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ABSTRACT

Energy based models (EBMs) are appealing for their generality and simplicity
in data likelihood modeling, but have conventionally been difficult to train due
to the unstable and time-consuming implicit MCMC sampling during contrastive
divergence training. In this paper, we present a novel energy-based generative
framework, Variational Potential Flow (VAPO), that entirely dispenses with im-
plicit MCMC sampling and does not rely on complementary latent models or
cooperative training. The VAPO framework aims to learn a potential energy func-
tion whose gradient (flow) guides the prior samples, so that their density evolution
closely follows an approximate data likelihood homotopy. An energy loss function
is then formulated to minimize the Kullback-Leibler divergence between density
evolution of the flow-driven prior and the data likelihood homotopy. Images can
be generated after training the potential energy, by initializing the samples from
Gaussian prior and solving the SDE governing the potential flow. Experiment
results show that the proposed VAPO framework is capable of generating realistic
images on various image datasets. In particular, our proposed framework achieves
competitive FID scores for unconditional image generation on the CIFAR-10 and
CelebA datasets.

1 INTRODUCTION

In recent years, deep generative modeling has garnered significant attention for unsupervised learning
of complex, high-dimensional data distributions Bond-Taylor et al. (2022). In particular, probabilistic
generative models such as variational autoencoders Kingma & Welling (2022), normalizing flows
Rezende & Mohamed (2015), score matching or diffusion models Song et al. (2021); Kim et al.
(2021); Karras et al. (2022). Poisson flow Xu et al. (2022; 2023), and energy-based models (EBMs)
Du & Mordatch (2019); Grathwohl et al. (2020a) aim to maximize the likelihood (probability density)
underlying the data. By design, these probabilistic frameworks enhance training stability, accelerate
model convergence, and reduce mode collapse compared to generative adversarial networks Srivastava
et al. (2017), albeit at the cost of a slow sampling procedure and poor model scalability Grathwohl
et al. (2020b). Among these frameworks, EBMs have emerged as a flexible and expressive class of
probabilistic generative models Du & Mordatch (2019); Grathwohl et al. (2020b); Du et al. (2021);
Nijkamp et al. (2019); Gao et al. (2020; 2021); Zhu et al. (2024); Grathwohl et al. (2020a); Yang et al.
(2023). EBMs model high-dimensional data space with a network-parameterized energy potential
function that assigns data regions with energy that is directly (or inversely) proportional to the
unnormalized data likelihood Song & Kingma (2021). This provides a natural interpretation of the
network model in the form of an energy landscape, endowing EBMs with inherent interpretability.

Deep EBMs are particularly appealing since they impose no restrictions on the network architecture,
potentially resulting in high expressiveness Bond-Taylor et al. (2022). Moreover, they are more robust
and generalize well to out-of-distribution samples Du & Mordatch (2019); Grathwohl et al. (2020a)
as regions with high probability under the model but low probability under the data distribution are
explicitly penalized during training. Additionally, EBMs, which trace back to Boltzmann machines
Hinton (2002), have strong ties to physics models and can thus borrow insights and techniques
from statistical physics for their development and analysis Feinauer & Lucibello (2021). On these
grounds, EBMs have been applied across a diverse array of applications apart from image modelling,
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including text generation Deng et al. (2020); Yu et al. (2022), point cloud synthesis Xie et al. (2021a),
scene graph generation Suhail et al. (2021), anomaly detection Vu et al. (2017); Yoon et al. (2023),
earth observation Castillo-Navarro et al. (2022), robot learning Du et al. (2020); Sodhi et al. (2022),
trajectory prediction Pang et al. (2021); Wang et al. (2023), and molecular design Liu et al. (2021);
Sun et al. (2021).

Despite a number of desirable properties, deep EBMs require implicit Langevin Markov Chain Monte
Carlo (MCMC) sampling during the contrastive divergence training. MCMC sampling in a high-
dimensional setting, however, has shown to be challenging due to poor mode mixing and excessively
long mixing time Bond-Taylor et al. (2022); Du & Mordatch (2019); Nijkamp et al. (2019); Gao et al.
(2020); Grathwohl et al. (2020a); Nijkamp et al. (2022). As result, energy potential functions learned
with non-convergent MCMC do not have valid steady-states, in the sense that MCMC samples can
differ greatly from data samples Grathwohl et al. (2020b). Current deep EBMs are thus plagued by
high variance training and high computational complexity due to MCMC sampling. In view of this,
recent works have explored learning complementary latent model to amortize away the challenging
MCMC sampling Xiao et al. (2021); Grathwohl et al. (2021); Hill et al. (2022); Pang et al. (2020);
Yu et al. (2023), or cooperative learning where model-generated samples serve as initial points for
subsequent MCMC revision in the latent space Xie et al. (2020); Cui & Han (2023). While such
approaches alleviate the burden of MCMC sampling, it comes at the expense of the inherent flexibility
and composability of EBMs Du et al. (2021).

In this paper, we introduce Variational Potential Flow (VAPO), a novel energy-based generative
framework that eliminates the need for implicit MCMC sampling and complementary models. At the
core of VAPO lies the construction of a homotopy (smooth path) that bridges the prior distribution
with the data likelihood. Subsequently, a potential flow with model-parameterized potential energy
function is designed to guide the evolution of prior sample densities along this approximate data
likelihood homotopy. Applying a variational approach to this path-matching strategy ultimately
yields a probabilistic Poisson’s equation, where the weak solution corresponds to minimizing the
energy loss function of our proposed VAPO.

Our contributions are summarized as follows:

• We introduce VAPO, a novel energy-based generative framework that entirely dispenses
with the unstable and inefficient implicit MCMC sampling. Our proposed framework learns
a potential energy function whose gradient (flow) guides the prior samples, ensuring that
their density evolution path closely follows the approximate data likelihood homotopy.

• We derive an energy loss function for VAPO by constructing a variational formulation of
the intractable homotopy path-matching problem. Solving this energy loss objective is
equivalent to minimizing the Kullback-Leibler divergence between density evolution of the
flow-driven prior and the approximate data likelihood homotopy.

• To assess the effectiveness of our proposed VAPO for image generation, we conduct
experiments on the CIFAR-10 and CelebA datasets and benchmark the performances against
state-of-the-art generative models. Our proposed framework achieves competitive FID
scores for unconditional image generation.

2 BACKGROUND AND RELATED WORKS

In this section, we provide an overview of EBMs, particle flow, and the deep Ritz method, collectively
forming the cornerstone of the proposed VAPO framework. Additionally, we discuss more related
works on diffusion, flow-based, and energy-based generative models in Appendix A.

2.1 ENERGY-BASED MODELS

Denote x̄ ∈ Ω ⊆ Rn as the training data, EBMs approximate the data likelihood pdata(x̄) via defining
a Boltzmann distribution pθ(x) =

eΦθ(x)

Z(θ) where Φθ is an energy model and Z(θ) =
∫
Ω
eΦθ(x) dx is

the normalizing partition function. Given that this partition function is analytically intractable for
high-dimensional data, EBMs perform the maximum likelihood estimation (MLE) by minimizing
the negative log likelihood loss LMLE(θ) = Epdata(x̄)[log pθ(x̄)] and approximate its gradient via the
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contrastive divergence Hinton (2002):

∇θLMLE = Epdata(x̄)

[
∇θΦθ(x̄)

]
− Epθ(x)

[
∇θΦθ(x)

]
(1)

However, EBMs are computationally intensive due to the implicit MCMC generating procedure,
required for generating negative samples x ∈ Ω ∼ pθ(x) for gradient computation (1) during training.

2.2 PARTICLE FLOW

Particle flow, initially introduced by the series of papers Daum & Huang (2007), is a class of nonlinear
Bayesian filtering (sequential inference) methods that aim to approximate the posterior distribution
p(xt|x̄0:t) of the state of system given the observations. While particle flow methods are closely
related to normalizing flows Rezende & Mohamed (2015) and neural ordinary differential equations
(ODEs) Chen et al. (2018), these latter frameworks do not explicitly accommodate a Bayes update.
In particular, particle flow performs the Bayes update p(xt|x̄0:t) ∝ p(xt|x̄0:t−1) p(x̄t|xt, x̄0:t−1)
by subjecting prior samples xt ∼ p(xt|x̄0:t−1) to a series of infinitesimal transformations through
an ODE dx

dτ = v(x, τ) parameterized by a flow velocity (field) function v(x, τ), in a pseudo-time
interval τ ∈ [0, 1] in between sampling time steps. The flow velocity is designed such that the driven
Kolmogorov forward path evolution (Fokker–Planck dynamics, see (12)) of the sample particles,
coincides with a data log-homotopy (smooth path) that inherently perform the Bayes update. Despite
its efficacy in time-series inference Pal et al. (2021); Chen et al. (2019b); Yang et al. (2014) and
resilience to the curse of dimensionality Surace et al. (2019), particle flow has yet to be explored in
generative modelling for high-dimensional data.

