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Abstract

Distribution shifts occur when the test distribution
differs from the training distribution, and can con-
siderably degrade performance of machine learn-
ing models deployed in the real world. While re-
cent works have studied robustness to distribution
shifts, distribution shifts arising from the passage
of time have the additional structure of timestamp
metadata. Real-world examples of such shifts are
underexplored, and it is unclear whether existing
models can leverage trends in past distribution
shifts to reliably extrapolate into the future. To
address this gap, we curate Wild-Time, a bench-
mark of 7 datasets that reflect temporal distribu-
tion shifts arising in a variety of real-world ap-
plications. On these datasets, we systematically
benchmark 9 approaches with various inductive
biases. Our experiments demonstrate that existing
methods are limited in tackling temporal distribu-
tion shift: across all settings, we observe an aver-
age performance drop of 21% from in-distribution
to out-of-distribution data.

1. Introduction
Distribution shift occurs when the test distribution differs
from the training distribution, and poses significant chal-
lenges for machine learning systems deployed in the real
world (Koh et al., 2021). Prior benchmarks for robustness
(Koh et al., 2021; Malinin et al., 2021) focus on domain
shifts, subpopulation shifts, and distribution shifts in the
wild. In this work, we focus on temporal distribution shifts,
i.e., distribution shifts that arise from the passage of time.
In this problem setting, the model is trained on data from
the past and evaluated on future data, and can leverage the
additional structure of timestamp metadata by inferring the
trends in distribution shift throughout time.
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Though temporal distribution shifts arise in many real-world
applications, these kinds of shifts are not well-represented
in existing datasets. The typical continual learning prob-
lem setting (Adel et al., 2019; Chaudhry et al., 2018; Kirk-
patrick et al., 2017; Schwarz et al., 2018; Zenke et al., 2017;
Chaudhry et al., 2019; Lopez-Paz & Ranzato, 2017; Rebuffi
et al., 2017) assumes that both input features and labels are
available at a given timestamp, where the observable data is
used to fine-tune the model. However, in many real-world
settings, features and labels often arrive asynchronously, re-
quiring robust models which can extrapolate into the future.
Furthermore, many popular continual learning benchmarks
consist of a manually delineated set of tasks and artificial
temporal variations. These include small-image sequences
with disparate label splits (e.g., Split TinyImageNet (Le &
Yang, 2015)), different kinds of image transformations to
MNIST digits (e.g., Rainbow MNIST (Finn et al., 2019)), or
different visual recognition targets (Li et al., 2019). While
these datasets can be helpful for verifying research ideas,
datasets that reflect real-world temporal distribution shifts
are needed. Some recent works have investigated natural
temporal distribution shifts in domains such as drug dis-
covery (Huang et al., 2021), visual recognition (Cai et al.,
2021), and sepsis prediction (Guo et al., 2022) (see detailed
comparison in Appendix A). However, there does not exist
a systematic study of real-world temporal distribution shifts
and a benchmark spanning various domains.

This paper presents Wild-Time (“in-the-Wild distribution
shifts over Time”), a benchmark of in-the-wild temporal dis-
tribution shifts together with two comprehensive evaluation
protocols. In Wild-Time, we investigate real-world temporal
distribution shifts across a diverse set of tasks (Figure 1),
including portraits classification (Ginosar et al., 2015),
drug-target binding affinity prediction (Huang et al., 2021),
precipitation-level classification (Malinin et al., 2021), ICU
patient readmission prediction (Johnson et al., 2021), ICU
patient mortality prediction (Johnson et al., 2021), news tag
classification (Misra & Grover, 2021), and article category
classification (Clement et al., 2019a). The distribution shifts
in these applications happen naturally due to the passage of
time, which the datasets reflect through changing fashion
and social norms (Ginosar et al., 2015), drug candidates
and target proteins (Huang et al., 2021), atmospheric condi-
tions (Malinin et al., 2021), and current events (Misra, 2018;
Misra & Grover, 2021).
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Datasets Yearbook FMoW
MIMIC-IV

Drug-BA Precipitation HuffPost arXiv
Readmission Mortality

Input (x) yearbook 
photos satel. image diagnosis, treatment (ICD9) mole., protein meteorological

features
article

headline paper title

Prediction (y) gender land use readmission mortality binding activity precipitation news tag primary 
category

Time Range 1930 - 2013 2002 - 2017 2008 - 2019 2013 - 2020 Oct. 18 - Jul. 19 2012 - 2018 2007 - 2022

