
Under review as a conference paper at ICLR 2020

TRANS-CAPS: TRANSFORMER CAPSULE NETWORKS
WITH SELF-ATTENTION ROUTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Capsule Networks (CapsNets) have shown to be a promising alternative to Con-
volutional Neural Networks (CNNs) in many computer vision tasks, due to their
ability to encode object viewpoint variations. The high computational complexity
and numerical instability of iterative routing mechanisms stem from the challeng-
ing nature of the part-object encoding process. This hinders CapsNets from being
utilized effectively in large-scale image tasks. In this paper, we propose a novel
non-iterative routing strategy named self-attention routing (SAR) that computes
the agreement between the capsules in one forward pass. SAR accomplishes this
by utilizing a learnable inducing mixture of Gaussians (IMoG) to reduce the cost
of computing pairwise attention values from quadratic to linear time complexity.
Our observations show that our Transformer Capsule Network (Trans-Caps) is
better suited for complex image tasks including CIFAR-10/100, Tiny-ImageNet
and ImageNet when compared to other prominent CapsNet architectures. We
also show that Trans-Caps yields a dramatic improvement over its competitors
when presented with novel viewpoints on the SmallNORB dataset, outperform-
ing EM-Caps by 5.77% and 3.25% on the novel azimuth and elevation experi-
ments, respectively. Our observations suggest that our routing mechanism is able
to capture complex part-whole relationships which allow Trans-Caps to construct
reliable geometrical representations of the objects.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance in many dif-
ferent computer vision tasks (Krizhevsky et al., 2012; He et al., 2016). This is achieved by local
connectivity and parameter sharing across spatial locations so that useful local features learned in
one receptive field can then be detected across the input feature space. While such a mechanism
is sufficient to learn relationships between nearby pixels and to detect the existence of objects of
interest, CNNs often fail to detect objects presented in radically new viewpoints due to the complex
effects of the viewpoint changes on the pixel intensity values. This limitation forces us to train each
CNN with a large number of data points which is computationally expensive.

Capsule Networks (CapsNets) were introduced to explicitly learn a viewpoint invariant representa-
tion of the geometry of an object. In CapsNets, each group of neurons (called a “capsule”) encodes
and represents the visual features of a higher-level object in an instantiation parameter vector or ma-
trix (which we refer to as the pose vector or matrix throughout this paper). The lower-level capsules
(which we refer to as part capsules) estimate the pose of the object parts and hierarchically com-
bine them to predict the pose of the whole object in the next layer. The object-part relationship is
viewpoint-invariant, meaning that changes in the viewpoint change the pose of parts and objects in
a coordinated way. Therefore, regardless of the viewpoint, we can infer the pose of the whole object
from its parts using a set of trainable viewpoint-invariant transformation matrices. Capsule routing
mechanisms can therefore learn the underlying spatial relationships between parts and objects. This
improves the generalization capabilities of the network due to the underlying linear relationship be-
tween the viewpoint changes and the pose matrices. In order to route information between capsules,
the part capsules vote for the pose of the higher-level capsules (which we refer to as object capsules).
A routing-by-agreement mechanism is employed to aggregate votes (which has been traditionally
accomplished using a recurrent clustering procedure) effectively computing the contribution of each
part to the object pose.

1

Under review as a conference paper at ICLR 2020

While various proposed iterative routing mechanisms (such as Dynamic (Sabour et al., 2017) and
EM (Hinton et al., 2018) routing) have been shown to be effective in the detection of viewpoint
variations, their iterative nature increases computational cost. Prior research has additionally shown
that these routing mechanisms may fail to properly construct a parse tree between each set of part
and object capsules, partly due to the inability of the network to learn routing weights through
back-propagation (Peer et al., 2018). This ultimately limits the performance of CapsNets in real-
world image classification tasks. Additionally, the correct number of routing iterations serves as an
additional data-dependent hyper-parameter that needs to be carefully selected; failing to optimize
the number of routing operations can result in increased bias or variance in the model (Hinton et al.,
2018). This issue is amplified when training networks with multiple capsule layers.

In this paper, we introduce a novel routing algorithm called self-attention routing (SAR), which
is inspired by the structural resemblance between CapsNets and Transformer networks (Vaswani
et al., 2017). This mechanism eliminates the need for recursive computations by replacing unsu-
pervised routing procedures with a self-attention module, making the use of CapsNets effective in
complex and large-scale image classification tasks. Our algorithm also reduces the risk of under
and over-fitting associated with selecting a small and large number of routing iterations, respec-
tively. We compare our proposed routing algorithm to two of the most prominent iterative methods,
namely dynamic and EM routing, and the recently published non-iterative self-routing mechanism
(Hahn et al., 2019). We evaluate performance on several image classification datasets including
SVHN, CIFAR-10, CIFAR-100, Tiny-ImageNet, ImageNet, and SmallNORB. Our results show that
our model outperforms other baseline CapsNets and achieves better classification performance and
convergence speed while requiring significantly fewer trainable parameters, fewer computations (in
FLOPs), and less memory. Moreover, our experimental result on the SmallNORB dataset with novel
viewpoints shows that the proposed model is significantly more robust to changes in the viewpoint
and is able to retain its performance under severe viewpoint shifts. All source code will be made
publicly available.