2.3 DEEP RITZ METHOD

The deep Ritz method is a deep learning-based variational numerical approach, originally proposed
in E & Yu (2018), for solving scalar elliptic partial differential equations (PDEs) in high dimensions.
Consider the following Poisson’s equation, fundamental to many physical models:

∆u(x) = f(x), x ∈ Ω subject to u(x) = 0, x ∈ ∂Ω (2)

where ∆ is the Laplace operator, and ∂Ω denotes the boundary of Ω. For a Sobolev function
u ∈ H1

0(Ω) (see Proposition 2 for definition) and square-integrable f ∈ L2(Ω), the variational
principle ensures that a weak solution of the Euler-Lagrange boundary value equation (2) is equivalent
to the variational problem of minimizing the Dirichlet energy Müller & Zeinhofer (2019), as follows:

u∗ = argmin
v

∫
Ω

(
1

2
∥∇v(x)∥2 − f(x)v(x)

)
dx (3)

where ∇ denotes the Del operator (gradient). In particular, the deep Ritz method parameterizes
the trial energy function v using neural networks, and performs the optimization (3) via stochastic
gradient descent. Due to its versatility and effectiveness in handling high-dimensional PDE systems,
the deep Ritz method is predominantly applied for finite element analysis Liu et al. (2023a). In Olmez
et al. (2020), the deep Ritz method is used to solve the probabilistic Poisson’s equation resulting from
the feedback particle filter Yang et al. (2013). Nonetheless, the method has not been explored for
generative modelling.

3 VARIATIONAL ENERGY-BASED POTENTIAL FLOW

In this section, we introduce a novel generative modelling framework, Variational Energy-Based
Potential Flow (VAPO), drawing inspiration from both particle flow and the calculus of variations.
First, we establish a homotopy that transforms a prior to the data likelihood and derive the evolution
of the prior in time. Then, we design an energy-generated potential flow and a weighted Poisson’s
equation that aligns the evolving density distribution of transported particles with the homotopy-
driven prior. Subsequently, we formulate a variational loss function where its optimization with
respect to the flow-generating potential energy is equivalent to solving the Poisson’s equation. Finally,
we describe the model architecture that is used to parameterize the potential energy function and the
backward SDE integration for generative sampling.

3
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3.1 BRIDGING PRIOR AND DATA LIKELIHOOD: LOG-HOMOTOPY TRANSFORMATION

Let x̄ ∈ Ω denote the training data, pdata(x̄) be the data likelihood, x ∈ Ω denote the approximate data
samples. To achieve generative modelling, our objective is to closely approximate the training data x̄
with the data samples x. On this account, we define a conditional data likelihood p(x̄|x) = N (x̄;x,Π)
with isotropic Gaussian noise with covariance Π = diag(σ2) and standard deviation σ ∈ Ω. This is
equivalent to considering a state space model x = x̄+ ν, where ν ∈ Ω ∼ N (ν; 0,Π). Here, we set a
small σ so that x closely resembles the training data x̄.

Consider a conditional (data-conditioned) density function ρ : Ω2 × [0, 1] → R, as follows:

ρ(x; x̄, t) =
ef(x;x̄,t)∫

Ω
ef(x;x̄,t) dx

(4)

where f : Ω2 × [0, 1] → R is a log-linear function:

f(x; x̄, t) = log q(x) + t log p(x̄|x) (5)

parameterized by the auxiliary time variable t ∈ [0, 1], and we let q(x) = N (x; 0,Λ) be a isotropic
Gaussian prior density with covariance Λ = diag(ω2) and standard deviation ω ∈ Ω. Here, diag(·)
denotes the diagonal function. By construction, we have ρ(x; x̄, 0) = q(x) at t = 0, and ρ(x; x̄, 1) =
p(x|x̄) at t = 1 since we have

ρ(x; x̄, 1) =
ef(x;x̄,1)∫

Ω
ef(x;x̄,1) dx

=
p(x̄|x) q(x)∫

Ω
p(x̄|x) q(x) dx

=
p(x̄, x)∫

Ω
p(x̄, x) dx

= p(x|x̄) (6)

where we have used the fact that pdata(x̄) =
∫
Ω
ef(x;x̄,1) dx =

∫
Ω
p(x, x̄) dx. Therefore, the condi-

tional density function ρ(x; x̄, t) here (4) essentially represents a density homotopy between the prior
q(x) and the posterior p(x|x̄).
In particular, the density function ρ(x; x̄, t) also defines a conditional (data-conditioned) homotopy
between the prior q(x) and the exact posterior p(x|x̄), the latter of which gives a maximum a
posteriori (Bayesian) estimate of the approximate data samples after observing true training data.

To obtain an estimate of the intractable data likelihood for generative sampling, we then consider a
(approximate) data likelihood homotopy ρ̄ : Ω× [0, 1] → R as follows:

ρ̄(x; t) =

∫
Ω

pdata(x̄) ρ(x; x̄, t) dx̄ (7)

Considering this, it remains that ρ̄(x; 0) = q(x) at t = 0. Furthermore, given that we have
ρ̄(x; 1) =

∫
Ω
pdata(x̄) p(x|x̄) dx̄ = p̄(x) at t = 1, the data likelihood homotopy ρ̄(x; t) here

inherently performs a kernel density approximation of the true data likelihood, using the normalized
kernel p(x|x̄) obtained from the conditional homotopy ρ(x; x̄, 1) at t = 1. Therefore, the approximate
data likelihood p̄(x) acts as a continuous interpolation of the data likelihood pdata(x), represented by
Dirac delta function δ(x− x̄) centered on the discrete training data x̄.

Nevertheless, the conditional homotopy (6) is intractable due to the normalizing constant in the
denominator. This intractability rules out a close-form solution of the data likelihood homotopy (7),
thus it is not possible to sample directly from the data likelihood estimate. Taking this into account,
we introduce the potential flow method in the following section, where we model the evolution of the
prior samples (particles) instead, such that their distribution adheres to the data likelihood homotopy.

3.2 MODELLING POTENTIAL FLOW IN A HOMOTOPY LANDSCAPE

Our aim is to model the flow of the prior particles in order for their distribution to follow the data
likelihood homotopy and converge to the data likelihood. To accomplish this, we first derive the
evolution of the latent prior density with respect to time in the following proposition.
Proposition 1. Consider the data likelihood homotopy ρ̄(x; t) in (7) with Gaussian conditional data
likelihood p(x̄|x) = N (x̄;x,Π). Then, its evolution in time t ∈ [0, 1] is given by the following PDE:

∂ρ̄(x; t)

∂t
= − 1

2
Epdata(x̄)

[
ρ(x; x̄, t)

(
γ(x, x̄)− γ̄(x, x̄)

)]
(8)
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where

γ(x, x̄) = (x− x̄)T Π−1 (x− x̄) (9)

is the innovation (weighted residual sum of squares) term in the conditional data likelihood, and
γ̄(x, x̄) = Eρ(x;x̄,t)[γ(x, x̄)] denotes the expectation of the innovation with respect to the conditional
homotopy and on the latent variables.

Proof. Refer to Appendix B.1.

Figure 1: A planar visualization of the
potential-generated field (represented by
coloured arrows) that transports the prior par-
ticles towards the approximate data likelihood
(represented by the blue contour).

