset Copyright. With the rise and widespread application of deep learning technology, the
copyright of datasets has become particularly important, and protecting datasets from unauthorized
use has become a critical issue. The application of text watermarking technology in this field
is mainly achieved through the backdoor watermark mentioned in 4.3. Specifically, this method
embeds specific triggers and target behaviors into the dataset. When an LLM trained on this dataset
encounters the corresponding triggers, it will exhibit the target behaviors [91, 92, 95].

6.1.3 LLM Copyright. For the copyright protection of LLMs, preventing extraction attacks [7, 74,
116] is crucial. In these attacks, malicious users train their own LLMs using a large amount of text
generated by the original LLM. Some watermarking algorithms embed watermarks in the LLM’s
output to prevent such attacks.

For instance, He et al. [28] proposed embedding watermarks by replacing synonyms in the
generated text, choosing specific "watermark words." However, this method alters word frequency,
making the watermark easier to detect and remove. To address this, He et al. [29] used contextual
features from parts of speech and dependency tree analysis for word replacements, keeping token
frequency unchanged. Zhao et al. [125] further introduced watermarks during the logits generation
process (§4.1) by embedding periodic signals in the LLM’s output logits. These signals make the
watermarks more robust and covert.

Additionally, Gu et al. [26] demonstrated that watermark algorithms like KGW [42], Aar [1], and
KTH [45] have learnability. Moreover, data generated with these watermarks can train LLMs that
carry the same watermarks. Similarly, Sander et al. [88] indicated that watermarks similar to KGW
[42] give LLMs "Radioactive" properties.

However, using watermarking algorithms like KGW [42], Aar [1], and KTH [45] to resist model
extraction attacks involves a trade-off between learnability and resistance to targeted attacks (§5.6).
Generally, if an LLM is easy to learn from, it is also more susceptible to spoofing or stealing and
can be forged more easily.
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Fig. 11. Taxonomy of Challenges and Future Directions of Text Watermarking.

6.2 Al Generated Text Detection

As the capabilities of LLMs grow stronger, they may be misused in an increasing number of scenarios.
Typical examples include academic integrity [46, 77, 104] and LLM-generated misinformation
[13, 62, 126]. In the context of academic integrity, students might use these advanced LLMs to
complete assignments, papers, or even participate in exams. In the context of LLM-generated fake
news, LLMs might generate and rapidly spread false information. Current research indicates that
some LLM misuses may not be totally mitigated [12, 58], making effective detection and tracking
of LLM-generated text necessary solutions to these problems.

Theoretically, all algorithms that embed watermarks during logits generation (§4.1) and token
sampling (§4.2) can be applied to these scenarios. For detecting Al-generated content, some practical
online services currently adopt post-generation detection methods. These methods typically use
features of LLM-generated text [66] or train classifiers to distinguish between LLM-generated text
and human text [47]. There are also online text detection tools available, such as GPTZero . This
service distinguishes LLM-generated text from human text based on two features: text perplexity
and burstiness. Since LLM text watermarks are added during the text generation process, there is
currently no unified platform for detecting watermarked text. Building a unified watermark text
detection platform should be an important future direction.

7 CHALLENGES AND FUTURE DIRECTIONS

Although detailed introductions to the methods, evaluations, and application scenarios of text
watermarking have been provided in previous sections, numerous challenges remain in this field.
As illustrated in Figure 11, these include challenging trade-offs in text watermarking algorithm
design (§7.1), challenging scenarios for text watermarking algorithms (§7.2) and challenges in
applying watermark with no extra burden(§7.3). These challenges will be discussed in detail below.

7.1 Challenging Trade-offs in Text Watermarking Algorithm Design

In Section 5, we explore various aspects of evaluating text watermarking algorithms. However,
inherent conflicts often exist between these aspects, making it extremely difficult for an algorithm
to excel in all areas. We will present the existing trade-offs and their underlying reasons, and discuss
potential solutions for better balancing these aspects in future work.

!https://gptzero.me/
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7.1.1  Watermark Size, Robustness under untargeted attacks and Watermark Capacity. The trade-
offs between watermark size (§5.1.3), robustness (§5.5), and watermark capacity (§5.1.2) are also
important. Generally, improving any one of these three attributes will reduce the other two.

Specifically, as watermark capacity increases, more watermark information needs to be embedded
in the text, which usually requires longer text lengths for the watermark to be detectable (less
watermark size). Similarly, with higher watermark capacity, the robustness requirements of the
watermarking algorithm also increase; that is, modifications to the text must not only fail to remove
the watermark but also ensure that the embedded information is not altered.