2 RELATED WORK

2.1 CAPSULE NETWORKS

CapsNets were originally introduced in Transforming Autoencoders by Hinton et al. (2011); here
they pose computer vision tasks as inverse graphics problems to deal with variations in an object’s
instantiation parameters. This architecture learns to reconstruct an affine-transformed version of
the input image, therefore learning to represent each input as a combination of its parts and their
respective characteristics. Sabour et al. (2017) introduced capsules with Dynamic Routing (DR-
Caps), which allows the network to learn part-whole relationships through an iterative unsupervised
clustering procedure. In DR-Caps, capsules output a pose vector whose length (norm or magnitude)
implicitly represents the capsule activation. The vector norm should be able to scale depending
on the pose values; representing existence with the vector norm can therefore potentially weaken
the representation power of any given capsule layer. Hinton et al. (2018) proposed capsules with
EM routing (EM-Caps), where capsule activations and pose matrices are segregated to fit the votes
from part capsules through a mixture of Gaussians. While powerful, capsule network’s routing
procedures have several fundamental limitations:: 1) Iterative routing operations are the bottleneck
of CapsNets due to their computational complexity, which limits their widespread applicability in
complex, large-scale datasets (Zhang et al., 2018; Li et al., 2018). 2) The number of routing iterations
are hyper-parameters that need to be carefully tuned to prevent under and over fitting (Hinton et al.,
2018). 3) Lin et al. (2018) showed that even after seven iterative routing operations, the entropy of
the coupling coefficient was still large, indicating that part capsules pass information to all object
capsules. 4) EM-Caps have difficulty converging and have been shown to be numerically unstable,
which limits their applicability in complex tasks (Ahmed & Torresani, 2019; Gritzman, 2019).

Several studies have proposed non-iterative methods to replace the traditional iterative routing mech-
anisms in CapsNets. STAR-CAPS (Ahmed & Torresani, 2019) combines an attention gate with a
straight-through estimator to make a binary decision to either connect or disconnect the route be-
tween each part and object capsule. Tsai et al. (2020) proposed an inverted dot-product attention
routing mechanism (IDPA-Caps) which generates the routing coefficients between capsules; they
unroll the iterative routing procedure and perform the iterations concurrently which helps improve

2

Under review as a conference paper at ICLR 2020

parallelization. While powerful, the number of concurrent iterations is a hyper-parameter that needs
to be tuned, and the unrolling process creates a very large network that is memory intensive. Inspired
by Mixture-of-Experts, Hahn et al. (2019) introduced a self-routing mechanism. While non-iterative,
self-routing attaches stationary routing weights to specific locations which limits its ability to gener-
alize to novel viewpoints. This also increases the required number of trainable parameters, making
it impractical for high-dimensional images.

2.2 SELF-ATTENTION

Attention operations bias a network to more informative components of the input in order to improve
the discriminative capabilities of the model. This operation has been used to tackle the problem of
long-range interactions in sequence modeling and has seen great success across the fields of Nat-
ural Language Processing (NLP) (Bahdanau et al., 2014), genomics (Zaheer et al., 2020), speech
recognition (Chorowski et al., 2015), and computer vision (Hu et al., 2018; Wang et al., 2017).
Various attention mechanisms have been used to improve CNNs by allowing the network to cap-
ture interactions between elements of the encoded feature space, which is difficult for a stand-alone
convolutional operation (Woo et al., 2018; Hu et al., 2018). Transformer based architectures were
introduced by Vaswani et al. (2017) and utilize self-attention as the primary mechanism for repre-
sentation learning. Self-attention employs the standard dot product operation to generate attention
coefficients that effectively capture the long-range interactions between inputs and outputs. These
architectures have outperformed recurrent neural networks in a wide range of tasks and have become
the SOTA for representation learning (Devlin et al., 2018; Radford et al., 2019; Huang et al., 2018).
This concept was then expanded to computer vision applications by treating each output pixel as an
element in the self-attention operation, thus allowing a CNN to learn global dependencies between
receptive fields (Bello et al., 2019). While powerful, this mechanism generates global dependen-
cies for all pixels, making it memory intensive and computationally cumbersome. This issue was
later addressed by restricting the scope of each self-attention operation to local patches as opposed
to applying self-attention to the global feature space (Hu et al., 2019; Ramachandran et al., 2019).
The Set Transformer is an encoder-decoder architecture that utilizes a self-attention mechanism to
cluster a group of independent inputs by modeling the interactions among the elements of the set
(Lee et al., 2019). Given that the order of the part capsules does not contribute to the understanding
of each object capsule, we took inspiration from the Set Transformer to replace the recurrent routing
mechanism with a self-attention-based aggregation of the “votes” in a permutation invariant manner.