Our proposed potential flow method involves subject-
ing the latent prior samples to a potential-generated
velocity field, such that the flow trajectories of these
sample particles x(t) within the interval t ∈ [0, 1]
are governed by the following stochastic differential
equation (SDE):

dx(t) = ∇Φ(x(t), t) dt+ β(t) dWt (10)

which is closely related to the stochastic Langevin dy-
namic, typically considered in MCMC-based EBMs.
Here, Φ : Ω× [0, 1] → R is a scalar potential energy
function, β : [0, 1] → R is the diffusion coefficient
and Wt ∈ Rn denote a standard Wiener process.
Therefore, ∇Φ ∈ Ω is the velocity vector field gen-
erated by the potential energy, and ∇ denotes the Del
operator (gradient) with respect to the data samples
x. Henceforth, we omit the time variable t in Φ(·, t)
and x(t) for readability.

Considering a potential flow of the form (10), a di-
rect consequence is that the prior density ρΦ of the
flow-driven prior samples evolves according to a
Fokker–Planck (Kolmogorov forward) equation Gar-
diner (2009), as follows:

∂ρΦ(x; t)

∂t
= −∇ ·

(
ρΦ(x; t)∇Φ(x)

)
+

β(t)2

2
∆ρΦ(x; t) (11)

where ∇· denotes the divergence operator. In particular, this Fokker–Planck equation is known to
possess an equilibrium (steady state) solution in the form of the Boltzmann distribution ρΦ ∝ eΦ(x),
thereby establishing a connection to EBM. Moreover, (11) can be equivalently expressed as a
continuity (transport) equation, as follows:

∂ρΦ(x; t)

∂t
= −∇ ·

(
ρΦ(x; t)∇Φ∗(x)

)
(12)

which corresponds to an ODE dx
dt = ∇Φ∗(x) with a field-generating potential of the form Φ∗(x) =

Φ(x)− β(t)2

2 log ρΦ(x; t). This continuity representation of the Fokker–Planck equation (12) will be
instrumental in our subsequent formulation of the energy loss function.

The goal of our proposed framework is to model the potential energy function in the potential flow
(10), such that the progression of the prior density subject to potential flow emulates the evolution
of the data likelihood homotopy. In particular, we seek to solve the problem of minimizing the
Kullback-Leibler divergence in the following proposition.
Proposition 2. Consider a potential flow of the form (10) and given that Φ ∈ H1

0(Ω, ρ̄), where Hn
0

denotes the (Sobolev) space of n-times differentiable functions that are compactly supported, and
square-integrable with respect to data likelihood homotopy ρ̄(x; t).

The problem of solving for the optimal potential energy function Φ(x) that satisfies the following
probabilistic (density-weighted) Poisson’s equation:

∇ ·
(
ρ̄(x; t)∇Φ∗(x)

)
=

1

2
Epdata(x̄)

[
ρ(x; x̄, t)

(
γ(x, x̄)− γ̄(x, x̄)

)]
(13)

5
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where Φ∗(x) = Φ(x) − β(t)2

2 log ρ̄(x; t), is then equivalent to minimizing the Kullback-Leibler
divergence DKL

[
ρΦ(x; t) ∥ ρ̄(x; t)

]
between the flow-driven prior ρΦ(x; t) and the data likelihood

homotopy ρ̄(x; t).

Proof. Refer to Appendix B.2.

In hindsight, the left-hand side of the probabilistic Poisson’s equation resembles the evolution of the
flow-driven prior given by the Fokker-Plank equation (12). In addition, the right-hand side resembles
the evolution of data likelihood homotopy given by PDE (8), with the conditional homotopy ρ(x; x̄, t)
replaced by flow-driven prior ρΦ(x; t). Therefore, Proposition 2 is an attempt to perform the density
homotopy path-matching ρΦ(x; t) ≡ ρ̄(x; t) via solving the Poisson’s equation (13). In this context,
the flow-driven prior ρΦ can be interpreted as an approximate likelihood density. It is also essential
to emphasize that Proposition 2 plays a crucial role in density path-matching, as it enables us to solve
(13) which is expressed solely in terms of ρ(x; x̄, t) and ρ̄(x; t), both of which permit direct sampling.
This approach bypasses the intractable Kullback-Leibler divergence (KLD) DKL

[
ρΦ(x; t)|ρ̄(x; t)

]
,

given that direct sampling from ρΦ(x; t) is not feasible.

Nonetheless, obtaining an explicit solution to (13) is challenging in a high-dimensional setting.
Numerical methods that approximate the solution often do not scale well with the data dimension.
For example, the Galerkin approximation requires a selection of the basis functions, which becomes
non-trivial when the dimensionality is high Yang et al. (2016). The diffusion map-based algorithm,
on the other hand, requires a large number of particles, which grows exponentially with respect
to the dimensionality, in order to achieve error convergence Taghvaei et al. (2020). Taking this
into consideration, we propose an energy loss function in the following section, where we cast the
Poisson’s equation as a variational problem compatible with stochastic gradient descent.

3.3 VARIATIONAL ENERGY LOSS FUNCTION FORMULATION: DEEP RITZ APPROACH

In this section, we introduce an energy method which presents a variational formulation of the
probabilistic Poisson’s equation. Given that the aim is to minimize the divergence between the
data likelihood homotopy and the flow-driven prior and directly solving the probabilistic Poisson’s
equation is difficult, we first consider a weak formulation of (13) as follows:∫

Ω

(
1

2
Epdata(x̄)

[
ρ(x; x̄, t)

(
γ(x, x̄)− γ̄(x, x̄)

)]
−∇ ·

(
ρ̄(x; t)∇Φ∗(x)

))
Ψ(x) dx = 0 (14)

where the equation must hold for all differentiable trial functions Ψ. In the following proposition,
we introduce an energy loss objective that is equivalent to solving this weak formulation of the
probabilistic Poisson’s equation.
Proposition 3. The variational problem of minimizing the following loss function:

L(Φ∗; t) =
1

2
Covρ(x;x̄,t) pdata(x̄)

[
Φ∗(x), γ(x, x̄)

]
+

1

2
Eρ̄(x;t)

[∥∥∇Φ∗(x)
∥∥2] (15)

with respect to the potential energy Φ, is equivalent to solving the weak formulation (14) of the
probabilistic Poisson’s equation (13). Here, ∥ · ∥ denotes the Euclidean norm, and Cov denotes the
covariance.

Furthermore, the variational problem (15) has a unique solution if for all energy functions Φ ∈
H1

0(Ω; ρ̄), the data likelihood homotopy ρ̄ satisfy the Poincaré inequality:

Eρ̄(x;t)

[∥∥∇Φ∗(x)
∥∥2] ≥ λ Eρ̄(x;t)

[∥∥Φ∗(x)
∥∥2] (16)

for some positive scalar constant λ > 0 (spectral gap).

Proof. Refer to Appendix B.3.

As a result, by applying Propositions 2 and 3, we have reformulated the intractable task of minimizing
the KLD between flow-driven prior and data likelihood homotopy equivalently as a variational
problem with energy loss function (15). By optimizing the potential energy function Φ∗ with respect

6
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to the energy loss and transporting the prior samples through the SDE (10), the prior particles follow
a trajectory that accurately approximates the data likelihood homotopy. In doing so, the potential
flow ∇Φ∗ drives the prior samples to posterior regions densely populated with data, thus enabling us
to perform generative modelling. In particular, the covariance functional in (15) plays an important
role by ensuring that the normalized innovation (residual sum of squares) is inversely proportional
to the potential energy. As a result, the potential-generated velocity field ∇Φ∗ consistently points
in the direction of greatest potential ascent, thereby driving the flow of prior particles towards high
likelihood regions of the true posterior.

Rather than being an ad hoc addition, the L2 norm Eρ̄(x;t)

[
∥∇Φ(x)− β(t)2

2 ∇ log ρ̄(x; t)∥2
]

of (15)
arises from the variational formulation. As shown in Vincent (2011), this L2 norm is equivalent
to Eρ(x;x̄,t) pdata(x̄)

[
∥∇Φ(x) − β(t)2

2 ∇ log ρ(x; x̄, t)∥2
]
. While it shares similarities with the score

matching loss Song & Ermon (2019), the L2 norm here does not serve as the primary loss for training
the potential energy Φ(x). Instead, it serves solely as a regularization term, to stabilize Φ(x) and
account for the diffusion component of the SDE 10. Additionally, it incorporates a weighting of
the log-likelihood log ρ̄(x; t) by β(t)2

2 , which the hyperparameter β(t) is set small to ensure that the
diffusion component does not dominate the drift component in the SDE.