The fundamental reason for contradictions among different perspectives lies in the limited suit-
able text space for text watermarking, usually determined by the text quality requirements. Specifi-
cally, according to Equation 1, the score difference between watermarked and non-watermarked
texts under the quality evaluation function R should be less than a threshold . However, the
number of texts meeting this criterion is limited, denoted as |t4]. Since the minimal impact on
text quality is a crucial feature of text watermarking algorithms, there is an upper limit for |z4]
for all watermarking algorithms. Given the watermark text space of |t4|, we can further analyze
the conflicts between different evaluation perspectives. These trade-offs are fundamental issues in
text watermarking. Although some multi-bit watermarking algorithms [105, 118] can mitigate this
problem to some extent, these algorithms achieve multi-bit functionality at the cost of significant
robustness and watermark size.

7.1.2 Robustness under Untargeted and Targeted attacks. In sections 5.5 and 5.6, we introduced how
to evaluate the robustness of watermarking algorithms under Untargeted and Targeted attacks,
respectively. However, there is a trade-off between these two types of robustness: methods that
achieve optimal robustness in Untargeted attacks usually do not perform well in Targeted attacks,
and vice versa. For most algorithms, a key factor is how many previous tokens (window size)
are relied upon to generate the watermark (e.g. red-green list in KGW [42]). For watermarking
algorithms based on KGW [35, 42, 56, 57, 110] and Aar [1, 15], relying on more previous tokens
makes the watermark generation details harder to be stolen, but it also makes the watermark easier
to remove through text modification, and vice versa. For example, Zhao et al. [124] used a global
red-green list split, which is considered very robust against various text modification attacks but is
easily compromised by spoofing attacks. Fairoze et al. [19] used a complex hash algorithm, making
the watermark difficult to steal, but it has low robustness against text modifications. This trade-off
has been noted in many works [26, 40, 56, 57].

Some works attempt to mitigate this trade-off through more complex hash schemes, including
self-hash [43], min-hash[43], and semantic hash [57]. However, these methods only mitigate the
problem to a certain extent and do not fundamentally solve it. The trade-off between robustness in
Untargeted and Targeted attacks can also be referred to as the trade-off between robustness and
learnability [26] in some contexts [26].

7.1.3  Diversity and Robustness under Untargeted Attacks. Additionally, some work [26, 43] indicates
that for LLM watermarking algorithms, there is a trade-off between output diversity and robustness
against untargeted attacks. This trade-off is similar to the robustness trade-off under targeted and
untargeted attacks. For some algorithms [1, 42], more complex patterns (large window size) during
design lead to more diverse rules and outputs, while simpler rule patterns limit output diversity.
However, this may do not apply to all algorithms. A watermarking algorithm based on previous
token hash is more susceptible to this trade-off, whereas algorithms like KTH [45] using a fixed
key list experience this trade-off to a lesser extent. However, the watermark detection efficiency of
KTH-type algorithms decreases, mainly because the high complexity of multi time edit distance
calculation. Perhaps this trade-off should also include the time complexity of detection.
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7.1.4  Robustness under Targeted Attacks and Model Extraction Attacks. For LLM watermarking
algorithms, there is a trade-off between robustness against target attacks and model extraction
attacks. This was briefly mentioned in §6.1.3. The key issue is the learnability of the watermark [26].
A learnable watermark can help an LLM resist model extraction attacks (by ensuring the extracted
model also has the watermark features), but it also makes it easier for malicious users to extract
the watermark and perform target attacks. The core of this trade-off lies in the complexity of the
watermark. Complex watermark rules are more resistant to target attacks, while simple watermark
rules are better at resisting model extraction attacks. This is similar to the robustness trade-off
under targeted and untargeted attacks mentioned earlier.

7.1.5  Text Quality and Robustness under untargeted Attacks. Generally, enhancing the robustness
of LLM text watermarking algorithms against text modifications usually means increasing the
watermark strength (e.g., § in KGW [42] or 7 in Aar). However, this often results in larger modifica-
tions to the text, which may affect text quality. Another approach is to introduce more redundant
information, making it lengthy and repetitive. Thus, there is typically a trade-off between the ro-
bustness of LLM text watermarking algorithms under untargeted attacks and text quality. However,
current research suggests that this trade-off might be alleviated by sacrificing some time complexity
in the watermark generation [25] or detection [45].

7.1.6  Future Directions. Some work has been done to mitigate these trade-offs [43, 45, 57], but there
is still a significant gap to achieving an optimal watermark across all aspects. Future work should
better balance the above trade-offs from two perspectives: (1) Develop algorithms specifically for
individual trade-offs. For example, SIR [57] algorithm targets robustness under both untargeted
and targeted attacks. (2) Design entirely new watermarking paradigms [45] that inherently achieve
better balance across all trade-offs.

7.2 Challenging Scenarios for Text Watermarking Algorithms

Current watermarking algorithms generally have good detectability and robustness. However,
there are still some specific scenarios where LLM watermarking algorithms struggle to achieve
excellent results. These mainly include low-entropy scenarios, publicly detectable scenarios, and
open-source LLM scenarios.

7.2.1  Low Entropy Scenarios. In low-entropy scenarios like code [14] or table generation [53],
embedding a highly detectable watermark is more challenging. This is mainly because these texts
have strict syntactic or formatting requirements, resulting in small watermark capacity. A more
in-depth explanation is that for low-entropy text, the upper limit of the watermark text space is
lower, making it harder for watermark generation.