3 TRANSFORMER CAPSULE NETWORK

3.1 MODEL ARCHITECTURE OVERVIEW

The Transformer Capsule Network (Trans-Caps) is a capsule-based neural network architecture
where each capsule represents an encoded pose matrix. Trans-Caps starts with a convolutional
backbone, followed by a sequence of capsule layers. Note that the choice of the convolutional back-
bone, the number of capsule layers and the number of capsules per layer varies for different sets of
experiments. Given an input image X ∈ RH×W×D, the role of the convolutional backbone is to
extract a set of features F ∈ RH′×W ′×D′

from the input. The backbone can be either a single con-
volutional layer, a cascade of a few convolutional layers, or a cascade of residual blocks (He et al.,
2016). Previous studies have shown improved performance for more complex datasets when using
a residual backbone (Tsai et al., 2020; Hahn et al., 2019). We provide a detailed discussion of the
various backbone configurations in the Experiments section. The first capsule layer (PrimaryCaps)
is a convolutional layer, followed by BN applied to the output backbone features F . The outputs
are then reshaped to form the primary capsule pose elements. All layers following this layer are
convolutional capsule layers (ConvCaps) with SAR performed between the layers to construct the
pose of the object capsules. With our non-iterative SAR mechanism, the pose computation at all
stages of the network can be performed sequentially in one forward pass, yielding numerical sta-
bility and efficiency. The final capsule layer (ClassCaps) has as many capsules as the number
of classes and predicts the pose of the objects, PL

j where j ∈ {1, ..., J}. J and L represent the
number of object capsules and the total number of layers, respectively. This layer is followed by a
linear Classifier which is shared across all class capsules and computes the final class logits as

3

Under review as a conference paper at ICLR 2020

Wl
ij

Pl

Pl

Pl

transformation
matrix

(input pose)

...

...

Vl

(vote)

W

W

...

...

Pl+1

Pl+1

Pl+1

Vl

Vl

ij

i1

iJ

1

i

I

v

k

k i1

k ij

k iJ

v i1

v ij

v iJ

...

...

. . .
. . .

scaled log-likelihood

a 1

a j

a J
J

j

1O 1

O j

O J rFFNorm Norm

rFFNorm Norm

rFFNorm Norm

...

...

...

...

...

...

...

......

...

(output pose)

capsule self-attention, E
q. (4)

(attention vectors)IMoG
(Inducing Mixture of Gaussians)(value vectors)

(key vectors)

Figure 1: Overview of a Trans-Caps layer with SAR.

ŷc = Classifier(PL
c) where PL

c is the output of the final ConvCaps layer and c ∈ {1, ..., C} in
a C class problem.

3.2 INPUT POSE TRANSFORMATION

Figure 1 describes one part-object capsule layer with SAR. Let Ωl denote the sets of capsules in
layer l ∈ {1, ..., L}. Each part capsule i ∈ Ωl outputs a pose matrix P l

i ∈ Rp×p in which each of
the p × p entries of the pose matrix represent some instantiation parameter, such as location, size,
and orientation. In our implementation, the capsule activation probability is not separately defined,
but we instead enable the network to encode the presence or absence of the given part in the pose
matrix itself. Each capsule i ∈ Ωl transforms its pose matrix P l

i and casts a vote V l
ij ∈ Rp×p as the

prediction made by the ith part capsule for the pose of the jth object capsule (j ∈ Ωl+1). The object-
part relationship is viewpoint-invariant and approximately constant; this means that a transformation
applied to the pose of a part will have a similar effect on the pose of the object. Therefore, it can
be encoded by learned transformation matricesW l

ij ∈ Rp×p, allowing us to then generate the votes
following

V l
ij = W l

ijP
l
i (1)

Note that the W l
ij transformation matrices are learned discriminatively by back-propagation allow-

ing the network to gradually construct a transformation matrix for each capsule pair to encode the
corresponding part-whole relationship. Finally, a non-linear routing procedure is required to pro-
cess the votes V l

ij for all i ∈ Ωl to then generate the pose of the object capsules in layer l + 1. In
Trans-CapsNet, we replace the recurrent clustering approach of iterative routing methods with our
non-iterative SAR procedure.

3.3 SELF-ATTENTION ROUTING

Our SAR mechanism aggregates votes V l
ij sent to the jth object capsule according to their agree-

ment and then generates the output that best explains the pose of the higher-level object. Aggregating
votes through a self-attention mechanism is sensible as the influence of each vote on the final pose
of the object capsule is not necessarily equal. However, if we were to compute the pair-wise simi-
larities among the votes following the self-attention mechanism proposed by Vaswani et al. (2017),
we would be limited by the quadratic time complexity of the operation O(n2) for n part capsules,
making it memory intensive for multiple part capsules. A routing mechanism should also be permu-
tation invariant since the order of the part capsules does not contribute to our understanding of the
object capsules. Therefore, we took inspiration from Set Transformers (Lee et al., 2019), in which
we generate similarity measures among a set of unordered part capsule votes through interactions
with a set of trainable vectors, allowing us to retain linear time complexity O(Jn) where n and J
are the number of part and object capsules, respectively.

We now formally describe our SAR mechanism. We use the following naming convention: Nh

corresponds to the number of heads, while dk and dv are the respective number of dimensions for
the key and value vectors. We also assume that the multi-head attention mechanism evenly divides
the dk and dv dimensional vectors into dhk and dhv dimensional key and value vectors per attention
head. The operation begins by flattening the vote matrices V l

ij and projecting them ontoNh different

4

Under review as a conference paper at ICLR 2020

dhk and dhv dimensional key (khij) and value (vhij) vectors, respectively. This is done using a set of

learnable transformation matrices Λ = {W h
k ,W

h
v }

Nh

h=1, whereW h
k ∈ Rp2×dh

k andW h
v ∈ Rp2×dh

v .
We set d = dhv = dhk throughout the rest of the paper for brevity, unless otherwise specified. Inspired
by the inducing point vectors in Set Transformers, we use an inducing mixture of Gaussian (IMoG)
distributions to compute the part capsule agreements. The IMoG is composed of one Gaussian
component per object capsule and is parameterized as

p(x) =

J∑
j=1

φjN (x|µj ,Σj) where
J∑

j=1

φj = 1 (2)