Given that the aim is to solve the probabilistic Poisson’s equation (13) for all t, we include an auxiliary
time integral to the energy loss function (15) as follows:

LVAPO(θ) =

∫
R
L(θ; t) dt = EU(t;0,1)

[
L(θ; t)

]
(17)

where we have applied Monte Carlo integration, and U(a, b) denotes the uniform distribution over
interval [a, b]. In addition, the data likelihood homotopy may not satisfy the Poincaré inequality (16).
Hence, we include the right-hand side of the inequality to the loss function (15) to enforce uniqueness
of its minimizer. This addtional L2 loss also regularize the energy function, preventing its values
from exploding. The spectral gap constant λ is left as a training hyperparameter.

In addition, the energy loss (15) requires us to sample from the conditional and data likelihood
density homotopies. By design, both the prior q(x) = N (x; 0,Λ) and the conditional data likelihood
p(x̄|x) = N (x̄;x,Π) are assumed to be Gaussian. As a consequence, the Bayes update (4) results
in a Gaussian density ρ(x; x̄, t) = N

(
x;µ(x̄, t),Σ(x̄, t)

)
, from which the time-varying mean and

covariance can be derived using the Bayes’ theorem Bishop (2006), as follows:

µ(x̄, t) = t Σ(t)Π−1 x̄, Σ(t) =
(
Λ−1 + tΠ−1

)−1
(18)

Therefore, to sample from ρ(x; x̄, t) or ρ(x; t), we first sample data x from pdata(x̄) and compute
the mean and covariance according to (18). Then, we can generate samples of the approximate data
x using the reparameterization trick x = µ(x̄, t) +

√
Σ(t) ϵ, where ϵ ∼ N (ϵ; 0, I) and

√
Σ is the

square root decomposition of Σ. A detailed derivation of (18) is provided in Appendix B.4.

Nevertheless, parameterizing the conditional homotopy using mean and covariance (18) causes it
to converge too quickly to the posterior ρ(x; x̄, 1) = p(x|x̄). As a consequence, most samples
are closely clustered around the observed data. To mitigate this issue, a strategy is to slow down
its convergence by reparameterizing it with t + ε = eτ , where τ ∈ [ln ε, ln(1 + ε)]. This time
reparameterization compels t+ ε to follow a log-uniform (reciprocal) distribution R(t+ ε; ε, 1 + ε)
defined over the interval [ε, 1 + ε]. Here, the hyperparameter ε is a small positive constant that
determines the sharpness of the log-uniform density, and the rate at which its tail decays to zero.

Here, the potential energy Φθ is parameterized as deep neural networks with parameters θ. Incorpo-
rating all of the above considerations, the final energy loss function becomes:

LVAPO(θ) =
1

2
ER(t+ε; ε,1+ε)

[
L(θ; t)

]
(19)

where

L(θ; t) = Covρ(x;x̄,t) pdata(x̄)

[
Φθ(x), γ(x, x̄)

]
+ Eρ(x;x̄,t) pdata(x̄)

[∥∥∇Φ∗
θ

∥∥2 + λ
∥∥Φ∗

θ

∥∥2] (20)

and Φ∗
θ = Φθ(x) − β(t)2

2 log ρ(x; x̄, t). Given that the log-likelihood does not depends on model
parameters θ, we also substitute Φ∗

θ with Φθ in the covariance functional. The training algorithm of
VAPO is given by Algorithm 1 in the Appendix.
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Table 1: Comparison of FID scores on unconditional CIFAR-10 image generation. FID baselines are
obtained from Zhu et al. (2024).

EBM-Based Methods FID ↓ Other Likelihood-Based Methods FID ↓
EBM-SR Nijkamp et al. (2019) 44.5 VAE Kingma & Welling (2022) 78.4
JEM Grathwohl et al. (2020a) 38.4 PixelCNN Salimans et al. (2017) 65.9
EBM-IG Du & Mordatch (2019) 38.2 PixelIQN Ostrovski et al. (2018) 49.5
EBM-FCE Gao et al. (2020) 37.3 ResidualFlow Chen et al. (2019a) 47.4
CoopVAEBM Xie et al. (2021b) 36.2 Glow Kingma & Dhariwal (2018) 46.0
CoopNets Xie et al. (2020) 33.6 DC-VAE Parmar et al. (2021) 17.9
Divergence Triangle Han et al. (2019) 30.1 GAN-Based Methods
VERA Grathwohl et al. (2021) 27.5 WGAN-GP Gulrajani et al. (2017) 36.4
EBM-CD Du et al. (2021) 25.1 SN-GAN Miyato et al. (2018) 21.7
GEBM Arbel et al. (2021) 19.3 SNGAN-DDLS Hill et al. (2022) 15.4
HAT-EBM Hill et al. (2022) 19.3 BigGAN Brock et al. (2019) 14.8
CF-EBM Zhao et al. (2020) 16.7 Score-Based and Diffusion Methods
CoopFlow Xie et al. (2022) 15.8 NCSN Song & Ermon (2019) 25.3
CLEL-base Lee et al. (2022) 15.3 NCSN-v2 Song & Ermon (2020) 10.9
VAEBM Xiao et al. (2021) 12.2 Action Matching Neklyudov et al. (2023) 10.0
DRL Gao et al. (2021) 9.58 DDPM Distil. Luhman & Luhman (2021) 9.36
DDAEBM Geng et al. (2024) 4.82 Flow Matching Lipman et al. (2023) 6.35
VAPO (Ours) 15.4 Rectified Flow Liu et al. (2023b) 3.17
VAPO-T (Ours) 8.33 NCSN++ Song et al. (2021) 2.20

4 EXPERIMENTS

In this section, we show that VAPO is an effective generative model for images. In particular, Section
4.1 demonstrates that VAPO is capable of generating realistic unconditional images on the CIFAR-
10 and CelebA datasets. Section 4.2 demonstrates that VAPO is capable of performing smooth
interpolation between two generated samples. Apart from that, we also show that VAPO exhibits
extensive mode coverage and robustness to anomalous data, and generalizes well to unseen test
data. Specifically, Appendix D.1 evaluates model over-fitting and generalization based on the energy
histogram of CIFAR-10 train and test sets and the nearest neighbors of generated samples. Appendix
D.2 examines robustness to anomalous data by assessing its performance on out-of-distribution
(OOD) detection on various image datasets. Appendix E evaluates the convergence of the flow-driven
approximate likelihood density and its image samples on long-run sampling. Appendix F accesses
the capability of VAPO for compositional generation on the CelebA dataset.

Here, we include two model variants, namely VAPO-A and VAPO-T. Specifically, VAPO-A considers
an autonomous (independent of time) energy Φ(x(t)) and VAPO-T considers the more general time-
varying energy Φ(x(t), t). Here, we parameterize VAPO-A using the WideResNet architecture of
Xiao et al. (2021) and VAPO-T using the Unet architecture of Du et al. (2023). The performance
of VAPO-T are evaluated only on image generation and compositional generation. Implementation
details, including model architecture, training, numerical SDE solver, datasets and FID evaluation are
provided in Appendix C.

4.1 UNCONDITIONAL IMAGE GENERATION

Figure 2 shows the uncurated and unconditional image samples generated from the learned energy
model on the CIFAR-10 and CelebA 64 × 64 datasets. More generated samples are provided in
Appendix G. The samples are of decent quality and resemble the original datasets despite not having
the highest fidelity as achieved by state-of-the-art models. Tables 1 and 2 summarize the quantitative
evaluations of our proposed framework in terms of FID Heusel et al. (2017) scores on the CIFAR-10
and CelebA datasets. In particular, the VAPO-T model achieved a competitive FID that is better
than the majority of existing EBM-based generative models on CIFAR-10. Notably, VAPO-T
significantly outperforms VAPO-A, consistent with the results of Salimans & Ho (2021), which show
that modifying the EBM architecture from ResNet to Unet results in improved FID performance.
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Figure 2: Generated samples on unconditional CIFAR-10 32× 32 (left) and CelebA 64× 64 (right).

Nevertheless, having dispensed with the implicit MCMC sampling, both VAPO-A and VAPO-T
still outperform most of the EBM approaches without relying on complementary latent models or
cooperative training. On CelebA, VAPO-A obtains an FID that outperforms some existing EBMs but
falls short compared to Song & Ermon (2020) and state-of-the-art models.