# Examples 37,189 118,886 270,617 232,386 9,047,294 63,907 2,057,952

Train 
Example

Test Example

Time

The Limitations of 
Deep Learning in 
Adversarial Settings

cs.CR

Progressive-Scale 
Boundary Blackbox 
Attack via Projective 
Gradient Estimation

cs.LG

Diagnosis: 560, 998, 788, 278, 
E878, 311, V88, V10, 266, 272

Treatment: 456, 545

Readmission: No; Mortality: No

Diagnosis: 155, 456, 452, 572

Treatment: 423, 549, 990, 990

Readmission: Yes; Mortality: Yes

Killer Fail: How 
Romney’s Broken 
Orca App Cost Him 
Thousand of Votes

TECH

Possible Autopilot 
Use Probed After 
Tesla Crashes at 
60mph

TECH

Figure 1. The Wild-Time benchmark includes 7 datasets with 8 tasks. For each task, we train models on the past and evaluate it in the
future. We list the input, prediction, time range and the number of examples for each task.

We evaluate Wild-Time with a fixed time split (Eval-Fix).
Specifically, Eval-Fix evaluation provides a single train and
test split, as in standard supervised learning, and is geared to-
ward the broader machine learning community. Each model
is trained on data before a given timestamp and evaluated on
data collected afterwards. We evaluate several representa-
tive continual learning and invariant learning approaches on
these datasets. In particular, we extend domain generaliza-
tion methods to the temporal distribution shift setting and
evaluate these methods on all datasets. From these evalua-
tions, we conclude: (1) most invariant learning approaches
do not show substantial improvements compared to stan-
dard ERM training; (2) continual learning approaches do
not make models more robust to temporal distribution shift.
We hope that Wild-Time will accelerate the development of
temporally robust models that can be safely deployed in the
wild.

2. Problem and Evaluation Settings
Following (Koh et al., 2021), we view the entire data distri-
bution as a mixture of T timestamps T = {1, . . . , T}. Each
timestamp t is associated with a data distribution Pt over (x,
y), where x and y represent input features and labels, respec-
tively, and all examples are sampled from the data distribu-
tion Pt. To formulate the temporal distribution shift setting,
we define the training distribution as P tr =

∑T
t=1 λ

tr
t Pt,

and the test distribution as P ts =
∑T

t=1 λ
ts
t Pt. Note that,

here, timestamp differs from the notion of “domain” used in
other works on distribution shift (Ahuja et al., 2021). In the
temporal shift setting, we do not require distribution shift be-
tween consecutive timestamps, i.e., we can have Pt = Pt−1.
We evaluate models on a single, fixed train-test time split.
Concretely, we denote the split timestamp as ts. The train
and test sets are T tr = {t ≤ ts|∀t}, T ts = {t > ts|∀t},

respectively. We evaluates performance using two metrics,
average and worst-time performance.

3. Datasets
In this section, we briefly discuss the datasets and tasks
included in Wild-Time, which reflect natural temporal dis-
tribution shifts. We provide detailed descriptions of all
datasets in Appendix B.

Yearbook. We study changes in fashion and social norms
over time on the Yearbook dataset, which consists of 37,921
frontal-facing American high school yearbook photos (Gi-
nosar et al., 2015). Each photo is a 32× 32× 1 grey-scale
image associated with a binary label y, which represents
the student’s gender. The training set includes data from be-
fore 1970, and the test set comprises data after 1970, which
corresponds to 40 and 30 years, respectively.

FMoW-WildT. We study changes in satellite imagery overr
time on the Functional Map of the World (FMoW) dataset
(Christie et al., 2018), adapted from the WILDS benchmark
(Koh et al., 2021). Each input x is a satellite image, and the
corresponding label y is one of 62 land use categories. We
choose the year 2009 to split the training and test sets.

MIMIC-IV-WildT. We study healthcare-related temporal
distribution shifts on the MIMIC-IV dataset. We consider
two classification tasks: (1) MIMIC-Readmission aims to
predict the risk of being readmitted to the hospital within 15
days. (2) MIMIC-Mortality aims to predict in-hospital
mortality for each patient. We treat each admission as
one record, and for each record, we concatenate the ICD9
codes (Organization, 2004) of diagnosis and treatment. The
train set consists of patient data from 2008 − 2013, while
the test set consists of data from 2014− 2020.
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Drug-BA. We study the temporal shift of drug-target bind-
ing activity prediction on the TDC domain generalization
benchmark, where the input x contains the information of
both compounds and the target proteins, the label y indicates
the binding activity value. We use 2016 to split training and
test sets, i.e., data from years 2013 − 2018 are used for
training and the test set comprises data from 2019 and 2020.