Note that φj , µj and Σj are the learnable weights, means and covariance matrices associated to
the jth component, respectively. Overall, a trainable IMoG with J components can be seen as J
independent memory slots occupied by encoded templates that represent the average appearance of
the J corresponding objects. The IMoG templates are global query vectors accessed through our
attention-based routing procedure to measure the agreement among the part capsule votes. This ef-
fectively reduces the quadratic time complexity of key-query self-attention to linear time complexity
O(Jn) (where J is typically small) and allows the self-attention mechanism to properly scale with
input size and the number of capsules. Given our use of IMoG, we replace the standard dot-product
attention in Transformers with our log-likelihood attention mechanism, which utilizes Gaussians
to encode the second-order interactions among points. Assuming a mixture of isotropic Gaussians
with Σj = diag[σ2

1,j , ..., σ
2
d,j], the similarity matrix S ∈ RI×J from I part capsules to J object

capsules computes the log-likelihood of the key vectors khij ∈ Rd with respect to the components of
the IMoG as

shij = log p(khij ;φj ,µj ,Σj) = log φj − 0.5 log(2π)−
∑
d

[log(σ2
j,d) +

(kh,dij − µd
j)2

2σ2
d,j

] (3)

We consider the vector sj = [sij]
I
i=1 ∈ RI as the similarity vector associated to the jth object

capsule. The output of the SAR mechanism for the jth object capsule from a single head h can then
be formulated as

ohj = µh
j +

I∑
i=1

ahij .v
h
ij where ah

j = softmax(shj /
√
d) (4)

The similarity vectors shj are scaled by 1/
√
d to avoid the vanishing gradient problem (as was

discussed by Vaswani et al. (2017)), and then softmax normalized to sum to one over all part
capsules, yielding the vector of attention coefficients ah

j . We emphasize that the ohj outputs are the
sum of a static component µh

j , which represents the typical appearance of object j, and a dynamic
component

∑I
i=1 a

h
ij .v

h
ij . While the static component is input independent, the dynamic component

is a function of the input image, and therefore allows the output to account for deformations and
variations in the objects’ shape and appearance. The raw output is a linear transformation of the
concatenation of all attention head outputs given by

Oj = Norm[concat(o1j , ...,o
Nh
j)Wo] (5)

where Norm can be either a Batch-Normalization (BN) (Ioffe & Szegedy, 2015) or Layer Normal-
ization (LN) (Ba et al., 2016). The final pose of the jth object capsule is computed as

P l+1
j = Norm[Oj + rFF(Oj)] (6)

where rFF is any feed-forward layer with ReLU activation that processes each instance indepen-
dently and identically. As for the Norm function, we selected BN as we found it to be empirically
superior to LN in improving the routing operation’s convergence speed. BN also enables us to train

5

Under review as a conference paper at ICLR 2020

Table 1: Key differences between Trans-Caps and the most prominent CapsNets.
DR-Cap (Sabour et al., 2017) EM-Caps (Hinton et al., 2018) SR-Caps (Hahn et al., 2019) Trans-Caps (ours)

Loss Function Margin Spread Negative Log-Likelihood Cross-Entropy
Pose, Activation Vector, Scalar (Length of Pose) Matrix, Scalar Matrix, Scalar Matrix, N/A
Routing Iterative Iterative Non-Iterative Non-Iterative
Agreement Measure Cosine Distance (Dynamic) Euclidean Distance (Dynamic) Learned weights (Static) Log-likelihood Attention (Dynamic)
Normalization &
Non-Linearity Squash Sigmoid (for Activation) BN (for Pose)

Sigmoid (for Activation) BN (for Pose)

our model with the same optimizer and learning rate as the baseline CNN and CapsNet models,
which improves the quality of our comparisons.

4 EXPERIMENTS

In our experiments, we evaluate the performance of the proposed SAR mechanism and compare it
to baseline CNNs, CapsNets with the four most prominent iterative approaches (Dynamic routing
(Sabour et al., 2017), EM routing (Sabour et al., 2017), IDPA-Caps (Tsai et al., 2020), and Varia-
tional Bayes Capsule Routing (VB-Caps) (Ribeiro et al., 2020)), and a CapsNet with a non-iterative
self-routing mechanism (Hahn et al., 2019). Note that in all experiments, we use the same backbone
CNN for all CapsNets for a fair comparison. We finally evaluate the generalization and robustness
of the proposed model to viewpoint changes following the key motivation of CapsNets. Our full
source-code is publicly available at ***.

4.1 TRAINING SETTINGS

The model parameters are updated using a Stochastic Gradient Descent optimizer with a learning
rate of 0.1. In each experiment and for all models, we decay the learning rate by a factor of 10 after a
set number of training epochs. We experimented with Spread (Hinton et al., 2018), Margin (Sabour
et al., 2017) and cross-entropy loss functions and achieved the best performance using cross-entropy
for multi-class classification. Table 1 summarizes the key differences of our proposed model when
compared to various CapsNet architectures.