4.2 IMAGE INTERPOLATION

Figure 3 shows the interpolation results between pairs of generated CelebA samples, where it
demonstrates that the VAPO-A model is capable of smooth and semantically meaningful image
interpolation. To perform interpolation for two samples x1(1) and x2(1), we construct a spherical
interpolation between the initial Gaussian noise x1(0) and x2(0), and subject them to sampling over
the SDE. More interpolation results on CIFAR-10 and CelebA are provided in Appendix G.

Figure 3: Interpolation results between the leftmost and rightmost generated CelebA 64× 64 samples.

5 CONCLUSION

We propose VAPO, a novel energy-based generative modelling framework without the need for
expensive and unstable MCMC runs amidst training. Despite the improvement over the majority of
existing EBMs, there is still a large performance gap between VAPO and the state-of-the-art score-
based (or diffusion) and Poisson flow models Song et al. (2021); Kim et al. (2021); Xu et al. (2022).
To close this gap, diffusion recovery likelihood Gao et al. (2021); Zhu et al. (2024), which is shown
to be more tractable than marginal likelihood, can be incorporated into the VAPO framework for a
more controlled diffusion-guided energy optimization. The dimensionality augmentation technique
of Xu et al. (2022; 2023) can also be integrated given that fundamentally, both Poisson flow and
VAPO aim to model potential field governed by a Poisson’s equation. On top of that, the scalability
of VAPO to higher resolution images and its generalizability to other data modalities have yet to be
validated. In addition, the current VAPO framework does not allow for class-conditional generation.
Moreover, the model training requires a large number of iterations to converge and thus warrants
improvement. These important aspects are earmarked for future extensions of our work.
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A RELATED WORKS

Flow-based and diffusion generative models have been pivotal in recent advancements in generative
modeling, with a variety of innovative approaches enhancing their effectiveness and applicability.
Denoising Diffusion Probabilistic Models (DDPM) Kim et al. (2021) and Score-Based Generative
Models (NCSN++) Song et al. (2021) have demonstrated the efficacy of stochastic differential
equations (SDEs) in generating high-quality samples through the progressive scaling and refinement
of noise. Building upon these foundational techniques, Rectified Flow Liu et al. (2023b) enhances
the efficiency of data generation by learning rectified paths to streamlining the diffusion process for
rapid generative sampling.

In parallel, Flow Matching Lipman et al. (2023) focuses on learning the evolution of time-dependent
diffeomorphic mappings that transport a prior density to a target density, effectively generalizing
beyond the probability paths constructed by simple diffusion through the leverage of optimal transport.
Stochastic Interpolants Albergo & Vanden-Eijnden (2023) enhance conventional normalizing flows
Rezende & Mohamed (2015); Chen et al. (2018) by incorporating stochastic processes that interpolate
between prior and target densities, thereby increasing their expressiveness and enabling the handling
of more complex data geometries. Schrödinger Bridge Matching Shi et al. (2023) integrates optimal
transport theory with diffusion processes through the Schrödinger bridge framework, employing
iterative Markovian fitting to construct a probabilistic model that aligns densities, while regularizing
entropy for a smoother density transition. Inspired by electrostatics, the Poisson Flow Generative
Model (PFGM) Xu et al. (2022) extends flow-based generative models by integrating the Poisson
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equation for learning an invertible Poisson flow within an augmented space that includes an additional
dimension.

Additionally, Action Matching Neklyudov et al. (2023) introduces a novel paradigm by learning the
dynamics of the generative process through the optimization of the potential action (energy) that
governs the underlying gradient field. This perspective enables a more physically grounded approach
to modeling stochastic dynamics within generative frameworks. On the other hand, approaches such
as Diffusion Recovery Likelihood (DRL) Gao et al. (2021) and Denoising Diffusion Adversarial
Energy-Based Models (DDAEBM) Geng et al. (2024) harness diffusion processes to enhance the
sampling efficiency and training stability of conventional energy-based models (EBMs). Together,
these models represent significant strides in integrating diffusion, flow-based, optimal transport, and
energy-based methodologies for generative modeling.

Nevertheless, existing generative models have not incorporated log-homotopy transformations or a
variational (Deep Ritz) formulation that aligns the Fokker–Planck (or continuity) equation directly
with the evolution of a time-dependent density homotopy. Furthermore, our proposed VAPO loss
is formulated in terms of potential energy, with energy learning primarily governed by the bilinear
covariance operator. This formulation offers direct control over the energy training, a characteristic
inherent to the contrastive divergence loss Hinton (2002) of EBMs but absent in score matching
Vincent (2011). Such control enables potential applications in safe image generation Schramowski
et al. (2023), eliminating the need for post hoc guidance techniques.

B PROOFS AND DERIVATIONS

B.1 PROOF OF PROPOSITION 1

Proof. Differentiating the conditional homotopy ρ(x; x̄, t) in (4) with respect to t, we have

∂ρ(x; x̄, t)

∂t
=

1∫
Ω
ef(x;x̄,t) dx

∂[ef(x;x̄,t)]

∂t
− ef(x;x̄,t)

[
∫
Ω
ef(x;x̄,t) dx]2

∂[
∫
Ω
ef(x;x̄,t) dx]

∂t

=
1∫

Ω
ef(x;x̄,t) dx

∂[ef(x;x̄,t)]

∂f

∂f(x; x̄, t)

∂t
− ef(x;x̄,t)

[
∫
Ω
ef(x;x̄,t) dx]2

∫
Ω

∂[ef(x;x̄,t)]

∂f

∂f(x; x̄, t)

∂t
dx

=
ef(x;x̄,t)∫

Ω
ef(x;x̄,t) dx

∂f(x; x̄, t)

∂t
− ef(x;x̄,t)∫

Ω
ef(x;x̄,t) dx

∫
Ω

ef(x;x̄,t)∫
Ω
ef(x;x̄,t) dx

∂f(x; x̄, t)

∂t
dx

= ρ(x; x̄, t)

(
∂f(x; x̄, t)

∂t
−
∫
Ω

ρ(x; x̄, t)
∂f(x; x̄, t)

∂t
dx

)
= − 1

2
ρ(x; x̄, t)

(
(x− x̄)T Π−1 (x− x̄)−

∫
Ω

ρ(x; x̄, t) (x− x̄)T Π−1 (x− x̄) dx

)
(21)

where we used the quotient rule in the first equation, and chain rule in the second equation.

Let γ(x, x̄) = (x− x̄)T Π−1 (x− x̄) and using the fact that

∂ρ̄(x; t)

∂t
=

∂
∫
Ω
ρ(x; x̄, t) pdata(x̄) dx̄

∂t
=

∫
Ω

∂ρ(x; x̄, t)

∂t
pdata(x̄) dx̄ (22)

we can substitute (21) into (22) to get

∂ρ̄(x; t)

∂t
= − 1

2

∫
Ω

pdata(x̄) ρ(x; x̄, t)

(
γ(x, x̄)−

∫
Ω

ρ(x; x̄, t) γ(x, x̄) dx

)
dx̄ (23)

Given that both ρ(x; x̄, t) and pdata(x) are normalized (proper) density functions, writing (23) in
terms of expectations yields the PDE in (8).

B.2 PROOF OF PROPOSITION 2

Here, we used the Einstein tensor notation interchangeably with the conventional notation for vector
dot product and matrix-vector multiplication in PDE.
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Given that the context is clear, we write gt(·) in place of time-varying functions g(·, t). For brevity,
we will also omit the time index t, and write g in place of gt(x).

Proof. Applying the forward Euler method to the particle flow SDE (10) using step size ∆t, we
obtain:

xt+∆t
= αt(xt) = xt +∆t u(xt) (24)

where

u(xt) = ∇Φ∗(xt) (25)

where we denote xt as the discretizations random variables x(t).

Assuming that the αt : Ω → Ω is a diffeomorphism (bijective function with differentiable inverse),
the push-forward operator αt# : R → R on density function ρΦt 7→ ρΦt+∆t

:= αt#ρ
Φ
t is defined by:∫

Ω

ρΦt+∆t
(x) g(x) dx =

∫
Ω

αt#ρ
Φ
t (x) g(x) dx =

∫
Ω

ρΦt (x) g
(
αt(x)

)
dx (26)

for any measurable function g.

Associated with the change-of-variables formula (26) is the following density transformation:

ρΦt+∆t

(
αt(x)

)
=

1

|Dαt|
ρΦt (x) (27)

where |Dαt| denotes the Jacobian determinant of αt.