Precipitation-WildT. Adapted from (Malinin et al., 2021),
we study precipitation-level prediction over the course of a
year. Given a tabular data of 123 meteorological features,
the task is to classify among nine classes of precipitation
levels.

Huffpost. We study temporal shifts arising from current
events on the Huffpost dataset, which focuses on news clas-
sification (Misra & Grover, 2021). Each input feature x is
a news headline and the output y is the news category. We
choose the year 2015 as the split timestamp.

arXiv. We study the arXiv dataset (Clement et al., 2019b),
where the task is to predict the primary category of arXiv
preprints given the paper title as input. The entire dataset
includes 172 preprint categories over the years 2007−2022.

4. Baselines for Temporal Distribution Shifts
Many algorithms have been proposed to improve a model’s
robustness to distribution shifts or improve a model’s perfor-
mance on a stream of data. For our evaluation, we choose
several representative methods from three main categories
– classical supervised learning, continual learning, and in-
variant learning. These methods have been successful on
domain generalization and continual learning benchmarks.
In particular, we extend the selected invariant learning ap-
proaches to the temporal distribution shift setting. See Ap-
pendix C for a detailed discussion of these baseline algo-
rithms and how they are applied them to Wild-Time tasks.

Classical Supervised Learning. We evaluate the perfor-
mance of empirical risk minimization (ERM) and fine-
tuning (FT) on all tasks.

Continual Learning. Continual learning, also known as
lifelong learning or incremental learning, aims to effec-
tively learn from non-stationary distributions via a sequen-
tial stream of data (Adel et al., 2019; Chaudhry et al.,
2018; Kirkpatrick et al., 2017; Schwarz et al., 2018). The
goal is to accumulate and reuse knowledge in future learn-
ing without forgetting information needed for previous
tasks, a phenomenon known as catastrophic forgetting
(Kirkpatrick et al., 2017), which may enable such mod-
els to robustly extrapolate into the future in the temporal
shift setting. We evaluate three representative algorithms,
including regularization-based (EWC (Kirkpatrick et al.,
2017), SI (Zenke et al., 2017)) and memory-based (A-

GEM (Chaudhry et al., 2019)) methods.

Temporally Invariant Learning. Invariant learning meth-
ods learn representations or predictors that are invariant
across different domains. In Wild-Time, we select four
representative invariant learning methods: CORAL (Sun
& Saenko, 2016), IRM (Arjovsky et al., 2019), LISA (Yao
et al., 2022), and GroupDRO (Sagawa et al., 2020). We
adapt these methods to a temporal setting by treating sub-
streams of data as domains, and refer to the temporal ver-
sions as CORAL-T, IRM-T, and GroupDRO-T. We intro-
duce these four approaches and discuss how we adapt them
to the temporal distribution shift setting in Appendix C.

5. Experiments
We benchmark the performance of all baselines on each
dataset in Wild-Time. See Appendix D for more details.

5.1. Experimental Setup

Data Split. The training and test sets are non-overlapping
subsets of the entire dataset such that the training data times-
tamps are earlier than the test data timestamps. Temporal
out-of-distribution (OOD) robustness is measured by perfor-
mance on the test set. To compare OOD with in-distribution
(ID) performance, we measure the average per-timestep per-
formance on a held-out set of 10% training examples (20%
for Drug-BA, MIMIC-Mortality, and MIMIC-Readmission)
from each training ID timestamp.

Evaluation Metrics. We measure accuracy in most
classification tasks, including Yearbook, FMoW, MIMIC-
Readmission, Precipitation, HuffPost, and arXiv. For the
MIMIC-Mortality task, we use ROC-AUC due to label im-
balance. Root Mean Square Error (RMSE) is used in all
regression tasks, including Drug-BA and Weather-Temp.

5.2. Results

Table 1 shows the performance of all baselines on the Wild-
Time datasets. For each task, we visualize the OOD per-
formance on every test timestamp in Figure 3 (Appendix
D). The following high-level observations summarize our
findings:

• In all tasks, OOD performance is substantially lower
than ID performance.