4.2 DATASETS

We evaluate our proposed model on various image classification tasks (CIFAR-10 (Krizhevsky et al.,
2009), SVHN (Netzer et al., 2011), CIFAR-100 (Krizhevsky et al., 2009), SmallNORB (LeCun
et al., 2004), Tiny-ImageNet, and ImageNet (Deng et al., 2009)). The Tiny-ImageNet dataset is
composed of a subset of 200 object classes of the original 1000 ImageNet dataset classes, containing
500 and 50 images for training and evaluation, respectively. These datasets of natural images were
selected to evaluate the performance of our proposed architecture on complex data tasks. Following
Hinton et al. (2018), we select the SmallNORB dataset to evaluate the generalization performance
of our model to viewpoint changes. Note that in all the experiments, 10 percent of the training data
is sampled randomly to generate the validation set. We perform 5-fold cross-validation and report
the average (±std.) error rate over the trained models. Data pre-processing and augmentation details
are provided in section appendix A.1.

4.3 IMAGE CLASSIFICATION RESULTS

To ensure that our results are consistent with the literature, we follow the CapsNets configurations
used in prominent publications (Hinton et al., 2018; Hahn et al., 2019; Tsai et al., 2020). Model
architectures for all datasets and their respective output sizes are described in detail in appendix
A.4. Figure 2 illustrates the convergence speed of all four CapsNets architectures on CIFAR-10 and
the computational cost associated with each model on both CIFAR-10 and CIFAR-100. Trans-Caps
has significantly lower memory requirements and has a lower computational overhead (measured in
FLOPs) than all other evaluated architectures. We also note that Trans-Caps has nearly the same
number of trainable parameters as EM-Caps. We report the error rate of our model across each
dataset of interest and compare this result with baseline CapsNets and CNNs in Table 2. The extent

6

Under review as a conference paper at ICLR 2020

0 100 200 300 400
of Epochs

A
cc

ur
ac

y
(%

)

20

30

40

50

60

70

80

90

400
84

360320280

86

88

90

92

94

0

1

2

3

4

5

6

0

50

100

150

200

Trans-Caps (Ours)EM-CapsDR-Caps SR-Caps

0

2

4

6

8

10

1

2

3

4

5

6

7

0 0

100

200

300

400

Memory (GB)# of params. (M) # of FLOPs (M)

0

1

2

3

4

C
IF

A
R

-1
0

C
IF

A
R

-1
00

CIFAR-10

Figure 2: Performance analysis for CapsNets on CIFAR-10 and CIFAR-100. Left: Convergence
plots for different routing mechanisms on CIFAR-10 validation sets. Right: number of trainable
parameters, memory usage, and number of FLOPs on CIFAR-10 (top) and CIFAR-100 (bottom).
For fair comparison, performance is benchmarked using the same GPU with a batch size of 16.

of improvement between Trans-Caps and the other CapsNets architectures increases with the com-
plexity and variability of the dataset. We note that DR-Caps and EM-Caps degrade substantially as
complexity increases, performing poorly on CIFAR-100 and failing to converge on Tiny-ImageNet.
SR-Caps performs similarly to Trans-Caps on SVHN but fails to match its performance across the
other datasets, and is vastly outperformed on Tiny-ImageNet (20.4% and 36.1% higher top-1 and
top-5 error, respectively). Finally, we evaluated the performance of Trans-Caps on full-scale Ima-
geNet; the model architecture is described in detail in appendix A.4. We achieved a 65.13% and
86.81% top-1 and top-5 classification accuracy, respectively.

Table 2: The test error rates between different CapsNet and CNN models on various tasks.

SVHN CIFAR-10 CIFAR-100 Tiny-ImageNet
top-1 top-5

ResNet-20 (He et al., 2016) 3.58±0.11 8.28±0.24 29.10±0.21 39.81±0.32 17.47±0.27
ResNet-32 (He et al., 2016) 3.25±0.16 7.51±0.18 29.86±0.17 38.68±0.30 16.83±0.26
SE-ResNet (Hu et al., 2018) 2.85±0.17 6.32±0.20 24.83±0.26 - -
AA-ResNet (Bello et al., 2019) 2.68±0.11 4.76±0.13 21.43±0.14 32.48±0.27 13.66±0.23
DR-Caps (Sabour et al., 2017) 3.44±0.28 7.28±0.15 47.89±0.42 - -
EM-Caps (Hinton et al., 2018) 4.15±0.37 14.63±0.43 59.03±0.58 - -
VB-Caps (Ribeiro et al., 2020) 3.81±0.21 11.48±0.22 37.28±0.44 - -
IDPA-Caps (Tsai et al., 2020) 2.99±0.18 6.81±0.31 27.01±0.50 42.19±0.48 26.29±0.37
SR-Caps (Hahn et al., 2019) 3.12±0.13 7.86±0.16 28.53±0.28 57.86±0.50 51.42±0.43
Trans-Caps (ours) 3.02±0.14 6.56±0.16 25.17±0.21 37.46±0.33 15.35±0.29

Table 3: The test error rates of various models on familiar and novel SmallNORB viewpoints.