From (8) and (23), we have

∂ ln ρ̄t(x)

∂t
=

1

ρ̄t(x)

∂ρ̄t(x)

∂t
= − 1

ρ̄t(x)

1

2
Epdata(x̄)

[
ρt(x, x̄)

(
γ(x, x̄)− γ̄(x, x̄)

)]
(28)

Applying the forward Euler method to (28), we obtain

ln ρ̄t+∆t
(x) ≥ ln ρ̄t(x)−

∆t

2

1

ρ̄t(x)
Epdata(x̄)

[
ρt(x, x̄)

(
γ(x, x̄)− γ̄(x, x̄)

)]
(29)

Applying the change-of-variables formula (26) and density transformation (27), then substituting (29)
into the KLD DKL

[
ρΦt+∆t

∥ ρ̄t+∆t

]
at time t+∆t, we have

DKL

[
ρΦt+∆t

(x) ∥ ρ̄t+∆t(x)
]
=

∫
Ω

ρΦt (x) ln

(
ρΦt+∆t

(
αt(x)

)
ρ̄t+∆t

(
αt(x)

)) dx

=

∫
Ω

ρΦt (x)

(
ln ρΦt (x)− ln |Dαt| − ln ρ̄t

(
αt(x)

)
+

∆t

2

1

ρ̄t
(
αt(x)

) Epdata(x̄)

[
ρt
(
αt(x), x̄

) (
γ
(
αt(x), x̄

)
− γ̄
(
αt(x), x̄

))]
+ C

)
dx

(30)

Consider minimizing the KLD (30) with respect to αt as follows:

min
αt

DKL(αt)

= min
αt

∆t

2

∫
Ω

ρΦt (x)
1

ρ̄t
(
αt(x)

) Epdata(x̄)

[
ρt
(
αt(x), x̄

) (
γ
(
αt(x), x̄

)
− γ̄
(
αt(x), x̄

))]
dx︸ ︷︷ ︸

DKL
1 (αt)

−
∫
Ω

ρΦt (x) ln ρ̄t(αt(x)) dx︸ ︷︷ ︸
DKL

2 (αt)

−
∫
Ω

ρΦt (x) ln |Dαt| dx︸ ︷︷ ︸
DKL

3 (αt)

(31)
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where we have neglected the constant terms that do not depend on αt.

To solve the optimization (31), we consider the following optimality condition in the first variation of
DKL:

I(α, ν) = d

dϵ
DKL

(
α(x) + ϵ ν(x)

) ∣∣∣∣
ϵ=0

= 0 (32)

which must hold for all trial function ν(x).

Taking the variational derivative of the first functional DKL
1 in (31), we have

I1(α, ν) =
d

dϵ
DKL

1 (α+ ϵν)

∣∣∣∣
ϵ=0

=
∆

2

∫
Ω

ρΦ(x)
d

dϵ

{
1

ρ̄(α+ ϵν)
Epdata(x̄)

[
ρ(α+ ϵν, x̄)

(
γ(α+ ϵν, x̄)− γ̄(α+ ϵν, x̄)

)]} ∣∣∣∣∣
ϵ=0

dx

=
∆

2

∫
Ω

ρΦ(x)D

{
1

ρ̄(x)
Epdata(x̄)

[
ρ(x, x̄)

(
γ(x, x̄)− γ̄(x, x̄)

)]}
ν dx

(33)

where Dg := ∇T g denotes the Jacobian of function g(x) with respect to x.

A Taylor series expansion of the derivative ∂g
∂xi

(α) with respect to xi yields

∂g(α)

∂xi
=

∂g(x+∆u)

∂xi
=

∂g(x)

∂xi
+∆

∑
j

∂2g(x)

∂xi ∂xj
uj +O(∆2) (34)

Using the Taylor series expansion (34), (33) can be written in tensor notation as follows:

I1(α, ν) =
∆

2

∫
Ω

ρΦ(x)
∑
i

∂

∂xi

{
1

ρ̄(x)
Epdata(x̄)

[
ρ(x; x̄)

(
γ(x, x̄)− γ̄(x, x̄)

)]}
νi dx + O(∆2)

(35)

Taking the variational derivative of the second functional DKL
2 in (31) yields

I2(α, ν) =
d

dϵ
DKL

2 (α+ ϵν)

∣∣∣∣
ϵ=0

=

∫
Ω

ρΦ(x)
d

dϵ
ln ρ̄(α+ ϵν)

∣∣∣∣
ϵ=0

dx

=

∫
Ω

ρΦ(x)
1

ρ̄(α)
∇ρ̄(α) · ν dx

=

∫
Ω

ρΦ(x)∇ ln ρ̄(α) · ν dx

(36)

where we have used the derivative identity d ln g = 1
g dg to obtain the second equation.

Using the Taylor series expansion (34), (36) can be written in tensor notation as follows:

I2(α, ν) = −
∫
Ω

ρΦ(x)
∑
i

(
∂ ln ρ̄(x)

∂xi
−∆

∑
j

∂2 ln ρ̄(x)

∂xi ∂xj
uj

)
νi dx + O(∆2)

= −
∫
Ω

ρΦ(x)
∑
i

(
∂ ln ρ̄(x)

∂xi
−∆

∑
j

∂2 ln ρ̄(x)

∂xi ∂xj
uj

)
νi dx + O(∆2)

(37)
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Similarly, taking the variational derivative of the DKL
3 term in (31), we have

I3(α, ν) =
d

dϵ
DKL

3 (α+ ϵν)

∣∣∣∣
ϵ=0

=

∫
Ω

ρΦ(x)
d

dϵ
ln
∣∣D(α+ ϵν)

∣∣ ∣∣∣∣
ϵ=0

dx

=

∫
Ω

ρΦ(x)
1∣∣Dα
∣∣ d

dϵ

∣∣D(α+ ϵν)
∣∣ ∣∣∣∣

ϵ=0

dx

=

∫
Ω

ρΦ(x) tr
(
Dα−1Dν

)
dx

(38)

where we have used the following Jacobi’s formula:

d

dϵ

∣∣D(α+ ϵν)
∣∣ ∣∣∣∣

ϵ=0

= |Dα| tr
(
Dα−1Dν

)
(39)

to obtain the last equation in (38).

The inverse of Jacobian Dα−1 can be expanded via Neuman series to obtain

Dα−1 =
(
I + ∆Du

)−1
= I−∆Du + O(∆2) (40)

Substituting in (40) and using the Taylor series expansion (34), (36) can be written in tensor notation
as follows:

I3(α, ν) =

∫
Ω

∑
i

(
ρΦ(x)

∂νi
∂xi

−∆
∑
j

ρΦ(x)
∂uj

∂xi

∂νi
∂xj

)
dx + O(∆2)

=

∫
Ω

∑
i

(
∂ρΦ(x)

∂xi
νi −∆

∑
j

∂

∂xj

{
ρΦ(x)

∂uj

∂xi

}
νi

)
dx + O(∆2)

=

∫
Ω

∑
i

(
∂ρΦ(x)

∂xi
−∆

∑
j

∂

∂xj

{
ρΦ(x)

∂uj

∂xi

})
νi dx + O(∆2)

(41)

where we have used integration by parts to obtain the second equation.