• In FMoW, MIMIC-Readmission, and MIMIC-
Mortality, model performance degrades with time (Fig-
ures 3b, 3d, 3e), as models exhibit higher OOD accu-
racy on timestamps closer to that of the training data.
In Yearbook (Figure 3a), performance fluctuates signif-
icantly, with models achieving higher OOD accuracy at
later timestamps (e.g., 1991-1996) compared to earlier
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Table 1. The in-distribution versus out-of-distribution test performance of each method evaluated on Wild-Time. The average and standard
deviation (value in parentheses) are computed over three random seeds. We bold the best OOD performance for each dataset.

Yearbook FMoW
(Accuracy (%) ↑) (Accuracy (%) ↑)

ID Avg. OOD Avg. OOD Worst ID Avg. OOD Avg. OOD Worst

Fine-tuning 95.43 (1.65) 81.98 (1.52) 69.62 (3.38) 39.76 (1.36) 26.98 (0.12) 20.84 (0.62)
EWC 96.36 (0.47) 80.07 (0.22) 66.61 (1.95) 39.68 (0.95) 27.13 (0.48) 21.38 (0.43)
SI 96.40 (0.83) 78.70 (3.78) 65.18 (2.44) 39.69 (0.69) 27.10 (0.39) 21.08 (0.51)
A-GEM 97.18 (0.43) 81.04 (1.40) 67.07 (2.23) 35.63 (5.97) 26.48 (0.54) 20.48 (0.46)

ERM 97.99 (1.40) 79.50 (6.23) 63.09 (5.15) 58.25 (0.36) 37.19 (0.33) 27.79 (0.64)
GroupDRO-T 96.04 (0.45) 77.06 (1.67) 60.96 (1.83) 40.47 (1.03) 27.49 (0.66) 22.09 (0.59)
LISA 96.56 (0.97) 83.65 (4.61) 68.53 (5.79) 53.44 (0.41) 36.43 (0.45) 26.95 (0.38)
CORAL-T 98.19 (0.58) 77.53 (2.15) 59.34 (1.46) 48.18 (0.53) 32.49 (0.57) 25.25 (0.60)
IRM-T 97.02 (1.52) 80.46 (3.53) 64.42 (4.38) 48.97 (1.05) 34.78 (0.33) 26.91 (0.41)

MIMIC-Readmission MIMIC-Mortality
(Accuracy (%) ↑) (AUC (%) ↑)

ID Avg. OOD Avg. OOD Worst ID Avg. OOD Avg. OOD Worst

Fine-tuning 57.02 (3.68) 48.84 (4.25) 44.62 (4.92) 89.49 (0.78) 71.71 (5.03) 62.34 (7.82)
EWC 60.68 (3.44) 51.41 (1.62) 47.24 (2.28) 87.38 (1.28) 69.04 (2.03) 58.89 (2.08)
SI 57.64 (1.78) 43.43 (7.34) 37.01 (11.43) 86.73 (1.57) 66.47 (1.56) 55.49 (1.31)
A-GEM 60.25 (9.15) 42.22 (2.67) 34.38 (3.69) 88.69 (0.78) 70.19 (6.38) 60.77 (9.21)

ERM 69.90 (3.83) 58.51 (4.06) 55.84 (4.42) 90.86 (0.52) 69.74 (4.51) 59.43 (6.85)
GroupDRO-T 73.80 (0.72) 66.91 (0.91) 65.68 (1.32) 89.13 (1.25) 73.06 (2.32) 65.52 (3.74)
LISA 66.62 (3.46) 55.99 (2.89) 53.73 (2.67) 90.30 (1.13) 78.11 (0.93) 71.69 (1.93)
CORAL-T 75.23 (2.74) 64.50 (3.03) 61.97 (3.38) 89.74 (0.94) 70.81 (3.22) 62.19 (4.63)
IRM-T 72.47 (3.56) 59.67 (2.19) 56.73 (1.82) 88.07 (2.41) 67.02 (4.37) 57.08 (5.81)

Drug-BA Precipitation
(R ↑) (Accuracy (%) ↑)

ID Avg. OOD Avg. OOD Worst ID Avg. OOD Avg. OOD Worst

Fine-tuning 0.648 (0.003) 0.314 (0.007) 0.229 (0.020) 49.17 (0.75) 46.08 (0.94) 44.15 (0.89)
EWC 0.601 (0.004) 0.299 (0.013) 0.202 (0.004) 49.84 (1.22) 46.21 (1.73) 44.11 (2.36)
SI 0.643 (0.001) 0.319 (0.005) 0.234 (0.020) 49.96 (1.11) 46.70 (1.15) 45.16 (0.89)
A-GEM 0.639 (0.004) 0.294 (0.039) 0.203 (0.033) 47.70 (0.22) 45.41 (0.96) 43.11 (0.90)