Azimuth Elevation
Params. (K) Familiar Novel Familiar Novel

CNN 897.2 8.42±0.48 22.43±1.32 7.82±0.63 18.97±0.92
DR-Caps 1406.9 8.28±0.50 19.33±1.02 7.57±0.46 17.18±0.88
EM-Caps 98.1 7.25±0.68 14.11±0.98 6.39±0.81 12.73±0.80
VB-Caps 108.2 7.21±0.48 11.74±0.73 7.12±0.58 12.04±0.68
SR-Caps 989.2 7.85±0.61 18.47±0.97 6.89±0.72 16.62±1.29
Trans-Caps (ours) 103.5 7.28±0.53 8.34±0.91 6.43±0.60 9.48±0.77

7

Under review as a conference paper at ICLR 2020

Azimuth levels
0 (familiar)
10 (novel)
20 (novel)

animal human plane bus/truck car

Elevation levels
0 (familiar)
5 (novel)
8 (novel)

Figure 3: The learned IMoG overlayed with the familiar and novel outputs of the ClassCaps layer
for the novel azimuth (top) and elevation (bottom) experiments on SmallNORB. Each shade of the
Gaussians represents one standard deviation, while each axis represents one of the 16 total poses.

4.4 GENERALIZATION TO NOVEL VIEWPOINTS

We evaluate the performance of the proposed CaspsNet architecture on the SmallNORB dataset to
demonstrate its generalization strength to novel viewpoints. The SmallNORB dataset is composed
of gray-scale 96 × 96 images of 5 classes of toys (four-legged animals, human figures, airplanes,
trucks, and cars). There are 10 physical instances of each class (5 for train and 5 for test), each
of which is pictured at 18 different azimuths, 9 elevations, and 6 lighting conditions (for a total of
48,600 images). The tightly controlled aspects of the SmallNORB dataset make the classification
of its images an ideal shape recognition task, and allow us to evaluate the ability of the network to
generalize in three-dimensional space. We investigate the ability of the architecture to generalize
to both familiar and novel viewpoints. The familiar experiments are performed by training and
testing on all viewpoints, while the novel experiments are performed by holding out the most unique
azimuths (from 6 to 28) and elevations (from 3 to 8), following what was described in Hinton et al.
(2018). We use a single convolution layer backbone with a kernel size of 5 and a stride of 2 to encode
the input image into 64 feature maps due to the set size and simplicity of the data. The architecture
is described in detail in Table 5 of appendix A.4. To compare performance, we evaluate baseline
CapsNet architectures using the same structure and a simple CNN (see Table 11 of appendix A.4).

We report the performance of all architectures in Table 3 for the familiar and novel viewpoint tasks.
We note that EM-Caps, VB-Caps, and Trans-Caps significantly outperform the other architectures
on both of the familiar viewpoint tasks. In the novel viewpoint tasks, Trans-Caps dramatically
outperforms the other architectures, outperforming EM-Caps by 5.77% and 3.25% on the novel
azimuth and elevation tasks, respectively. To understand the relationship between the familiar and
novel viewpoints in the space of the Gaussians, we plot the learned IMoGs overlayed with the
familiar and novel outputs Oj from the ClassCaps layer, as shown in Figure 3. We note that
the familiar viewpoint outputs (circles) are often grouped adjacent to the center of their respective
Gaussians. Novel viewpoint outputs (triangles and squares) tend to cluster with their respective
azimuths and elevations, and are therefore typically shifted within the area of their class Gaussians.
This implies that the network has learned to represent the input objects in three-dimensional space,
allowing it to effectively adapt to novel viewpoints.

8

Under review as a conference paper at ICLR 2020

5 CONCLUSION

In this work, we propose a novel CapsNet architecture named Trans-Caps which employs a non-
iterative self-attention routing mechanism to address the computational complexity and numeri-
cal instability of CapsNets. The proposed routing mechanism uses a learnable, inducing mixture
of Gaussians to estimate the agreement (or attention) between capsules. Our experimental results
showed that Trans-Caps can effectively scale up to much larger datasets and outperform the baseline
SOTA CNNs and CapsNets in several image recognition tasks with significantly fewer parameters
and reduced computational cost. Our observations show that the network is able to effectively con-
struct a three-dimensional understanding of the geometry of objects, which is indicative of properly
encoded instantiation parameters.

REFERENCES

Karim Ahmed and Lorenzo Torresani. Star-caps: Capsule networks with straight-through attentive
routing. In Advances in Neural Information Processing Systems, pp. 9101–9110, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V Le. Attention augmented
convolutional networks. In Proceedings of the IEEE International Conference on Computer Vi-
sion, pp. 3286–3295, 2019.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
Attention-based models for speech recognition. In Advances in neural information processing
systems, pp. 577–585, 2015.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ashley Daniel Gritzman. Avoiding implementation pitfalls of “matrix capsules with em routing” by
hinton et al. In International Workshop on Human Brain and Artificial Intelligence, pp. 224–234.
Springer, 2019.

Taeyoung Hahn, Myeongjang Pyeon, and Gunhee Kim. Self-routing capsule networks. In Advances
in Neural Information Processing Systems, pp. 7658–7667, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-encoders. In Interna-
tional conference on artificial neural networks, pp. 44–51. Springer, 2011.

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with em routing. In Interna-
tional conference on learning representations, 2018.

Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local relation networks for image recognition.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 3464–3473, 2019.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

9

Under review as a conference paper at ICLR 2020

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis
Hawthorne, Andrew M Dai, Matthew D Hoffman, Monica Dinculescu, and Douglas Eck. Music
transformer. arXiv preprint arXiv:1809.04281, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods for generic object recognition with
invariance to pose and lighting. In Proceedings of the 2004 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2004. CVPR 2004., volume 2, pp. II–104. IEEE,
2004.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Interna-
tional Conference on Machine Learning, pp. 3744–3753. PMLR, 2019.

Hongyang Li, Xiaoyang Guo, Bo DaiWanli Ouyang, and Xiaogang Wang. Neural network encap-
sulation. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 252–267,
2018.

Ancheng Lin, Jun Li, and Zhenyuan Ma. On learning and learned representation by capsule net-
works. arXiv preprint arXiv:1810.04041, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

David Peer, Sebastian Stabinger, and Antonio Rodriguez-Sanchez. Training deep capsule networks.
arXiv preprint arXiv:1812.09707, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and Jonathon
Shlens. Stand-alone self-attention in vision models. arXiv preprint arXiv:1906.05909, 2019.

Fabio De Sousa Ribeiro, Georgios Leontidis, and Stefanos D Kollias. Capsule routing via variational
bayes. In AAAI, pp. 3749–3756, 2020.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In
Advances in neural information processing systems, pp. 3856–3866, 2017.

Yao-Hung Hubert Tsai, Nitish Srivastava, Hanlin Goh, and Ruslan Salakhutdinov. Capsules with
inverted dot-product attention routing. arXiv preprint arXiv:2002.04764, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang,
and Xiaoou Tang. Residual attention network for image classification. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3156–3164, 2017.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block
attention module. In Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

10

Under review as a conference paper at ICLR 2020

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for longer
sequences. arXiv preprint arXiv:2007.14062, 2020.

Suofei Zhang, Quan Zhou, and Xiaofu Wu. Fast dynamic routing based on weighted kernel density
estimation. In International Symposium on Artificial Intelligence and Robotics, pp. 301–309.
Springer, 2018.

A APPENDIX

A.1 DATA PRE-PROCESSING AND AUGMENTATION

In all our experiments, we consider the same data augmentation for all networks (i.e. CNNs and
CapsNets with different routing mechanisms). For SVHN, CIFAR-10, and CIFAR-100 training, we
first pad pixels with four zeros and randomly crop the image to 32×32. For Tiny-ImageNet, images
are rotated randomly by up to 20 degrees. For ImageNet, all training images are resized to 256×256,
then randomly cropped to yield an input training patch of 224× 224. For all datasets except SVHN,
training images are also horizontally flipped with probability 0.5. Finally, all images are normalized
to zero mean and unit standard deviation. During evaluation, we do not perform data augmentation
for all models.

For the SmallNORB dataset and following the training protocol of Hinton et al. (2018), all images
are resized to 48 × 48. During training, each image is randomly cropped to yield an input training
patch of 32× 32. Then, we horizontally flip the image with probability 0.5, and randomly jitter the
brightness and contrast of the images. During inference, we crop the center of the test image to yield
a 32× 32 patch.

A.2 EFFECT OF THE INDUCING MIXTURE OF GAUSSIANS (IMOGS)

Here we evaluate the role of the IMoG on performance by comparing the performance of our ar-
chitecture (i.e. IMoG with log-likelihood attention) to a CapsNet which adapts the inducing points
(IPs) with dot-product attention from Set Transformers. We see that the increased complexity of the
task is positively correlated with the performance gains from the IMoG.

Table 4: Comparison of the mean test classification error rates (±std.) of the proposed Trans-Caps
equipped with IMoGs with log-likelihood attention to IPs with dot-product attention.

SVHN CIFAR-10 CIFAR-100
IMoGs with log-likelihood attention 3.02±0.14 6.56±0.16 25.17±0.21

IPs with dot-product attention 3.08±0.18 7.13±0.21 28.75±0.32

A.3 EFFECT OF THE NUMBER OF ATTENTION HEADS

We evaluate the effect of the number of attention heads on the performance of the proposed archi-
tecture (see Table 5). Our results show that varying the number of heads may alter performance due
to the changes in the capsule type’s encoded features.

Table 5: The mean test classification error rates (±std.) of the proposed Trans-Caps with SAR as a
function of the number of attention heads.

of heads SVHN CIFAR-10 CIFAR-100
1 3.02±0.14 6.68±0.21 25.32±0.24
2 3.13±0.13 6.56±0.16 25.17±0.21
4 3.23±0.17 6.69±0.19 25.42±0.25
8 3.12±0.14 6.76±0.22 25.38±0.25
16 3.15±0.13 6.76±0.20 25.50±0.31

11

Under review as a conference paper at ICLR 2020

A.4 MODEL CONFIGURATIONS

The following tables depict the architectures and parameter setups for the trained models discussed
in the paper. Note that ConvCaps and FCCaps layers represent the convolutional capsule layers and
fully-connected capsule layers, respectively.