Taking the limit lim∆ → 0, the terms O(∆2) that approach zero exponentially vanish. Subtracting
(35) by (37) and (41) then equating to zero, we obtain the first-order optimality condition (32) as
follows:∫

Ω

ρ̄(x)
∑
i

(∑
j

− ∂

∂xi

{
1

ρ̄(x)

∂

∂xj

{
ρ̄(x)uj

}}

+
1

2

∂

∂xi

{
1

ρ̄(x)
Epdata(x̄)

[
ρ(x; x̄)

(
γ(x, x̄)− γ̄(x, x̄)

)]})
νi dx = 0

(42)

where we have assumed that ρΦ(x) ≡ ρ̄(x) holds, and used the following identities:

∂ ln ρ̄(x)

∂xi
=

1

ρ̄(x)

∂ρ̄(x)

∂xi

∂2 ln ρ̄(x)

∂xi ∂xj
=

∂

∂xi

(
1

ρ̄(x)

∂ρ̄(x)

∂xj

) (43)

Given that νi can take any value, the equation (42) holds (in the weak sense) only if the terms within
the round bracket vanish. Integrating this term with respect to the xi, we are left with∑

j

∂

∂xj

{
ρ̄(x)uj

}
=

1

2
Epdata(x̄)

[
ρ(x; x̄)

(
γ(x, x̄)− γ̄(x, x̄)

)]
+ ρ̄(x)C (44)
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which can also be written in vector notation as follows:

∇ ·
(
ρ̄(x)u

)
=

1

2
Epdata(x̄)

[
ρ(x; x̄)

(
γ(x, x̄)− γ̄(x, x̄)

)]
+ ρ̄(x)C (45)

To find the scalar constant C, we integrate both sides of (45) to get∫
Ω

∇ ·
(
ρ̄(x)u

)
dx =

1

2

∫
Ω

Epdata(x̄)

[
ρ(x; x̄)

(
γ(x, x̄)− γ̄(x, x̄)

)]
dx +

∫
Ω

ρ̄(x)C dx

=
1

2

∫
Ω

Epdata(x̄)

[
ρ(x; x̄)

(
γ(x, x̄)− γ̄(x, x̄)

)]
dx + C

(46)

Applying the divergence theorem to the left-hand side of (46), we have∫
Ω

∇ ·
(
ρ̄(x)u

)
dx =

∫
∂Ω

ρ̄(x)u · n̂ dx (47)

where n̂ is the outward unit normal vector to the boundary ∂Ω of Ω.

Given that ρ̄(x) is a normalized (proper) density with compact support (vanishes on the boundary),
the term (47) becomes zero and we obtain C = 0. Substituting this and u(x) = ∇Φ∗(x) into (45),
we arrive at the PDE

∇ ·
(
ρ̄t(x)∇Φ∗(x)

)
=

1

2
Epdata(x̄)

[
ρt(x, x̄)

(
γ(x, x̄)− γ̄(x, x̄)

)]
(48)

Assume that the base case ρΦ0 (x) ≡ ρ̄0(x) holds, and that there exists a solution to (48) for every t.
The proposition follows by the principle of induction.

B.3 PROOF OF PROPOSITION 3

Proof. The energy loss function in (15) can be written as follows:

L(Φ∗, t) =
1

2
Eρ(x;x̄,t) pdata(x)

[
Φ∗(x)

(
γ(x, x̄)− γ̄(x, x̄)

)]
+

1

2
Eρ̄(x;t)

[∥∥∇Φ∗(x)
∥∥2] (49)

where we have assumed, without loss of generality, that a normalized potential energy Ēθ(x; t) = 0.
For an unnormalized solution Φ∗(x), we can always obtain the desired normalization by subtracting
its mean.

The optimal solution Φ∗ of the functional (49) is given by the first-order optimality condition:

I(Φ∗,Ψ) =
d

dϵ
L(Φ∗(x) + ϵΨ(x), t)

∣∣∣∣
ϵ=0

= 0 (50)

which must hold for all trial function Ψ.

Taking the variational derivative of the particle flow objective (50) with respect to ϵ, we have

I(Φ∗,Ψ) =
d

dϵ
L(Φ∗ + ϵΨ)

∣∣∣∣
ϵ=0

=
1

2

∫
Ω×Ω

pdata(x) ρ(x; x̄)
(
γ(x, x̄)− γ̄(x, x̄)

) d

dϵ
(Φ∗ + ϵΨ) dx̄ dx

+
1

2

∫
Ω

ρ̄(x)
d

dϵ

∥∥∇(Φ∗ + ϵΨ)
∥∥2 dx

=
1

2

∫
Ω×Ω

pdata(x) ρ(x; x̄)
(
γ(x, x̄)− γ̄(x, x̄)

)
Ψ dx̄ dx +

∫
Ω

ρ̄(x)∇Φ∗ · ∇Ψ dx

(51)

Given that Φ∗ ∈ H1
0(Ω; ρ̄), its value vanishes on the boundary ∂Ω. Therefore, the second summand

of the last expression in (51) can be written, via multivariate integration by parts, as∫
Ω

ρ̄(x)∇Φ∗ · ∇Ψ = −
∫
Ω

∇ ·
(
ρ̄(x)∇Φ∗)Ψ dx (52)
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By substituting (52) into (51), we get

I(Φ∗,Ψ) =
1

2

∫
Ω

∫
Ω

pdata(x)ρ(x; x̄)
(
γ(x, x̄)− γ̄(x, x̄)

)
Ψ dx̄ dx −

∫
Ω

∇ ·
(
ρ̄(x)∇Φ∗)Ψ dx

=

∫
Ω

(
1

2

∫
Ω

pdata(x)ρ(x; x̄)
(
γ(x, x̄)− γ̄(x, x̄)

)
dx̄ −

∫
Ω

∇ ·
(
ρ̄(x)∇Φ∗))Ψ dx

(53)

and equating it to zero, we obtain the weak formulation (14) of the probabilistic Poisson’s equation.

Given that the Poincaré inequality (16) holds, (Laugesen et al., 2015, Theorem 2.2) presents a
rigorous proof of existence and uniqueness for the solution of the weak formulation (14), based on
the Hilbert-space form of the Riesz representation theorem.

B.4 DERIVATION OF TIME-VARYING MEAN AND VARIANCE IN (18)

Given the following marginal Gaussian distribution for z and a conditional Gaussian distribution for
x given x, as defined in Section 3.1:

q(x) = N (x; 0,Λ) (54a)
p(x̄|x) = N (x̄;x,Π) (54b)

The posterior distribution of x given x̄ is obtained via Bayes’ theorem as

p(x|x̄) = p(x̄|x) q(x)∫
Ω
p(x̄|x) q(x) dx

= N (x;µ,Σ) (55)

and remains a Gaussian, whose mean and variance are given by:

µ(x̄) = ΣΠ−1 x̄ (56a)

Σ =
(
Λ−1 + Π−1

)−1
(56b)

In fact, the conditional homotopy (4) can be written as

ρ(x; x̄, t) =
p(x̄; t|x) q(x)∫

Ω
p(x̄; t|x) q(x) dx (57)

where

p(x̄; t|x) = N (x;µ,
1

t
Π) (58)

Notice that the terms involving t in the numerator and denominator of (57) cancel each other out.
Substituting the variance of (58) into (57) and using (55)-(56), we obtain (18).

C EXPERIMENTAL DETAILS

C.1 MODEL ARCHITECTURE

Our network architectures for the model variants VAPO-A and VAPO-T are based on the WideResNet
Zagoruyko & Komodakis (2016) and the Unet Ronneberger et al. (2015), respectively. We adopt the
model hyperparameters used in Xiao et al. (2021) for WideResNet and Du et al. (2023) for Unet.
In particular, we include a spectral regularization loss for model training to penalizes the spectral
norm of the convolutional layer in WideResNet. Also, we remove the final scale-by-sigma operation
Kim et al. (2021); Song et al. (2021) and replace it with a L2 norm 1

2∥x(t) − fθ(x(t))∥2 between
the input x(t) and the output of the Unet fθ(x(t)). Here, we replace LeakyReLU activations with
Gaussian Error Linear Unit (GELU) activations Hendrycks & Gimpel (2017) for both WideResNet
and Unet, which we found improves training stability and convergence. Additionally, we apply weight
normalization with data-dependent initialization Salimans & Kingma (2016) on the convolutional
layers of WideResNet to regularize the output energy.
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Algorithm 1 VAPO Training
Input: Initial energy model Φθ, spectral gap constant λ, sharpness constant ε, standard deviation
ω of prior density, standard deviation σ of conditional likelihood, β diffusion coefficient, and batch
size B.
repeat

Sample observed data x̄i ∼ pdata(x̄), ti ∼ R(t+ ε; ε, 1 + ε), and ϵi ∼ N (ϵ; 0, I)

Sample xi ∼ ρ(x; x̄, t) via reparameterization xi = µ(x̄i, ti) +
√
Σ(ti) ϵi based on (18)

Compute gradient ∇Φθ(xi) w.r.t. xi via backpropagation
Calculate innovation γ(xi, x̄i) based on (9)
Calculate VAPO loss LVAPO(θ) = 1

B

∑B
i=1 L(θ; ti) based on (19)-(20)

Update energy model parameters θ with the gradient of LVAPO(θ)
until θ converged

C.2 TRAINING

We use the Lamb optimizer You et al. (2020) and a learning rate of 0.001 for all the experiments.
We find that Lamb performs better than Adam over large learning rates. We use a batch size of
64 and 32 for training CIFAR-10 and CelebA, respectively. We set the diffusion coefficient to a
small constant value β =

√
2× 0.005 to ensure that the drift component is not overwhelmed by the

diffusion component in the SDE 10. For all experiments, we set a spectral gap constant λ of 0.001,
and a sharpness constant ε of 0.0001 in our training. Here, we set the standard deviation ω of the
prior density to be 1 so that the data likelihood homotopy is variance-preserving. Also, we set the
standard deviation σ of conditional data likelihood to be 0.01 so that the difference between samples
x and data x̄ is indistinguishable to human eyes Song & Ermon (2019). All models are trained on
a single NVIDIA A100 (80GB) GPU until the FID scores, computed on 2,500 samples, no longer
show improvement. We observe that the models converge within 800k training iterations.