ERM 0.787 (0.009) 0.357 (0.012) 0.244 (0.028) 50.60 (0.44) 47.83 (0.58) 46.11 (0.60)
GroupDRO-T 0.697 (0.002) 0.342 (0.006) 0.246 (0.007) 48.37 (0.41) 45.89 (0.44) 43.60 (0.25)
LISA N/A N/A N/A 49.88 (0.38) 46.84 (0.73) 45.21 (0.67)
CORAL-T 0.745 (0.007) 0.355 (0.016) 0.271 (0.017) 49.28 (1.20) 46.97 (0.60) 45.04 (0.78)
IRM-T 0.716 (0.005) 0.355 (0.004) 0.252 (0.015) 48.77 (1.27) 46.38 (1.61) 44.30 (1.26)

HuffPost arXiv
(Accuracy (%) ↑) (Accuracy (%) ↑)

ID Avg. OOD Avg. OOD Worst ID Avg. OOD Avg. OOD Worst

Fine-tuning 76.79 (0.51) 69.59 (0.10) 68.91 (0.49) 51.42 (0.15) 50.31 (0.39) 48.19 (0.41)
EWC 76.26 (0.32) 69.42 (1.00) 68.61 (0.98) 51.34 (0.13) 50.40 (0.11) 48.18 (0.18)
SI 76.97 (0.30) 70.46 (0.27) 69.05 (0.52) 51.52 (0.19) 50.21 (0.40) 48.07 (0.48)
A-GEM 77.15 (0.07) 70.22 (0.50) 69.15 (0.88) 51.57 (0.18) 50.30 (0.37) 48.14 (0.40)

ERM 79.40 (0.05) 70.42 (1.15) 68.71 (1.36) 53.78 (0.16) 45.94 (0.97) 44.09 (1.05)
GroupDRO-T 78.04 (0.26) 69.53 (0.54) 67.68 (0.78) 49.78 (0.22) 39.06 (0.54) 37.18 (0.52)
LISA 78.20 (0.53) 69.99 (0.60) 68.04 (0.75) 50.72 (0.31) 47.82 (0.47) 45.91 (0.42)
CORAL-T 78.19 (0.31) 70.05 (0.63) 68.39 (0.88) 53.25 (0.12) 42.32 (0.60) 40.31 (0.61)
IRM-T 78.38 (0.51) 70.21 (1.05) 68.71 (1.13) 46.30 (0.53) 35.75 (0.90) 33.91 (1.09)

timestamps (e.g., 1981-1986). In Drug-BA, Precipi-
tation, HuffPost, and arXiv, models achieve the best
performance on the earliest test timestamps. Never-
theless, there is a significant gap between the OOD
performance and best ID performance for all datasets
and methods. This performance gap changes in a con-
tinual manner over time, indicating that the nature of
the distribution shift is correlated with the provided
timestamps.

• Most invariant learning approaches (CORAL-T,
GroupDRO-T, IRM-T) did not show clear improve-
ments over ERM. LISA performs slightly better than
these invariant learning approaches, which corrobo-
rates findings in the original paper (Yao et al., 2022).

• Incremental training approaches (Fine-tuning, EWC,
SI, A-GEM) improve worst OOD performance on the
arXiv and HuffPost datasets. Incremental training
tends to bias the trained model toward the last few
timestamps. As factual knowledge in text data changes
gradually, incremental training approaches seem to be
more suitable for these gradual temporal shifts. In all
tasks other than Yearbook, incremental training meth-
ods perform worse than invariant learning approaches,
indicating that invariant learning approaches may be
promising for constructing temporally robust models.
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A. Comparison with Existing Benchmarks
Wild-Time offers a unified framework to facilitate the devel-
opment of models robust to in-the-wild temporal distribu-
tion shifts. We discuss how Wild-Time is related to existing
distribution shift and continual learning benchmarks.