Table 6: Architecture of the proposed CapsNet with SAR for SVHN and CIFAR-10.
Name Operation Output size
Backbone (A = 64) ResNet-20 (input dim=3, output dim=64) 8× 8× 64

PrimaryCaps (B = 32) 3× 3 Conv, input dim=64, output dim=512, stride=1, padding=1
+ reshape to 32, 4× 4-dim capsules 8× 8× 32× 4× 4

ConvCaps (C = 32) 3× 3 ConvCaps SAR to 32, 4× 4-dim capsules, stride=2, padding=1 4× 4× 32× 4× 4
ClassCaps FCCaps SAR to 10, 4× 4-dim. capsules 10× 4× 4
Classifier input dim=16, output dim=1, linear 10× 1

Table 7: Architecture of the proposed CapsNet with SAR for CIFAR-100.
Name Operation Output size
Backbone (A = 128) ResNet-32 (input dim=3, output dim=128) 8× 8× 128

PrimaryCaps (B = 32) 3× 3 Conv, input dim=128, output dim=512, stride=1, padding=1
+ reshape to 32, 4× 4-dim capsules 8× 8× 32× 4× 4

ConvCaps1 (C = 32) 3× 3 ConvCaps SAR to 32, 4× 4-dim capsules, stride=2, padding=1 4× 4× 32× 4× 4
ConvCaps2 (D = 32) 4× 4 ConvCaps SAR to 32, 4× 4-dim capsules, stride=2, padding=1 32× 4× 4
ClassCaps FCCaps SAR to 100, 4× 4-dim. capsules 100× 4× 4
Classifier input dim=16, output dim=1, linear 100× 1

12

Under review as a conference paper at ICLR 2020

Table 8: Architecture of the proposed CapsNet with SAR for Tiny-ImageNet.
Name Operation Output size
Backbone (A = 128) ResNet-32 (input dim=3, output dim=128) 16× 16× 128

PrimaryCaps (B = 32) 3× 3 Conv, input dim=128, output dim=512, stride=1, padding=1
+ reshape to 32, 4× 4-dim capsules 16× 16× 32× 4× 4

ConvCaps1 (C = 32) 3× 3 ConvCaps SAR to 32, 4× 4-dim capsules, stride=2, padding=1 8× 8× 32× 4× 4
ConvCaps2 (D = 64) 8× 8 ConvCaps SAR to 64, 4× 4-dim capsules, stride=2, padding=1 64× 4× 4
ClassCaps FCCaps SAR to 200, 4× 4-dim. capsules 200× 4× 4
Classifier input dim=16, output dim=1, linear 200× 1

Table 9: Architecture of the proposed CapsNet with SAR for ImageNet.
Name Operation Output size
Backbone (A = 1024) ResNet-50 (input dim=3, output dim=1024) 14× 14× 1024

PrimaryCaps (B = 64) 1× 1 Conv, input dim=1024, output dim=1024, stride=1, padding=0
+ reshape to 64, 4× 4-dim capsules 14× 14× 64× 4× 4

ConvCaps1 (C = 128) 3× 3 ConvCaps SAR to 128, 4× 4-dim capsules, stride=2, padding=1 7× 7× 128× 4× 4
ConvCaps2 (D = 128) 3× 3 ConvCaps SAR to 128, 4× 4-dim capsules, stride=1, padding=0 5× 5× 128× 4× 4
ClassCaps FCCaps SAR to 1000, 4× 4-dim. capsules 1000× 4× 4
Classifier input dim=16, output dim=1, linear 1000× 1

Table 10: Architecture of the proposed CapsNet with SAR for SmallNORB.
Name Operation Output size
Backbone (A = 64) 5× 5 Conv, input dim=1, output dim=64, stride=2, padding=1 15× 15× 64

PrimaryCaps (B = 8) 1× 1 Conv, input dim=64, output dim=128, stride=1, padding=0
+ reshape to 8, 4× 4-dim capsules 15× 15× 8× 4× 4

ConvCaps1 (C = 16) 3× 3 ConvCaps SAR to 16, 4× 4-dim capsules, stride=2, padding=0 7× 7× 16× 4× 4
ConvCaps2 (D = 16) 3× 3 ConvCaps SAR to 16, 4× 4-dim. capsules, stride=1, padding=0 5× 5× 16× 4× 4
ClassCaps FCCaps SAR to 5, 4× 4-dim. capsules 5× 4× 4
Classifier input dim=16, output dim=1, linear 5× 1

Table 11: Architecture of the baseline CNN used in SmallNORB experiments.
Name Operation Output size
Conv1 5× 5 Conv, input dim=1, output dim=64, stride=2, padding=1 + BN + ReLU 15× 15× 64
Conv2 1× 1 Conv, input dim=64, output dim=128, stride=1, padding=0 + BN + ReLU 15× 15× 128
Conv3 3× 3 Conv, input dim=128, output dim=256, stride=2, padding=0 + BN + ReLU 7× 7× 256
Conv4 3× 3 Conv, input dim=256, output dim=256, stride=1, padding=0 + BN + ReLU 5× 5× 256
AvgPool 5× 5 global average pooling + flatten 256
Classifier input dim=256, output dim=5, linear 5

13

	Introduction
	Related Work
	Capsule Networks
	Self-Attention

	Transformer Capsule Network
	Model Architecture Overview
	Input Pose Transformation
	Self-attention Routing

	Experiments
	Training Settings
	Datasets
	Image Classification Results
	Generalization To Novel Viewpoints

	Conclusion
	Appendix
	Data Pre-processing and Augmentation
	Effect of the Inducing Mixture of Gaussians (IMoGs)
	Effect of the Number of Attention Heads
	Model Configurations