C.3 NUMERICAL SOLVER

In our experiments, we apply the Euler–Maruyama method for numerical solution of the SDE 10
using a step size of 0.01. Given that the energy of VAPO-A is time independent, we are allowed to
set a longer SDE time interval, allowing the additional SDE iterations to further refine the samples
within regions of high likelihood and improve the quality of generated images. We observe that
setting a terminal time of 1.625 for the SDE solver gives the best results for VAPO-A. Nevertheless,
this is not feasible to VAPO-T since the time embedding model of Unet is trained explicitly on the
predetermined SDE time interval [0, 1].

C.4 DATASETS

We use the CIFAR-10 Krizhevsky (2009) and CelebA Liu et al. (2015) datasets for our experiments
CIFAR-10 is of resolution 32 × 32, and contains 50, 000 training images and 10, 000 test images.
CelebA contains 202, 599 face images, of which 162, 770 are training images and 19, 962 are test

Table 2: Comparison of FID scores on unconditional CelebA 64× 64. FID baselines obtained from
Gao et al. (2021).

Methods FID ↓
NCSN Song & Ermon (2019) 25.3
NCSN-v2 Song & Ermon (2020) 10.2
EBM-Triangle Han et al. (2020) 24.7
EBM-SR Nijkamp et al. (2019) 23.0
Divergence Triangle Han et al. (2019) 18.2
CoopNets Xie et al. (2020) 16.7
DDAEBM Geng et al. (2024) 10.3
VAPO-A (Ours) 13.4
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Figure 4: Histogram of energy output for CIFAR-10 train and test set.

images. For processing, we first clip each image to 178 × 178 and then resize it to 64 × 64. For
processing, we first crop each image to a square image whose side is of length which is the minimum
of the height and weight, and then we resize it to 64 × 64 or 128 × 128. For resizing, we set the
anti-alias to True. We apply horizontal random flip as data augmentation for the training datasets.

C.5 QUANTITATIVE EVALUATION

We employ the FID and inception scores as quantitative evaluation metrics for assessing the quality
of generated samples. For CIFAR-10, we compute the Frechet distance between 50, 000 samples and
the pre-computed statistics on the training set [13]. For CelebA 64 × 64, we follow the setting in
Song & Ermon (2020) where the distance is computed between 5, 000 samples and the pre-computed
statistics on the test set. For model selection, we follow Song et al. (2021) and pick the checkpoint
with the smallest FID scores, computed on 2,500 samples every 10,000 iterations.

D MODE EVALUATION

In this section, we evaluate the mode coverage and over-fitting of the proposed VAPO framework.

D.1 MODEL OVER-FITTING AND GENERALIZATION

To assess over-fitting, Figure 4 plots the histogram of the energy outputs on the CIFAR-10 train and
test dataset. The energy histogram shows that the learned energy model assigns similar energy values
to both train and test set images. This indicates that the VAPO-A model generalizes well to unseen
test data and extensively covers all the modes in the training data.

In addition, Figure 5 presents the nearest neighbors of the generated samples in the train set of
CIFAR-10. It shows that nearest neighbors are significantly different from the generated samples,
thus suggesting that our models do not over-fit the training data and generalize well across the
underlying data distribution.

D.2 OUT-OF-DISTRIBUTION DETECTION

We evaluate robustness of the proposed VAPO framework to anomalous data by assessing its
performance on unsupervised out-of-distribution (OOD) detection. Given that potential energy
characterizes a stationary Boltzmann distribution, the energy model can be used to distinguish
between the in-distribution and out-distribution samples based on the energy values it assigns. In
particular, the energy model trained on CIFAR-10 train set is used for assigning normalized energy
values to in-distribution samples (CIFAR-10 test set) and out-distribution samples from various other
image datasets. The area under the receiver operating characteristic curve (AUROC) is used as a
quantitative metric to determine the efficacy of the VAPO-A model in OOD detection, where a high
AUROC score indicates that the model correctly assigns low energy to out-distribution samples.
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Figure 5: Generated samples and their five nearest neighbours in the CIFAR-10 train set based on
pixel distance.

Table 3 compares the AUROC scores of VAPO-A with various likelihood-based and EBM-based
models. The result shows that the model performs exceptionally well on the CIFAR-10 interpolated
dataset. However, its performance is average on CIFAR-100 and SVHN. This suggests that the
perturbation of training data using the data likelihood homotopy may not sufficiently explore the data
space in comparison to MCMC methods. The investigation into the underlying cause is left for future
work.

E LONG-RUN SDE SAMPLING

Figure 6 illustrate the long-run (tend >> 1) SDE sampling results. The results demonstrate that
the approximate likelihood density ρ̄(x; t) converges well to a stationary distribution. Nevertheless,
the image quality degrades at large timesteps (t = 10), with the background details vanishing for
example. This result is consistent with Agoritsas et al. (2023) that shows Langevin MCMC achieved
the best EBM sampling results at some finite timestep (non-convergent). On that account, we choose
a terminal time tend = 1.625 for the numerical SDE solver.

Table 3: Comparison of AUROC scores ↑ for OOD detection on several datasets.

Models CIFAR-10
interpolation CIFAR-100 SVHN

PixelCNN 0.71 0.63 0.32
GLOW 0.51 0.55 0.24
NVAE 0.64 0.56 0.42
EBM-IG 0.70 0.50 0.63
VAEBM 0.70 0.62 0.83
CLEL 0.72 0.72 0.98
DRL - 0.44 0.88

VAPO-A (Ours) 0.78 0.50 0.61
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Figure 6: Long-run SDE sampling on time interval t ∈ [0, 20] on unconditional CIFAR-10 32× 32
(left) and CelebA 64× 64 (right). The samples converge well to their stationary states, albeit with
image quality degrading at large timesteps due to oversaturation and loss of background detail,
consistent with the results of Agoritsas et al. (2023).

Figure 7: Compostional generation results on CelebA (64× 64)

F COMPOSITIONAL GENERATION

We assess the efficacy of the VAPO-T model in compositional generation by conducting experiments
on the CelebA (64 × 64) dataset with three attributes Male, Smile, and Young as the conditional
concepts. Specifically, we aim to show the compositionality with the following attribute combinations:
(Male & Young), (Male & Smile), and (Young & Smile). We train a class-conditional VAPO-T energy
model Φθ(x(t), c) based on classifier-free guidance Ho & Salimans (2021) to enable conditional
generation. Subsequently, we estimate the energy of each conditional concept (attributes) individually,
and take the normalized sum of the conditional energies

∑
i wi Φθ(x(t), ci) where c is the the

conditioning attribute labels and w is the composition weight with
∑

i wi = 1. The normalized sum
is then used to generate the samples. Here, we consider a composition between two CelebA attributes
using equal weights.

G ADDITIONAL RESULTS

Figures 8 and 9 show additional examples of image interpolation on CIFAR-10 and CelebA 64×
64, respectively. Figures 10 and 11 show additional uncurated examples of unconditional image
generation on CIFAR-10 and CelebA 64× 64, respectively.
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Figure 8: Additional interpolation results on unconditional CelebA 64× 64.
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Figure 9: Additional interpolation results on unconditional CelebA 64× 64.
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Figure 10: Additional uncurated samples on unconditional CIFAR-10 32× 32.
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Figure 11: Additional uncurated samples on unconditional CelebA 64× 64.
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