Relation to Distribution Shift Benchmarks. Distribution
shift has been widely studied in the machine learning com-
munity. Early works presented small-scale benchmarks to
study distribution shifts in sentiment analysis (Fang et al.,
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2014) and object detection (Saenko et al., 2010). Sub-
sequent distribution shift benchmarks focused on larger-
scale, real-world data. The first line of such benchmarks
induce distribution shifts by applying different kinds of
transformations to object recognition datasets. These bench-
marks include: (1) ImageNet-A (Hendrycks et al., 2021b),
ImageNet-C (Hendrycks & Dietterich, 2019), and CIFAR-
10.1 (Recht et al., 2018), which add noise or adversarial
examples to the original Imagenet (Russakovsky et al.,
2015) and CIFAR (Krizhevsky et al., 2009) datasets, respec-
tively; (2) Colored MNIST (Arjovsky et al., 2019), which
changes the color of digits from the original MNIST dataset.
More recent works created domain generalization bench-
marks by collecting sets of images with different styles
or backgrounds, such as PACS (Li et al., 2017), Domain-
Net (Peng et al., 2019), VLCS (Fang et al., 2013), Office-
Home (Venkateswara et al., 2017), ImageNet-R (Hendrycks
et al., 2021a), BREEDS (Santurkar et al., 2020), Water-
birds (Sagawa et al., 2020), and MetaShift (Liang & Zou,
2022). While these datasets are useful testbeds for verifying
the efficacy of new algorithms, they do not reflect natural
distribution shifts that arise in real-world applications.

Recently, a few works have constructed datasets and bench-
marks for real-world distribution shifts. The WILDS bench-
mark consists of ten datasets spanning a wide range of real-
world applications, such medical image recognition, sen-
timent classification, land-use classification with satellite
image, and code autocompletion, with a focus on domain
shifts and subpopulation shifts (Koh et al., 2021). UWILDS
extends WILDS and introduces unlabeled data to help boost
model robustness to distribution shifts (Sagawa et al., 2021).
SHIFTS (Malinin et al., 2021) is composed of three datasets,
concerning weather prediction, machine translation, and
self-driving vehicle motion prediction. Unlike these works
that focus on general distribution shifts, we target temporal
distribution shifts arising in real-world applications. A few
recent works have started investigating model robustness
over time, in real-world applications such as healthcare-
related prediction (Guo et al., 2022), drug discovery (Huang
et al., 2021), image-based geo-localization (Cai et al., 2021),
machine reading comprehension (Lin et al., 2022), and tweet
hashtag prediction (Jin et al., 2021). Unlike prior datasets
that target specific applications, Wild-Time presents a com-
prehensive benchmark comprised of 7 datasets from diverse
domains and offers systematic evaluation protocols.

Relation to Continual Learning Benchmarks. Contin-
ual learning methods are often benchmarked on image
classification datasets. Some popular benchmarks such as
RainbowMNIST (Finn et al., 2019) and permuted MNIST
(Kaushik et al., 2021) apply various image transformations
to a small-scale image dataset to obtain a sequence of tasks.
Others such as Split CIFAR100 (Krizhevsky et al., 2009),
Split TinyImagenet (Le & Yang, 2015), F-CelebA (Ke

et al., 2020), and Stanford Cars (Krause et al., 2013) split a
large image dataset into multiple non-overlapping class sets,
where each is regarded as one task. A third collection of
related benchmarks treats each object recognition dataset as
a different task. For example, Visual Domain Decathlon (Li
et al., 2019) consists of 10 datasets from various domains,
such as Aircraft (Maji et al., 2013), SVHN (Netzer et al.,
2011), Omniglot (Lake et al., 2015), VGG-Flowers (Nils-
back & Zisserman, 2008), CLEAR (Lin et al., 2021). In the
natural language processing (NLP) domain, continual learn-
ing benchmarks such as ASC (Ke et al., 2021) and DSC (Ke
et al., 2020) have been used to evaluate the performance of
large-scale pretrained models over time. Unlike these prior
benchmarks, Wild-Time presents a collection of datasets
that reflect natural temporal distribution shifts arising in
real-world applications.

B. Detailed Dataset Description
Yearbook. Social norms, fashion styles, and population
demographics change over time. This is captured in the Por-
traits dataset, which consists of 37,921 frontal-facing Amer-
ican high school yearbook photos (Ginosar et al., 2015).
We exclude portraits from earlier years due to the limited
number of examples in these years, resulting in 33,431 ex-
amples from the 1930 to 2013. Each photo is a 32× 32× 1
grey-scale image associated with a binary label y, which rep-
resents the high schooler’s gender. The training set includes
data from before 1970, and the test set comprises data after
1970, which corresponds to 40 and 30 years, respectively.

FMoW-WildT. Machine learning models can be used to
analyze satellite imagery and aid humanitarian and policy
efforts by monitoring croplands (Jia et al., 2019) and predict-
ing crop yield (Sharifi, 2021) and poverty levels (Jean et al.,
2016). Due to human activity, satellite imagery changes
over time, requiring models that are robust to temporal dis-
tribution shifts.