Some work has attempted to consider the impact of entropy in the watermark generation [49] or
detection [60] process. However, they are still limited to token-level modifications. Future methods
may need a stronger understanding of formatting or grammatical requirements, thereby designing
semantically invariant format transformations to expand the watermark text space.

7.2.2  Publicly Verifiable Scenarios. We have already considered the Publicly Verifiable watermark
scenario in §4.1.5. In this scenario, the watermark detector is publicly available to users, with the
goal that it remains difficult for users to forge the watermark. This poses greater challenges for
the design of watermark algorithms. Firstly, the entire watermark algorithm must have sufficient
robustness against target attacks. Additionally, since the detector is public, there are more methods
to perform target attacks on the algorithm, such as using the detector to reverse-engineer the
generator [56]. Although there has been some exploration in this area [19, 56], these algorithms
are typically limited by their robustness against untargeted attacks (as discussed in §7.1.4).
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Future work should explore more robust publicly verifiable watermark algorithms and investigate
more potential watermark attack methods in Publicly Verifiable scenarios to further advance
understanding in this field.

7.2.3  Open Source Scenarios. For LLM watermarking technology, the most challenging scenario
is in the open-source scenarios. Embedding text watermarking in an open-source LLM can only
be done by incorporating it into the LLM’s parameters during training. This can be achieved by
training on watermarked text or using some inference-time watermarking for distillation training.
However, the biggest challenge in this process is the robustness to further fine-tuning. Gu et al.
[26] discovered that training-time watermarking techniques are weak in robustness to subsequent
fine-tuning, and the watermark will inevitably be completely removed after sufficient fine-tuning
iterations. Exploring watermarking solutions for open-source LLMs that are robust to further
fine-tuning is an important direction for future research [127].

7.2.4  Future Directions. The three scenarios mentioned are all highly challenging. Although some
current methods attempt to adapt watermarking algorithms to these scenarios [19, 26, 49, 56,
60], they still have various limitations. Future algorithms should first explore the performance
upper limits in different scenarios to design better adaptation strategies. Additionally, they should
investigate other potentially more challenging scenarios, as LLMs are rapidly evolving and will
likely present many new challenges in the future.

7.3 Challenges in Applying Watermark with No Extra Burden

For a LLM watermarking algorithm, it is crucial and challenging to ensure that it does not introduce
additional burdens. This primarily means that the LLM watermark must not cause any performance
loss, nor should it add any computational burden, including in terms of time and space.

7.3.1  Strict Distortion-free Watermark for LLMs. Currently, many unbiased or distortion-free
watermarking [1, 35, 45] algorithms claim not to affect LLM performance. While theoretically, these
watermarking algorithms are unbiased, whether single-step unbiased decoding means no impact
on capabilities is questionable. Firstly, Wu et al. [109] indicates that in multi-sentence generation
scenarios, these algorithms cannot be considered unbiased. Additionally, these watermarks may
potentially degrade the diversity of LLM-generated text [1]. Finally, LLMs may not only use
sampling-based methods (e.g. nuclear sampling) to generate text; in some scenarios, they may
use beam search to generate code [70]. Whether these unbiased or distortion free watermarks
[1, 45] are applicable in such scenarios is also questionable. In summary, current distortion-free
watermarking works under specific sampling assumptions. More research is needed to develop
general distortion-free watermarking algorithms.

7.3.2  Avoiding Additional Computational Burden. While most watermarking algorithms have
a low impact on LLM inference speed [42], they only involve some hash and random number
generation operations, which, if recalculated at each step, may affect latency. Some methods involve
pre-calculating hash results [26], but this may have significant space overhead when the LLM’s
vocabulary is large or depends heavily on previous tokens. Although some algorithms theoretically
have low overhead, such as Unigram [124] and KTH [45], they often sacrifice robustness against
targeted attacks or increase the time required for watermark detection.

7.3.3  Future Direction. In summary, to better facilitate the practical deployment of LLM watermark-
ing algorithms, future algorithms should carefully consider their impact on LLM performance. When
designing new watermarking methods, it is crucial to account for their real-world performance
implications in large-scale LLM systems.
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8 CONCLUSION

This survey thoroughly delves into the landscape of text watermarking in the era of LLMs, encom-
passing its implementation, evaluation methods, applications, challenges, and future directions.

Despite the progress made, several areas require further exploration. Future research should
focus on creating advanced watermarking algorithms capable of withstanding novel attack types,
especially where attackers have access to sophisticated tools and knowledge. Exploring watermark-
ing in new applications like authenticity verification of Al-generated content in social media and
journalism is crucial for maintaining the integrity and trustworthiness of digital content.

In summary, text watermarking in the era of LLMs is a rapidly evolving field. Its development
will be critical in ensuring the responsible and ethical use of Al technologies.
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