We study this problem on the Functional Map of the World
(FMoW) dataset (Christie et al., 2018), adapted from the
WILDS benchmark (Koh et al., 2021). Specifically, given a
satellite image, the task is to predict the type of land usage.
Each input x is a satellite image, and the corresponding
label y is one of 62 land use categories. We choose the
year 2009 to split the training and test sets. A key differ-
ence between FMoW-WildT and FMoW-WILDS is that
FMoW-WildT includes timestamp metadata, focusing on
distribution shifts over time and partition the in-distribution
and out-of-distribution data by year in order to systemati-
cally evaluate robustness to temporal distribution shifts.

MIMIC-IV-WildT. Many machine learning healthcare ap-
plications have emerged in the last decade, such as pre-
dicting disease risk (Ma et al., 2017), medication changes
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(Yang et al., 2021), patient subtyping (Baytas et al., 2017),
in-hospital mortality (Guo et al., 2022), and length of hos-
pital stay (Ettema et al., 2010). However, a key obstacle in
deploying machine learning-based clinical decision support
systems is temporal dataset shift associated with changes in
healthcare over time (Guo et al., 2022).

We study this problem on MIMIC-IV, one of the largest
public healthcare datasets that comprises medical records
of over 40,000 patients. In MIMIC-WildT, we treat each
admission as one record, resulting in 216,487 healthcare
records from 2008 − 2020. Specifically, we consider two
classification tasks:

• MIMIC-Readmission aims to predict the risk of being
readmitted to the hospital within 15 days.

• MIMIC-Mortality aims to predict in-hospital mortality
for each patient.

For each record, we concatenate the corresponding ICD9
codes (Organization, 2004) of diagnosis and treatment. The
label is a binary value that indicates whether the patient is
readmitted or passed away for MIMIC-Readmission and
MIMIC-Mortality, respectively. The train set consists of
patient data from 2008− 2013, while the test set consists of
data from 2014− 2020.

Drug-BA. Drug discovery brings new candidate medica-
tions to potentially billions of people. A crucial step in the
drug discovery process is virtual screening, in which we
predict the binding activity value of a compound against the
target protein of a disease (Carpenter et al., 2018; Svetnik
et al., 2003). Recent binding activity prediction models
investigate the binding pairs between existing compounds
and target proteins (Martin et al., 2019; Öztürk et al., 2018;
Yao et al., 2021a;b). In practice, new target proteins or new
classes of compounds appear over time, requiring machine
learning models that are robust to domain shifts across time.

We study this temporal shift of drug-target binding activity
prediction on the TDC domain generalization benchmark,
where the input x contains the information of both com-
pounds and the target proteins, the label y indicates the
binding activity value. We use 2016 to split training and test
sets, i.e., data from 2013− 2018 are used for training and
the test set comprises data from 2019 and 2020. We remove
the year 2021 from the original benchmark it only has one
month’s worth of data.

Precipitation-WildT. Precise weather forecasting provides
effective guidance for daily activity. The temporal distribu-
tion shift issue has been widely observed in weather predic-
tion tasks (Malinin et al., 2021; Tsymbal, 2004).

We adapt the original Shifts Weather Prediction dataset
(Malinin et al., 2021) for Precipitation-WildT, using mea-

surements taken from October 2018 - August 2019. The
Precipitation-WildT dataset consists of 123 heterogeneous
meteorological features, 1 target (precipitation class), and 1
metadata attribute (time). We partition the dataset by month.
We data from October 2018 - April 2019 (7 months) for
training, and data from May 2019 - August 2019 (4 months)
for test.

Huffpost. In many language models which deal with in-
formation correlated with time, temporal distribution shifts
cause performance degradation in downstream tasks such
as Twitter hashtag classification (Jin et al., 2021) or ques-
tion answering systems (Lin et al., 2022). The performance
drops along the temporal dimension reflect changes in the
style or content of news.

We study temporal shifts in news articles in the Huffpost
dataset, which aims to categorize news articles from their
headlines (Misra & Grover, 2021). Specifically, each input
feature x is a news headline and the output y is the news
category. We only keep news categories that appear in every
year, resulting in 11 categories in total. We choose year
2015 as the split timestamp.

arXiv. Similar to changes in news over time, arXiv pre-
prints also change over time. For example, “neural network
attack” was originally a popular keyword in the security
community, but it gradually became more prevalent in the
machine learning community. We study these temporal
distribution shift in the arXiv dataset (Clement et al., 2019b),
where the task is to predict the primary category of arXiv
pre-prints given the pre-print title as input. The entire dataset
includes 172 pre-print categories from 2007− 2022.

C. Detailed Baselines for Temporal
Distribution Shifts

Here, we detail the baselines for temporal distribution shifts.

C.1. Classical Supervised Learning.

Empirical Risk Minimization (ERM). We directly train a
machine learning model with ERM.

Fine-tuning (FT). We incrementally fine-tune the model at
every timestamp and evaluate in the future.

C.2. Continual Learning.

Elastic Weight Consolidation (EWC) overcomes catas-
trophic forgetting by slowing down learning on weights
based on how important they are for previous tasks (Kirk-
patrick et al., 2017).

Synaptic Intelligence (SI) accumulates information rele-
vant to tasks over time (Zenke et al., 2017). Specifically,
SI tracks past and current parameter values to estimate the
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importance of each “synapse” to previous tasks, and consol-
idates the important synapses at each new task to prevent
catastrophic forgetting.

Averaged Gradient Episodic Memory (A-GEM) leverage
a small episodic memory to constrain new updates to not
interfere with previous tasks by minimizing average episodic
memory loss at each timestep (Chaudhry et al., 2019).

C.3. Temporally Invariant Learning (Appendix B.3).

We first detail the four invariant learning baselines and then
discuss how to adapt them into temporal distribution shift
setting.

GroupDRO uses distributionally robust optimization to
minimize the loss on the worst-case group during training,
where each group is defined as a domain-class pair (Sagawa
et al., 2020).

LISA uses selective augmentation to eliminate the effect
of domain-associated information and achieves invariant
learning (Yao et al., 2022). Concretely, LISA interpolates
examples either with the same domain but different labels
(intra-domain LISA) or with the same label but different
domains (intra-label LISA).

CORAL penalizes differences between the means and co-
variances of the different domains’ feature distributions with
an explicit regularizer (Sun & Saenko, 2016).

IRM aims to improve performance over different domains
by learning an invariant casual predictor from multiple train-
ing environments (Arjovsky et al., 2019).
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Figure 2. Construction of a temporal robustness set. Here, we have
T = 7 timesteps and sliding window length L = 3. By applying
sliding window-based segmentation, we obtain 4 substreams of
data, where each substream is treated as a “domain”. We apply the
invariant learning approaches to this robustness set.
As mentioned in Section 2, in the temporal distribution
shift setting, the “timestamp” information is not the same
as the notion of a “domain”, as the distribution shift may
not happen between consecutive timestamps. Hence, the
data streams in our benchmark are unsegmented and do
not include domain boundaries. This setting poses new
challenges to the above invariant learning approaches, which

rely on domain labels.

To address this challenge, we adapt the above invariant learn-
ing approaches to the temporal distribution shift setting. We
leverage timestamp metadata to create a temporal robustness
set consisting of substreams of data, where each substream
is treated as one domain. Specifically, as shown in Figure 2,
we define a sliding window G with length L. For a data
stream with T timestamps, we apply the sliding window G
to obtain T −L+1 substreams. We treat each substream as
a “domain” and apply the above invariant algorithms on the
robustness set. We name the adapted CORAL, GroupDRO
and IRM as CORAL-T, GroupDRO-T, IRM-T, respectively.
Note that, we do not adapt LISA since the intra-label LISA
performs well without using domain information, which is
also mentioned in the original paper. See Appendix B.4
for further details on temporal adaptation of these invariant
learning algorithms.

D. More Experimental Settings and Results
D.1. Hyperparameter Settings

For each method, we tune hyperparameters using cross-
validation. Instead of using an in-distribution validation set,
we hold out 10% of the data of each training timestamp (20%
for Drug-BA, MIMIC-Readmission, and MIMIC-Mortality)
to construct the out-of-distribution validation set. Here, we
use examples from the remaining 90% of the data times-
tamps to train the model and evaluate the out-of-distribution
performance on the validation set for hyperparameter tuning.
We repeat this process several times via cross-validation. Af-
ter tuning all hyperparameters, we use the entire training set
to train the model.
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Figure 3. Out-of-distribution performance per test timestamp. We select five representative baselines – ERM, FT, CORAL-T, GroupDRO-
T, LISA, and show the corresponding performance. Oracle ID represent the best ID performance over all compared baselines. FT:
Fine-tuning.


